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This paper studies the maximum stable throughput of FS-ALOHA, a random access
algorithm for dynamic bandwidth reservation in access networks, subject to delay con-
straints. Requests that are not transmitted successfully before the maximum delay tmax

expires are dropped. We state that the algorithm is stable for a certain input rate λ, if
the dropping probability is below a predefined tolerance ε, e.g., ε = 10−9. The matrix
analytic method (MAM) is used to determine the maximum input rate for which the sys-
tem is stable. Numerical examples for different parameter setting provide a useful insight
on how to optimize the maximum stable throughput as a function of tmax, the maximum
delay, and ε, the drop tolerance.

1 INTRODUCTION

Future wireless LANs are expected to support a large increment of customer demands for
mobile services and applications. Therefore, efficient network and service architectures
must be devised to comply to these demands with adequate Quality of Service (QoS).
One of the trends towards designing such LANs is to allocate the uplink bandwidth, that
is, from the end users towards the network, in a dynamic way. This calls for an efficient
mechanism allowing mobile stations (MSs) to declare their current bandwidth needs to the
base station (BS). An often proposed solution, e.g., [8, 6, 9, 14], both in wired and wireless
networks, is to combine the technique of piggybacking with a contention channel. The
performance of the contention scheme used determines the reaction speed of the system
on changing traffic conditions; therefore, it is an important factor in the QoS provisioning.

Although Slotted ALOHA is easy to implement in such an environment, it is unable
to guarantee good delay bounds [3, 5]. Fifo-by-Sets ALOHA (FS-ALOHA), on the other
hand, maintains the simplicity of Slotted ALOHA and was specifically designed to op-
erate in a wireless LAN with QoS provisioning. Its superiority on Slotted ALOHA was
demonstrated by means of simulation and analytical methods in [3, 5] using Poisson ar-
rivals. In [13, 12] we studied the performance of FS-ALOHA using Markovian arrivals
and investigated the influence of errors and capture events.
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In this paper we determine the maximum stable throughput of FS-ALOHA subject to
delay constraints. In the past, the maximum stable throughput λ1

max was defined as the
maximum input rate for which all packets have a finite delay with probability one. A
substantial amount of work has gone into determining λ1

max for a wide variety of ran-
dom access algorithms (RAAs) [1, 11]. However, a communication network guaranteeing
Quality-of-Service (QoS) wants (nearly) all packets to have a delay below a certain de-
lay bound tmax, thus, not just a finite delay. Therefore, we redefine the maximum stable
throughput λmax as follows. Packets that are not transmitted successfully before the max-
imum delay tmax expires are dropped. We state that a RAA is stable for a certain input
rate λ, if the dropping probability is below a predefined tolerance ε, e.g., ε = 10−9. Hence,
λmax is a function of tmax and ε. We are not aware of any stability results that take such
a delay constraint into account. Meanwhile, two more advanced versions of FS-ALOHA
have been defined: FS-ALOHA++ [4, 13] and E-FS-ALOHA [10]. These more advanced
algorithms are beyond the scope of this paper.

2 FS-ALOHA: A REVIEW

In this section the operation of FS-ALOHA, and the environment in which it operates, are
described in some detail, additional comments and discussions can be found in [3, 4, 5].
Consider a cellular network with a centralized architecture, i.e., the area covered by the
wireless access network is subdivided into a set of geographically distinct cells each with
a diameter of approximately 100m. Each cell contains a base station (BS) serving a finite
set of mobile stations (MSs). This BS is connected to a router, which supports mobility,
realizing seamless access to the wired network. Two logically distinct communication
channels (uplink and downlink) are used to support the information exchange between
the BS and the MSs. Packets arriving at the BS are broadcasted downlink, while upstream
packets must share the radio medium using a MAC protocol. The BS controls the access
to the shared radio channel (uplink). The access technique is Time Division Multiple
Access (TDMA) combined with Frequency Division Duplex (FDD).

