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tThis paper presents an algorithmi
 pro
edure to 
al
ulate the delay distributionof a type k 
ustomer in a �rst-
ome-�rst-serve (FCFS) dis
rete-time queueingsystem with multiple types of 
ustomers, where ea
h type has di�erent servi
erequirements (the MMAP[K℄/PH[K℄/1 queue). First, we develop a pro
edure,using matrix analyti
al methods, to handle arrival pro
esses that do not allowbat
h arrivals to o

ur. Next, we show that this te
hnique 
an be generalizedto arrival pro
esses that do allow bat
h arrivals to o

ur. We end the paper bypresenting some numeri
al examples.Keywords: Queueing Theory, Delay Distribution, �rst-
ome-�rst-serve, Mul-tiple Customer Types, Matrix Analyti
 Methods, Phase Type Distribution,Markovian Arrival Pro
ess.AMS 2000 Subje
t Classi�
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ondary 60M20, 90B221. Introdu
tionIn this paper we study a 
lass of queues with multiple types of 
ustomers, where ea
htype has di�erent servi
e requirements, known as the dis
rete time MMAP[K℄/PH[K℄/1queue. The MMAP[K℄ arrival pro
ess, introdu
ed in [7℄, is a Markovian arrival pro
essthat generates 
ustomers of K di�erent types and is a generalization of the bat
hMarkovian arrival pro
ess (BMAP). Its potential appli
ations to tele
ommuni
ations,manufa
turing and servi
e industries have been demonstrated extensively in [7, 4℄.Queues with MMAP[K℄ input, i.e., MMAP[K℄/G[K℄/1 queues, with a �rst-
ome-�rst-served (FCFS) servi
e dis
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2 B. VAN HOUDT ET AL.papers, expli
it formulas for the Lapla
e Stieltjes Transform (LST) of the a
tual waitingtimes of a 
ustomer of type k were obtained. A lot of resear
h e�ort has been donefor the analysis of the MMAP[K℄/PH[K℄/1 queue with a last-
ome-�rst-serve (LCFS)servi
e dis
ipline, e.g., [6, 5℄. In [6℄, the authors present an algorithmi
 pro
edure to
al
ulate the steady state probabilities of the MMAP[K℄/PH[K℄/1/LCFS-GPR queueusing tree stru
tured Quasi-Birth-Death (QBD) Markov 
hains [15℄ (where GPR standsfor generalized preemptive resume).In this paper, we develop a simple algorithmi
 pro
edure to 
al
ulate the delaydistribution of a type k 
ustomer for a dis
rete-time MMAP[K℄/PH[K℄/1 queue usingMarkov 
hains of the GI=M=1 type [10, 9℄. Markov 
hains of theM=G=1 and GI=M=1type have been used in the past to study some of the more 
lassi
al queues [11, 8℄. Themethod introdu
ed in this paper 
an also be used as an alternative way to obtain thedelay distribution related to some of the more 
lassi
al queues. In Se
tion 2 we startby restri
ting ourselves to MMAP[K℄ arrival pro
esses that do not allow bat
h arrivalsto o

ur ([6, 2℄ do not allow bat
hes either). Afterwards, we extend our method tomore general MMAP[K℄ pro
esses. We end this paper by presenting some numeri
alexamples that further demonstrate the usefulness of these queueing systems.2. The dis
rete-time MMAP[K℄/PH[K℄/1 queueThe arrival pro
ess of the queueing system of interest is a dis
rete time Markovarrival pro
ess with marked transitions (MMAP[K℄) that does not allow bat
h arrivals.Customers are distinguished into K di�erent types. The MMAP[K℄ is 
hara
terizedby a set of m�m matri
es fDk j 0 � k � Kg, with m a positive integer. The (j1; j2)thentry of the matrix Dk, for k > 0, represents the probability that a 
ustomer of type karrives and the underlying Markov 
hain makes a transition from state j1 to state j2.The matrix D0 
overs the 
ase when there are no arrivals. The matrix D, de�ned asD = KXk=0Dk;represents the sto
hasti
 m �m transition matrix of the underlying Markov 
hain ofthe arrival pro
ess. Let � be the stationary probability ve
tor of D, that is, �D = �and �e = 1, where e is a 
olumn ve
tor with all entries equal to one. The stationary



