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Abstract

This paper presents an algorithmic procedure to calculate the delay distribution
of a type k customer in a first-come-first-serve (FCFS) discrete-time queueing
system with multiple types of customers, where each type has different service
requirements (the MMAP[K]/PH[K]/1 queue). First, we develop a procedure,
using matrix analytical methods, to handle arrival processes that do not allow
batch arrivals to occur. Next, we show that this technique can be generalized
to arrival processes that do allow batch arrivals to occur. We end the paper by
presenting some numerical examples.
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1. Introduction

In this paper we study a class of queues with multiple types of customers, where each
type has different service requirements, known as the discrete time MMAP[K]/PH[K]/1
queue. The MMAP[K] arrival process, introduced in [7], is a Markovian arrival process
that generates customers of K different types and is a generalization of the batch
Markovian arrival process (BMAP). Its potential applications to telecommunications,
manufacturing and service industries have been demonstrated extensively in [7, 4].

Queues with MMAP[K] input, i.e., MMAP[K]/G[K]/1 queues, with a first-come-
first-served (FCFS) service discipline have been studied in [4, 2, 13, 14]. Within these
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papers, explicit formulas for the Laplace Stieltjes Transform (LST) of the actual waiting
times of a customer of type k were obtained. A lot of research effort has been done
for the analysis of the MMAP[K]/PH[K]/1 queue with a last-come-first-serve (LCFS)
service discipline, e.g., [6, 5]. In [6], the authors present an algorithmic procedure to
calculate the steady state probabilities of the MMAP[K]/PH[K]/1/LCFS-GPR queue
using tree structured Quasi-Birth-Death (QBD) Markov chains [15] (where GPR stands
for generalized preemptive resume).

In this paper, we develop a simple algorithmic procedure to calculate the delay
distribution of a type k customer for a discrete-time MMAP[K]/PH[K]/1 queue using
Markov chains of the GI/M /1 type [10, 9]. Markov chains of the M /G /1 and GI/M /1
type have been used in the past to study some of the more classical queues [11, 8]. The
method introduced in this paper can also be used as an alternative way to obtain the
delay distribution related to some of the more classical queues. In Section 2 we start
by restricting ourselves to MMAP[K] arrival processes that do not allow batch arrivals
to occur ([6, 2] do not allow batches either). Afterwards, we extend our method to
more general MMAP[K] processes. We end this paper by presenting some numerical

examples that further demonstrate the usefulness of these queueing systems.

2. The discrete-time MMAP[K]/PH[K]/1 queue

The arrival process of the queueing system of interest is a discrete time Markov
arrival process with marked transitions (MMAP[K]) that does not allow batch arrivals.
Customers are distinguished into K different types. The MMAP[K] is characterized
by a set of m x m matrices {Dy, | 0 < k < K}, with m a positive integer. The (ji, j2)™"
entry of the matrix Dy, for & > 0, represents the probability that a customer of type k
arrives and the underlying Markov chain makes a transition from state j; to state js.

The matrix Do covers the case when there are no arrivals. The matrix D, defined as

K
D= ZDk,
k=0

represents the stochastic m x m transition matrix of the underlying Markov chain of
the arrival process. Let 6 be the stationary probability vector of D, that is, D = 6

and fe = 1, where e is a column vector with all entries equal to one. The stationary
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arrival rate of type k customers is given by Ay = 6 Dye.

The service times of type k customers have a common phase-type distribution
function with a matrix representation (my,ag,Tx), where my, is a positive integer,
ap is an 1 X my nonnegative stochastic vector and T}, is an my X my, substochastic
matrix. Let Ty = e — Tye, then the mean service time of a type k customer equals

1/pr = ap(I — Ty) te. Define mge, = Zf:] my, the Mger X Mge, matrix Ty, and the

Mger X 1 vector TO, . as

D 0 ... 0 T?
0 7o, ... 0 0 T
Tser = i X . . s Tser =
0 0 ... Tk o
Let miot = mgem. The customers are served, by a single server, according to a

first-come-first-serve (FCFS) service discipline.

2.1. Constructing a GI/M /1 Type Markov chain (MC)

In this section, we indicate how to calculate the delay distribution of a type k
customer by creating a GI /M /1 type Markov chain with a generalized initial condition.
As opposed to the general approach in many queueing systems, we calculate the delay
distribution without obtaining the steady state probabilities of the queue length. The
trick used in this section is to keep track of the “age” of the customer in service, while
keeping the MMAPIK] state constant until the service is completed.

