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ABSTRACTIn this paper, we introdu
e an analyti
al model to study the stability and the mainperforman
e measures of a binary sta
k algorithm for random multiple a

ess 
om-muni
ation. The input traÆ
 is a dis
rete time Bat
h Markovian Arrival Pro
ess(D-BMAP). The analyti
al model is nearly exa
t (one minor approximation is re-quired) and the analysis is based on re
ent results obtained from tree stru
turedQuasi-Birth-Death (QBD) Markov 
hains. Apart from studying the stability of theproto
ol, we are also able to 
al
ulate the mean delay and other important perfor-man
e measures. The method deployed in this paper 
an also be extended to evaluateother medium a

ess 
ontrol (MAC) proto
ols with an underlying sta
k stru
ture.1 INTRODUCTIONAlthough the te
hniques used in this paper are appli
able to the evaluation of any mediuma

ess 
ontrol (MAC) proto
ol with an underlying sta
k stru
ture, we limit ourselves to1



the well known Capetanakis-Tsybakov-Mikhailov (CTM) proto
ol with free a

ess. TheCTM proto
ol has been studied for the last two de
ades by many resear
hers, starting withCapetanakis [1℄, Tsybakov, Massey [2, 3℄ and many others in the late seventies and earlyeighties, with Flajolet [4℄, Fayolle [5℄, Greenberg [6℄ and others in the late eighties and withSeri and Sidi [7℄ in the nineties. All these analyti
al models assume Poisson input traÆ
.Sidi, et al [7℄ evaluate the proto
ol with Markovian 
apture (two states: good and bad) butstill adopt the Poisson assumption for the input traÆ
. The CTM proto
ol has been usedin a variety of 
ommuni
ations systems and is 
urrently 
onsidered as the random a

esss
heme for the IEEE 802.14 standard of the hybrid �ber 
oaxial (HFC) networks whi
hare evolving from the existing residential CATV networks [8℄.Some re
ent developments on the subje
t of M/G/1 type of Markov 
hains with a treestru
ture [9, 10, 11, 12, 13℄, allow us to extend some of these results when the Poissoninput traÆ
 is repla
ed by a dis
rete time bat
h Markovian arrival pro
ess (D-BMAP). Toour best knowledge, it is the �rst time that Markov 
hains with a tree stru
ture are usedto evaluate a medium a

ess 
ontrol proto
ol. So far, Markov 
hains with a tree stru
turewere mainly used to evaluate LCFS queueing systems with multiple 
lasses of 
ustomers,ea
h 
lass having a di�erent servi
e requirement [12, 13℄.The paper is organized as follows. Se
tion 2 provides a short des
ription of the CTMproto
ol with free a

ess. In Se
tion 3 we brie
y re
all the de�nition of a D-BMAP,whereas Se
tion 4 reviews a Quasi-Birth-Death Markov 
hain with a tree stru
ture. Next,the analyti
al model is presented in Se
tion 5. The pro
edure required to 
al
ulate thesteady state probabilities is given in Se
tion 6. Se
tion 7 
onsiders the stability issues. Anoverview of the performan
e measures of interest is provided in Se
tion 8. Finally, somenumeri
al examples are presented in Se
tion 9 and 
on
lusions are drawn in Se
tion 10.2 THE CAPETANAKIS-TSYBAKOV-MIKHAILOV (CTM)ALGORITHM WITH FREE ACCESSLet us brie
y summarize the most salient features of the CTM proto
ol [1, 5, 4℄. Asingle 
hannel (bus, 
able, broad
ast medium) is shared among many users (sour
es, nodes,stations) that transmit pa
ketized messages. Time is slotted and transmissions are assumedto o

ur at the beginning of a time slot. Ea
h time slot has a �xed duration equal to the2



length of a pa
ket. Ea
h transmission is within the re
eption range of every user (in awireless 
entralized LAN environment the base station 
ould broad
ast the result of ea
huplink transmission).The CTM proto
ol is a 
ollision resolution algorithm for whi
h ea
h user strives to re-transmit its 
olliding pa
ket till it is 
orre
tly re
eived. The users have to resolve this
ontention without the bene�t of any additional information on other users' a
tivity. TheCTM proto
ol separates users that 
ollide re
ursively a

ording to some randomizationpro
edure into two groups. The users of the �rst group attempt retransmission in the nextslot, while the users of the se
ond group wait until the �rst group is resolved.
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Figure 1: State Diagram: CO = 
ollision, NC = no 
ollisionThe number of users, i.e., stations, is assumed to be in�nite and ea
h user holds zero orone pa
ket. Users that hold a pa
ket (at time t) are referred to as a
tive users (at timet). The CTM proto
ol is 
onveniently implemented by letting ea
h a
tive user maintainan integer value, referred to as the 
urrent sta
k level. At the end of ea
h time slot the
urrent sta
k level is updated as follows (see Figure 1). A user that be
ame a
tive, i.e.,generated a new pa
ket, during slot t� 1 initializes its 
urrent sta
k level for slot t at zero.A user is allowed to transmit in time slot t whenever its 
urrent sta
k level for slot t is zero.Therefore, users that be
ame a
tive during slot t�1 transmit in slot t (together with otherstations that have their 
urrent sta
k level for slot t at zero). Suppose that slot t does nothold a 
ollision, i.e., at most one user has its 
urrent sta
k level for slot t at zero. Then,users with a 
urrent sta
k level for slot t equal to i; i > 0; set their 
urrent sta
k level forslot t + 1 at i � 1 (while a su

essful user possibly be
omes ina
tive). If slot t howeverdoes hold a 
ollision, users with a 
urrent sta
k level for slot t equal to i; i > 0, set their
urrent sta
k level for slot t + 1 at i + 1. While, users with a 
urrent sta
k level for slott equal to zero split into two groups: a user joins the �rst group with a probability p andthe se
ond group with a probability q = 1 � p. All the users that join the �rst group set3



their 
urrent sta
k level for slot t + 1 at zero, while the users that join the se
ond groupset their 
urrent sta
k level for slot t+1 at one. An example of the transmission pro
ess isin
luded in Figure 2. Figure 2 also in
ludes a list of group numbers (1 or 2) for ea
h pa
ketto indi
ate whi
h group the pa
ket joins after ea
h 
ollision (in whi
h it is involved). Thus,the list 1; 2; ::: for pa
ket E indi
ates that pa
ket E joins the �rst group as a result of its�rst 
ollision and the se
ond as a result of its se
ond 
ollision.
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Figure 2: Example of the Transmission Pro
ess: CSL = Current Sta
k LevelAlthough out of the s
ope of this paper, the CTM proto
ol with free a

ess 
an be im-proved by an adjustment that saves doomed slots [14, 5, 4℄. Another variation of the CTMalgorithm is the Q-ary CTM algorithm (after a 
ollision stations split into Q subsets in-stead of two). We have su

essfully extended the te
hniques des
ribed in this paper inorder to evaluate both abovementioned proto
ol variations.3 DISCRETE TIME BATCH MARKOVIAN ARRIVAL PRO-CESSES (D-BMAP)In this se
tion, we brie
y des
ribe a 
lass of tra
table Markovian arrival pro
esses 
om-monly known as D-BMAPs, whi
h, in general, are non-renewal and whi
h in
lude thedis
rete time variants of the Markov-modulated Poisson pro
ess, the PH-renewal pro
essand superpositions of su
h pro
esses as parti
ular 
ases. Be
ause of its versatility, it lendsitself very well to modeling bursty arrival pro
esses 
ommonly arising in 
omputer and
ommuni
ations appli
ations. 4



