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Abstract— We present a detailed analysis of the maximum
channel utilization and loss performance in an optical buffer
having access to a single outgoing channel. As opposed to a
conventional electronic buffer, such a system - consistingof a
number of fiber delay lines - can only realize a discrete set
of delays to resolve output port contention. This leads to an
underutilization of the channel capacity, which reduces overall
performance.

The framework considered in this paper greatly simplifies the
assumptions made in previous work, which allows us to study
the impact of a variety of new parameters on the performance,
e.g., the burstiness of the arrival process and the correlation
of consecutive burst lengths. Moreover, we present exact results
for both the channel utilization and loss rate in such a system,
this in contrast with all prior work which provided accurate
approximations for the loss rate.

Matrix analytic methods are used to perform this analysis. To
the best of our knowledge, this is the first time that such an
approach is used to analyze an optical buffer. We show, amongst
others, that carefully choosing the granularity parametercan, in
some cases, make a substantial difference when trying to realize
lower buffer losses or a high channel utilization. Optimal values
of the granularity parameter are shown to be closely relatedto
the optical burst length distribution.

I. INTRODUCTION

As advances in Dense Wavelength Division Multiplexing
(DWDM) push fiber transmission capacities well beyond the
Tbit/s, electronic switches and routers are becoming the bottle-
necks of the backbone network. All-optical packet switching
(OPS) could alleviate the problem. However, OPS requires
practical and cost-effective implementations of optical header
processing, which is still some years away. As an intermediate
solution, optical burst switching (OBS) has been proposed [1],
[2], [3], which avoids the need to process headers in the optical
domain. Although wavelength conversion greatly reduces the
need for OBS network buffering [4], contention can still arise.
Resolving this contention is not straightforward due to thelack
of optical RAM. The use of Fiber Delay Lines (FDLs) has
been introduced to partially resolve this problem, and several
architectures that make use of an FDL buffer have already
been studied [5], [6], [7].

A limited number of analytic results concerning the stability
and loss of such FDL based buffer systems has been published
so far [8], [9], [10]. Our work consists in generalizing the
results presented in [9] in a number of ways. First, we assume
that new incoming optical bursts (OBs) follow a general

Markovian arrival process instead of a simple Bernoulli arrival
process. Second, we allow correlation between the length of
consecutive OBs, as well as correlation between the inter
arrival times (IATs) and OB lengths. Finally, when studying
the loss rates in a finite FDL buffer, our method allows us to
produce exact analytical results, whereas all prior work relied
on accurate approximations. To obtain these analytical results
we make use of the matrix analytic method (MAM) which, to
our best knowledge, is the first time that this method is used
to analyze the performance of FDL buffers.

We focus on a single WDM channel and assume contention
for it is resolved by means of an FDL buffer, which can delay,
if necessary, OBs until the channel becomes available again.
Unlike conventional buffers, however, it can not delay bursts
for an arbitrary period of time, but only for multiples of a basic
unit D, called the granularity of the FDLs [8], [9]. Each OB is
thus either delayednD time units, for somen = 0, 1, . . . , N ,
or is dropped. Hereby,N is the size of the FDL buffer, the
maximum achievable delay beingND. We assume time is
slotted and we will use the duration of a single slot as the
unit of time. A natural choice for the slot length would be
the clock cycle in a synchronous system. Thus, for instance,
the granularityD would be expressed as an integer number of
slots. Note that whenD equals one (slot), the optical buffer
functions as a conventional time-slotted one, i.e., it is nolonger
degenerate, since then the whole range of delays (up to N) can
be realized.

We will show that carefully choosing the granularity param-
eterD can, in some cases, make a substantial difference when
trying to realize low buffer losses or a high channel utilization.
In general, the less uniform the burst length distribution,the
more profound the impact of the granularity parameterD
becomes on the OB loss rate (as well as on the achievable
channel utilization). Optimal values ofD are, in such cases,
closely related to the most common OB lengths.

The paper is structured as follows. In Section II we start by
presenting a stability condition for an infinite FDL buffer fed
by a general Markovian arrival process. In order to improve
our understanding of this stability condition, a number of
special cases are considered next, e.g., Bernoulli arrivals and
uncorrelated burst lengths. Within Section II we also present
a number of analytical and numerical results that demonstrate
which parameters influence the maximum channel utilization
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Fig. 1. Evolution of the scheduling horizonH from one arrival to the next.
lk is the length of thek-th OB andτk the burst IAT.

and how. Section III presents an exact method to compute
the loss rate in a finite FDL buffer. A variety of numerical
results, both for Bernoulli and Markovian arrivals, show that
finding the optimal granularity is a delicate problem. Finally,
conclusions are drawn in Section IV.