Delay in a MMAP[K℄/PH[K℄/1 queue 3arrival rate of type k 
ustomers is given by �k = �Dke.The servi
e times of type k 
ustomers have a 
ommon phase-type distributionfun
tion with a matrix representation (mk; �k; Tk), where mk is a positive integer,�k is an 1 � mk nonnegative sto
hasti
 ve
tor and Tk is an mk � mk substo
hasti
matrix. Let T 0k = e � Tke, then the mean servi
e time of a type k 
ustomer equals1=�k = �k(I � Tk)�1e. De�ne mser =PKk=1mk, the mser �mser matrix Tser and themser � 1 ve
tor T 0ser asTser = 26666664 T1 0 : : : 00 T2 : : : 0... ... . . . ...0 0 : : : TK
37777775 ; T 0ser = 26666664 T 01T 02...T 0K

37777775 :Let mtot = mserm. The 
ustomers are served, by a single server, a

ording to a�rst-
ome-�rst-serve (FCFS) servi
e dis
ipline.2.1. Constru
ting a GI=M=1 Type Markov 
hain (MC)In this se
tion, we indi
ate how to 
al
ulate the delay distribution of a type k
ustomer by 
reating a GI=M=1 type Markov 
hain with a generalized initial 
ondition.As opposed to the general approa
h in many queueing systems, we 
al
ulate the delaydistribution without obtaining the steady state probabilities of the queue length. Thetri
k used in this se
tion is to keep tra
k of the \age" of the 
ustomer in servi
e, whilekeeping the MMAP[K℄ state 
onstant until the servi
e is 
ompleted.Consider a Markov 
hain (MC) with an in�nite number of states labeled 1; 2; : : :.The set of states f1; : : : ;mg is referred to as level zero of the MC, whereas the set ofstates f(i�1)mtot+m+1; : : : ; imtot+mg is referred to as level i of the MC. The statesof level i > 0 are labeled as (k; s; j), where 1 � k � K, 1 � s � mk and 1 � j � m.Let state j of level zero of the MC 
orrespond to the situation in whi
h the queue andthe server are empty, while the 
urrent state of the MMAP[K℄ is j. Let state (k; s; j)of level i of the MC 
orrespond to the situation in whi
h there is a 
ustomer of typek in servi
e, that arrived i time instan
es ago, while the servi
e pro
ess is 
urrently inphase s and the MMAP[K℄ arrival pro
ess was in state j at time n� i+ 1, where n isthe 
urrent time instan
e.



4 B. VAN HOUDT ET AL.The level of the Markov 
hain 
an never in
rease by more than one during atransition between time instan
e n and n + 1. Moreover, the probability of making atransition between state (k1; s1; j1) of level i1 > 0 and state (k2; s2; j2) of level i2 > 0does not depend upon i1 and i2, but only upon the di�eren
e between i1 and i2.Therefore, the system 
an be des
ribed by a transition matrix P with the followingstru
ture: P = 26666666664
B1 B0 0 0 0 : : :B2 A1 A0 0 0 : : :B3 A2 A1 A0 0 : : :B4 A3 A2 A1 A0 : : :... ... ... . . . . . . . . .

37777777775 ; (1)where Al are mtot �mtot matri
es, Bl; l > 1; are mtot �m matri
es, B1 is an m�mmatrix and B0 is an m � mtot matrix. The matri
es B0, resp. B1, represent theprobabilities of making a transition from level zero to level zero, resp. level one. Thematri
es Al represent the transition probabilities between level i � l and level i� l+1,whereas Bl holds the probabilities of making a transition from level l� 1 to level zeroof the MC.In order to express the matri
es Al and Bl, for l � 0, we de�ne the followingm�mtotmatrix L: L = [(�1 
D1) (�2 
D2) : : : (�K 
DK)℄ :The entries of the matrix L hold the probabilities that the MMAP[K℄ arrival pro
essmakes a transition from state j1 to state j2, with 1 � j1; j2 � m, while a type k,1 � k � K, 
ustomer arrives and the 
ustomer will start its servi
e in phase s, with1 � s � mk. Let Ll = (D0)l�1L for l � 1. Based on the probabilisti
 interpretation ofthe matri
es Al and Bl we �nd:A0 = Tser 
 Im;Al = T 0ser 
 Ll;B0 = L;B1 = D0;Bl = T 0ser 
 (D0)l�1;