Consider a dis
rete-time Markov 
hain on the state spa
e f1; : : : ; lg with transition matrixB. Suppose that at time t this 
hain is in some state i, 1 � i � l. At the next time instantt + 1, there o

urs a transition to another or possibly the same state and a bat
h arrivalmay or may not o

ur: with probability (b0)i;j, 1 � i � l, there is a transition to state jwithout an arrival, and with probability (bn)i;j, 1 � i � l; n � 1, there is a transition tostate j with a bat
h arrival of size n. A D-BMAP is fully 
hara
terized by the sequen
eof matri
es Bn; n � 0, with elements (bn)i;j. Noti
e that B =PnBn. For a more detaileddis
ussion we refer to [15℄.In our model we use a single D-BMAP to determine when and how many users be
omea
tive. Thus, if the D-BMAP is in state i; 1 � i � l, at the start of time slot t, n usersbe
ome a
tive, i.e., generate a pa
ket, and the state at the start of time slot t + 1 equalsj; 1 � j � l, with a probability (bn)i;j. These n stations that be
ame a
tive are assumedto transmit their pa
ket (for the �rst time) in time slot t (i.e., the arrivals are assumed too

ur on the slot boundary of slot t� 1 and slot t).4 MARKOV CHAIN OF QUASI-BIRTH-DEATHTYPEWITHA TREE STRUCTURELet us brie
y des
ribe a tree stru
tured Quasi-Birth-Death (QBD) Markov 
hain. Thistype of Markov 
hains was �rst introdu
ed in Takine, et al [11℄ and Yeung, et al [9℄.Consider a dis
rete time bivariate Markov 
hain f(Xt; Nt); t � 0g in whi
h the values ofXt are represented by nodes of a Q-ary tree, and where Nt takes integer values between 1and m. Xt is referred to as the node and Nt as the auxiliary variable of the Markov 
hainat time t. A des
ription of the transitions of the Markov 
hain is given below.A Q-ary tree is a tree for whi
h ea
h node has Q 
hildren. The root node is denoted as ;.The remaining nodes are denoted as strings of integers, with ea
h integer between 1 andQ. For instan
e, the k-th 
hild of the root node is represented by k, the l-th 
hild of thenode k is represented by kl, and so on. Throughout this paper we use lower 
ase lettersto represent integers and upper 
ase letters to represent strings of integers when referringto nodes of the tree. We use '+' to denote 
on
atenation on the right. For example, ifJ = 1 0 8; k = 6 then J + k = 1 0 8 6.The Markov 
hain (Xt; Nt) is 
alled a Markov 
hain of the QBD-type with a tree stru
ture5



if at ea
h step the 
hain 
an only make transitions to its parent, 
hildren of its parent, orto its 
hildren. Moreover, if the 
hain is in state (J + k; i) at time t then the state at timet+ 1 is determined as follows:1. (J; j) with probability di;jk ; k = 1; : : : ; Q;2. (J + s; j) with probability ai;jk;s; k; s = 1; : : : ; Q,3. (J + ks; j) with probability ui;js ; s = 1; : : : ; Q.De�ne m �m matri
es Dk; Ak;s and Us with respe
tive (i; j)th elements given by di;jk ; ai;jk;sand ui;js . Noti
e that transitions from state (J + k; i) do not dependent upon J , moreover,transitions to state (J + ks; j) are also independent of k. When the Markov 
hain is in theroot state (J = ;) at time t then the state at time t+ 1 is determined as follows:1. (;; j) with probability f i;j,2. (k; j) with probability ui;jk ; k = 1; : : : ; Q.De�ne them�m matrix F with 
orresponding (i; j)th element given by f i;j. A fundamentalperiod of a tree stru
tured QBD Markov 
hain that starts in the state (J+k; i) is de�ned asthe �rst passage time from the state (J+k; i) to one of the m states (J; j) for j = 1; : : : ; m.For a more detailed des
ription of the notations and algebra see Yeung, et al [9℄.5 MARKOVIAN MODEL FOR THE CTM PROTOCOL5.1 A First AttemptThe system at time slot t is fully spe
i�ed by the state of the D-BMAP at the start of timeslot t+1 and the 
urrent sta
k level for slot t of ea
h a
tive station. The value of all these
urrent sta
k levels 
an be spe
i�ed by a single string sksk�1 : : : s1s0, where si spe
i�es thenumber of a
tive stations with a 
urrent sta
k level for slot t equal to i. Therefore, thesystem is fully 
hara
terized by the Markov 
hain (Vt;Wt), where Wt denotes the stateof the D-BMAP at the start of time slot t + 1 and Vt represents the string that holdsthe 
urrent sta
k level for slot t of all a
tive stations. It is easy to see that (Vt;Wt) is a6



tree stru
tured Markov 
hain. Indeed, the node sksk�1 : : : s1s0 is the parent of the nodessksk�1 : : : s1s0s for s � 0. Ea
h node, in
luding the root node ;, 
ontains l states (the lstates of the D-BMAP) and has an in�nite number of 
hildren. The root node, denoted as;, represents the 
ase when there are no a
tive stations.The 
hain (Vt;Wt) is not of the Quasi-Birth-Death type. For instan
e, suppose that the
hain is in the state (J; i) with J = 2 5 at time t. Therefore, 5 a
tive stations have their
urrent sta
k level for slot t at zero, i.e., transmit in slot t, and 2 a
tive stations havetheir 
urrent sta
k level for slot t at one. Next, suppose that 3 of the �ve stations in
reasetheir 
urrent sta
k level to one as a result of the 
oin 
ip pro
edure. When a 
ollidingstation determines to join either the �rst or the se
ond group, it is said to 
ip a 
oin (ifp = 1=2 a fair 
oin). The 
oin 
ipping of all 
olliding stations is referred to as the 
oin
ipping pro
edure. Then, at time t + 1, the Markov 
hain is in the state (K; j) withK = 2 3 (2 + s) with probability (bs)i;j (i.e., s new arrivals o

ured on the boundary ofslot t and slot t+ 1). This type of transitions (to the grand
hildren of the parent node) isnot allowed in a tree stru
tured QBD Markov 
hain. Also, the Markov 
hain is no longerof the GI=M=1 type (see Yeung, et al [10℄) and there is no simple or expli
it solution forits stationary distribution.5.2 The A
tual ModelIn order to solve the problem indi
ated in the previous se
tion we make the number ofstations with a 
urrent sta
k level for slot t equal to zero a part of the auxiliary variable.A
tive stations that have a 
urrent sta
k level for slot t larger than zero are referred toas ba
klogged stations (at time t). Consider the following Markov 
hain (Xt; Nt). Let Xtbe the string holding the 
urrent sta
k level for slot t of all ba
klogged stations (at timet). For instan
e, when Xt = sk : : : s2s1 there are Pki=1 si ba
klogged stations, for si � 0ba
klogged stations the 
urrent sta
k level for slot t is equal to i. In this example thereare no stations with a 
urrent sta
k level for slot t larger than k. The sample spa
e of therandom variable Xt is 
1 = f;g [ fJ : J = sk : : : s1; sj � 0; 1 � j � k; k � 1g. Noti
e,the string J is allowed to have a number of leading zeros (see Note 1 for more 
ommentson this issue). The random variable Xt has a tree stru
ture. For instan
e, the 
hildren of3 5 0 2 are 3 5 0 2 s; s � 0. Thus, ea
h node in the tree has an in�nite number of 
hildren.Nt holds both the number of a
tive stations with a 
urrent sta
k level for slot t equal to7



zero and the state of the D-BMAP at the start of slot t + 1. The sample spa
e of therandom variable Nt is 
2 = f(n; j) j n � 0; 1 � j � lg.It is easy to see that (Xt; Nt) is a Markov 
hain. The state spa
e of the Markov 
hain is
1 � 
2. In order to solve this Markov 
hain the nodes of Xt should have a �nite numberof 
hildren and the auxiliary variable Nt should have a �nite number of states. Therefore,the Markov 
hain (Xt; Nt) is approximated by another bivariate Markov 
hain (Xdt ; Ndt ).(Xdt ; Ndt ) is obtained by setting a maximum d on the number of stations that 
an have thesame 
urrent sta
k level for slot t (in
luding sta
k level zero). If a situation o