II. STABILITY OF INFINITE FDL BUFFERS

A. General Case

In this section we assume that the buffer is of infinite size
(N = ∞), so that no loss occurs. Denote byH̄k the scheduling
horizon as seen by thek-th arrival. It is, by definition, the ear-
liest time (measured in slots) by which all previously arrived
OBs will have left the system, and is thus the equivalent of
the virtual waiting time in conventional queues. In Figure 1,
the relation between̄Hk and H̄k+1 is illustrated. When the
k-th burst sees a scheduling horizon̄Hk upon arrival, it will
have to be delayed by at least that amount to avoid contention.
Since the buffer is degenerate, however, this delay can not be
realized exactly, the closest match being given byD⌈H̄k/D⌉.
(Note that⌈H̄k/D⌉ represents the index of the FDL thek-th
OB must traverse.) Thus, the finite granularityD of the FDLs
leads to voids, as illustrated in Figure 1, reducing channel
utilization and lowering the system’s overall capacity. The aim
of this section is to obtain a simple condition to determine
the maximum channel utilizationρmax of a channel preceded
by an infinite FDL buffer, and to determine which parameters
influenceρmax and how. Notice, in case of an electrical buffer
ρmax always equals1 as the use of an infinite RAM buffer
does not create voids.

New incoming OBs arrive according to a general Markovian
arrival process [11]. Such a process is characterized by a set
of b × b matrices(Bs)s≥0, where the(i, j)-th element ofBs

represents the probability that the background Markov chain
makes a transition from statei to j, while, for s > 0, a new
OB with a length ofs time units arrives and, fors = 0, there
is no new burst arrival. Such an arrival process generally has
correlated inter arrival times, as well as a correlation structure
on the length of consecutive OBs, meaning that the length
of an OB can be influenced by the size of (all) prior OBs.
Moreover, the inter arrival times may also influence the length
of an OB and vice versa.

Let Hn be the value of the scheduling horizon at time slotn
andJn the state of the arrival process at timen (for all n ≥ 0).
Then,(Hn, Jn)n≥0 forms a discrete-time Markov chain1 (MC)
with transition matrixP as shown in Eq. (1). By reblockingP
into blocks of dimensionDb one finds that the MC(Hn, Jn)
is an M/G/1 type MC with blocks of dimensionDb [11]. We
can study the stability of the FDL buffer by investigating the
ergodicity of the MC characterized byP . An M/G/1 type MC
is known to be ergodic if and only if

πβ < 1, (2)

whereπ is a left stochastic invariant vector ofA =
∑

i≥0 Ai

andβ =
∑

i≥1 iAi1Db (where1j is a j×1 vector with all its
entries equal to one). We can determineπ = [π1, π2, . . . , πD],
whereπi is a 1 × b vector, explicitly as follows. DefinēBs,
for s ∈ {1, . . . , D}, as

∑

j≥0 Bs+jD, thenA is found as

A = 1D⊗
[

B̄1 B̄2 . . . B̄D

]

+











0 . . . 0 1
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0











⊗B0.

Some basic algebraic manipulations and the fact thatθ =
∑D

i=1 πi show

π1 = θ
D

∑

s=1

B̄s(B0)
s−1[I − (B0)

D]−1, (3)

whereθ is the 1 × b left stochastic invariant vector ofB =
∑

s≥0 Bs. Notice,B is the transition matrix of the underlying
MC of the arrival process, thus,θi is the probability that the
arrival process is in statei at an arbitrary time instantn. A
similar expression can be found forπ2, . . . , πD, though we do
not need these to determine an expression forπβ.