Delay in a MMAP[K℄/PH[K℄/1 queue 5where 
 denotes the Krone
ker produ
t between matri
es and Im the m � m unitymatrix. Noti
e that the matri
es Al and Bl de
rease to zero a

ording to (D0)l.Looking at the probabilisti
 interpretation of D0, it should be 
lear that, in general,the smaller the arrival rate � =PKk=1 �k the slower Al and Bl de
rease to zero.The GI=M=1 type MC de�ned above observes the system at ea
h time instan
e,even during the time instan
es when the server is empty, in whi
h 
ase the Markov
hain is at level zero. It is also possible to 
reate a GI=M=1 type MC that observes thesystem only at time instan
es when the server is busy. Moreover, the matri
es Al, forl � 0, would be identi
al to those de�ned above. However, the matri
es Bl, for l � 0,would have a di�erent dimension and di�erent equations for Bl would apply. Bothapproa
hes lead to the same results and have a similar time and spa
e 
omplexity.2.2. Cal
ulating the Steady-State ProbabilitiesFor some MMAP[K℄ arrival pro
esses, the MC de�ned in the previous se
tion
ontains some obvious transient states. Indeed, the states (k; s; j), for 1 � s � mkat level i > 0 are all transient, whenever the j-th 
omponent of the ve
tor �Dk iszero (whi
h indi
ates that the MMAP[K℄ 
annot be in state j after generating a typek 
ustomer). We 
ould easily eliminate the rows and 
olumns of Al and Bl that
orrespond to these states, however, this is not ne
essary be
ause the algorithm that
omputes the steady state probabilities will automati
ally produ
e a zero for thesetransient states. However, if a high per
entage of the states is transient, it is worth toeliminate them as this will redu
e the 
omputation time.Whenever we state that P is ergodi
, we mean to say that P is ergodi
 after removingthe obvious transient states mentioned above. A proof that the MC de�ned by equation(1) is ergodi
 if and only if � < 1, where � =PKk=1 �k=�k, is provided in the appendix.In [3℄, it was also shown that the MMAP[K℄/PH[K℄/1 queue is stable if and only if� < 1; therefore, the waiting times have a limiting distribution.De�ne �ni (k; s; j); i > 0; resp. �n0 (j), as the probability that the system is in state(k; s; j) of level i, resp. state j of level zero, at time instan
e n. Let�0(j) = limn!1 �n0 (j);�i(k; s; j) = limn!1 �ni (k; s; j):



6 B. VAN HOUDT ET AL.De�ne the 1�m ve
tor �0 = (�0(1); : : : ; �0(m)) and the 1�mtot ve
tors �i = (�i(1; 1; 1);�(1; 1; 2); : : : ; �i(1; 1;m); �i(1; 2; 1); : : : ; �i(1; 2;m); �i(1; 3; 1); : : : ; �i(K;mK ;m)), fori > 0. From the transition matrix P , de�ned in equation (1), we see that the Markov
hain is a generalized Markov 
hain of the GI=M=1 Type [9℄. For su
h a positivere
urrent Markov 
hain, we have �i = �i�1R; i > 1; where R is an mtot �mtot matrixthat is the smallest nonnegative solution to the following equation:R =Xl�0 RlAl:This equation is solved by means of an iterative s
heme [9, 12℄. In order to obtain �0and �1 we solve the following equation(�0; �1) = (�0; �1)24 B1 B0Pl�2Rl�2Bl Pl�1 Rl�1Al 35 :The ve
tor (�0; �1) is normalized as �0em+�1(I �R)�1emtot = 1, where I is the unitymatrix of size mtot and el is an l � 1 ve
tor whose elements equal one.2.3. Cal
ulating the Delay Density Fun
tionLet dk be the random variable that denotes the delay su�ered by a type k 
ustomer.Noti
e, the delay is de�ned as the sum of the time that the 
ustomer spends in thequeue and the time spent in the server. The probability that a type k 
ustomer has adelay of i time units, 
an be 
al
ulated as the expe
ted number of type k 
ustomerswith an \age" of i time units that 
omplete their servi
e at an arbitrary time instan
e,divided by the expe
ted number of type k 
ustomers that 
omplete their servi
e duringan arbitrary time instan
e (that is, �k for a stable queue). Using the steady stateprobabilities we easily �nd, by noti
ing that the MC de�ned in Se
tion 2.1 observesthe system at ea
h time instan
e,P [dk = i℄ = mkXs=1 (T 0k )s�k mXj=1 �i(k; s; j);for i � 1, with �k the arrival rate of the type k 
ustomers. (T 0k )s represents the s-th
omponent of the 
olumn ve
tor T 0k . Noti
e, P [dk = 0℄ = 0, be
ause a 
ustomer spendsat least one time unit in the server. Thus, using this pro
edure, we are able to 
al
ulatethe delay distribution without any knowledge of the queue length.