urs in whi
hd+k; k > 0, stations have the same 
urrent sta
k level for slot t, k stations are assumed todrop their pa
ket. Thus, introdu
ing d 
an 
ause stations to drop their pa
ket. Pa
kets areotherwise never dropped by a station. Nevertheless, provided that d is 
hosen suÆ
ientlylarge there should hardly be any di�eren
e between the performan
e measures of (Xdt ; Ndt )and (Xt; Nt). We state that d is 
hosen suÆ
iently large if the ratio of dropped pa
ketsdue to the introdu
tion of d is smaller than 10�9, i.e., if less than one in a billion pa
ketsis dropped. The introdu
tion of the parameter d is the only approximation required toevaluate the CTM proto
ol with free a

ess. There is no obvious relationship between asuÆ
iently large value for d and the maximum n for whi
h Bn 6= 0 (also su
h an n doesnot ne
essarily exist). For instan
e, a suÆ
iently large d for the bulk arrival pro
ess withv = [4℄, as de�ned in Se
tion 9, is found for d � 18 for L = 10, d � 12 for L = 80 andd � 10 for L = 800 (whereas Bn = 0; n � 5 for all three 
ases).Let us now 
onsider (Xdt ; Ndt ) in more detail. Xdt is the string that holds the 
urrent sta
klevel for slot t of all ba
klogged stations. For instan
e, when Xdt = sk : : : s2s1 then for siba
klogged stations the 
urrent sta
k level for slot t equals i. The sample spa
e of therandom variable Xdt is 
d1 = f;g [ fJ : J = sk : : : s1; 0 � sj � d; 1 � j � k; k � 1g. Xdthas a tree stru
ture, e.g., 3 10 0 8 s; 0 � s � d, are 
hildren of 3 10 0 8. Therefore, ea
hnode in 
d1 has d+1 
hildren. As opposed to the general des
ription of the tree stru
turedQBD Markov 
hain we represent the 
hildren of a node by 0 to d instead of 1 to d+1. Ndtrepresents the number of stations that transmit in slot t (i.e., the 
urrent sta
k level forslot t of these stations is zero) and the state of the D-BMAP at the start of slot t+1. Thesample spa
e of Ndt is 
d2 = f(n; j) j 0 � n � d; 1 � j � lg. It is easy to see that (Xdt ; Ndt )is a Markov 
hain and the state spa
e of the Markov 
hain (Xdt ; Ndt ) is 
d1 � 
d2.We now proof that the transitions made by the Markov 
hain (Xdt ; Ndt ) are either transitions8



to a 
hild or a parent node (ex
ept from the root node ;). Assume that the Markov 
hain(Xdt ; Ndt ) is in node J + k at time t, i.e., Xdt = J + k. If slot t 
ontains a 
ollision of
 � 2 stations, i.e., Ndt is of the form (
; j) with 
 � 2; 1 � j � l, all ba
klogged stationsin
rement their 
urrent sta
k level by one. Thus, the integers in the string J + k shift oneposition to the left and Xdt+1 = J +ks with 0 � s � 
 (s of the 
 
olliding stations set their
urrent sta
k level for slot t+1 at 1 as a result of the 
oin 
ip). Ndt+1 is determined by j; 
and the probability that a station sele
ts the �rst group p. Thus, a 
ollision in slot t 
ausesthe Markov 
hain to make a transition to a 
hild node (this is also the 
ase for Xdt = ;). Ifslot t does not hold a 
ollision, all ba
klogged stations de
rement their 
urrent sta
k levelby one, i.e., shift one position to the right. Hen
e, if slot t does not hold a 
ollision, the
hain will be in the parent node J at time slot t+ 1 (for Xdt = ; the 
hain remains in theroot node). In 
on
lusion, the 
hain 
an only make transitions from a node to either itsparent node or to one of its 
hildren.In order for the Markov 
hain (Xdt ; Ndt ) to be a tree stru
tured QBD Markov 
hain thefollowing two additional 
onditions have to be satis�ed. First, the probability of making atransition from state (J+k; (i; j)) to state (J; (i0; j 0)) may not dependent upon J . As notedabove, su
h a transition takes pla
e whenever slot t does not hold a 
ollision. Clearly, j 0,the new state of the D-BMAP, is solely determined by j, the old state of the D-BMAP,and thus independent of J . While, i0, the number of stations that transmit in slot t+1, isdetermined by k, the number of stations that de
rease their 
urrent sta
k level from oneto zero, and j, the old state of the D-BMAP (be
ause this state j determines the numberof new arrivals on the boundary of slot t and slot t + 1).Se
ond, the probability of making a transition from state (J + k; (i; j)) to state (J +ks; (i0; j 0)) may not dependent upon J and k. Su
h a transition o

urs whenever slot t doeshold a 
ollision. Again, j 0, the new state of the D-BMAP, is determined by j, the old stateof the D-BMAP. While, s, the number of stations that in
rease their 
urrent sta
k levelto one (as a result of the 
oin 
ipping), is determined by i and the probability p. Finally,i0, the number of stations that transmit in slot t + 1, is determined by i; p and j, the oldstate of the D-BMAP (be
ause this state j determines the number of new arrivals).In 
on
lusion, the Markov 
hain (Xdt ; Ndt ) is a tree stru
tured QBD Markov 
hain. A treestru
tured QBD Markov 
hain is fully 
hara
terized by the matri
es Dk, Us, Ak;s and F(see Se
tion 4). The matri
es Ak;s hold the transition probabilities that the 
hain (Xdt ; Ndt )9



goes from state (J + k; (i; j)) to the state (J + s; (i0; j 0)). These transitions are transitionsbetween sibling nodes. Remember that the 
hain (Xdt ; Ndt ) 
an only make transitions toits parent or to its 
hildren, therefore, the entries of the matri
es Ak;s are zero. This fa
tredu
es the memory and time requirements of the algorithm to 
al
ulate the steady stateprobabilities of (Xdt ; Ndt ) when it is ergodi
 (for details see Se
tion 6).The matri
es Dk hold the transition probabilities that the 
hain (Xdt ; Ndt ) goes from state(J + k; (i; j)) to the state (J; (i0; j 0)). This happens when slot t does not hold a 
ollision.Therefore, the state i, the number of stations that transmit in slot t, must be equal to 0or 1. Moreover, the state i0, the number of stations that transmit in slot t + 1, equals k,the number of stations that de
rease their 
urrent sta
k level from one to zero, plus somepossible new arrivals. Hen
e,Dk((i; j); (i0; j 0)) = 8><>:(Bi0�k)j;j0 i � 1; i0 � k; i0 < d;Pn�d�k(Bn)j;j0 i � 1; i0 � k; i0 = d;0 otherwise; (1)where (Bn)j;j0 holds the probability that n new arrivals o

ur and that the input D-BMAP
hanges its state from j to j 0 (see Se
tion 3).The matri
es Us hold the transition probabilities that the 
hain (Xdt ; Ndt ) goes from state(J + k; (i; j)) to the state (J + ks; (i0; j 0)). This happens when slot t holds a 
ollision.Therefore, the state i, the number of stations that transmit in slot t, must be larger thanor equal to 2. Moreover, the state i0, the number of stations that transmit in slot t + 1,equals i, the number of stations that transmitted in slot t, minus s, the number of stationsthat in
rease their 
urrent sta
k level to one (as a result of the 
oin 
ipping), plus somepossible new arrivals. Clearly, s 
an never be larger than i. Hen
e,Us((i; j); (i0; j 0)) = 8><>:Cispi�sqs(Bi0�(i�s))j;j0 i > 1; i � s; i0 � i� s; i0 < d;Cispi�sqsPn�d�(i�s)(Bn)j;j0 i > 1; i � s; i0 � i� s; i0 = d;0 otherwise; (2)where (Bn)j;j0 holds the probability that n new arrivals o

ur and that the input D-BMAP
hanges its state from j to j 0 (see Se
tion 3) and Cis denotes the number of di�erent possible
ombinations of s from i di�erent items.Assume that the Markov 
hain is in node J = ; at time t, i.e., Xdt = ;. Then the transitionsto the nodes s, 0 � s � d, are governed by the matri
es Us, whereas the transitions tothe root node ; are as follows. The matrix F holds the transition probability that 
hain10