Looking at the matricesAi it should be clear thatβ can be
written as[βT

1 βT
2 . . . βT

2 ]T , whereβ1 andβ2 areb× 1 vectors
andvT represents the transposed ofv. Let B̂s =

∑D
j=1 Bj+sD,

for s ≥ 0, then
β1 =

∑

s≥1

sB̂s−11b (4)

andβ2 = B01b +
∑

s≥2 sB̂s−21b. This impliesβ2 = β1 + 1b

as
∑

s≥0 Bs1b = 1b. Therefore,πβ = π1β1 +
∑D

j=2 πjβ2 =
π1β1 + (θ − π1)(β1 + 1b) = θβ1 + 1 − π11b. Making use of
Eq. (2), this leads us to the conclusion that the FDL buffer is
stable (meaning that a burst has a finite delay with probability
one) if and only if

θβ1 < π11b. (5)

The left hand sideθβ1 actually corresponds toλE[⌈L/D⌉],
whereL is the OB length distribution2 and λ represents the
arrival rate, that is, the probability that a new incoming OB
arrives at an arbitrary time instant (λ = θ

∑

s>0 Bs1b = θ(I−
B0)1b). The right hand sideπ11b of Eq. (5) indicates what

1Notice, we observe the system at every time slot and not solely at OB
arrival times.

2P [L = k] = θBk1b/(θ(I − B0)1b).
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(1)

the probability would be that the scheduling horizonH = 0
mod D at an arbitrary time instant ifH had no boundary at
zero.

If we approximateπ11b by 1/D andDE[⌈L/D⌉] by E[L]+
(D− 1)/2, we find that Eq.(5) is reduced toλ(E[L] + (D−
1)/2) < 1. Meaning that the maximum stable OB arrival rate
λmax ≈ (E[L]+(D−1)/2)−1, an approximation that was also
proposed in [9]. Later, we demonstrate that this approximation
can be very poor in certain situations. In [10] it was shown that
for D sufficiently smallλmax is well approximated by(E[L]+
D/2)−1 if the inter arrival times and lengths of incoming OBs
are exponentially distributed. The reason for theD/2 term
instead of(D − 1)/2 is that due to the exponential IATs, the
length of a void varies between0 andD as a new incoming
OB need not to arrive at a slot boundary (whereas in our setup
it does; hence, a void has a length of at mostD−1). Next, let
us try to get a better understanding of Eq. (5) by considering
a few special cases.

B. Bernoulli Arrivals, Uncorrelated Burst Lengths

Assume that a new OB arrival occurs in a slot with proba-
bility p independently from slot to slot, that is, the IATs are
independent and geometrically distributed (with mean1/p).
Also, assume that consecutive OB lengths are uncorrelated and
follow a distributionL. DenoteP [L mod D = k] as lk(D),
for k = 1, . . . , D − 1 and P [L mod D = 0] as lD(D). This
particular scenario corresponds to the model introduced in[9].

This setup can be studied using the general model by setting
Bs = pP [L = s], for s > 0, andB0 = (1 − p) (thus,b = 1,
λ = p andθ = 1). As such, we can rewrite Eq. (5) as

E

[⌈

L

D

⌉]

< (1 − p̄D)−1
D

∑

j=1

lj(D)p̄j−1, (6)

where p̄ = 1 − p. Thus, the maximum input ratepmax(=
λmax) for which Eq. (6) is met, is determined byD, E[L] and
L mod D (becauseE[⌈L/D⌉] can be written as a function
of E[L] and L mod D). This implies that many statistical
properties, like for instance heavy tails, have no impact on
the maximum achievable channel utilization, it is only the
moduloD distribution of the OB length that matters. In order
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Fig. 2. Influence of the burst length distributionL on ρmax (Bernoulli
arrivals and uncorrelated burst lengths).

to numerically solve this equation we can make use of a simple
bisection algorithm: the right hand side of Eq. (6) decreases
as a function ofp on (0, 1/E[L]].

Recall, the approximation mentioned at the end of the
previous subsection, reduces Eq.(6) to pmax ≈ (E[L]+(D−
1)/2)−1. Actually, if L is distributed uniformly between1
and UD, for all U > 0, this approximation can be shown
to be exact (by noticing thatlj(D) = 1/D for all j).
Figure 2 illustrates the accuracy of the approximationpmax ≈
(E[L] + (D − 1)/2)−1 for four different distributions:L1 is
deterministic with a mean of192 slots,L2 is deterministic with
a mean of256 slots,L3 is distributed as(L1 + L2)/2 (thus,
half of the bursts have a length of192 and the other half of256
slots) andL4 is a burst length distribution of a typical Ethernet
trace.ρmax is defined as the maximum channel utilization and
is calculated aspmaxE[L]. As opposed to the approximation,
the exact values forρmax are not a smooth function ofD,
but contain some (minor) fluctuations. For the deterministic
distributionsL1 andL2 these occur at(E[L]− 1)/n, for any
natural numbern. The curve forL3 contains both the peaks
of L1 and L2, the magnitude of these peaks has however
somewhat diminished. Additional numerical experiments have
shown that the peaks of a general distributionL are found by