Delay in a MMAP[K℄/PH[K℄/1 queue 73. A MMAP[2℄/PH[2℄/1 queue with Bat
h ArrivalsWe start by 
onsidering a simple example of a MMAP[K℄ queue with bat
h arrivalsand K = 2 
ustomer types, and develop a pro
edure to 
al
ulate the delay distributionfor a type k = 1; 2 
ustomer. In the next se
tion, we generalize this idea to an arbitraryMMAP[K℄ arrival pro
ess with bat
h arrivals.Consider a single server queue with two 
orrelated input sour
es A and B. Bothsour
es generate zero or one 
ustomer during a time instan
e. Therefore, we 
anmodel the input traÆ
 as a MMAP[2℄ arrival pro
ess 
hara
terized by the m � mmatri
es D0, D1, D2, D12 and D21, where the (j1; j2)th element of the matrix DC ,with C = 
1; : : : ; 
b a string of b = 1; 2 integers between 1 and K = 2, represents theprobability of having a bat
h of b = 1; 2 arrivals, while the underlying Markov 
hainmakes a transition from state j1 to j2. The �rst 
ustomer of the bat
h is of type 
1, thepossible se
ond of type 
2. We assume that the servi
e time of a type k = 1; 2 
ustomerfollows a phase-type distribution fun
tion with matrix 
hara
terization (mk ; �k; Tk).In order to study this MMAP[2℄/PH[2℄/1 queue, we de�ne a new MMAP[2℄ arrivalpro
ess 
hara
terized by the following 3m� 3m matri
es:~D0 = 26664 D0 0 00 0 00 0 0 37775 ; ~D1 = 26664 D1 0 D12Im 0 00 0 0 37775 ; ~D2 = 26664 D2 D21 00 0 0Im 0 0 37775 :This MMAP[2℄ pro
ess is identi
al to the �rst, ex
ept that time instan
es duringwhi
h a bat
h of size two o

urs, are repla
ed by two time instan
es ea
h holdinga single 
ustomer. In order to obtain the delay distribution of the original system, we
annot simply 
al
ulate the delay distribution related to the new MMAP[2℄, be
ausethe splitting of the size two bat
hes would result in an error of one time unit to the ageof the se
ond 
ustomer of the bat
h. Moreover, looking at the MC of Se
tion 2.1, weknow that the age of a 
ustomer is determined using the age of the previous (unless itarrives when the queue is empty); therefore, the error would propagate and result inan in
orre
t age for all future 
ustomers.Nevertheless, the method of the previous se
tion still works if we somehow manageto 
orre
t the age of ea
h 
ustomer that is generated while the new MMAP[2℄ pro
essis in a state m < j � 3m, by one time unit when it enters the server. Indeed, by