Consider a Markov chain (MC) with an infinite number of states labeled 1,2,....
The set of states {1,...,m} is referred to as level zero of the MC, whereas the set of
states {(i — D)mior +m+1,. .. imyso +m} is referred to as level i of the MC. The states
of level i > 0 are labeled as (k,s,j), where 1 < k< K,1<s<mjand 1< j <m.
Let state j of level zero of the MC correspond to the situation in which the queue and
the server are empty, while the current state of the MMAP[K] is j. Let state (k,s, j)
of level ¢ of the MC correspond to the situation in which there is a customer of type
k in service, that arrived ¢ time instances ago, while the service process is currently in
phase s and the MMAP[K] arrival process was in state j at time n — i + 1, where n is

the current time instance.
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The level of the Markov chain can never increase by more than one during a
transition between time instance n and n + 1. Moreover, the probability of making a
transition between state (ki1,s1, /1) of level iy > 0 and state (ka, s2,j2) of level i5 > 0
does not depend upon i; and iz, but only upon the difference between i; and i,.

Therefore, the system can be described by a transition matrix P with the following

structure:
( B, Bb 0 0 0 .. }
By, A Ay O 0
P=| By Ay, A Ay 0 ... |, (1)

By As; Ay A1 Ag

R

where A; are my,; X My, matrices, By, 1 > 1, are my,; X m matrices, By is an m X m

matrix and By is an m X my,; matrix. The matrices By, resp. Bj, represent the
probabilities of making a transition from level zero to level zero, resp. level one. The
matrices A; represent the transition probabilities between level i > [ and level i —1+1,
whereas B; holds the probabilities of making a transition from level [ — 1 to level zero
of the MC.

In order to express the matrices A; and By, for | > 0, we define the following m X m.¢

matrix L:

L:[(m ®D]) (a2®D2) (aK®DK)]

The entries of the matrix L hold the probabilities that the MMAP[K] arrival process
makes a transition from state j; to state j,, with 1 < ji,jo < m, while a type k,
1 < k < K, customer arrives and the customer will start its service in phase s, with
1 <s<my. Let Ly = (Do)~ L for I > 1. Based on the probabilistic interpretation of
the matrices A; and B; we find:

Ay = Tyr ® I,
A = T), 2L,
By = L,
By = Do,

Bl _ TO ® (DO)Z71;

Ser
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where ® denotes the Kronecker product between matrices and I,,, the m X m unity
matrix. Notice that the matrices 4; and B; decrease to zero according to (Dp)’.
Looking at the probabilistic interpretation of Dy, it should be clear that, in general,
the smaller the arrival rate A = Z,z(:] A the slower 4; and B, decrease to zero.

The GI/M/1 type MC defined above observes the system at each time instance,
even during the time instances when the server is empty, in which case the Markov
chain is at level zero. It is also possible to create a GI/M /1 type MC that observes the
system only at time instances when the server is busy. Moreover, the matrices A;, for
[ > 0, would be identical to those defined above. However, the matrices By, for [ > 0,
would have a different dimension and different equations for B; would apply. Both

approaches lead to the same results and have a similar time and space complexity.

2.2. Calculating the Steady-State Probabilities

For some MMAP[K] arrival processes, the MC defined in the previous section
contains some obvious transient states. Indeed, the states (k,s,j), for 1 < s < my
at level i > 0 are all transient, whenever the j-th component of the vector 6Dy is
zero (which indicates that the MMAP[K] cannot be in state j after generating a type
k customer). We could easily eliminate the rows and columns of 4; and B; that
correspond to these states, however, this is not necessary because the algorithm that
computes the steady state probabilities will automatically produce a zero for these
transient states. However, if a high percentage of the states is transient, it is worth to
eliminate them as this will reduce the computation time.

Whenever we state that P is ergodic, we mean to say that P is ergodic after removing
the obvious transient states mentioned above. A proof that the MC defined by equation
(1) is ergodic if and only if p < 1, where p = Z,le i/, is provided in the appendix.
In [3], it was also shown that the MMAP[K]/PH[K]/1 queue is stable if and only if
p < 1; therefore, the waiting times have a limiting distribution.

