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COLORING GRAPHS

3 General Coloring Theorems

We start with some basic definitions.

Definition 3.1: Let G = (V, E) be a graph. Define the set of vertices Γ(v)
as the vertices adjacent to v and the degree dG(v) as |Γ(v)| (for v ∈ V ). Let
δ(G) and ∆(G) be the minimum and maximum degree over all vertices v in
V , respectively. If δ(G) = ∆(G) = k, then G is said to be k-regular. The
Szekeres-Wilf number sw(G) is defined as maxH δ(H), where the maximum
is taken over all (spanned) subgraphs H of G.

Clearly, δ(G) ≤ sw(G) ≤ ∆(G).

Exercises 3.1: On the Szekeres-Wilf number:

1. Give a graph G1, G2 and G3 for which δ(G) < sw(G) < ∆(G), δ(G) =
sw(G) < ∆(G). and δ(G) < sw(G) = ∆(G), respectively.

2. Show that if G is connected and dG(x) < ∆(G) for some x ∈ V , then
sw(G) < ∆(G).

Definition 3.2: Let G = (V, E) be a graph. We state that c is a (proper)
k-coloring of G if all the vertices in V are colored using k colors such that no
two adjacent vertices have the same color. χ(G) is defined as the minimum
k for which there exists a (proper) k-coloring of G.

Theorem 3.1 (Szekeres-Wilf (1968)): χ(G) ≤ sw(G) + 1.

Proof: Define Hn = G (where |G| = n) and choose xn ∈ Hn such that
dHn

(xn) = δ(Hn). Next, define Hn−1 = Hn − {xn}. Similarly, for i = n −
1, . . . , 1, select xi ∈ Hi such that dHi

(xi) = δ(Hi) and define Hi−1 = Hi−{xi}.
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(Thus, Hi is the subgraph of G induced by the vertices {x1, . . . , xi}, for
i = 1, . . . , n).
Using this construction we can color G using at most m+1 = maxn

i=1 δ(Hi)+
1 ≤ sw(G) + 1 colors as follows (we color xi after xi−1). Assign an arbitrary
color to x1. While coloring xi, for i > 1, we know that, so far, at most m
vertices adjacent to xi have been colored (because dHi

(xi) ≤ m), meaning
that we have at least one color left for xi. Q.E.D.

As a direct consequence we find that χ(G) ≤ ∆(G) + 1 (because sw(G) ≤
∆(G)). To compute sw(G) one can use the following algorithm:

Algorithm 3.1: Set m = δ(G), n = |G| and Hn = G. Next, for (i =
n, n − 1, . . . , 1) { choose xi ∈ Hi such that dHi

(xi) = δ(Hi), set m =
max(m, dHi

(xi)) and Hi−1 = Hi − {xi} }. Then m = sw(G).

Proof: Clearly, m ≤ sw(G) as Hi ⊂ G. Now, suppose m < sw(G) and let
H ′ be a subgraph of G such that sw(G) = δ(H ′) > m. Let j be maximal
such that xj ∈ H ′. Then, dHj

(xj) = δ(Hj) ≤ m < sw(G) = δ(H ′) ≤ dH′(xj),
however, H ′ ⊂ Hj , implying that dHj

(xj) ≥ δH′(xj). Q.E.D.

Exercises 3.2: On the Szekeres-Wilf Theorem:

1. Give a graph G, with |G| = n, for which χ(G) = ∆(G) + 1.

2. Give a graph G for which χ(G) < δ(G) ≤ sw(G).

Next, we prove that complete graphs are essentially the only graphs for which
χ(G) = ∆(G)+1. Instead of presenting the original proof by Brooks, we give
another easier proof by Melnikov and Vizing (1969). It illustrates the device
of switching colors in a subgraph spanned by the vertices of certain colors.
Suppose that c is a (proper) k-coloring of a graph H and let L be a com-
ponent of the subgraph H ′ spanned by the vertices of color 1, . . . , l (notice,
this subgraph H ′ is not necessarily connected; therefore, it might consist of
different components). Then, keeping the colors in the graph spanned by the
vertices V (H −L) and permuting the colors in L, results in another (proper)
k-coloring c̃ of H .