superimposing the peaks of the deterministic distributions with
means that correspond to the most frequently appearing burst
lengths. Also, the more uniform the distributionL mod D, the
more accurate the approximation forpmax seems to become,
meaning that the magnitude of the peaks diminishes (which
is in line with the fact that the approximation is exact ifL is
uniformly distributed between1 and UD, for someU > 0).
For instance, we included a typical packet length distribution
obtained from an Ethernet trace3. This distribution is fairly
uniform with packet lengths between20 and1500 bytes, but
contains some very strong spikes (the most pronounced are
found at40, 576 and 1500 bytes). In Figure 2, we have set
the time unit equal to1µsec and assume that the outgoing
channel has a rate of1 Gbit/s. Looking carefully at the curve
for ρmax we observe a peak at300, 375 and500, caused by
the 1500 byte spike inL, all other peaks are too small to be
visually noticed in Figure 2.

C. Bernoulli Arrivals, Correlated Burst Lengths

In this section, new burst arrivals still occur with a probabil-
ity p independently from slot to slot, the lengths of consecutive
bursts, however, are no longer independent. The correlation
structure on the burst lengths is characterized by a set of
l × l matrices(Lk)k≥1. If the state associated with burstn
is i, then, with probability(Lk)i,j , burst n has a lengthk
and the state associated with burstn + 1 equalsj. Thus, the
probability P [L = k] that an arbitrary burst has lengthk is
found asαLk1l, whereα is the left stochastic invariant vector
of

∑

k≥1 Lk. Next, we prove that the correlation structure on
the burst lengths has no influence on the stability of the system.
Therefore, we can simply compute the distribution ofL from
the matricesLk and apply Eq. (6) to find the maximum arrival
rateλmax(= pmax) for which the FDL buffer is stable.

This particular system can be dealt with by settingBs =
pLs, for s > 0, andB0 = (1−p)Il, whereIj is a unity matrix
of dimensionj (thus, b = l, λ = p and θ = α). Let L̄j =
∑

k≥0 Lj+kD for j ∈ {1, . . . , D}. The expression forπ11l

can be simplified by exploiting the structure of(B0)
j−1 =

(1 − p)j−1Il to find

π11l = p (1 − p̄D)−1
D

∑

j=1

(

αL̄j1l

)

p̄j−1. (7)

By settinglk(D) = P [L mod D = k], for k = 1, . . . , D − 1,
and lD(D) = P [L mod D = 0], one finds that the stability
condition for the FDL buffer is identical to Eq. (6).

In conclusion, when new bursts arrive according to a
Bernoulli process, the order in which the bursts arrive is
irrelevant over any finite time scale as far as the stability of
an FDL buffer is concerned. This result does not come as a
surprise, because it is not difficult to show (see [10, Lemma
1]) that the length of a void between OBk and k + 1 is
distributed according to(τk−lk) mod D, whereτk represents

3The Ethernet packet size distribution used, is based on realdata traces from
the Passive Network and Analysis (PNA) project conducted bythe National
Laboratory for Applied Network Research (NLANR).

the IAT between these two OBs andlk the length of thek-th
OB. Thus, by putting a correlation structure on the length of
consecutive OBs (which is independent from the IATs), we do
not influence the distribution of the void lengths. Now, if the
mean void length is unaltered, then so isρmax.

D. Markovian Arrivals, Uncorrelated Burst Lengths

In this section we assume that OB lengths are uncorrelated
and follow a distributionL. The new incoming OBs no longer
form a Bernoulli process, but a general Markovian arrival
process (MAP). Such a MAP can be characterized by two
d×d matricesD0 andD1. The(i, j)-th entry ofD0, resp.D1,
corresponds to the probability that the underlying chain makes
a transition from statei to j, while there is no new burst arrival,
resp. a new burst arrival. The arrival rateλ equalsγD11d,
whereγ = γ(D0 + D1) andγ1d = 1.