Define 77 (k, s,j),i > 0, resp. 7§ (j), as the probability that the system is in state

(k,s,j) of level i, resp. state j of level zero, at time instance n. Let

ml) = lim w30),
mi(k,s,3) = lim 7] (k, s, 7).

n— oo
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Define the 1xm vector mg = (7o (1), ..., mo(m)) and the 1xmy,; vectors m; = (m;(1,1,1),
m(1,1,2), ..., m(1,1,m), m;(1,2,1),...,m(1,2,m), m;(1,3,1),...,m(K,mg,m)), for
i > 0. From the transition matrix P, defined in equation (1), we see that the Markov
chain is a generalized Markov chain of the GI/M/1 Type [9]. For such a positive
recurrent Markov chain, we have m; = m;_1R,7 > 1, where R is an my,; X my,; matrix
that is the smallest nonnegative solution to the following equation:
R=) R'A.
1>0
This equation is solved by means of an iterative scheme [9, 12]. In order to obtain g

and m; we solve the following equation

[ om ]
[ 2122 R'7B, Zl21 R4 J .

The vector (mg, m1) is normalized as mgey, +m1 (I — R) 'em,,, = 1, where I is the unity

(70, m1) = (70, m1)

matrix of size my,; and e; is an [ X 1 vector whose elements equal one.

2.3. Calculating the Delay Density Function

Let d;, be the random variable that denotes the delay suffered by a type k customer.
Notice, the delay is defined as the sum of the time that the customer spends in the
queue and the time spent in the server. The probability that a type k customer has a
delay of i time units, can be calculated as the expected number of type k customers
with an “age” of 4 time units that complete their service at an arbitrary time instance,
divided by the expected number of type k customers that complete their service during
an arbitrary time instance (that is, A, for a stable queue). Using the steady state
probabilities we easily find, by noticing that the MC defined in Section 2.1 observes

the system at each time instance,

my (TO)S m
P[dk :Z]:Z Akk Zﬂ-i(kas:j)a
s=1 j=1

for i > 1, with Ay the arrival rate of the type k customers. (7)), represents the s-th
component of the column vector 7). Notice, P[dx = 0] = 0, because a customer spends
at least one time unit in the server. Thus, using this procedure, we are able to calculate

the delay distribution without any knowledge of the queue length.
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3. A MMAP[2]/PH][2]/1 queue with Batch Arrivals

We start by considering a simple example of a MMAP[K] queue with batch arrivals
and K = 2 customer types, and develop a procedure to calculate the delay distribution
for a type k = 1,2 customer. In the next section, we generalize this idea to an arbitrary
MMAP[K] arrival process with batch arrivals.

Consider a single server queue with two correlated input sources A and B. Both
sources generate zero or one customer during a time instance. Therefore, we can
model the input traffic as a MMAP[2] arrival process characterized by the m x m
matrices Do, Dy, Dy, Dis and Dy, where the (j;,72)"" element of the matrix D,
with C = ¢y,...,¢p a string of b = 1,2 integers between 1 and K = 2, represents the
probability of having a batch of b = 1,2 arrivals, while the underlying Markov chain
makes a transition from state j; to jo. The first customer of the batch is of type ¢, the
possible second of type co. We assume that the service time of a type & = 1, 2 customer
follows a phase-type distribution function with matrix characterization (myg, ay, Tk).

In order to study this MMAP[2]/PH[2]/1 queue, we define a new MMAP|2] arrival

process characterized by the following 3m x 3m matrices:

Dy 0 0 D, 0 Dy Dy Dy 0
D=0 00|, Di=|1, 0 0 |, Do=| 0 0 0
0 0 0 0 0 0 I, 0 0

This MMAP[2] process is identical to the first, except that time instances during
which a batch of size two occurs, are replaced by two time instances each holding
a single customer. In order to obtain the delay distribution of the original system, we
cannot simply calculate the delay distribution related to the new MMAP[2], because
the splitting of the size two batches would result in an error of one time unit to the age
of the second customer of the batch. Moreover, looking at the MC of Section 2.1, we
know that the age of a customer is determined using the age of the previous (unless it
arrives when the queue is empty); therefore, the error would propagate and result in
an incorrect age for all future customers.

Nevertheless, the method of the previous section still works if we somehow manage
to correct the age of each customer that is generated while the new MMAP[2] process

is in a state m < j < 3m, by one time unit when it enters the server. Indeed, by
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definition, such a customer enters the server as soon as the previous customer leaves
the server; therefore, its age is based upon the age of the previous customer. This
correction of one time unit can be realized by changing the transition matrices 4; and
Aq accordingly. Let us explain this procedure in more detail. If a customer, with age i,
completes its service at time instance n and the next customer was generated one time
unit after the one that completed its service, the MC would, according to the previous
section, still be at level ¢ at time instance n + 1. If we add one time unit to the age of
such a customer, provided that it was generated while the state of the new MMAP[2]
was j > m, in order to get the correct age, the MC would have to be at level i + 1 at
time instance n + 1. Finally, a small modification to level zero of the MC is also made
because the MMAP[2] process can never be in a state j > m if the server is empty.