Theorem 3.2 (Brooks (1941)): Let ∆ ≥ 3, ∆(G) ≤ ∆ and K∆+1 6⊂ G, then
χ(G) ≤ ∆.
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Proof: Assume that the theorem fails and let G be a graph of minimal order
showing this. Pick x ∈ V arbitrary and denote Γ(x) = {x1, . . . , xd}, d ≤ ∆.
G is a minimal counterexample, thus, there exists a ∆-coloring c of H =
G − {x} (the somewhat odd formulation of this theorem is needed to apply
the theorem to H , as ∆(H) might be less than ∆(G)). If some color i is not
used by c to color one of the vertices in Γ(x), we could use this color for x
to obtain a ∆-coloring of G. This shows the following fact:
(i) d = ∆ and all the nodes in Γ(x) have a different color for any ∆-coloring
of H . We say that xi is colored with color i. Denote Hij as the subgraph
induced by the vertices in H that are colored i and j.
(ii) The vertices xi and xj have to belong to the same component Cij of Hij .
Indeed, otherwise we could switch the colors i and j in the component of xj

to obtain a ∆-coloring of H where xi and xj both have color i contradicting
(i).
(iii) The component Cij is a path from xi to xj . First, xi has exactly 1
adjacent vertex in H colored j. Let us explain: |ΓH(xi)| ≤ ∆ − 1 and if two
of these neighbors have the same color j then at least one other color, say
k 6= i, is not used by ΓH(xi). Therefore, coloring xi with color k would result
in a ∆-coloring of H where both xi and xk have the same color contradicting
(i). There is at least one vertex in ΓH(xi) with color j because xi is connected
to xj in Hij. Second, Cij cannot contain a vertex y with a degree at least 3 in
Cij (notice, this y is colored i or j). Indeed, let y be the first such vertex on a
path from xi to xj in Cij. Now, |ΓH(y)| ≤ ∆, thus, if 3 nodes in ΓH(y) have
the same color, then at most ∆ − 2 colors are used to color ΓH(y), meaning
that we can use a color k different from i and j for y to obtain a ∆-coloring
of H where xi and xj belong to different components in Hij contradicting
(ii).
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Fig. 2: Item (iv): Cij ∩ Cik 6= {xi}.
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(iv) Cij ∩ Cik = {xi}. Suppose that y 6= xi is also part of the intersection
(and thus colored i). Then, y has two neighbors colored i and two colored k
(see Figure 2), meaning that at most ∆ − 2 colors are used to color ΓH(y).
Therefore, we would recolor y by another color, say l, contradicting (ii).
So far, we did not use the fact that K∆+1 6⊂ G. This fact implies that one
of the paths between xi and xj in Cij has a length of at least 2 (actually,
3), say the path between x1 and x2. Thus, C12 contains a y 6= x2 colored
2 that is adjacent to x1. Now, switch the colors 1 and 3 in C13, that is,
the path between x1 and x3, to obtain a new ∆-coloring c′ of H . Denote
C ′

ij as the paths in this new coloring c′. y is adjacent to x1 colored 3 by c′,
meaning y ∈ C ′

23, while y is also connected to x2 by a path in C ′

12, meaning
y ∈ C ′

23 ∩ C ′

12 with y 6= x2 contradicting (iv).
Q.E.D.

Notice, if ∆(G) < ∆, then Brooks’ theorem does not provide us with any
new information as χ(G) is always smaller than or equal to ∆(G) + 1. For
∆ = ∆(G), it actually states that any graph for which χ(G) = ∆(G) + 1,
with ∆(G) ≥ 3, must contain a K∆(G)+1 as a subgraph.