We can fit this model into the general framework by setting
Bs = D1P [L = s], for s > 0, andB0 = D0 (thus,b = d and
θ = γ). As such Eq. (5) can be somewhat simplified to:

λE

[⌈

L

D

⌉]

< γD1





D
∑

j=1

lj(D)(D0)
j−1



 (I − DD
0 )−1

1d.

(8)
Unfortunately, there is no such thing as ‘a’ maximum stable
arrival rateλmax for all MAPs in general, because one can
easily find two different MAPs, with ratesλ1 andλ2, such that
the FDL buffer is stable when fed by the MAP with the highest
of the two rates, whereas the other MAP causes instability.
This, somewhat counter intuitive result, can be explained by
noticing that the void length distribution is influenced by the
IAT distribution. A maximum stable input rateλmax can be
defined if we restrict ourselves to specific subclasses of the
set of all MAPs, e.g., the Bernoulli arrival processes used in
the previous two section, subclasses of interrupted Bernoulli
processes (IBP) and many more.

In order to demonstrate the interaction between correlation
and the granularity parameterD, we make use of the IBP
process. An IBP process consists of two states: while in state
1 the IBP generates no traffic, whereas while in state2 a
new OB arrives with probabilityp2. The sojourn time in
state i = 1, 2 is geometrically distributed with a meansi

(hence,λ = p2s2/(s1 + s2)). We fix s1 = 10s2, meaning
that an off period lasts10 times as long as an on period
(on average); hence, this traffic is very bursty. The results
for less bursty setups (e.g.,s1 = s2) are similar though
the impact of correlation is less pronounced. Four different
values were chosen fors2, the mean length of the on period:
1.25, 28.42, 807.79 and652530.45 slots.

Figure 3 shows the maximum channel utilizationρmax (that
is, λmaxE[L]) for a deterministic distributionL with a mean
E[L] of 256 (slots). Fors2 = 1.25, meaning that there is
hardly any correlation, we find thatρmax is close to a smoothly
decreasing function4 of D. As in Section II-C some very
mild fluctuations are observed at(E[L] − 1)/n, with n a

4Being the aforementioned approximation1/(1 + (D − 1)/(2E[L]))
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natural number. As the correlation increases we observe a
sharp increases ofρmax at the(E[B]− 1)/n values, whereas
a decrease occurs for granularitiesD that are located halfway
between two such peaks. This can be understood by noticing
that during the on period new bursts arrive fairly close to one
another, thus if the OB length is a multiple ofD the void in
between two such bursts will be limited as well. Recall, the
length of thek-th void is distributed as(τk−lk) mod D, thus,
if lk is close to zero moduloD, the size of the void will be
well approximated by the IAT. On the other hand if an OB
has a size of(n+1/2)D slots for some natural numbern, the
length of the void in between bursts is often close to or above
D/2. Another conclusion that can be drawn from Figure 3
is that the correlation matters most over time scales that are
in the order ofD: there is hardly any difference between the
s2 = 807.79 and s2 = 652530.45 scenario. Thus, long term
correlation has no major impact on the results. Finally, the
approximationpmax ≈ (E[L]+(D−1)/2)−1 clearly becomes
worse with increased correlation.

In Figure 4 we have fixeds2 = 807.79 slots and considered
four OB length distributionsL: L1 is deterministic with a
mean of192, L2 is deterministic with a mean of256 (slots),

L3 = (L1 + L1)/2 (half of the bursts have a length of192,
the other half a length of256) and L4 = 9L1/10 + L2/10.
The location of the peaks for theL3 andL4 distribution are
found by superimposing the location of the peaks ofL1 and
L2. Moreover, the curves forL3 andL4 look very much like
a weighted sum of theL1 andL2 curves (where the weights
are related to the probability that a packet has length192 or
256 slots).

It is easy to prove that the stability condition obtained in
this section is still valid even when the burst lengths are
correlated, as long as there is no cross-correlation between
the burst lengths and the inter-arrival times. The details are
omitted for brevity.

III. LOSS RATE IN A FINITE FDL BUFFER

In this section we assume that the FDL buffer has a finite
sizeN , thus the maximum achievable delay isND slots. OBs
that see a horizonH > ND when arriving, are dropped. In
this section we develop an analytical method to compute the
loss rate of OBs. As in Section II we assume that new OBs
arrive according to a general Markov process characterizedby
the matrices(Bs)s≥0.