Traffic on both the uplink and downlink channel is grouped into fixed length frames,
with a length of L slots, to reduce the battery consumption [14]. The uplink and downlink
frames are synchronized in time, i.e., the header of a downlink frame is immediately
followed by the start of an uplink frame (after a negligible round trip time that is captured
within the guard times). Each uplink frame consists of a fixed length contentionless and
a fixed length contention period. An MS is allowed to transmit in the contentionless
period after receiving a permit from the BS. The BS distributes these permits among
the MSs based on the requests it receives from the MSs and the existing QoS agreements
between the end users and the network. Within these requests, MSs declare their current
bandwidth needs to the BS, e.g., by indicating how many packets they have ready for
transmission. Requests are transmitted using the contention channel, unless the MS
can piggyback the request to a data packet for which a permit was already obtained,
thereby reducing the load on the contention channel and avoiding the delay caused by the
contention channel.

A request is generally much smaller than a data packet; therefore, slots part of the
contention period can be subdivided into k minislots (realistic values for k in a wireless



medium are 1 to 3, in a wired medium higher values for k are possible). Each downlink
frame starts with a frame header in which, among other things, the required feedback on
the contention period of the previous uplink frame is given. This feedback informs the
MSs participating in the contention period whether there was a collision or whether the
request was successfully received.

FS-ALOHA operates on the slots that are part of the fixed length contention period.
Define T as the number of minislots part of the contention period of a frame. From
hereon we refer to minislots as slots. In slotted ALOHA systems, an MS with a pending
request will randomly choose one out of the T slots to send its request in the hope that
no other MS with a pending request will choose the same slot. If an MS is unsuccessful
it will retransmit in the next frame. It is important to note that with slotted ALOHA,
new requests are allowed to transmit on the contention channel immediately after being
generated; hence, they are not blocked. FS-ALOHA on the contrary, divides the T slots
of the contention period into two disjoint sets of S and N slots such that T = S + N .
The operation of FS-ALOHA is as follows:

(A) Newly arrived requests are transmitted, for the first time, by randomly choosing
one out of the S slots; this is the first set of S slots after the request was generated. If
some of the transmissions taking place in the S slots of a frame are unsuccessful, because
multiple MSs transmitted in the same slot, the unsuccessful requests are grouped into a
Transmission Set (TS), which joins the back of the queue of TSs waiting to be served.

(B) The other N slots are used to serve the queue of backlogged TSs on a FIFO basis.
Backlogged TSs are served, one at a time, using slotted ALOHA, that is, all the requests
part of the TS select one out of the N slots and are transmitted in this slot. The requests
that were transmitted successfully leave the TS, the others retransmit in the N slots of
the next frame using the same procedure. The service of a TS lasts until all the requests
part of the TS have been successfully transmitted, in which case the service of the next
TS, if there is another TS in the queue, starts service in the N slots of the next frame.

Hence, two parameters play an important role in FS-ALOHA: (i) The number of S ≥ 1
slots in a frame. These slots are used by the MSs to transmit newly arrived requests; S
determines the TS generation rate. (ii) The number of N ≥ 2 slots in a frame. These
slots are allocated to the service of the TSs in the distributed FIFO queue.

Notice, two requests that were generated in different frames can never be part of the
same TS. Thus, it is said that the grouping of requests in Transmission Sets is based on
a time period corresponding to the frame length. Therefore, FS-ALOHA can be regarded
as a Group Random Access Algorithm that uses Slotted ALOHA as its conflict resolution
algorithm (CRA). More details on the operation of FS-ALOHA can be found in [3, 4, 5].

Thus, according to the description above a request is retransmitted until successful
(this is also the case in all prior studies of FS-ALOHA). In this paper, we add a delay
constraint that demands a request to be successful within tmax frames. Otherwise, the
request is dropped. Notice, all requests part of the same TS, have the same age. Thus,
if the age of a TS exceeds the maximum delay, all requests part of the TS (that were
not successful so far) are dropped. This adaptation is easy to implement, because the
identifier of a TS can be used as a time stamp (see [5]). Also, the scheduler, located in the
BS, always announces the identifier of the TS (in the feedback field of the downlink frame)
that is served in the N slots of the next uplink frame. Hence, if the difference between



the current time and the TS’ identifier becomes larger than tmax, it simply announces the
next TS.