The remainder of this section applies to all MMAP[K] arrival processes and not
merely the MMAP[2] arrival process described above. Suppose that we wish to cal-
culate the delay distribution of a type k customer in a MMAP[K]/PH[K]/1 queue,
where the MMAP[K] allows for batch arrivals to occur. Moreover, suppose that the
MMAP[K] is characterized by a set of m xm matrices D¢, where C is a string of integers
between 1 and K. Then, we start by constructing a new MMAP[K] characterized by
the am x am matrices Do, D1, ..., Dk, with a > 2 an integer. A general procedure to
construct the new MMAP[K] is presented in the next section. Afterwards, we follow
the procedure outlined below.

Construct a GI/M/1 type MC characterized by the following transition matrix:

(}él B, 0 0 0
By, A Ay 0 0
0

~
I

P
&
-
s

where /Nll are amyo; X amyo; matrices, Bl,l > 1, are amy,; X m matrices, Bl isanmxm
matrix and B’g is an m X amy,; matrix. Let ﬁ,’: be the first m rows of the matrix ﬁk
and [)Z the remaining am — m rows, for 1 < k < K. Next, define the am X amyq
matrix L as

L= (041®E1) (OAQ®E2) (()K®[)K) . (3)
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Let L; = (Do)' 'L, for I > 2. Then, as a result of our prior discussion, we find

B, = Dy, (4)

B = [ ©Df) (a2@ D)) ... (ax ® D) (5)

- el ™ 6)
[O(afl)m,mJ

A4 = Tfer®l~zl, (7)

for I > 2 and where O, 4 is a zero matrix with = rows and y columns. Notice, only m
rows of each am rows of B; and A;, for [ > 2, differ from zero, due to the structure of
Dy (see Section 4). Tt remains to calculate Ay and A,. In order to make the one time
unit correction as discussed before, we need to shift the probabilities of A; related to

the MMAP[K] states j > m to Ay. Hence,

1 0 [ 0m7m1am Om,mgam s Om,mkam -|
AO = T‘ser ® In,m + Tser ® ~ - ~ s (8)
| (@D} (a2@Dy) ... (ax©Dy) |
N N N
A = Té’er®{ (01 1) (@Dz) o (e D) ] 9)
[ O(afl)m,mlam O(afl)m,mgam s O(afl)m7m;(am J

where I; is the unity matrix of dimension /. The remainder of the procedure is identical
to Section 2, that is, we simply replace A; and B; by A; and Bj in all the formulas in

Section 2.2 and 2.3 (and in some cases m by am and my: by amyet).

4. The MMAP[K]/PH[K]/1 queue with Batch Arrivals

Consider a MMAP[K] arrival process characterized by a set of m x m matrices
D¢ where C' is a string of integers between 1 and K, that is, C = ¢;...¢, with
1<¢g < Kandl<1I<b Let bya be the maximum batch size of the MMAP[K]
arrival process. We state that a string Cy extends a string Co = ¢}...c} if Cy is of
the form Cy = ¢} ...¢/c}...c} for some integer | > 1. Let C = {C' | 3C;for whichC,
extends C and D¢, # 0} and let |C| be the number of strings in the set C. The empty
string () not considered as a member of C. Notice, |C] < 22272—1 Kb = % -1
Finally, define a as |C| + 1.

Next, we construct a new MMAP[K] arrival process that is identical to the first,

except that each time instance in which a batch of b < b,,,, customers occurs, is
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replaced by b time instances each holding one customer (in the same order as in the
batch). The new MMAPI[K] is characterized by the am x am matrices Dy, D1, ..., Dg.
The matrix Dy is equal to zero except for the m x m block in the upper left corner
which equals Dg. In order to describe the matrices Dy, with 1 < k < K, we start by
labeling the am states of the arrival process as follows. The first m states are labeled
as the empty string (. The remaining m|C| states are grouped into |C| sets of m states
and each set is labeled by a string C' € C such that each set of m states has a unique

label.