As before, the couple(Hn, Jn)n≥0 forms a discrete-time
Markov chain (MC), the transition matrix of which we call
PN . Recall, Hn is the value of the scheduling horizon at
time slot n and Jn the state of the arrival process at time
n (for all n ≥ 0). Clearly, transitions from a state of the
form (h, j), with h ≤ ND, are identical to the infinite FDL
system, meaning that the first(ND + 1) block rows ofPN

are identical toP (see, Eq. (1)). If(Hn, Jn) = (h, j1), with
h > ND, thenHn+1 = h − 1, since any new incoming OB
is dropped immediately. In this case, the state of the arrival
processJn+1 equalsj2 with probability (B)j1,j2 .

Let πN = [πN
0 πN

1 . . . πN
NDπN

ND+1 . . .] be the stochastic
steady state vector ofPN , whereπN

i , for i ≥ 0, is a 1 × b
vector. In order to computeπN

i , for i = 0, . . . , ND, we start
by censoring the MCPN on the set of states{(h, j)|h ≤
ND}. Given the structure ofPN it is not hard to check that
the censored chain is characterized by the transition matrix
P̃N (see [12, Restricted MCs]):

P̃N =




























P
ul
ND

∑∞
i=0 BND+1+i Bi

∑∞
i=0 B(N−1)D+1+i Bi

...
∑∞

i=0 B(N−1)D+1+i Bi
∑∞

i=0 B(N−2)D+1+i Bi

...
∑∞

i=0 B1+i Bi

0 0 0 0 B0

∑∞
i=0 B1+i Bi





























,

wherePul
ND represents the square matrix of dimensionNDb

found in the upper left corner ofP . The transition matrix
P̃N is skip-free in one direction (sinceH cannot decrease
by more than one at a time). Therefore, we can make use
of the Latouche-Jacobs-Gaver algorithm [13] to compute the
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Fig. 5. Influence of the granularityD on the loss probability for Bernoulli
traffic with ρ = 0.5 andN = 15.

stochastic steady state vectorπ̃N = [π̃N
0 . . . π̃N

ND], where
π̃N

i is a 1 × b vector, in a time and memory complexity of
O(b3N2D2) and O(b2ND), respectively. Moreover,̃πN

i c =
πN

i , for all i = 0, . . . , ND, and some constantc which equals
the probability that the MC characterized byPN has a horizon
H ≤ ND. The constantc can be computed as

1

c
= 1 + [π̃N

0 . . . π̃N
ND]







rN
0
...

rN
ND






,

where rN
i is a b × 1 vector whosek-th element equals the

expected number of visits that the MC characterized byPN

makes in the set of states{(h, j)| h > ND} until the first
return to a state of the form(h, j), with h ≤ ND, provided
that the MC started in state(i, k). Looking at the structure of
PN one finds thatrN

i can be computed as

rN
i =

∑

s>ND−⌈i/D⌉D+1

(s − ND + ⌈i/D⌉D − 1)Bs1b.

Having found the normalization constantc, we can compute
the loss probability from the vectorsπN

i , for i = 0, . . . , ND
as

ploss = 1 −

(

∑ND
i=0 πN

i

)

(I − B0)1b

λ
, (9)

since the loss rate can be found as one minus the ratio between
the number of new incoming OBs that are not dropped divided
by the total number of new incoming OBs during an arbitrary
time slot. Let us now consider the loss in an FDL buffer fed
by the same arrival processes as used in previous section.

A. Bernoulli Arrivals

Assume that a new OB arrival occurs in a slot with proba-
bility p independently from slot to slot, that is, the IATs are
independent and geometrically distributed (with mean1/p).
Also, assume that consecutive OB lengths are uncorrelated and
follow a distributionL. In section II-B we demonstrated that
some particular choices for the granularityD, which depend
on the OB length distribution, allow an infinite FDL buffer
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Fig. 6. Influence of the loadρ on the loss probability for IBP traffic with
s2 = 28.42, s1 = 10s2 andN = 15.

to support higher traffic intensities. Figure 5 shows that these
values are also good choices when considering the loss rate
of a finite FDL buffer. The loadρ = pE[B] = 0.5 for each
of the curves presented in Figure 5, whereas the number of
FDLs is N = 15.