Exercises 3.3: On Brooks’ theorem:

1. Construct a graph G such that ∆(G) = 2, K3 6⊂ G and χ(k) = ∆(G)+
1 = 3.

2. Show that χ(G) = 3 for the Petersen graph G.

Definition 3.3: An orientation of a graph G = (V, E) is a way of directing
the edges of G. Thus, with an orientation G becomes a directed graph
~G = (V, ~E). Let {x1, . . . , xn} be a set of vertices in V , then x1x2 . . . xn is

said to be a directed path of length n in ~G if −−−→xixi+1 ∈ ~E, for i = 1, . . . , n−1.
A directed cycle is defined as a directed path for which x1 = xn. Finally, let
l( ~G) be the maximum length of a directed path in ~G.

Theorem 3.3 (Gallai, Roy (1967)): χ(G) = min
→

l( ~G), where the minimum is

taken over all the orientations of G.



3 General Coloring Theorems 12

Proof: (A) Given a k-coloring c with colors {1, . . . , k} of G. Direct an edge
xy ∈ E from x to y if the color of x is smaller than the color of y. Clearly,
l( ~G) ≤ k for this orientation ~G. Thus, min

→

l( ~G) ≤ χ(G).

(B) Let ~G be an orientation of G. We will show that G is l( ~G)-colorable. Let
~E0 be a minimal subset of ~E such that ~H = (V, ~E − ~E0) is a directed graph
that does not contain a directed cycle. Next, define c(x) as the maximum

length of all the directed paths in ~H that start in x ∈ V . Then, c(x) ≤ l( ~G).
Now, color x with color c(x). Let us check that this is a (proper) coloring of

G. If ~xy ∈ ~E − ~E0 then c(x) ≥ c(y) + 1, thus x and y have different colors.

If ~xy ∈ ~E0 then there exists a directed path of some length p ≥ 1 from y to
x in ~H (because the set ~E0 was minimal, therefore, adding the edge ~xy to
~H would result in a directed cycle). Hence, c(y) ≥ c(x) + p, meaning that x
and y were assigned a different color. Q.E.D.

Exercises 3.4: On coloring graphs:

Let G be a graph with n vertices x1, . . . , xn such that d1 ≥ d2 ≥ . . . ≥ dn−1 ≥
dn, where di = dG(xi). Define the degree-sequence-number dsn(G) of G as

dsn(G) =
n

max
i=1

{min(di + 1, i)}.

Show that the following equalities are valid:

1. δ(G) + 1 ≤ dsn(G) ≤ ∆(G) + 1,

2. χ(G) ≤ dsn(G), without making use of 4.,

3. Draw a graph G such that sw(G) + 1 6= dsn(G),

4. sw(G) + 1 ≤ dsn(G).

Summary 3.1: In this section we have shown that the number of colors
needed to color a graph χ(G) is upper bounded by sw(G) + 1 ≤ ∆(G) + 1.
This upper bound is exact in some particular cases, but can be far from
accurate (e.g., χ(G) can be smaller than δ(G), while δ(G) ≤ sw(G)). If G
is connected and not regular, i.e., δ(G) 6= ∆(G), then χ(G) 6= ∆(G) + 1
(by Exercise 3.1). Moreover, by Brooks’ theorem we know that any graph
for which χ(G) = ∆(G) + 1, with ∆(G) ≥ 3, must contain a K∆(G)+1 as a
subgraph. Thus, in essence, the only graphs that need ∆(G) + 1 colors are
complete graphs (as the only connected graph G that contains a K∆(G)+1 is
K∆(G)+1 itself).
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4 Coloring Planar Graphs

Definition 4.1: A graph G = (V, E) is said to be planar if G can be drawn
in the plane such that no two edges intersect (except at a common vertex
v ∈ V ).

Theorem 4.1 (Euler): Let n, e and f denote the number of vertices, edges
and areas of a planar connected graph G. Then, n − e + f = 2.

