
Research Methods in Computer Science
Serge Demeyer

University of Antwerp
Department of Mathematics and Computer Science

Middelheimlaan 1 B-2020 ANTWERPEN
http://www.win.ua.ac.be/∼sdemey/

I. ORIGINS OF COMPUTER SCIENCE RESEARCH

Computer Science as a research discipline has always strug-
gled with its identity. On the one hand, it is a field deeply
rooted in mathematics which resulted in strong theories.1 For
example, there is computational complexity theory (turing
machines, the halting problem), database theory (the relational
model, expresive power of query languages), formal language
theory (the chomsky hierarchy, well-formedness, formal se-
mantics). On the other hand, it is a field deeply rooted in
engineering which resulted in machines that have completely
warped our society: the von Neumann architecture (the basis
for digital computers), parallel processors (the new generation
of multi-core machines), distributed computers (a prerequisite
for the success of the internet and recent phenomena like grid
computing). Consequently, computer science has inherited its
research methods from the same disciplines: on the one hand,
the mathematical approach with axioms, postulates and proofs;
on the other hand the engineering approach with quantification,
measurements and comparison.

Software Engineering research in particular has suffered
from this identity crisis, and several authors have argued the
need for stronger research methods [1], [2], [3]. Moreover,
software engineering research —with its emphasis on pro-
cesses and team work— must also take into account group
dynamics and cognitive factors, hence borrows research meth-
ods from sociology and psychology as well [4], [5]. Certainly,
with innovations like distributed development and open source
release, software engineering is at the forefront of introducing
new communication paradigms, hence is itself a testbed for
experiments in social sciences.

Consequently, case studies are a dominant research method
within software engineering [6]. This should come as no
surprise, since case studies are particularly useful to “investi-
gate a contemporary phenomenon within its real-life context;
when the boundaries between phenomenon and context are
not clearly evident” [7]. Nevertheless, the term “case study”
is used quite liberally, ranging from small toy examples for
illustrative purposes to full blown benchmarks with all the re-
quired threats to validity. Consequently, a PhD student should
understand the full spectrum of what computer scientists refer
to as a “case study”.

1“theory” should be interpreted here in the scientific sense of the word, i.e.
an important feature of nature supported by facts gathered over time.

II. PUBLICATION CULTURE

The computing science field has a long tradition of using
conference publications as the primary unit of dissemination,
which is in contrast with other scientific disciplines (physics,
biology, . . . ) where emphasis is on journal publications. This
is a hotly debated issue within the community (see among
others [8], [9], [10]) and will not change in the foreseeable
future.

Indeed, scientific publications drive today’s academic re-
search, yet scientific publications are not a goal in themselves!
Rather they are a means towards a goal, namely recording and
disseminating the contributions to human knowledge — the
proverbial “standing on the shoulders of giants”. Nevertheless,
quantifying scientific output is a common practice these days
with scientific publications being the most visible aspect.
Hence there is a tremendous pressure on PhD students to
organise a PhD around a collection of peer reviewed articles.
A common template is to have (a) several workshop papers
outlining research idea(s) in the beginning of the process;
(b) two conference publications halfway in the PhD process
detailing some of the findings; (c) a journal publications
summarizing the main contribution for archival reference.

Given this template, a (computer) scientist is expected to
write a significant number of peer reviewed papers. Conse-
quently, a PhD student should understand the peer review
process, in order to increase the chances of success.

III. GOALS FOR THE TUTORIAL

This tutorial is aimed at PhD students who want to have a
better grasp on what exactly is “good” research. We explore
the role of research methods in computer science, draw-
ing upon practical examples from empirical approaches in
software engineering. Given the need for stronger research
methods (Section I) and the ongoing pressure on publication
output (Section II) the tutorial wants PhD students to . . .

• Name and explain different approaches to conduct com-
puter science research (i.e. feasibility study, case study,
comparative study, literature survey).

• Understand the peer reviewing process inherent in aca-
demic research, including the implications it has for their
own research (i.e. writing papers).

ACKNOWLEDGMENT

This work has been sponsored by the Research Foundation Flan-
ders (FWO) sponsoring a sabbatical leave of Prof. Serge Demeyer.



REFERENCES

[1] M. V. Zelkowitz and D. R. Wallace, “Experimental models for validating
technology,” Computer, vol. 31, pp. 23–31, May 1998.

[2] A. Höfer and W. F. Tichy, “Status of empirical research in software
engineering,” in Empirical Software Engineering Issues. Critical Assess-
ment and Future Directions, ser. Lecture Notes in Computer Science,
V. Basili, D. Rombach, K. Schneider, B. Kitchenham, D. Pfahl, and
R. Selby, Eds. Springer Berlin / Heidelberg, 2007, vol. 4336, pp. 10–
19.

[3] M. Shaw, “What makes good research in software engineering?” In-
ternational Journal on Software Tools for Technology Transfer (STTT),
vol. 4, pp. 1–7, 2002.

[4] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical studies of software
engineering: a roadmap,” in Proceedings of the Conference on The
Future of Software Engineering, ser. ICSE ’00. New York, NY, USA:
ACM, 2000, pp. 345–355.

[5] S. Hanenberg, “Faith, hope, and love: an essay on software science’s
neglect of human factors,” SIGPLAN Notices, vol. 45, pp. 933–946,
2010.

[6] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, pp. 131–164, 2009.

[7] R. K. Yin, Case Study Research: Design and Methods, 3 edition. Sage
Publications, 2002.

[8] R. Andonie and I. Dzitac, “How to write a good paper in computer
science and how will it be measured by ISI web of knowledge,” Inter-
national Journal of Computers, Communications and Control, vol. V,
no. 4, pp. 432–446, 2010.

[9] J. Grudin, “Technology, conferences, and community,” Commun.
ACM, vol. 54, pp. 41–43, February 2011. [Online]. Available:
http://doi.acm.org/10.1145/1897816.1897834

[10] C. Ghezzi, “Reflections on 40+years of software engineering research
observed through ICSE: an insider’s view,” Keynote at ICSE 1999
Conference, 1999.