(Xdt ; Ndt ) goes from state (;; (i; j)) to the state (;; (i0; j 0)). This happens whenever slot tdoes not hold a 
ollision, i.e., i � 1. The state i0, the number of stations that transmit inslot t + 1, equals the number of new arrivals (o

uring on the boundary of slot t and slott+ 1). Hen
e,F ((i; j); (i0; j 0)) = 8><>:(Bi0)j;j0 i � 1; i0 < d;Pn�d(Bn)j;j0 i � 1; i0 = d;0 otherwise; (3)where (Bn)j;j0 holds the probability that n new arrivals o

ur and that the input D-BMAP
hanges its state from j to j 0 (see Se
tion 3).Note 1: It is possible that a string J has a number of leading zeros. The semanti
s ofsu
h a string J is identi
al to that of the string J without the leading zeros. For instan
e,J = 0 0 4 0 5 has the same meaning as K = 4 0 5. Strings with leading zeros arise fromthe following situation. When the Markov 
hain (Xdt ; Ndt ) is in the root state J = ;, i.e.,Xdt = ;, a transition might o

ur to state 0. For instan
e, suppose that Ndt = (
; j), with
 � 2; 1 � j � l, and assume that the 
urrent sta
k level for slot t + 1 is set at zero forea
h of the 
 
olliding stations (as a result of the 
oin 
ip pro
edure). Then, at time t+1,a

ording to Equation (2), the Markov 
hain (Xdt ; Ndt ) is in the node 0. It might seemmore appropriate to remain in the root node in su
h 
ases and thus to avoid strings withleading zeros. If we ex
lude this type of transitions and thus eliminate su
h strings, thenode variableXdt would have a tree stru
ture where every node has d+1 
hildren ex
ept forthe root node (who has d 
hildren). In Yeung, et al [10℄ this type of Markov 
hain is 
alleda Markov 
hain with a forest stru
ture and algorithms to 
al
ulate the steady state areprovided. Both approa
hes lead to the same steady state probabilities (after rearrangingthe states appropriately). The advantage of allowing this type of transitions is that we geta slightly faster algorithm be
ause the boundary 
ondition is slightly less 
ompli
ated.6 THE STATIONARY DISTRIBUTION OF THE QUEUESTRINGA

ording to Yeung and Alfa [9℄, a matrix geometri
 solution exists for an ergodi
 QBDMarkov 
hain with a tree stru
ture. The Markov 
hain (Xdt ; Ndt ) is aperiodi
 whenever theD-BMAP modeling the input traÆ
 is aperiodi
. The irredu
ibility is not always inherited11



from the input D-BMAP, e.g., D-BMAPs with B0 = 0 or Bn = 0; n � 2. In Se
tion7 we address the problem of determining whether the Markov 
hain (Xdt ; Ndt ) is positivere
urrent. De�ne, for ea
h string J 2 
d1, 0 � i � d and 1 � j � l�(J; (i; j)) = limt!1P [(Xdt ; Ndt ) = (J; (i; j))℄: (4)Denote by �(J; i) = (�(J; (i; 1)); : : : ; �(J; (i; l))) and by �(J) = (�(J; 0); : : : ; �(J; d)). Inorder to 
al
ulate the 1� l(d+1) ve
tors �(J) the following three sets of l(d+1)� l(d+1)matri
es play an important role [9℄.Let Gk; 0 � k � d, denote the matrix whose (i; v)th element is the probability that theMarkov 
hain (Xdt ; Ndt ) is in state (J; v) at the end of the fundamental period given thatthis period starts from state (J + k; i). These matri
es are sto
hasti
 for re
urrent QBDMarkov 
hains with a tree stru
ture (Takine, et al [11℄). Let Rk; 0 � k � d, denote thematrix whose (i; v)th element is the expe
ted number of visits to (J + k; v) given that(Xd0 ; Nd0 ) = (J; i) before visiting node J again. Let Vk; 0 � k � d, denote the matrix whose(i; v)th element is the taboo probability that starting from (J + k; i), the 
hain eventuallyreturns to a node with the same length as J + k by visiting (J + k; v), under the taboo ofthe node J and the sibling nodes of J + k, i.e., the nodes J + s; s 6= k.Yeung and Alfa [9℄ have shown that the matri
es Gk and Rk 
an be expressed in terms ofVk. Moreover, be
ause the QBD Markov 
hain (Xdt ; Ndt ) does not allow transitions betweensibling nodes, they were able to shown that the following simple expressions holdGk = (I � Vk)�1Dk; (5)Rk = Uk(I � Vk)�1; (6)Vk = Ak;k + dXs=0 UsGs: (7)If however transitions between sibling nodes where allowed it would still be possible tosolve the 
hain but the equations would be more 
ompli
ated and the resulting iteratives
heme more time 
onsuming [9℄. Noti
e that the matri
es Vk; 0 � k � d, are identi
al ifthe matri
es Ak;k; 0 � k � d, are identi
al. For the Markov 
hain (Xdt ; Ndt ) the matri
esAk;k; 0 � k � d, are equal to zero, therefore the matri
es Vk; 0 � k � d, are identi
al. Inthe remaining part of this se
tion we drop the subs
ript k if we refer to Vk. Using equations12



(5) and (7), we obtainV = dXs=0 Us(I � V )�1Ds: (8)As a spe
ial 
ase of Theorem 2 in Yeung and Alfa [9℄, the matrix V 
an be obtained aslimN!1 V [N ℄ from the re
ursionV [N + 1℄ = dXs=0 Us(I � V [N ℄)�1Ds; (9)where V [0℄ = 0. Also, the matri
es Gs[N ℄ = (I�V [N ℄)�1Ds 
onverge to the substo
hasti
matri
es Gs. Sin
e we do not know in advan
e whether the Markov 
hain (Xdt ; Ndt ) is stablewe do not use the possible sto
hasti
 nature of the matri
es Gs as a stopping 
riterion forthe re
ursion in (9). We simply repeat the re
ursion until all matri
es Gk; 0 � k � d; arestabilized.Next, the matri
es Rk; 0 � k � d, are 
al
ulated from the matrix V using equation (6).The steady state ve
tors �(J) are then 
al
ulated as follows [9℄�(J + k) = �(J)Rk; (10)where �(;) is the left invariant ve
tor of the matrix F + V , i.e., �(;)(F + V ) = �(;), and�(;) is normalized as �(;)(I � R)�1e = 1. The matrix R is de�ned as Pds=0Rs. In orderto 
larify the subsequent steps required to 
al
ulate the steady state probabilities we havesummarized them in the following algorithm:Algorithm:� INPUT: a sequen
e of matri
es Bn; n � 0; that 
hara
terize the D-BMAP inputtraÆ
.� STEP 1: 
al
ulate the matri
es Dk; 0 � k � d, Us; 0 � s � d, and F by making useof formulas (1), (2) and (3).� STEP 2: determine the matrix V using the iterative formula presented in (9).� STEP 3: 
al
ulate the matri
es Rk; 0 � k � d; by means of equation (6).13