3 ANALYTICAL MODEL

In this section an exact analytical model is developed, allowing the computation of the
drop probability pdrop associated to the request packets under the following conditions:
(i) We assume a discrete time batch Markovian request arrival process (D-BMAP, [2])
with a mean rate of λ arrivals per frame. The time unit of the D-BMAP arrival process is
one frame time. (ii) If there are no Transmission Sets in the distributed FIFO queue nor
in service, the total T = S + N slot is available to the new arrivals. (iii) The Bit Error
Rate (BER) is assumed to be zero. These assumptions are identical to [5], except that
we assume D-BMAP arrivals instead of Poisson arrivals.

A D-BMAP is characterized by a set of l × l matrices Di, for i ≥ 0, for some integer
l > 0. The (j1, j2)

th entry of the matrix Di represents the probability that i new requests
are generated within a frame, while a transition from state j1 to j2 occurs. Let qm be
maximal index i for which Di 6= 0. For D-BMAPs that do not posses such an index i or
for D-BMAPs for which this index i is very large, we choose qm such that the sum of the
entries of the matrices Di, for i > qm, is negligible (i.e., ≤ 10−14). In this way, the impact
on the accuracy of the results should be minimized. If the D-BMAP is in state j at the
start of the nth frame then i new request transmit in frame n with probability (Die)j,
where e is a l × 1 vector with all its entries equal to one.

3.1 Defining the Markov Chain

Consider a Markov chain (MC) with a finite number of states labeled 1, 2, . . . , l+ tmaxl(qm−
1). The set of states {1, . . . , l} is referred to as level zero of the MC, whereas the set of
states {(i − 1)bs + l + 1, . . . , ibs + l} is referred to as level i of the MC for 0 < i ≤ tmax,
and where bs = l(qm − 1). The states of level i, with 0 < i ≤ tmax, are labeled as (q, j),
where 2 ≤ q ≤ qm and 1 ≤ j ≤ l. The MC is in state j, 1 ≤ j ≤ l, of level zero at time
instant n, if there is no TS served in the nth frame (i.e., all T = S + N slots are used
for new arrivals) and the state of the D-BMAP at time n is j. If there is a TS in service
in the nth frame, the MC is in some state (q, j) of level i, where i indicates how many
frames ago the Transmission Set in service was generated, q ≥ 2 denotes the number of
requests left in the Transmission Set that is in service in frame n, and j denotes the state
of the D-BMAP associated with the start of the frame that follows the frame in which
the Transmission Set in service was generated (that is, frame n − i + 1).

3.2 The Transition Matrix P

In order to facilitate the description of the transition matrix P corresponding to this MC,
we introduce some notations. Define px(q, q

′), for q ≥ q′, as the probability that in a set
of q requests, q − q′ request are successful when a set of x slots is used to transmit the
q request packets†. We are particularly interested in pS(q, q′), pN (q, q′) and pS+N(q, q′).

†This corresponds to the following combinatorial problem: Provided that we, randomly, distribute q

balls among a set of x urns, what is that probability that we have exactly q − q′ urns holding a single



Von Mises [15] has shown, in 1939, that

px(q, q
′) =

min(q,x)
∑

v=q−q′

(−1)v+q−q′Cv
q−q′C

x
v

q!

(q − v)!

(x − v)q−v

xq
, (1)

where Cr
s denotes the number of different ways to choose s from r different items. Eq.