8 B. VAN HOUDT ET AL.de�nition, su
h a 
ustomer enters the server as soon as the previous 
ustomer leavesthe server; therefore, its age is based upon the age of the previous 
ustomer. This
orre
tion of one time unit 
an be realized by 
hanging the transition matri
es A1 andA0 a

ordingly. Let us explain this pro
edure in more detail. If a 
ustomer, with age i,
ompletes its servi
e at time instan
e n and the next 
ustomer was generated one timeunit after the one that 
ompleted its servi
e, the MC would, a

ording to the previousse
tion, still be at level i at time instan
e n+ 1. If we add one time unit to the age ofsu
h a 
ustomer, provided that it was generated while the state of the new MMAP[2℄was j > m, in order to get the 
orre
t age, the MC would have to be at level i+ 1 attime instan
e n+1. Finally, a small modi�
ation to level zero of the MC is also madebe
ause the MMAP[2℄ pro
ess 
an never be in a state j > m if the server is empty.The remainder of this se
tion applies to all MMAP[K℄ arrival pro
esses and notmerely the MMAP[2℄ arrival pro
ess des
ribed above. Suppose that we wish to 
al-
ulate the delay distribution of a type k 
ustomer in a MMAP[K℄/PH[K℄/1 queue,where the MMAP[K℄ allows for bat
h arrivals to o

ur. Moreover, suppose that theMMAP[K℄ is 
hara
terized by a set ofm�mmatri
esDC , where C is a string of integersbetween 1 and K. Then, we start by 
onstru
ting a new MMAP[K℄ 
hara
terized bythe am� am matri
es ~D0; ~D1; : : : ; ~DK , with a � 2 an integer. A general pro
edure to
onstru
t the new MMAP[K℄ is presented in the next se
tion. Afterwards, we followthe pro
edure outlined below.Constru
t a GI=M=1 type MC 
hara
terized by the following transition matrix:~P = 26666666664
~B1 ~B0 0 0 0 : : :~B2 ~A1 ~A0 0 0 : : :~B3 ~A2 ~A1 ~A0 0 : : :~B4 ~A3 ~A2 ~A1 ~A0 : : :... ... ... . . . . . . . . .

37777777775 ; (2)
where ~Al are amtot�amtot matri
es, ~Bl; l > 1; are amtot�m matri
es, ~B1 is an m�mmatrix and ~B0 is an m� amtot matrix. Let ~Dfk be the �rst m rows of the matrix ~Dkand ~Drk the remaining am � m rows, for 1 � k � K. Next, de�ne the am � amtotmatrix ~L as ~L = h(�1 
 ~D1) (�2 
 ~D2) : : : (�K 
 ~DK)i : (3)



Delay in a MMAP[K℄/PH[K℄/1 queue 9Let ~Ll = ( ~D0)l�1 ~L, for l � 2. Then, as a result of our prior dis
ussion, we �nd~B1 = D0; (4)~B0 = h(�1 
 ~Df1 ) (�2 
 ~Df2 ) : : : (�K 
 ~DfK)i ; (5)~Bl = T 0ser 
 24 (D0)l�1O(a�1)m;m 35 ; (6)~Al = T 0ser 
 ~Ll; (7)for l � 2 and where Ox;y is a zero matrix with x rows and y 
olumns. Noti
e, only mrows of ea
h am rows of ~Bl and ~Al, for l � 2, di�er from zero, due to the stru
ture of~D0 (see Se
tion 4). It remains to 
al
ulate ~A0 and ~A1. In order to make the one timeunit 
orre
tion as dis
ussed before, we need to shift the probabilities of A1 related tothe MMAP[K℄ states j > m to A0. Hen
e,~A0 = Tser 
 Iam + T 0ser 
 24 Om;m1am Om;m2am : : : Om;mKam(�1 
 ~Dr1) (�2 
 ~Dr2) : : : (�K 
 ~DrK) 35 ; (8)~A1 = T 0ser 
 24 (�1 
 ~Df1 ) (�2 
 ~Df2 ) : : : (�K 
 ~DfK)O(a�1)m;m1am O(a�1)m;m2am : : : O(a�1)m;mKam 35 ; (9)where Il is the unity matrix of dimension l. The remainder of the pro
edure is identi
alto Se
tion 2, that is, we simply repla
e Al and Bl by ~Al and ~Bl in all the formulas inSe
tion 2.2 and 2.3 (and in some 
ases m by am and mtot by amtot).4. The MMAP[K℄/PH[K℄/1 queue with Bat
h ArrivalsConsider a MMAP[K℄ arrival pro
ess 
hara
terized by a set of m � m matri
esDC where C is a string of integers between 1 and K, that is, C = 
1 : : : 
b with1 � 
l � K and 1 � l � b. Let bmax be the maximum bat
h size of the MMAP[K℄arrival pro
ess. We state that a string C1 extends a string C2 = 
21 : : : 
2b if C1 is ofthe form C1 = 
11 : : : 
1l 
21 : : : 
2b for some integer l � 1. Let C = fC j 9C1for whi
hC1extends C and DC1 6= 0g and let jCj be the number of strings in the set C. The emptystring ; not 
onsidered as a member of C. Noti
e, jCj �Pbmax�1b=1 Kb = Kbmax�1K�1 � 1.Finally, de�ne a as jCj+ 1.Next, we 
onstru
t a new MMAP[K℄ arrival pro
ess that is identi
al to the �rst,ex
ept that ea
h time instan
e in whi
h a bat
h of b � bmax 
ustomers o

