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Abstract—We present a detailed analysis of the maximum Markovian arrival process instead of a simple Bernoullivair
channel utilization and loss performance in an optical bufer process. Second, we allow correlation between the length of
having access to a single outgoing channel. As opposed {0 &qngecyutive OBs, as well as correlation between the inter
conventional electronic buffer, such a system - consistingf a . . ’ . .
number of fiber delay lines - can only realize a discrete set arrival times (I,ATS) .ar\d OB lengths. Finally, when studying
of de|ays to resolve output port contention. This leads to an the |OSS rates in a f|n|te FDL buffel’, our methOd a.”OWS us to
underutilization of the channel capacity, which reduces ograll produce exact analytical results, whereas all prior woliede
performance. _ o S on accurate approximations. To obtain these analyticalltses

The framework considered in this paper greatly simplifies tte .o make use of the matrix analytic method (MAM) which, to

assumptions made in previous work, which allows us to study . . . . .
the impact of a variety of new parameters on the performance, OUr best knowledge, is the first time that this method is used

e.g., the burstiness of the arrival process and the correlan to analyze the performance of FDL buffers. _
of consecutive burst lengths. Moreover, we present exact salts We focus on a single WDM channel and assume contention
for both the channel utilization and loss rate in such a syst®, for it is resolved by means of an FDL buffer, which can delay,
this in contrast with all prior work which provided accurate necessary, OBs until the channel becomes available again

approximations for the loss rate. ) . .
Matrix analytic methods are used to perform this analysis. D Unlike conventional buffers, however, it can not delay keirs

the best of our knowledge, this is the first time that such an for an arbitrary period of time, but only for multiples of asa
approach is used to analyze an optical buffer. We show, amosyg unit D, called the granularity of the FDLs [8], [9]. Each OB is
others, that carefully choosing the granularity parametercan, in  thus either delayed.D time units, for some» = 0,1,..., N,
some cases, make a substantial difference when trying to fize ;g dropped. Hereby is the size of the FDL buffer, the

lower buffer losses or a high channel utilization. Optimal \alues . hi ble delav beink D. Wi fi .
of the granularity parameter are shown to be closely relatecto maximum achievable delay beinyD. We assume time is

the optical burst length distribution. slotted and we will use the duration of a single slot as the
unit of time. A natural choice for the slot length would be
I. INTRODUCTION the clock cycle in a synchronous system. Thus, for instance,

As advances in Dense Wavelength Division Multiplexinghe granularityD would be expressed as an integer number of
(DWDM) push fiber transmission capacities well beyond thgots. Note that wherD equals one (slot), the optical buffer
Thit/s, electronic switches and routers are becoming tliebo functions as a conventional time-slotted one, i.e., it isomger
necks of the backbone network. All-optical packet switghindegenerate, since then the whole range of delays (up to N) can
(OPS) could alleviate the problem. However, OPS requires realized.
practical and cost-effective implementations of opticahtler  We will show that carefully choosing the granularity param-
processing, which is still some years away. As an interntediaeter D can, in some cases, make a substantial difference when
solution, optical burst switching (OBS) has been propodéd [ trying to realize low buffer losses or a high channel utiiiza.

[2], [3], which avoids the need to process headers in thesabti In general, the less uniform the burst length distributithe,
domain. Although wavelength conversion greatly reduces tmore profound the impact of the granularity paramefer
need for OBS network buffering [4], contention can stillsati becomes on the OB loss rate (as well as on the achievable
Resolving this contention is not straightforward due tolduk channel utilization). Optimal values dp are, in such cases,

of optical RAM. The use of Fiber Delay Lines (FDLs) ha<losely related to the most common OB lengths.

been introduced to partially resolve this problem, and sdve The paper is structured as follows. In Section Il we start by
architectures that make use of an FDL buffer have alreagyesenting a stability condition for an infinite FDL buffexdf
been studied [5], [6], [7]. by a general Markovian arrival process. In order to improve