� STEP 4: determine the ve
tor �(;) as follows: �(;) = �(;)(F + V ), where �(;) isnormalized as �(;)(I � R)�1e = 1.� STEP 5: 
al
ulate de steady state probabilities of interest using the equation �(J +k) = �(J)Rk.REMARK: At the end of STEP 4 one 
an determine whether the parameter d was 
hosensuÆ
iently large (see Note 2), if not, d has to be in
reased and the �rst four steps have tobe repeated, i.e., everything has to be re
al
ulated. For most numeri
al examples d = 10was suÆ
ient (see Se
tion 9). Thus, one starts with d = 2 and repeats the �rst 4 stepsuntil d is suÆ
iently large. It is however possible to redu
e the the 
omputational e�ortby making a �rst estimate for the starting value of d (instead of d = 2). If we estimatethe value of d larger than the smallest possible d for whi
h d is suÆ
iently large, we are�nished after one run. One must however note that the larger we 
hoose d, the moretime it requires to 
ompute the �rst four steps. Therefore, one should try to limit of themargin of overestimation. During the numeri
al trials we noti
ed that there exists a strongrelationship between a suÆ
iently large d and the burstiness, i.e., the variation on thenumber of arrivals in a time slot, of the input pro
ess. We used the following heuristi
method to redu
e the 
omputation times: if d = x was suÆ
iently large for a spe
i�
D-BMAP and the next D-BMAP we are about to evaluate is more, resp. less, bursty wemake use of a larger, resp. smaller, �rst estimate for a suÆ
iently large d.Note 2: We 
an make use of the following test to determine whether d was 
hosensuÆ
iently large. Let � be the load, i.e., arrival rate, of the D-BMAP modeling the aggre-gated input traÆ
. From the steady state probabilities we 
an 
al
ulate PJ;j �(J; (1; j)).This sum is, due to the law of total probability, equal to the probability that there isexa
tly one a
tive station with a 
urrent sta
k level for slot t equal to zero. Therefore,this sum mat
hes the probability of having a su

essful transmission. We 
an now 
om-pare this with the arrival rate, i.e., load, of the D-BMAP to get a value for the ratioof dropped pa
kets. In 
on
lusion, we state that d is 
hosen suÆ
iently large whenever(��PJ;j �(J; (1; j)))=� < 10�9.
14



7 STABILITY ISSUESFlajolet and Ja
quet [4℄ have shown that the CTM algorithm with free a

ess is stableunder a Poisson 
ow of arrivals if the arrival rate � < 0:360177 (using fair 
oins, i.e., forp = 1=2). The CTM algorithm is said to be stable if the expe
ted delay su�ered by anarbitrary pa
ket is �nite. In this se
tion we indi
ate how to determine whether the CTMproto
ol is stable under D-BMAP traÆ
. De�ne S as the set of all (irredu
ible) D-BMAPs.S 
an be splitted into two subsets S1 and S2 su
h that the CTM algorithm with free a

essis stable for s 2 S1 and is unstable for s 2 S2. For instan
e, the CTM algorithm is stablefor all D-MAPs, i.e., D-BMAPs with Bn = 0 for n � 2:A D-BMAP s belongs to S1 if and only if the Markov 
hain (Xt; Nt) is stable, i.e., positivere
urrent. To test whether the Markov 
hain (Xt; Nt) is positive re
urrent, we study thestability of the Markov 
hain (Xdt ; Ndt ). Clearly, the 
hain (Xt; Nt) is transient wheneverthe 
hain (Xdt ; Ndt ) is transient. Indeed, (Xdt ; Ndt ) behaves identi
al to (Xt; Nt) ex
ept thatit drops a pa
ket from time to time. Clearly, this only improves the expe
ted delay su�eredby an arbitrary pa
ket. The stability of the 
hain (Xdt ; Ndt ) is however not suÆ
ient toproof that the 
hain (Xt; Nt) is stable. For instan
e, for every s 2 S, (X1t ; N1t ) is stable.Even when d is 
hosen suÆ
iently large, it is still possible that the dropping of these rarepa
kets (even when we lose less than one in a billion) 
auses the 
hain (Xdt ; Ndt ) to be
omestable while (Xt; Nt) is not. Hen
e, it is possible that we slightly overestimate the stabilitypoint of a parti
ular arrival pro
ess. There exists only one 
ase we 
an use to get an ideaof the margin of overestimation: the Poisson result. Numeri
al results (not in
luded inSe
tion 10) have indi
ated that for d = 10 the overestimation is less than 0:0003% (the
hain was unstable for � = 0:36018 while the exa
t result by Flajolet states 0:360177).Further in
reasing d would result in even smaller overestimation errors.The Markov 
hain (Xdt ; Ndt ) is re
urrent if and only if the matri
es Gk; 0 � k � d,are sto
hasti
 (HE [12℄). Provided that the Markov 
hain (Xdt ; Ndt ) is re
urrent, wede�ne a heuristi
 measure ds for its stability as follows. Let �(i; j); 0 � i � d and1 � j � l, be the probability that the auxiliary variable Ndt is equal to (i; j). Hen
e,�(i; j) =PJ �(J; (i; j)) = �(;)(I�R)�1 (see Se
tion 6). Let ds =Pj �(0; j)+Pj �(1; j)�Pj;i>1 �(i; j). ds 
an be seen as the di�eren
e between the drift towards the root node andthe drift away from the root node. Indeed, Pj �(0; j) is equal to the probability that slot15



t is empty, i.e., no transmission takes pla
e in slot t and Pj �(1; j) is the probability thatslot t holds a su

essful transmission. Therefore, Pj �(0; j) +Pj �(1; j) is the probabilitythat the Markov 
hain makes a transition to a parent node. While,Pj;i>1 �(i; j) representsthe probability that a 
ollision takes pla
e in slot t, i.e., that the 
hain makes a transitionto a 
hild node. The di�eren
e between these two probabilities is used as a measure forthe stability.8 PERFORMANCE MEASURES8.1 The Fundamental Period and Mean DelayDe�ne �1(i; j); 0 � i � d and 1 � j � l, as the expe
ted length of a fundamentalperiod given that this period starts from state (J + k; (i; j)). Noti
e that these expe
tedvalues do not depend upon k. �1(i; j) is the expe
ted number of time slots ne
essaryto resolve a 
ollision of i stations provided that the D-BMAP is in state j. Let �1(i) =(�1(i; 1); : : : ;�1(i; l)) and �1 = (�1(0); : : : ;�1(d)). Then, the 
olumn ve
tor �t1 (xt denotesthe transposed ve
tor of x) obeys the following equation�t1 = e+ dXs=0 Us[�t1 +Gs�t1℄: (11)This equation is obtained as follows. The expe
ted length of the fundamental period equalsone if the �rst slot of the period is 
ollision free, i.e., if i equals zero or one (the �rst 2(d+1)rows of Us are zero, i.e., �1(i; j) = 1 for i = 0 or 1). Otherwise, if the �rst slot holds a
ollision, the expe
ted length of the fundamental period equals one (the �rst slot) plus theexpe
ted time required to resolve the �rst group plus the expe
ted time required to resolvethe se
ond group. In order to 
al
ulate the expe
ted time required to resolve the �rst groupwe apply the law of total probability on the state of the D-BMAP at the end of the se
ondslot of the fundamental period (the state at the end of the �rst is j), on the number of
olliding stations that sele
t the se
ond group and on the number of new arrivals o

uringon the slot boundary of the �rst and se
ond slot of the fundamental period. In matrixform this leads to Ps Us�t1. For time required to resolve the se
ond group we also applythe law of total probability on the state of the D-BMAP at the end of the slot followingthe fundamental period initiated by the �rst group and on the number of new arrivals onthe boundary of the last slot of the fundamental period initiated by the �rst group and the16