urs, is



10 B. VAN HOUDT ET AL.repla
ed by b time instan
es ea
h holding one 
ustomer (in the same order as in thebat
h). The new MMAP[K℄ is 
hara
terized by the am�am matri
es ~D0; ~D1; : : : ; ~DK .The matrix ~D0 is equal to zero ex
ept for the m � m blo
k in the upper left 
ornerwhi
h equals D0. In order to des
ribe the matri
es ~Dk, with 1 � k � K, we start bylabeling the am states of the arrival pro
ess as follows. The �rst m states are labeledas the empty string ;. The remaining mjCj states are grouped into jCj sets of m statesand ea
h set is labeled by a string C 2 C su
h that ea
h set of m states has a uniquelabel.Let ( ~Dk)C1;C2 be the m�m submatrix of ~Dk that holds the probabilities of makinga transition from the m states labeled C1 to the m states with label C2, while a type k
ustomer is generated. Then, we de�ne ( ~Dk)C1;C2 = Im provided that C1 = k
21 : : : 
2b ,where C2 = 
21 : : : 
2b . Noti
e, C = k is 
onsidered identi
al to C = k;. The otherm�m submatri
es ( ~Dk)C1;C2 , for C1 6= ;, are equal to zero. The submatri
es ( ~Dk);;C2are equal to DC , with C = kC2.In 
on
lusion, to obtain the delay distribution of a type k 
ustomer in a MMAP[K℄/PH[K℄/1 queue, where the MMAP[K℄ allows for bat
h arrivals to o

ur, we simply
onstru
t the MMAP[K℄ arrival pro
ess 
hara
terized by the matri
es ~D0; ~D1; : : : ; ~DKand apply the pro
edure des
ribed by equations (2) to (9). Obviously, the dimension ofthe matri
es ~Al and ~Bl should not ex
eed a few hundred, otherwise the pro
edure is tootime and memory 
onsuming. It is important to note that the new MC 
hara
terized by~P might 
ontain a very high number of obvious transient states due to the 
onstru
tionof the new MMAP[K℄. Indeed, the states (k; s; j), for 1 � s � mk, at level i > 0 aretransient if the j-th 
omponent of ~� ~Dk equals zero, where ~� is the sto
hasti
 stationaryve
tor of ( ~D0 + : : :+ ~DK). Thus, these states are easy to identify and 
an be removedwithout any diÆ
ulties, thereby redu
ing the 
omputation time signi�
antly.5. Numeri
al ExamplesThe idea used in this paper originated while analyzing the performan
e of FS-ALOHA(++), a random a