(1) is numerically stable for the parameter ranges of interest (see Section 4). It is also
possible to calculate the px(q, q

′) values recursively using the px−1(q, q
′) values, thus, higher

parameter values do not cause any problems.
Next, denote PN as an (qm − 1)× (qm − 1) matrix whose (i, j)th element equals pN(i +

1, j + 1)‡. Let P0 be a (qm − 1) × 1 vector whose ith component equals pN(i + 1, 0). The
l × l matrices FS, FS+N , Ek

S, 2 ≤ k ≤ qm, and Ek
S+N , 2 ≤ k ≤ qm, are defined as

FS =
∑

i≥0 Di pS(i, 0), FS+N =
∑

i≥0 Di pS+N(i, 0),

Ek
S =

∑

i≥k Di pS(i, k), Ek
S+N =

∑

i≥k Di pS+N(i, k),

where the D-BMAP arrival process is characterized by the matrices Di. Notice that
(Ek

x)j,j′, with x = S or S + N , represents the probability that a new TS with k requests
is generated in a frame where x slots are used for the new arrivals, and the D-BMAP
governing the new arrivals makes a transition from state j to j ′. Fx on the other hand
holds the probabilities that no new TS is generated in a frame where x slots are used for
new arrivals.

Suppose that the MC is in state (q, j) of level i < tmax at time n. Thus, a TS that was
generated in frame n− i, is served in frame n. q requests are still part of this TS and the
state of the D-BMAP at time n − i + 1 is j. We distinguish two scenarios:

1. With probability (PN)q−1,q′−1, q′ > 1 of the q request in the TS are unsuccessful in
the N slots of frame n. Thus, the MC is in state (q′, j) of level i + 1 ≤ tmax at time
n + 1.

2. With probability (P0)q−1, all the requests part of the TS are successful. Thus, a
new TS can start service in the N slots of frame n + 1.

2a. With probability (F i−i′

S Eq′

S )j,j′, for i ≥ i′ > 0, there is no TS generated in the
S slots of frame n − i + 1, . . . , n − i′, while frame n − i′ + 1 generates a new TS
holding q′ requests and the state of the D-BMAP at time n − i′ + 2 equals j ′. The
MC would be in state (q′, j ′) of level i′, with 0 < i′ ≤ i, at time n + 1. Notice, this
probability depends only upon the difference i − i′ and not on the value of i or i′.

2b. With probability (F i
S)j,j′, there is no TS generated in frame n− i+1, . . . , n and

the D-BMAP is in state j ′ at time n + 1, therefore, all T = S + N slots of frame
n + 1 are used for new arrivals. As a result, the MC would be in state j ′ of level 0
at time n + 1.

ball.
‡Notice, for j > i, pN (i + 1, j + 1) equals zero.



As a result of the above discussion, we find that the transition matrix P can be written
as

P =















B1 B0 0 . . . 0
B2 A1 A0 . . . 0
...

...
...

. . .
...

Btmax
Atmax−1 Atmax−2 . . . A0

E Ctmax
Ctmax−1 . . . C1















,

where Ak and Ck are l(qm − 1) × l(qm − 1) matrices, Bk, k > 1, and E are l(qm − 1) × l
matrices, B1 is an l× l matrix and B0 is an l× l(qm − 1) matrix. Moreover, A0 = PN ⊗ Il,
where ⊗ represents the Kronecker product between matrices and Il is an l× l unity matrix
(see scenario 1). Ak, for k > 0, represents the transitions from level i to i− (k−1); hence,
Ak = P0⊗F k−1

S [E2
S, E3

S, . . . , Eqm

S ] (see scenario 2a). While, Bk, for k > 1, equals P0⊗F k−1
S

(see scenario 2b).
Let us now discuss E, Ck, B0 and B1. Suppose that the MC is in state (q, j) of level

tmax at time n. Assume that q′ of the q requests are unsuccessful in the N slots of frame
n. The age of the TS at time n was tmax, therefore, the q′ remaining requests part of the
TS are dropped. Thus, even if we have unsuccessful transmissions in the N slots of frame
n, a new TS can start service in frame n+1. Or stated differently, as far as the transition
probabilities are concerned, it is as if P0 equals e, a (qm − 1) × 1 vector filled with ones.
Hence, Ck = e ⊗ F k−1

S [E2
S, E3

S, . . . , Eqm

S ] and E = e ⊗ F tmax

S . Finally, one easily finds that
B1 = FS+N and B0 = [E2

S+N , E3
S+N , . . . , Eqm

S+N ].