�rst of the period initiated by the se
ond group. In matrix form this leads toPs UsGs�t1.Equation (11) 
an be solved as a set of linear equations or using an iterative method.De�ne �(k; j); 1 � k � d and 1 � j � l, as the probability that Ndt = (k; j) at anarrival instant. Details on how to 
al
ulate �(k; j) are provided in Appendix A. Thus, theprobability that the transmission of a pa
ket is su

essful at its �rst attempt isPj �(1; j).Let U(delay) beU(delay) = dXi=1 lXj=1 �(i; j)�1(i; j): (12)Then U(delay) is an upper bound on the mean delay experien
ed by an arbitrary pa
ket.It is possible to 
al
ulate the mean delay E(delay) as follows.De�ne �2(i; j); 1 � i � d and 1 � j � l, as the expe
ted delay su�ered by an arbitrarypa
ket provided that the �rst transmission of the pa
ket 
oin
ided with the transmission ofi�1 other pa
kets and provided that the D-BMAP is in state j after the �rst transmission.Let �2(i) = (�2(i; 1); : : : ;�2(i; l)) and �2 = (�2(0); : : : ;�2(d)). The 
olumn ve
tor �t2obeys the following equation (this equation is obtained in a similar manner as Equation(11)).�t2 = e+ dXs=0 �MsUs�t2 +NsUs[�t1 +Gs�t2℄� ; (13)where Ms and Ns are the following (d+ 1)l � (d+ 1)l diagonal matri
esMs = diag(0t; a1(s)et; : : : ; ad(s)et); (14)Ns = diag(0t; b1(s)et; : : : ; bd(s)et); (15)with ai(s) = 0 for i � s, ai(s) = (i � s)=i for i > s, bi(s) = 0 for i < s, bi(s) = s=i fori � s, 0t a 1� l ve
tor with all elements zero and et a 1� l ve
tor with all elements equalto one. ai(s), resp. bi(s), represents the probability that our arbitrary pa
ket sele
ts the�rst, resp. se
ond, group after a 
ollision knowing that s of the 
olliding stations sele
t these
ond group. Equation (13) 
an be solved as a set of linear equations or using an iterativemethod. The expe
ted delay experien
ed by a pa
ket E(delay) is found asE(delay) = dXi=1 lXj=1 �(i; j)�2(i; j): (16)17



8.2 Other Performan
e MeasuresDe�ne �(k; i; j); k � 0; 0 � i � d and 1 � j � l, as the probability that the high-est 
urrent sta
k level held by a station equals k and that the auxiliary variable ofthe Markov 
hain (Xdt ; Ndt ) equals (i; j). Let �(k; j) = (�(k; i; 1); : : : ;�(k; i; l)) and�(k) = (�(k; 0); : : : ;�(k; d)). Re
all that it is possible that a string J 2 
1 starts witha sequen
e of zeros, see Note 1. Therefore, �(k) = PJ2L(k) �(J) with L(k) � 
1, is the
olle
tion of strings J with a lengthm;m � k, and with exa
tly m�k leading zeros. De�neR as Pdi=0Ri, then due to Equation (10)�(k) = �(;)(I � R0)�1 k = 0; (17)�(k) = �(k � 1)(R� R0) = �(;)(I � R0)�1(R�R0) k = 1; (18)�(k) = �(k � 1)R = �(;)(I �R0)�1(R� R0)Rk�1 k > 1: (19)The inverse of (I � R0), i.e., Pj Rj0, exists be
ause R =PiRi, Ri � 0 for 0 � i � d andthe inverse of (I �R), i.e., Pj Rj, exists. De�ne �(k; i; j); k � 0; 0 � i � d and 1 � j � l,as the probability that the number of ba
klogged stations equals k and that the auxiliaryvariable of the Markov 
hain (Xdt ; Ndt ) equals (i; j). Let �(k; j) = (�(k; i; 1); : : : ;�(k; i; l))and �(k) = (�(k; 0); : : : ;�(k; d)). Then, due to Equation (10)�(k) = �(;)(I � R0)�1 k = 0; (20)�(k) = min(k;d)Xi=1 �(k � i)Ri(I � R0)�1 k > 0: (21)Next, de�ne �(k); k > 0; as the expe
ted number of ba
klogged stations with a 
urrentsta
k level equal to k. The probability of having i; i > 0; stations with a 
urrent sta
k levelequal to k; k > 0; isPJ2T (k) �(J)e, where the subset T (k) � 
1 is the 
olle
tion of stringsJ for whi
h the k-th integer from the right equals i. Hen
e,�(k) = dXi=1 i�(;)(I �R)�1RiRk�1e: (22)De�ne E[r℄ as the expe
ted number of transmissions required to transmit a pa
ket su

ess-fully. E[r℄ is signi�
antly smaller than E(delay) be
ause an a
tive station only transmitswhenever its 
urrent sta
k level is equal to zero. Let �(;)(I � R)�1 = (�(0); : : : ; �(d)),where �(i); 0 � i � d, is a 1 � l ve
tor. Then, E[r℄ is found as the ratio of the expe
ted18



number of transmissions in slot t and the expe
ted number of su

essful transmissions inslot t E[r℄ = Pdk=1 k�(k)e�(1)e : (23)Finally, let pe, resp. ps, resp. p
 be the probability that a time slot is empty, resp. holds asu

essful transmission, resp. holds a 
ollision. Then,pe = �(0)e; (24)ps = �(1)e; (25)p
 = dXi=2 �(i)e: (26)9 NUMERICAL RESULTSFor all the numeri
al examples presented in this se
tion d is 
hosen suÆ
iently large (seeNote 2 for the exa
t de�nition). For most examples d = 10 is more than suÆ
ient.9.1 Stability ResultsTo test whether the Markov 
hain (Xdt ; Ndt ) is stable we 
al
ulate the matri
es Gk; 0 � k �d, and 
he
k whether they are sto
hasti
. If all the row sums of Gk are between 1� 10�9and 1, we 
on
lude that Gk is sto
hasti
. If there is a row in Gk for whi
h the row sumis below 1 � 10�4 we 
on
lude that the matrix Gk is not sto
hasti
. If the smallest rowsum of Gk is between 1 � 10�4 and 1 � 10�9 we 
on
lude that the sto
hasti
 nature ofGk is undetermined (i.e., the re
urren
e of the 
hain (Xdt ; Ndt ) is un
lear). Noti
e that if(Xdt ; Ndt ) is transient we 
an use the value of the smallest row sum dt as a heuristi
 measureof instability.As with most of the iterative formulas used in the matrix analyti
al approa
h, the numberof iterations required by formula (9) in
reases signi�
antly when the Markov 
hain (Xdt ; Ndt )is 
lose to instability (whereas 10 to 100 iterations suÆ
e for many stable and unstableMarkov 
hains, the number of iterations 
an be
ome as large as a few thousands when the
hain is (very) 
lose to the instability point). This limits the pre
ision by whi
h instabilitypoints are determined. 19