ess algorithm used in tele
ommuni
ation systems [16, 1℄.Demonstrating how FS-ALOHA 
an be evaluated using a MMAP[K℄/PH[K℄/1 queuewould lead us too far. Therefore, we present a rather arbitrary example that illustrates
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 pro
edure presented.Consider a single server queue with three 
orrelated input sour
es A;B and C; their
ustomers are referred to as type one, two and three. Ea
h sour
es generates zeroor one 
ustomer during a time instan
e. The superposition of these three 
orrelatedsour
es is assumed to be a 3 state MMAP[3℄. The three states are traversed one by oneand the sojourn time in ea
h state is geometri
ally distributed with a mean of 1000time units. While in state one, sour
e A generates a 
ustomer with probability 1=5,sour
e C with probability 1=100, while sour
e B is silent. In state two, sour
e A andC generate a 
ustomer with probability 1=100, while sour
e B generates a 
ustomerwith probability 1=28. Finally, in state three, sour
e B generates a 
ustomer withprobability 1=100, sour
e C with probability 1=20, while sour
e A is silent. Giventhat we are in state 1 � j � 3, the three sour
es A;B and C are independent (e.g.,the probability that a type one and type three 
ustomer are generated while in statetwo is 9:643 10�5). In this example, the majority of the arriving 
ustomers while instate j, are 
ustomers of type j. We further assume that the bat
hes are ordered,that is, whenever a bat
h arrival o

urs, the type one 
ustomer is �rst, followed by thetype two 
ustomer and �nally the type three 
ustomer. Ordering the bat
hes redu
esa = 1 + jCj by a fa
tor 2:5. As a result, the MMAP[K℄ is 
hara
terized by the 3 � 3non zero matri
es D0; D1; D2; D3; D12; D13; D23 and D123. For instan
e,
D1 = 26664 1:978 10�1 1:98 10�4 00 9:537 10�3 9:546 10�60 0 0 37775 :Clearly, C = f23; 2; 3g. Using the pro
edure in the previous se
tion, we 
onstru
t anew MMAP[3℄ that is 
hara
terized by the 12� 12 matri
es ~D0, ~D1, : : : ; ~D3.The servi
e times are assumed to be as follows. Type one 
ustomers have a deter-ministi
 servi
e time of two time units. The servi
e time distribution of a type two
ustomers on the other hand, is phase-type with three phases, being three geometri
phases with a mean of two, three and two time units. Finally, type three 
ustomers
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Figure 1: Delay distribution of type one, two and three 
ustomersrequire a geometri
 servi
e time with a mean of 5 time units. Hen
e,
T1 = 24 0 10 0 35 ; T2 = 26664 1=2 1=2 00 2=3 1=30 0 1=2 37775 ; T3 = [4=5℄ ;

and �1 = [1 0℄; �2 = [1 0 0℄, and �3 = [1℄. As a result, the matri
es ~Al are72 � 72 matri
es. Figure 1 represents the delay distribution of type one, two andthree 
ustomers, as 
al
ulated by equations (2) to (9) and Se
tions 2.2 and 2.3.The 
omputation time was approximately one minute and thirty se
onds on a SunEnterprise 2170 with two 167 Mhz pro
essors and 3x128 Mbyte RAM. We 
ould furtherredu
e the 
omputation time, if we took the e�ort to remove the 28 transient states ofea
h level i > 0, thereby redu
ing the dimension of the ~Al matri
es to 44�44 matri
es,instead of 72� 72 matri
es. These 28 states are easily identi�ed by looking at the zeroentries of the ve
tors ~� ~Dk, for k � 1.



Delay in a MMAP[K℄/PH[K℄/1 queue 136. Con
lusionThis paper presented an algorithmi
 pro
edure to 
al
ulate the delay distribution ofa type k 
ustomer in a �rst-
ome-�rst-serve (FCFS) dis
rete-time MMAP[K℄/PH[K℄/1queueing system. We started by developing a pro
edure, using matrix analyti
almethods, for arrival pro
esses that do not allow bat
h arrivals to o

ur. Afterwards, weshowed that this te
hnique 
an be generalized to arrival pro
esses that do allow bat
harrivals to o