3.3 The Drop Probability pdrop

Define πn
i (q, j), i > 0, and πn

0 (j), as the probability that at time n the system is in
state (q, j) of level i and state j of level 0, respectively. Let π0(j) = limn→∞ πn

0 (j),
and πi(q, j) = limn→∞ πn

i (q, j). Define the 1 × l vector π0 = (π0(1), . . . , π0(l)) and the
1× l(qm − 1) vectors πi = (πi(2, 1), . . . , πi(2, l), πi(3, 1), . . . , πi(3, l),πi(4, 1), . . . , πi(qm, l)),
for 0 < i ≤ tmax. Let the matrix Q be P − I, where I is the unity matrix with an
appropriate dimension. The matrix Q can be seen as an infinitesimal generator of a
continuous time Markov chain and Q can be written in a lower block-Hessenberg form
by relabeling the states appropriately. Therefore, we can calculate the unique stochastic
vector π for which πQ = 0, i.e., πP = π, in an efficient manner using the Latouche-Jacobs-
Gaver algorithm [7], which has a time complexity of O(l3q3

mt2max) and a space complexity
of O(l2q2

mtmax).
The probability that a request gets dropped pdrop is equal to the expected number of

requests that are dropped in an arbitrary frame divided by the arrival rate λ. Hence,

pdrop =
1

λ

qm
∑

q=2

q(1 − (1 − 1/N)q−1)
l

∑

j=1

πtmax
(q, j),

where q(1 − 1/N)q−1 equals the expected number of successful transmissions in N slots
provided that q requests attempt transmission.



4 NUMERICAL RESULTS

In this paper we restrict ourselves to Poisson and Markov Modulated Poisson Arrivals,
other arrival processes can be analyzed using the framework developed in this paper.
Currently, it is hard to state whether these arrival processes are adequate to model the
actual input traffic on a bandwidth reservation channel. For instance, the load of such
a channel depends on the amount of piggybacking that can be done, on the way the
scheduler works, on the characteristics of the applications and much more.

4.1 Poisson Arrivals

Given the couple (tmax, ε) we determine the maximum stable throughput for the parame-
ters (S, N) as follows. First, we set λmin = 0 and λmax = S + N . Then, we calculate the
drop probability pdrop for Poisson arrivals with a mean rate equal to λm = (λmin+λmax)/2,
thus, the probability that k new requests are generated during a frame equals λk

me−λm/k!.
If the drop probability pdrop is larger than ε we set λmax = λm, otherwise we set λmin = λm.
This procedure is repeated until λmax − λmin < 10−8. The maximum stable throughput
is then found as λm/(S + N).

Figure 1 presents the maximum stable throughput (MST) of FS-ALOHA for tmax =
10, 20 and 50 and ε = 10−9 and 10−6. The number of S slots varies from 1 to 10, while
the number of N slots varies from 2 to 10 (except for tmax = 10 where S and N have
somewhat larger ranges). For each value of S we plotted a ‘*’ in Figure 1 to indicate
where the surface reaches a maximum for this value of S. A ‘�’ is plotted to indicate
the maximum of the entire surface, along with the (S, N) value where this maximum is
reached.

A first, obvious, result is that the smaller ε, i.e., the fewer packets that are allowed to
be dropped, the lower the MST. Also, the larger the maximum tolerable delay tmax the
higher the MST. A second observation is that one needs larger values for (S, N) when
decreasing tmax. For instance, for tmax = 10 and ε = 10−9 one achieves the best MST
with (S, N) = (13, 15), whereas for tmax = 50 one finds that (S, N) = (2, 4) is the best
choice. Notice, if we have T = 24 slots available for the contention channel, than one
could implement 4 instances of FS-ALOHA, each with (S, N) = (2, 4). This would be a
good choice if the maximum tolerable delay is large, e.g., 50, however, if tmax is small, it
would be better to use a single instance with (S, N) = (14, 16). A similar result is found
with respect to ε: decreasing ε, i.e., demanding a lower loss, results in higher optimal
(S, N) values. This observation was confirmed by setting ε = 10−4 (for brevity, these
plots are not included in the paper).