Next, we determine the instability point of a number of arrival pro
esses that belong the the
lass of the D-BMAP pro
esses for p = 1=2. In the remainder of the paper, the instabilitypoint is also referred to as the stability point as this is the point where the CTM proto
olswit
hes between being stable and unstable.9.1.1 The poisson pro
essFlajolet, et al [4℄ have shown that the CTM proto
ol (with free a

ess) is stable for � <0:360177147. We start by 
on�rming this result using our analyti
al model as follows. LetBn = e���n=n!, for n � 0. An overview of the results is presented in Table 1. The �rst
olumn represents the load �, the se
ond indi
ates whether the 
hain (Xdt ; Ndt ) is stableor not (S = stable, U = unstable) and the last 
olumn represents the stability measureds or the instability measure dt depending on whether the Markov 
hain was stable ornot. A

ording to Table 1 the Markov 
hain (Xdt ; Ndt ) be
omes unstable for � somewherebetween 0:36015 and 0:3602. No attempts were made to determine the stability point witha higher pre
ision.9.1.2 The erlang pro
essWe de�ne the Erlang pro
ess as follows. The Erlang pro
ess has independent and iden-ti
ally distributed interarrival times that obey an Erlang distribution with parameters kand �. Clearly, for k = 1 the Erlang pro
ess is redu
ed to the Poisson pro
ess. The Erlangpro
ess 
an be modeled as a D-BMAP in the following way. Let �n = e���n=n!; n � 0 andlet Bn; n � 0, be k � k matri
es de�ned as(Bn)i;j = �nk+j�i nk � j � i; (27)(Bn)i;j = 0 nk < j � i: (28)The stability points for the Erlang pro
esses with k = 2; 3 and 4 are shown in Table 2.Clearly, in
reasing the parameter k results in a higher stability point. This is not surprisingas the Erlang distribution be
omes more deterministi
 when in
reasing k. As a fun
tionof k, the growth of the stability point de
reases as k in
reases (this seems logi
al as thevarian
e of the Erlang distribution de
reases linearly in k). For instan
e, the stabilitypoint of the Erlang pro
ess with k = 15 is still well below 0:375 (dt = 0:3342). Therefore,the absolute di�eren
e between the stability point for the Erlang pro
ess with k = 1 and20



k = 15 is less than 1:5 per
ent, while the varian
e of the interarrival times is 15 times aslarge for k = 1 as opposed to k = 15.Table 1Stability of CTMunder Poisson Input� = load S=U ds=dt0.1 S 0.97450.3 S 0.52070.35 S 0.12150.355 S 0.06170.36 S 0.00230.3601 S 0.00100.36015 S 0.00030.3602 U 0.99910.3603 U 0.99510.3605 U 0.98720.361 U 0.96780.3625 U 0.91200.37 U 0.67910.4 U 0.2169

Table 2Stability of CTMunder Erlang k Input�=k = load k S=U ds=dt0.3625 2 S 0.10350.365 2 S 0.01990.3655 2 S 0.00170.3656 2 U 0.99650.3658 2 U 0.98350.366 3 S 0.12030.367 3 S 0.04680.3675 3 S 0.00590.3676 3 U 0.99730.368 3 U 0.96460.3675 4 S 0.13130.368 4 S 0.05740.369 4 U 0.93840.37 4 U 0.85219.1.3 The markov modulated poisson pro
essWe restri
t ourselves to a spe
i�
 sub
lass of the Markov modulated Poisson pro
essesknown as the interrupted Poisson pro
esses (IPP). These pro
esses are 2-state MMPPswith �1 = 0 and �2 = �. Transitions between state 1 and 2 
an o

ur at the end ofea
h time slot a

ording to a 2 � 2 transition matrix T . We restri
t ourselves to thissub
lass of the MMPPs be
ause the IPPs are the most bursty arrival pro
esses within thefamily of the MMPPs. Also, many other MMPPs have results that are very similar to thePoisson pro
ess, for instan
e, the MMPP with �1 = 2�2 and e = f = 30 (see below for thede�nition) has its stability point in the interval [0:359; 0:36℄. Table 3 shows the stabilitypoint, for the interrupted Poisson pro
ess with the following transitions matrix TT = � 1� 1=e 1=e1=f 1� 1=f � (29)where e = f = 300. Table 4 summarizes the results for e = 7f = 210. Thus, the expe
tedsojourn time in state one, resp. state two, is e, resp. f time slots. For the se
ond example,we let d = 25 for d to be suÆ
iently large. 21



Tables 3 and 4 show that the interval [0:3466; 0:348℄ in
ludes the stability point of bothIPPs. Thus, although the se
ond IPP is by far the most bursty (i.e., the distribution ofthe number of arrivals in a time slot has a higher variation) of the two, their stability pointdi�ers less than 0:14 per
ent. As for the in
uen
e of 
orrelation, we found that the interval[0:348; 0:349℄ 
ontains the stability point of the IPP with e = f = 30. Comparing thiswith the results in Table 3, we see that 
orrelation slightly de
reases the stability of theCTM proto
ol (in our example less than 0:24 per
ent).Table 3Stability of CTMunder Int. Poisson Inputfor e = f = 300�=2 = load S=U ds=dt0.325 S 0.06730.34 S 0.02220.345 S 0.00720.3466 S 0.00250.348 U 0.99650.35 U 0.98430.36 U 0.9279

Table 4Stability of CTMunder Int. Poisson Inputfor e = 7f = 210�=8 = load S=U ds=dt0.34 S 0.02020.345 S 0.00560.346 S 0.00270.3466 S 0.00090.348 U 0.99520.35 U 0.98560.36 U 0.94499.1.4 The bulk arrival pro
essThe bulk arrival pro
ess is de�ned as a dis
rete time arrival pro
ess 
hara
terized by an1� n ve
tor v and a length L. The arrival pattern of this pro
ess 
onsists of a repetitionof identi
al 
y
les. The �rst part of ea
h 
y
le 
onsists of a set of bat
hes, 
hara
terizedby v. For instan
e v = [2; 3; 2℄ means that we �rst have a bat
h of size 2, in the next timeslot we have a bat
h of size 3, followed by a bat
h of size 2. The se
ond part of the 
y
leis a silent period with a geometri
ally distributed length with average L. The Bulk arrivalpro
ess 
an be des
ribed by the following D-BMAP. Let v = [v1; : : : ; vm℄ and let Bn; n � 0;be a set of m + 1�m + 1 matri
es with(Bvj )j;j+1 = 1; (30)(B0)m+1;1 = 1=L; (31)(B0)m+1;m+1 = 1� 1=L; (32)with 1 � j � m. The other 
omponents of the matri
es Bn are equal to zero. The load ofa Bulk arrival pro
ess equals Pj vj=(L+m).22



Table 5Stability of CTMunder Bulk Arrival Inputv1=(L+ 1) v1 S=U ds=dt0.3448 2 S 0.01610.347826 2 S 0.00260.348432 2 U 0.99870.3509 2 U 0.90080.3428 3 S 0.02590.349040 3 S 0.00240.349854 3 U 0.99260.3529 3 U 0.84460.3478 4 S 0.00330.348432 4 S 0.00120.349040 4 U 0.99160.3509 4 U 0.9287