Let (Dy)c, .0, be the m x m submatrix of Dy that holds the probabilities of making
a transition from the m states labeled C to the m states with label Cs, while a type k
customer is generated. Then, we define (Dk)01702 = I,, provided that Cy = kc? .. .cp,
where Cy = ¢ ...c2. Notice, C = k is considered identical to C = kf. The other

m x m submatrices (Dy)c,,c,, for Ci # 0, are equal to zero. The submatrices (Dy)g.c,

are equal to D¢, with C = kC,.

In conclusion, to obtain the delay distribution of a type &k customer in a MMAP[K]/
PH[K]/1 queue, where the MMAP[K] allows for batch arrivals to occur, we simply
construct the MMAP[K] arrival process characterized by the matrices Do,Dy,...,Dg
and apply the procedure described by equations (2) to (9). Obviously, the dimension of
the matrices A; and B; should not exceed a few hundred, otherwise the procedure is too
time and memory consuming. It is important to note that the new MC characterized by
P might contain a very high number of obvious transient states due to the construction
of the new MMAPIK]. Indeed, the states (k,s,j), for 1 < s < my, at level i > 0 are
transient if the j-th component of 8D}, equals zero, where 6 is the stochastic stationary
vector of (Dg + ...+ Dg). Thus, these states are easy to identify and can be removed

without any difficulties, thereby reducing the computation time significantly.

5. Numerical Examples

The idea used in this paper originated while analyzing the performance of FS-
ALOHA(++), a random access algorithm used in telecommunication systems [16, 1].
Demonstrating how FS-ALOHA can be evaluated using a MMAP[K]/PH[K]/1 queue

would lead us too far. Therefore, we present a rather arbitrary example that illustrates
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the strength of the algorithmic procedure presented.

Consider a single server queue with three correlated input sources A, B and C; their
customers are referred to as type one, two and three. Each sources generates zero
or one customer during a time instance. The superposition of these three correlated
sources is assumed to be a 3 state MMAPI3]. The three states are traversed one by one
and the sojourn time in each state is geometrically distributed with a mean of 1000
time units. While in state one, source A generates a customer with probability 1/5,
source C' with probability 1/100, while source B is silent. In state two, source A and
C generate a customer with probability 1/100, while source B generates a customer
with probability 1/28. Finally, in state three, source B generates a customer with
probability 1/100, source C' with probability 1/20, while source A is silent. Given
that we are in state 1 < j < 3, the three sources A, B and C are independent (e.g.,
the probability that a type one and type three customer are generated while in state
two is 9.643 10~ °). In this example, the majority of the arriving customers while in
state j, are customers of type j. We further assume that the batches are ordered,
that is, whenever a batch arrival occurs, the type one customer is first, followed by the
type two customer and finally the type three customer. Ordering the batches reduces
a =14 |C| by a factor 2.5. As a result, the MMAP[K] is characterized by the 3 x 3

non zero matrices Dy, D, Dy, D3, D15, D13, Dyg and Dq93. For instance,

1.978 1071 1.98 1074 0
Dy = 0 9.537 1073 9.546 10~©

0 0 o0 |

Clearly, C = {23,2,3}. Using the procedure in the previous section, we construct a

new MMAP[3] that is characterized by the 12 x 12 matrices Do, D1, ..., Ds.

The service times are assumed to be as follows. Type one customers have a deter-
ministic service time of two time units. The service time distribution of a type two
customers on the other hand, is phase-type with three phases, being three geometric

phases with a mean of two, three and two time units. Finally, type three customers
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— typel
type 2
— — type3 ||

Probability

1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Delay (time units)

10’ 1 1 1 1

FI1GURE 1: Delay distribution of type one, two and three customers

require a geometric service time with a mean of 5 time units. Hence,

1/2 1/2 0
0 1
T = 0ol To=| 0 2/3 1/3 |, Ts3=1[4/5],
0 0 1/2

and oy = [1 0], a = [1 0 0], and as = [1]. As a result, the matrices A; are
72 x 72 matrices. Figure 1 represents the delay distribution of type one, two and
three customers, as calculated by equations (2) to (9) and Sections 2.2 and 2.3.
The computation time was approximately one minute and thirty seconds on a Sun
Enterprise 2170 with two 167 Mhz processors and 3x128 Mbyte RAM. We could further
reduce the computation time, if we took the effort to remove the 28 transient states of
each level i > 0, thereby reducing the dimension of the A; matrices to 44 x 44 matrices,
instead of 72 x 72 matrices. These 28 states are easily identified by looking at the zero

entries of the vectors 8Dy, for k > 1.
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6. Conclusion