Proof: We prove the property by induction on e = |E|. For e = 1, we
have n = 2 and f = 1. For e > 1 we distinguish two cases: (i) Suppose
there are no cycles in G (G is a tree), then f = 1 being the infinite area and
n = e + 1. (ii) Otherwise, there exists some edge vw (v, w ∈ V ) that is a
border between 2 different areas (being any edge from an arbitrary cycle).
Let G′ = (V, E − {vw}), then G′ is still planar and connected (otherwise vw
did not separate 2 different areas). Thus, by induction, n′−e′ +f ′ = 2. with
n = n′, e′ = e − 1 and f ′ = f − 1, implying n − e + f = 2.

Q.E.D.

Lemma 4.1: Let G = (V, E) be a connected planar graph, then e ≤ 3n − 6
for n > 2.

Proof: This lemma is trivial for G = P3. For G 6= P3, all areas of G are
bounded by 3 or more edges. Denote {a1, a2, . . . , af} as the set of all areas
and b(ai) as the number of edges that bound area ai, thus b(ai) ≥ 3 for all
i ∈ {1, . . . , f}. Hence, 3f ≤

∑f

i=1 b(ai) ≤ 2e, as an edge bounds either one
or two areas. Using Euler’s theorem we find 6 = 3(n−e+f) ≤ 3n−3e+2e =
3n − e, which proves the lemma.

Q.E.D.

Lemma 4.2: Let G = (V, E) be a connected planar graph. Then, there exists
a v ∈ V such that dG(v) ≤ 5.

Proof: The average degree d̄ of all vertices v ∈ V equals 1/n
∑

v∈V dG(v) =
2e/n. By the previous lemma we have d̄ ≤ (6n − 12)/n = 6 − 12/n < 6.
Thus, there must be a vertex with a degree of at most five.

Q.E.D.

Exercises 4.1: On planar graphs:
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1. Construct the smallest possible connected planar graph G such that
δ(G) = 5. Prove that it is minimal using Lemma 4.1.

2. Prove that χ(G) ≤ 6 for all planar graphs G.

3. Prove that for any connected planar graph G for which K3 6⊂ G and
n > 2: e ≤ 2n − 4.

4. Show that K3,3 and K5 are not planar.

Theorem 4.2 (Kempe (1879)): Let G = (V, E) be a planar graph, then
χ(G) ≤ 5.

Proof: Assume that the theorem fails and let G be a graph of minimal
order showing this. Let x ∈ V be an vertex such that dG(x) ≤ 5 and denote
Γ(x) = {x1, . . . , xd}, d ≤ 5. G is a minimal counterexample, thus, there
exists a 5-coloring c of H = G − {x}. If some color i ∈ {1, . . . , 5} is not
used by c to color one of the vertices in Γ(x), we could use this color for x
to obtain a 5-coloring of G. This shows that d = 5 and all the nodes in Γ(x)
have a different color for any 5-coloring of H . We say that xi is colored with
color i, for i = 1, . . . , 5. Denote Hij as the subgraph induced by the vertices
in H that are colored i and j.
The vertices xi and xj have to belong to the same component2 Cij of Hij .
Indeed, otherwise we could switch the colors i and j in the component of xj to
obtain a 5-coloring of H where xi and xj both have color i. This implies that
there is a path P13 from x1 to x3, the vertices of which are colored 1, 3, 1, . . . , 3
and a path P24 from x2 to x4, the vertices of which are colored 2, 4, . . . , 4.
Now, xP13x forms a cycle C that separates x2 from x4 and each vertex in
this cycle has a color different from different from 2 and 4. Consequently,
this cycle C intersects P24, which is impossible.

Q.E.D.

In 1976 Appel, Haken and Koch finally resolved Guthrie’s conjecture (1852)
that every planar graph is colorable by 4 colors, called the four color problem.

Theorem 4.3 (Appel, Haken, Koch (1976)): Let G = (V, E) be a planar graph,
then χ(G) ≤ 4.

2 Such components are called ij Kempe chains
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The proof is very elaborate and computer-aided. A brief discussion is in-
cluded to give some insight on how the problem got resolved. It is easy to
show that the following theorem is equivalent to the four color theorem.

Theorem 4.4: To proof the 4-color theorem it suffices to show that any
triangulation is 4 colorable. A triangulation is a planar connected graph, for
which every area (including the infinite) is bounded by exactly 3 edges.