A limited number of analytic results concerning the stayili our understanding of this stability condition, a number of
and loss of such FDL based buffer systems has been publisepdcial cases are considered next, e.g., Bernoulli asrivadl
so far [8], [9], [10]. Our work consists in generalizing theuncorrelated burst lengths. Within Section Il we also pnese
results presented in [9] in a number of ways. First, we assumeaumber of analytical and numerical results that demotestra
that new incoming optical bursts (OBs) follow a generalhich parameters influence the maximum channel utilization
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k™" arrival _ Let H,, be the value of the scheduling horizon at time slot

L i . andJ, the state of the arrival process at timéfor all n > 0).
$ . > Then,(H,,, J,)n>o0 forms a discrete-time Markov ch&igMC)
l D 4 D : : - : - (1), :
! \\__/; P . . with transition matrixP as shown in Eq. (1). By reblocking

! into blocks of dimensiorDb one finds that the MQH,,, J,,)
i is an M/G/1 type MC with blocks of dimensiobb [11]. We
void < > H, can study the stability of the FDL buffer by investigating th

I i I I F_,_> ergodicity of the MC characterized by. An M/G/1 type MC
L i is known to be ergodic if and only if

Tk >
w3 <1, (2)
Fig. 1. Evolution of the scheduling horizal from one arrival to the next. . L .
I, is the length of thek-th OB andr, the burst IAT. wherer is a left stochastic invariant vector of = Y. A;

andj3 = >",.,iA;1p; (Wherel; is aj x 1 vector with all its

entries equal to one). We can determine: [r1, 72, ..., 7p],
and how. Section Il presents an exact method to compwiierer; is a1l x b vector, explicitly as follows. Defines,,
the loss rate in a finite FDL buffer. A variety of numericafor s € {1,..., D}, as> ;. Bs+;p, thenA is found as
results, both for Bernoulli and Markovian arrivals, shovatth
finding the optimal granularity is a delicate problem. Final
conclusions are drawn in Section IV.
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II. STABILITY OF INFINITE FDL BUFFERS 0 1 O

A. General Case Some basic algebraic manipulations and the fact that

In this section we assume that the buffer is of infinite SIZEZ-Z1 i show
(N = 00), so that no loss occurs. Denote By, the scheduling D
I_Iorizc_m as seen by tH_eth arrival. It is_, by definitipn, the ear- = 92 By(Bo)* [T — (BO)D]—17 3)
liest time (measured in slots) by which all previously asdv —1
OBs will have left the system, and is thus the equivalent gf o 09 is the 1 x b left stochastic invariant vector aB —
the virtual waiting time in conventional queues. In Figute &~ _ "5 ‘Notice, 3 is the transition matrix of the underlying
the relation betweer; and Hy.1 iS illustrated. When the \ie=nt 1o arrival process, thus, is the probability that the
k-th burst sees a scheduling horizéf upon arnvgl, it will _arrival process is in stateat an arbitrary time instant. A
hz_ave to be delay(_ed by at least that amount t_o avoid contenti Milar expression can be found fos, . . ., 7p, though we do
Slnc_e the buffer is degenerate, howe\{er, thls delay can@ot B <o these to determine an expressiontfar
realized exactly, the closest match_ being givenibti;./D]. Looking at the matrices!; it should be clear that can be
(Note that[Hy /D] represents Ih_e index of the FDL titeth oo as|T AT ... AT]T, wheref; and 3, areb x 1 vectors
OB must tra_verse.) _Thus, the f|_n|te _granular@yof th_e FDLs andv? represents the transposedot et B, — ZD:1 Bjisp,
leads to voids, as illustrated in Figure 1, reducing channr%lr s> 0. then 7
utilization and lowering the system’s overall capacityeTdim - o A