This paper presented an algorithmic procedure to calculate the delay distribution of
a type k customer in a first-come-first-serve (FCFS) discrete-time MMAP[K]/PH[K]/1
queueing system. We started by developing a procedure, using matrix analytical
methods, for arrival processes that do not allow batch arrivals to occur. Afterwards, we
showed that this technique can be generalized to arrival processes that do allow batch
arrivals to occur. A numerical example to demonstrate the strength of the procedure

was presented within Section 5.
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Appendix

In this section we present an algebraic proof that the MC defined in Section 2.1 is
ergodic if and only if p = Zf:] Ak /pr < 1. Recall that we mean to say that P is
ergodic after removing the obvious transient states mentioned at the start of Section

2.2. We start by defining the following 1 x my stochastic vectors for 1 < k < K:
Bi = Br (T + Tow) - (10)
We start by proving the following two equations:

BTy = i, (11)

6 (i Dk> (I - Do), (12)
k=1

0

where 6 was defined as the stochastic stationary vector of D = Z,ﬁ;o Dy.. The first
equation is obtained from equation (10) by subtracting £;T} from both sides of the
equation, followed by multiplying both sides by (I —T}) ‘e and applying the definition
of ur. The second equation is easily obtained from § = 6D by subtracting Dy and
multiplying by (I — Dg) L.
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Next, we define the (k,s,7)"" component, with 1 < k < K, 1 < s < my and

1 < j < m, of the 1 x my,; vector I, as

p(oDk) (6k>9,

Kk

where v;, with v a row or column vector, denotes the jt* component of v.
Lemma 1. The vector Il is an invariant vector of > ;= A and 1, is stochastic.

Proof. Thesum Y_,° A; can be written as Tye, @ Ly, + T2, ® ((I — D) ! L), where L
was defined by equation (3). First, we calulate the (', s', )" component of I, (Tser ®

I,,). Given the structure of Tse, we find

ka, (Bk’ ) (Tk’ )876’
193% '

1
~(0Dy) s
p( )i

Using equations (10) and (11), we can rewrite this as
1 1)gt — 1 1)t
Z(0Dy); ((Bx) pe (o) )_
p Kk’
Second, the (k',s', ') component of I, (TC,, ® ((I — Do)~ 'L)) equals

Ser

m

Z z 9 aDk I - Do)ilel)jhjl (akl)sl

j=1
This equation can be simplified using equation (11) to find

~O(D1 +-..+ DR)(T = Do) D)o )

Or by means of equation (12) we have %(GDk:)]v (ag')s- Adding this to equation (13)
proofs that II, is an invariant vector of ), A;. Il  is clearly a stochastic vector because

B, is stochastic and #Dye equals A. Q.E.D.
Lemma 2. TI, (3,2, l4)) e = 1/p.

Proof. (32, 1A;)e can be written as T0, @ ((3°;°,1(Do)'"")Le). Looking at
equation (3), we have Le = (I — Dg)e because the vectors «aj are stochastic and
(Zf:o Dk) e = e. Moreover, (3;1(Do)'"")(I — Dy) is equal to (I — Do)~ '. Thus,
(2 1A e = (TS, @ (I — Do)~ 'e)). As aresult, T, (3,2, IA;)e equals

K my
1 s(T)s
—29(Dk(I—Do)”)eZ (Br)s(Ty) _

k=1

s=1 Hk

A

Thus, using equations (11) and (12) resultsin 1/p 8 e = 1/p.
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Q.ED.

Theorem 1. The MC defined by the transition matriz P, defined by equation (1), is

ergodic if and only if p < 1.

Proof. Neuts [9] has shown, provided that the matrix A = )% A; is irreducible,
that a GI/M /1 type MC is ergodic if and only if the product of the stochastic invariant
vector of ), A; with the vector (}_,1A4;)e is larger than one. The matrix ), A; is
irreducible, after removing the transient states mentioned at the start of Section 2.2,
because D = Dy + ...+ Dk and the matrices (T, + T,?ak) are irreducible. The entries
of TI, that correspond to the transient states are zero. Moreover, the (i, )" entry of
the matrices >, 4; and )", 1A4; equals zero, if state i is not transient, whereas state j

is. Therefore, Lemma 1 and 2 suffice to proof the theorem. Q.E.D.
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