ur. A numeri
al example to demonstrate the strength of the pro
edurewas presented within Se
tion 5.A
knowledgementsB. Van Houdt is a postdo
toral fellow of the FWO Flanders. We would like to thankthe reviewers for their valuable 
omments and suggestions.AppendixIn this se
tion we present an algebrai
 proof that the MC de�ned in Se
tion 2.1 isergodi
 if and only if � = PKk=1 �k=�k < 1. Re
all that we mean to say that P isergodi
 after removing the obvious transient states mentioned at the start of Se
tion2.2. We start by de�ning the following 1�mk sto
hasti
 ve
tors for 1 � k � K:�k = �k �Tk + T 0k�k� : (10)We start by proving the following two equations:�kT 0k = �k; (11)� = � KXk=1Dk! (I �D0)�1; (12)where � was de�ned as the sto
hasti
 stationary ve
tor of D = PKk=0Dk. The �rstequation is obtained from equation (10) by subtra
ting �kTk from both sides of theequation, followed by multiplying both sides by (I�Tk)�1e and applying the de�nitionof �k. The se
ond equation is easily obtained from � = �D by subtra
ting D0 andmultiplying by (I �D0)�1.



14 B. VAN HOUDT ET AL.Next, we de�ne the (k; s; j)th 
omponent, with 1 � k � K, 1 � s � mk and1 � j � m, of the 1�mtot ve
tor �g as1� (�Dk)j (�k)s�k ;where vj , with v a row or 
olumn ve
tor, denotes the jth 
omponent of v.Lemma 1. The ve
tor �g is an invariant ve
tor of P1l=0 Al and �g is sto
hasti
.Proof. The sumP1l=0Al 
an be written as Tser
Im+T 0ser
�(I �D0)�1L�, where Lwas de�ned by equation (3). First, we 
alulate the (k0; s0; j0)th 
omponent of �g(Tser
Im). Given the stru
ture of Tser we �nd1� (�Dk0 )j0Pmk0s=1(�k0)s(Tk0)s;s0�k0 :Using equations (10) and (11), we 
an rewrite this as1� (�Dk0 )j0 ((�k0)s0 � �k0(�k0 )s0)�k0 : (13)Se
ond, the (k0; s0; j0)th 
omponent of �g �T 0ser 
 ((I �D0)�1L)� equals1� KXk=1Pmks=1(�k)s(T 0k )s�k mXj=1(�Dk)j((I �D0)�1Dk0)j;j0 (�k0 )s0 :This equation 
an be simpli�ed using equation (11) to �nd1� (�(D1 + : : :+DK)(I �D0)�1Dk0)j0 (�k0 )s0 :Or by means of equation (12) we have 1� (�Dk0)j0 (�k0 )s0 . Adding this to equation (13)proofs that �g is an invariant ve
tor ofPlAl. �g is 
learly a sto
hasti
 ve
tor be
ause�k is sto
hasti
 and �Dke equals �k. Q.E.D.Lemma 2. �g (P1l=1 lAl) e = 1=�.Proof. (P1l=1 lAl) e 
an be written as T 0ser 
 ((P1l=1 l(D0)l�1)Le). Looking atequation (3), we have Le = (I � D0)e be
ause the ve
tors �k are sto
hasti
 and�PKk=0Dk� e = e. Moreover, (Pl l(D0)l�1)(I � D0) is equal to (I � D0)�1. Thus,(P1l=1 lAl) e = (T 0ser 
 ((I �D0)�1e)). As a result, �g(P1l=1 lAl)e equals1� KXk=1 �(Dk(I �D0)�1)e mkXs=1 (�k)s(T 0k )s�k :Thus, using equations (11) and (12) results in 1=� � e = 1=�.



Delay in a MMAP[K℄/PH[K℄/1 queue 15Q.E.D.Theorem 1. The MC de�ned by the transition matrix P , de�ned by equation (1), isergodi
 if and only if � < 1.Proof. Neuts [9℄ has shown, provided that the matrix A = P1l=0Al is irredu
ible,that a GI=M=1 type MC is ergodi
 if and only if the produ
t of the sto
hasti
 invariantve
tor of Pl Al with the ve
tor (Pl lAl)e is larger than one. The matrix PlAl isirredu
ible, after removing the transient states mentioned at the start of Se
tion 2.2,be
ause D = D0+ : : :+DK and the matri
es (Tk +T 0k�k) are irredu
ible. The entriesof �g that 
orrespond to the transient states are zero. Moreover, the (i; j)th entry ofthe matri
es PlAl and Pl lAl equals zero, if state i is not transient, whereas state jis. Therefore, Lemma 1 and 2 suÆ
e to proof the theorem. Q.E.D.Referen
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