As indicated in [8], [9], there exists a trade-off between
increasing the time resolution of the FDL buffer - smaller
values ofD decrease the effect of reduced capacity due to the
creation of voids - and maximum achievable delay - which,
assumingN is fixed, can increase only by increasingD.
This trade-off leads to an optimal FDL granularityDopt. For
deterministic OB length distributionsL, all our numerical
experiments resulted in an optimum located at one of the
values5 (E[L]− 1)/n, for some integern. Increasing the load
ρ causesDopt to decrease in jumps, for instance if all OBs
have a length of192 time units andρ = 0.7, the optimalD
is located at96 (whereas forρ = 0.5, Dopt is found at191).
More uniform OB length distributionsL ( mod D), tend to
smoothen the loss probability curves and make the optimum
broader (as a result, the exact value ofDopt becomes more
sensitive to and a smoother function of the offered loadρ).

B. Markovian Arrivals

In this section we assume that new incoming OBs arrive
according to the IBP process defined in Section II-D. The
lengths of consecutive OBs are assumed to be independent and
distributed according to some distributionL. Figure 6 and 7
shows the influence of the offered loadρ and the number of
FDLs N on the loss probability, respectively. In both figures
the OB length distribution is chosen to be deterministic with
a mean of256 (time units). These figures illustrate that the
optimal granularityDopt can be rather narrow when either the
offered load decreases or the number of FDLs increases. For
instance, forρ = 0.2, settingD = 225 instead of255 causes
a difference in the loss rate of a factor1000. The location of
this optimum seems less sensitive (though the sensitivity of the
exact value ofDopt increases for more uniform distributions

5That is, the integer nearest to(E[L] − 1)/n.
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Fig. 7. Influence of the number of FDLsN on the loss probability for IBP
traffic with s2 = 28.42, s1 = 10s2 andρ = 0.2.

L). AlthoughDopt is always located at255 in Figures 6 and 7,
this is no longer the case ifρ is further increased. One should
keep in mind that the IBP process considered in Figures 6 and
7 is very bursty, because the mean length of the off period
(= s1) is 10 times as long as the mean length of the on period
(= s2). This implies that the offered load during the on period
is 11 times as high asρ. For less bursty arrival processes (e.g.,
s1 = s2), we find more regular loss curves.

IV. CONCLUSIONS

Within this paper we presented a detailed analysis of the
maximum achievable channel utilization and loss rate in an
optical FDL buffer. Using matrix analytic methods, we were
able to study the influence of correlated inter arrival times
and burst sizes, as well as cross-correlation between the two.
Moreover, Eqn. (9) provided us with an exact expression for
the loss probability, as opposed to earlier studies.

With respect to the maximum achievable channel utiliza-
tion (MACU) the following conclusions were drawn: (i) The
MACU is only affected by the burst size distribution modulo
D, with D the buffer granularity. This implies that many
statistical properties, e.g., heavy tails, can be ignored.The
optimal value for the granularity parameterD was shown to
be closely related to the moduloD distribution of the burst
sizes. (ii) Unless there is cross-correlation between the inter
arrival times and the burst size distribution, the MACU is
insensitive to possible correlation between consecutive burst
sizes. (iii) Introducing correlation in the inter arrival times
strongly affects the MACU and increases its sensitivity to the
granularityD, especially when the burst size distribution is
close to deterministic. However, correlation matters mostover
time scales that are in the order of the granularityD. (iv)
As opposed to a classic infinite RAM buffer, increasing the
burstiness of the arrival process, while keeping the mean rate
fixed, can cause instability in an optical FDL buffer.

We further demonstrated that granularity valuesD that
resulted in a high MACU, are also good choices when trying
to establish a low loss rate. Choosing a granularityD that
deviates only10% from the optimal, can, in some extreme

cases, cause the loss rate to increase by several orders of
magnitude. As the burst size distribution (moduloD) becomes
more uniform, the loss probability curves tend to smoothen,
creating a broader optimumD. Increased burstiness of the
arrival process has the opposite effect. Additional numerical
experiments, not reported here, further showed that (i) the
value of the optimal granularityD is rather insensitive to the
burstiness of the arrival process, as opposed to the broadness of
the optimum which is strongly influenced by it. (ii) When we
correlate the burst lengths with the temporary traffic intensity,
the OB length distributions related to the most intense periods
matter most.

In conclusion, selecting the granularity of an FDL buffer
should not be taken lightly as this might severely influence
the network performance.
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