Table 6Stability of CTMunder Bulk Arrival InputP vi=(L+ 2) P vi S=U ds=dt0.3488 2+1 S 0.00460.349854 2+1 S 0.00050.350050 2+1 U 0.99690.3504 2+1 U 0.98030.3484 3+1 S 0.00170.348735 3+1 S 0.00060.349040 3+1 U 0.99530.3509 3+1 U 0.93300.3448 2+2 S 0.00900.346620 2+2 S 0.00260.347826 2+2 U 0.98380.3484 2+2 U 0.9631Table 5 presents the results for m = 1 with v = [2℄; [3℄ and [4℄. Table 6 holds the resultsfor m = 2 with v = [2; 1℄; [3; 1℄ and [2; 2℄. For ea
h of these pro
esses we gradually de
reaseL, i.e., in
rease the load, until the CTM proto
ol be
omes unstable. Perhaps somewhatsurprisingly, the v = [2; 2℄ pro
ess is the �rst of the six pro
esses to be
ome unstable (load� 2 [0:346620; 0:347826℄), then the v = [2℄ pro
ess, followed by either the v = [4℄ or thev = [3; 1℄ pro
ess (we did not attempt to distinguish these two pro
esses), next the v = [3℄pro
ess and �nally the v = [2; 1℄ pro
ess. From these results it follows that it is not alwaysthe most bursty pro
ess that results in the lowest stability point.9.1.5 SummaryThe stability point of the CTM proto
ol under D-BMAP input depends upon the exa
tde�nition of the input pro
ess. For instan
e, the Poisson pro
ess, the Erlang pro
esses, theMarkov modulated Poisson pro
esses and the bulk arrival pro
esses all result in a di�erentstability point. Moreover, it is often diÆ
ult to state a priori from the 
hara
teristi
s whi
hof two input pro
esses results in a higher stability point.On the other hand, the stability point of a D-BMAP pro
ess is never far below the stabilitypoint of the Poisson pro
ess (in our examples: at most 1.4 per
ent). Thus, the CTMproto
ol seems to maintain its good stability 
hara
teristi
s under D-BMAP input traÆ
.Clearly, we 
an always de�ne a D-BMAP with a load 0 � � � 1 for whi
h the CTM23



proto
ol is stable, for example a D-MAP. Also, although 
orrelation in the input traÆ
redu
es the stability point somewhat, it does not devastate the stability.An interesting open problem related to this is whether there exists a load �min su
h thatthe CTM proto
ol with free a

ess (with p = 1=2) is stable under all D-BMAPs witha load � < �min. During the numeri
al trials, we did not �nd a D-BMAP with a loadsmaller than � = 0:34657 = log(2)=2 for whi
h the CTM proto
ol be
ame unstable. Forinstan
e, the v = [2; 2; 2; 2℄, v = [2; 2; 2; 2; 2℄, v = [5℄, v = [10℄ Bulk arrival pro
ess andthe IPP with e = f = 3000 turned out to be stable for a load of log(2)=2. The valuelog(2)=2 is no stranger to the CTM proto
ol be
ause Flajolet and Ja
quet [4℄ have shownthat the expe
ted length of a busy period initiated by a 
ollision of n stations in
reasesasymptoti
ally as 2n=log(2) provided that no new arrivals o

ur. This result also indi
atesthat the bulk arrival pro
ess v = [n℄ with a load smaller than log(2)=2 is unlikely to 
auseinstability even for large values of n and L. The question raises whether it is at all possibleto �nd a D-BMAP with a load smaller that log(2)=2 than makes the CTM proto
ol withfree a

ess unstable.9.2 Performan
e ResultsIn the previous subse
tion, we demonstrated that 
orrelation and variation generally slightlyde
rease the stability point of the CTM proto
ol. In this subse
tion, the in
uen
e of 
or-relation and variation on the mean delay, mean number of transmissions, et
. is shown tobe mu
h more profound. Consider the 
lass of D-BMAPs that models the superpositionof M dis
rete time independent and identi
ally distributed (i.i.d.) interrupted Bernoullipro
esses (IBPs). A superposition ofM i.i.d. IBPs is 
hara
terized by a set of 4 parameters(M; d; �; �), where 1=d is the probability that an IBP generates a pa
ket when ON , 1=�is the mean sojourn time in the ON state and 1=� is the mean sojourn time in the OFFstate. Details on how to model this input pro
ess as an (M + 1)-state D-BMAP 
an befound in [16℄, where these input pro
esses are used to model the superposition of variablebit rate (VBR) sour
es.The �rst four 
olumns of Table 7 represent the parameters that 
hara
terize the D-BMAP,E(delay) represents the mean delay, E[r℄ the expe
ted number of transmissions requiredto su

essfully transmit a pa
ket, E[B℄ the expe
ted number of ba
klogged stations, T [B℄the 10�9-quantile of the number of ba
klogged stations, T [M ℄ the 10�9-quantile of the24



maximum 
urrent sta
k level held by a station and p
 is the probability that a time slot
ontains a 
ollision. The load � in ea
h of the s
enarios in Table 7 is 0:25.Table 7Performan
e Measures of CTM undera superposition of IBP traÆ
M d 1/� 1/� E(delay) E[r℄ E[B℄ T[B℄ T[M℄ p
20 40 20 20 5.28 2.24 1.76 59 78 0.134920 40 100 100 6.49 2.32 2.04 87 109 0.143120 40 500 500 8.58 2.39 2.55 189 223 0.149610 20 20 20 5.78 2.27 1.88 66 85 0.137510 20 100 100 8.62 2.43 2.55 118 143 0.153210 20 500 500 16.04 2.56 4.37 320 372 0.166110 10 20/3 20 10.97 2.62 3.09 124 139 0.170510 10 100/3 100 32.46 2.96 8.37 401 412 0.204110 10 500/3 500 128.65 3.17 32.37 1638 1636 0.22395 10 20 20 6.75 2.31 2.11 78 96 0.14135 10 100 100 13.90 2.61 3.82 177 206 0.17025 10 500 500 40.30 2.84 10.37 579 658 0.1925Poisson - - - 4.79 2.20 1.65 51 71 0.1318Table 7 shows that the in
uen
e of the 
orrelation between the number of arrivals in two
onse
utive slots is less signi�
ant when the arrivals are less bursty (i.e., M = 20; d = 40)and the results are to some extend 
omparable to the Poisson results. On the other hand,when the input pro
ess is more bursty (i.e., M = 10; d = 10 and M = 5; d = 10) theimpa
t of the 
orrelation on these performan
e measures is mu
h more profound and theperforman
e results are no longer 
omparable to the Poisson 
onditions.Note 3: We 
an also use the analyti
al model to study the impa
t of spe
i�
 arrivalpatterns on the performan
e measures. For instan
e, what is the worst possible patternwhen N pa
kets are generated ? To study spe
i�
 arrival patterns we 
an make use of theBulk arrival pro
ess where v 
ontains the arrival pattern and L is extremely large.10 CONCLUSIONSIn this paper, a nearly exa
t analyti
al model to evaluate the stability and the performan
eof the Capetanakis-Tsybakov-Mikhailov (CTM) proto
ol with free a

ess under D-BMAP25



input traÆ
 was introdu
ed. The model involves the 
onstru
tion of a dis
rete-time Quasi-Birth-Death Markov 
hain with a tree stru
ture. To our best knowledge, it is the �rst timethat su
h Markov 
hains are used to evaluate medium a

ess 
ontrol (MAC) proto
ols. Themain idea behind this model 
an also be extended in a natural way to evaluate other MACproto
ols with an underlying sta
k stru
ture. For instan
e, we su

essfully extended thete
hniques used in this paper in order to evaluate other important proto
ol variations ofthe CTM proto
ol, i.e., the Q-ary CTM proto
ol and the CTM proto
ol that saves doomedslots [14, 4℄. Details on these extensions and their results 
an be found in [17℄.Using numeri
al examples, we demonstrated that the stability point of the CTM proto
oldepends upon the exa
t de�nition of the D-BMAP. Also, it is often diÆ
ult to state a prioriwhi
h of two input pro
esses results in a higher stability point. Still, the CTM proto
olseems to remain its good stability 
hara
teristi
s when the Poisson input traÆ
 is repla
edby a D-BMAP. The highest degeneration of the stability point observed was 1:4 per
ent.We did not su

eed in �nding a D-BMAP with a load below log(2)=2 for whi
h the CTMproto
ol was unstable. This raises the question whether it is at all possible to �nd su
h aD-BMAP.On the other hand, we demonstrated that introdu
ing 
orrelation and variation highlya�e
ts the other performan
e measures (delay, number of ba
klogged stations, and so on)of the CTM proto
ol and the results no longer 
orrespond with the ones obtained underthe Poisson assumption.Referen
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