Proof: Let G be an arbitrary planar graph. Suppose G has an area that is
bounded by b ≥ 4 edges. Then, there must be 2 vertices part of this boundary
that are not adjacent to each other (otherwise we could add a vertex v in the
middle of this area to obtain a planar representation of K5). Thus, we can
always add a new edge to G that produces two areas with less than b edges.
By repeatedly applying this method we obtain a triangulation Ḡ, called the
standardization of G. Any 4-coloring of Ḡ clearly suffices to color G.

Q.E.D.

If a minimal counter-example Gmin were to exist, then Gmin has to be a tri-
angulation. Suppose Gmin had an area bounded by b ≥ 4 edges. Again, two
vertices v1, v2 part of this boundary exist that are not connected with each
other. By identifying3 these vertices with each other, we obtain a planar
graph G′

min that has fewer vertices. Hence, G′

min is colorable by 4 colors, but
then so is Gmin by assigning the color of w to both v1 and v2.

A configuration C consists of a subgraph with specification of its vertex
degrees and the manner in which it is embedded in a planar triangulation.
Examples are: (i) a vertex of degree 4, (ii) a separating circuit Q of length n
(This is a circuit Q that separates G into two nonempty components when
removed.), (iii) a degree 5 vertex with 3 degree 5 neighbors, etc. Such a
configuration is called reducible if for any graph G containing C, one can
make a graph G′ with |G′| < |G|, such that any 4-coloring of G′ produces
a 4-coloring of G. The argument that we presented to demonstrate that
a minimal counter-example has to be a triangulation actually shows that
a nonseparating circuit of length > 3 is a reducible configuration. A proof
similar to the 5-color theorem shows that a degree 4 vertex is also a reducible
configuration.

3 Meaning that we replace both vertices v1 and v2 by a single one called w, the neighbors

of which are the neighbors of v1 and v2.
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Apart from developing an algorithm that could check whether a (not too
large) configuration is reducible. Appel, Haken and Koch made use of a
discharging algorithm to find a set L of unavoidable configurations, such
that any triangulation has to contain at least one of the configurations in L.
The idea of discharging and unavoidable sets is due to Heesch and works as
follows. We start by charging a triangulation G, by adding a charge equal
to 6 − dG(v) to every vertex v. Using Euler’s equality and the fact that
3f = 2e for a triangulation G, we find that the total charge on G equals
12. Next, one can define an algorithm that exchanges the charges between
the vertices. For instance, any degree 8 (or more) vertex distributes its
(negative) charge equally between its degree 5 neighbors. If one can now
show that this algorithm makes the charge of every vertex v nonpositive
provided that a specific set L of configurations does not appear in G. Then,
L is an unavoidable set of configuration as the total amount of charge always
remains equal to 12, no matter what the discharging algorithm may be.
The technique used by Appel, Haken and Koch existed in finding a discharg-
ing algorithm that produced an unavoidable set of configurations L such that
each element of L can be show to be reducible (by means of their algorithm).
Whenever they encountered an element of L that could not be shown to be
reducible, they adapted their discharging algorithm such that this configura-
tion did not appear in the set L. Eventually they found a fairly complicated
discharging algorithm that produced a set of 1936 unavoidable configurations
that were all reducible (or contained a subcomponent that was reducible).

Exercises 4.2: On coloring planar graphs:

1. The empire problem: Given an integer r, what is the minimum number
Nr of colors needed to color a map in which some countries have up to
r colonies ? A country and its colonies should be colored the same, and
no pair of colonies or of country and colony are adjacent. Show that
Nr ≤ 6(r + 1). [Hint: Let G = D(M) be the dual graph of the map M
and define Gr by identifying a country with its colonies. Use the fact
that nH ≤ (r +1)nHr

, eHr
≤ eH and eH ≤ 3nH −6 for any subgraph H

of G to find an expression for δ(Hr), where Hr ⊆ Gr is obtained from
H by identifying a country with its colonies.]