. . . . . ... . ﬂl — ZSBsfl]-b (4)

of this section is to obtain a simple condition to determine
the maximum channel utilizatiop,, .. of a channel preceded
by an infinite FDL buffer, and to determine which parameteend 3; = Bol, + )., sBs_51,. This impliesfy = 1 + 1
influencep,,., and how. Notice, in case of an electrical buffegs S o0 Bsly = 1. Therefore = w161 + Zf:z 7By =
pmaz always equald as the use of an infinite RAM buffer ., 3, + (6 —m)(B1 +1p) = 061 + 1 — m1,. Making use of
does not create voids. Eq. (2), this leads us to the conclusion that the FDL buffer is

New incoming OBs arrive according to a general Markoviagtable (meaning that a burst has a finite delay with protigbili
arrival process [11]. Such a process is characterized by a gge) if and only if
of b x b matrices(B;)s>0, Where the(i, j)-th element of B, 05, < m11,. (5)
represents the probability that the background Markovrchai )
makes a transition from staieto j, while, for s > 0, a new 1he left hand sid&, actually corresponds taE[[L/D1],
OB with a length ofs time units arrives and, fos = 0, there where L is the OB length distributichand \ represents the
is no new burst arrival. Such an arrival process generaly ha'fival rate, that is, the probability that a new incoming OB
correlated inter arrival times, as well as a correlationattre  r"ives at an arbitrary time instant & 65, Bs1, = 0(1—
on the length of consecutive OBs, meaning that the lengffp)1:)- The right hand sider,1, of Eq. (5) indicates what

of an OB Can_be '”ﬂqenc‘?d by the Slze.Of (all) prior OBs. INotice, we observe the system at every time slot and notysalelOB
Moreover, the inter arrival times may also influence the teBngarrival times.

of an OB and vice versa. 2P[L = k] = 0By1,/(0(I — Bo)1y).

s>1



[ Bo+B1 By ... Bp BD+1 BD+2 ... Bap B2D+1 o]
Bb, O .. 0| B By ... Bp| Bon

C | Ay | As

0 0 0 B, B> ... Bp BD+1
BQ BD BD+1 AO A1 A2 .
P = 0 0 ... 0| B 0 ... 0 B ... |7 - (Y

o
o
&
@

the probability would be that the scheduling horizBih= 0 N
mod D at an arbitrary time instant iff had no boundary at |
zero.

If we approximater; 1, by 1/D andDE[[L/D]| by E[L]+
(D —1)/2, we find that Eq/(5) is reduced to\(E[L] + (D —
1)/2) < 1. Meaning that the maximum stable OB arrival rate
Amaz =~ (E[L]4+(D—1)/2)~1, an approximation that was also
proposed in [9]. Later, we demonstrate that this approxonat
can be very poor in certain situations. In [10] it was showat th
for D sufficiently small\,,,.. is well approximated byF[L]+
D/2)~t if the inter arrival times and lengths of incoming OBs osef 2L
are exponentially distributed. The reason for thg¢2 term T T T YT S
instead of(D — 1)/2 is that due to the exponential IATSs, the granularity D
length of a void varies betweahand D as a new incoming _ o )

. . Fig. 2. Influence of the burst length distributiab on pmq. (Bernoulli

OB need not to arrive at a slot boundary (whereas in our setyf ais and uncorrelated burst lengths).
it does; hence, a void has a length of at mbst 1). Next, let
us try to get a better understanding of Eq. (5) by considering
a few special cases.

max

Ethernet trace

Maximum channel utilization : p

to numerically solve this equation we can make use of a simple
B. Bernoulli Arrivals, Uncorrelated Burst Lengths bisection algorithm: the right hand side of Eq. (6) decrsase