In conclusion, the more sensitive the requests are with respect to delays and losses, the
larger the optimal (S, N) values (as far as the MST is concerned). It is possible to get
some idea on where the optimal N value is situated for S = 1 using the following rule.
Suppose that we have a TS that consists of 2 requests. Then, with probability N−tmax

they choose the same N slot in tmax consecutive frames. Thus, in order to get a system
with a drop probability below ε, for S = 1, we need (1−e−λ−λe−λ)N−tmax < ε or roughly
speaking N > ε−1/tmax , e.g., for tmax = 10 and ε = 10−9 we find N > 7.9433. If we study
the optimal N as a function of the number of S slots, we find that the best N value can
be roughly approximated as S/3 + ε−1/tmax .



a) tmax = 10, ε = 10−9 b) tmax = 10, ε = 10−6
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c) tmax = 20, ε = 10−9 d) tmax = 20, ε = 10−6
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e) tmax = 50, ε = 10−9 f) tmax = 50, ε = 10−6
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Figure 1: Maximum stable throughput of FS-ALOHA with Poisson arrivals: a) tmax =
10, ε = 10−9, b) tmax = 10, ε = 10−6, c) tmax = 20, ε = 10−9, d) tmax = 20, ε = 10−6, e)
tmax = 50, ε = 10−9, f) tmax = 50, ε = 10−6

Looking at Figure 1, one tends to believe that as tmax goes to infinity, setting (S, N) =
(1, 2) is the optimal choice. This idea was confirmed by plotting the MST for tmax = ∞



a) tmax = 10, ε = 10−9 b) tmax = 50, ε = 10−9
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Figure 2: Maximum stable throughput of FS-ALOHA with MMPP arrivals (α = 50, λi =
iλ/2): a) tmax = 10, ε = 10−9, b) tmax = 50, ε = 10−9

(this figure is not included due to space lmimitations). The tmax = ∞ results were found
by studying the ergodicity condition of the GI/M/1 type Markov chain developed in [12,
Section 4].

4.2 Markov Modulated Poisson Arrivals

In this section we consider a 3-state Markov Modulated Poisson process (MMPP). Let λi

be the arrival rate when the process is in state i, that is, the probability that k arrivals
occur in a frame when the MMPP is in state i, for i = 1, . . . , 3, at the start of the frame
equals λk

i e
−λi/k!. Transitions (occurring at the end of each frame) between the 3 states

occur according to the following transition matrix D:

D =





1 − 1/α 1/α 0
1/α 1 − 2/α 1/α
0 1/α 1 − 1/α



 . (2)

Notice, the smaller α the stronger the correlation. The matrices Di characterizing the
D-BMAP are then found as

Di =





λi
1e

−λ1/i! 0 0
0 λi

2e
−λ2/i! 0

0 0 λi
3e

−λ3/i!



 D. (3)

Figure 2 presents the MST for α = 50, λi = iλ/2, for i = 1, . . . , 3, ε = 10−9 and tmax = 10
and 50. The MST for this arrival process equals the maximum λ such that pdrop < ε.
Although the MST is, due to the more bursty nature of the MMPP, considerably lower
compared to Poisson traffic (see Figures 1 and 2), the shape of the surface is, however,
very similar. This result supports the idea that the optimal settings for (S, N) are not
very sensitive to the characteristics of the arrival process. This is an important result
when deploying FS-ALOHA in a real environment. One could argue that this is a very
obvious result for the MMPP considered, because most of the requests are dropped when
the MMPP is in state 3 and the mean sojourn time in state 3 is 50 frames, which is in



both examples larger than or equal to tmax. However, we plotted the same surface for
α = 5 instead of 50, thus, the mean sojourn time in state 3 is only 10 frames, and found
a very similar surface as before (this figure is not included due to space limitations).
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