Assume that a new OB arrival occurs in a slot with probé'i—S a function op on (0,1/E[L]].
bility p independently from slot to slot, that is, the IATs are Recall, the approximation mentioned at the end of the
independent and geometrically distributed (with meap). Previous subsection, reduces E6)) t0 pyas ~ (E[L]+ (D —
Also, assume that consecutive OB lengths are uncorrelated 4)/2) . Actually, if L is distributed uniformly between
follow a distribution L. DenoteP[L mod D = k] asi(D), andUD, for all U > 0, this approximation can be shown
for k=1,...,D—1and P[L mod D = 0] aslp(D). This to be exact (by noticing that;(D) = 1/D for all j).
particular scenario corresponds to the model introducgd]in Figure 2 illustrates the accuracy of the approximagion. ~

This setup can be studied using the general model by settifg[L] + (D — 1)/2)~! for four different distributionsZ; is
B, = pP[L = s], for s > 0, and By = (1 — p) (thus,b = 1, deterministic with a mean a2 slots, L, is deterministic with

X =p andd = 1). As such, we can rewrite Eq. (5) as a mean of256 slots, Ls is distributed agL; + L2)/2 (thus,
b half of the bursts have a length 82 and the other half o256

L D1 i1 slots) andL, is a burst length distribution of a typical Ethernet

E HEH <(-p7) Z LD ©6) trace.pmq. IS defined as the maximum channel utilization and

=t is calculated a®,,.. E[L]. As opposed to the approximation,

wherep = 1 — p. Thus, the maximum input rate,,...(= the exact values fop,,.. are not a smooth function ab,
Amaz) fOr which Eq. (6) is met, is determined liy, F[L] and but contain some (minor) fluctuations. For the determiaisti
L mod D (becauseE[[L/D]] can be written as a function distributionsL, and L, these occur atE[L] — 1)/n, for any

of E[L] and L mod D). This implies that many statistical natural numbern. The curve forLs contains both the peaks
properties, like for instance heavy tails, have no impact aif L; and L,, the magnitude of these peaks has however
the maximum achievable channel utilization, it is only theomewhat diminished. Additional numerical experimentgeha
modulo D distribution of the OB length that matters. In ordeshown that the peaks of a general distributiomre found by



superimposing the peaks of the deterministic distribgtiwith  the IAT between these two OBs atgthe length of thek-th
means that correspond to the most frequently appearing bu®8. Thus, by putting a correlation structure on the length of
lengths. Also, the more uniform the distributibhmod D, the consecutive OBs (which is independent from the IATS), we do
more accurate the approximation fofr,,. seems to become, not influence the distribution of the void lengths. Now, ieth
meaning that the magnitude of the peaks diminishes (whiolean void length is unaltered, then soig,..

is in line with the fact that the approximation is exactZifis . .

uniformly distributed between and U D, for someU > 0). D. Markovian Arrivals, Uncorrelated Burst Lengths

For instance, we included a typical packet length distidsut  In this section we assume that OB lengths are uncorrelated
obtained from an Ethernet trateThis distribution is fairly and follow a distributionZ. The new incoming OBs no longer
uniform with packet lengths betweed and 1500 bytes, but form a Bernoulli process, but a general Markovian arrival
contains some very strong spikes (the most pronounced Arecess (MAP). Such a MAP can be characterized by two
found at40, 576 and 1500 bytes). In Figure 2, we have setd x d matricesDy and D;. The (i, j)-th entry of Do, resp.Dy,

the time unit equal tolusec and assume that the outgoingorresponds to the probability that the underlying chaikesa
channel has a rate df Gbit/s. Looking carefully at the curve a transition from statéto j, while there is no new burst arrival,
for pa. We observe a peak 800, 375 and 500, caused by resp. a new burst arrival. The arrival raleequalsyD,14,

the 1500 byte spike inL, all other peaks are too small to bewherey = (Do + D;) andy1,4 = 1.

visually noticed in Figure 2. We can fit this model into the general framework by setting
o Bs; = D1P[L = s8], for s > 0, and By = Dy (thus,b = d and
C. Bernoulli Arrivals, Correlated Burst Lengths 6 = ~). As such Eg. (5) can be somewhat simplified to:

In this section, new burst arrivals still occur with a protbab
ity p independently from slot to slot, the lengths of consecutiv B L D 2 L(DVDN-1 | (1 — pPy-1
! . — ; - — 4.
bursts, however, are no longer independent. The corralatio HDH <75 Z:I #(D)(Do) ( o) La
structure on the burst lengths is characterized by a set of ! (8)

[ x I matrices(Ly)x>1- If the state associated with burst ynsortunately, there is no such thing as ‘a’ maximum stable
is 4, then, with probability(Ly); ;, burstn has a lengthk  4prival rate Aa, for all MAPs in general, because one can
and the state associated with burst- 1 equalsj. Thus, the gagily find two different MAPSs, with ratels, and\s, such that
probability P[L, = k] that an arbitrary burst has lengthis  he FpL puffer is stable when fed by the MAP with the highest
found asaLy1;, wherea is the left stochastic invariant vectoros the two rates, whereas the other MAP causes instability.

of > 4>y Lx. Next, we prove that the correlation structure ofhis somewhat counter intuitive result, can be explaingd b
the burst lengths has no influence on the stability of theesyst noticing that the void length distribution is influenced et

Therefore, we can simply compute the distribution/ofrom |1 gistribution. A maximum stable input rat&,... can be
the matrices, and apply Eq. (6) to find the maximum arrivaljefined if we restrict ourselves to specific subclasses of the

rate Amaz (= Pmaa) for which the FDL buffer is stable. set of all MAPs, e.g., the Bernoulli arrival processes used i
This particular system can be dealt with by settifg = ¢ previous two section, subclasses of interrupted Bdlinou
pLs, fors > 0, andBy = (1—p)I;, wherel; is a unity matrix processes (IBP) and many more.
of dimensionj (thus,b = I, A = p andf = «). Let L; = In order to demonstrate the interaction between correlatio
2kzo Litrp for j € {1,..., D}. The expression fom1l, gng the granularity parametdd, we make use of the IBP
can be simplified by exploiting the structure By)’~' = process. An IBP process consists of two states: while i stat
(1 —=p)y~'1 to find 1 the IBP generates no traffic, whereas while in stata
D new OB arrives with probabilityp,. The sojourn time in
ml =p (1-p")7! Z (aL;1,)p’ L. (7) statei = 1,2 is geometrically distributed with a mea#
J=1 (hence,\ = p2sa/(s1 + s2)). We fix s; = 10s2, meaning

that an off period lasts0 times as long as an on period

andip(D) = P[L mod D — 0], one finds that the stabili (on average); hence, this traffic is very bursty. The results
b - S Y for less bursty setups (e.gsy = so) are similar though

condition for the FDL buffer is identical to Eq. (6). . o .
. . . the impact of correlation is less pronounced. Four differen
In conclusion, when new bursts arrive according to a

Bernoulli process, the order in which the bursts arrive \alues were chosen fap, the mean length of the on period:

irrelevant over any finite time scale as far as the stability ()?'25.’28'42’807'79 and6525_30.45 slots. A
Figure 3 shows the maximum channel utilization,.. (that

an FDL buffer is concerned. This result does not come assa Amas E[L]) for a deterministic distributiorL, with a mean

. o -~ IS,
surprise, because it is not difficult to show (see [10, Lemn@m of 256 (slots). Fors, — 1.25, meaning that there is

1]) that the length of a void between OB and k£ + 1 is ; . .
distributed according t6r;, — ;) mod D, wherer, represents hardly af‘y correla}tmn, we find thm”“ IS close to a smoothly
' decreasing functichof D. As in Section 1I-C some very

3The Ethernet packet size distribution used, is based omlagaltraces from Mild fluctuations are observed &E[L] — 1)/n, with n a

the Passive Network and Analysis (PNA) project conductedhigyNational
Laboratory for Applied Network Research (NLANR). 4Being the aforementioned approximatiofi(1 + (D — 1)/(2E[L]))

By settingl;,(D) = P[L mod D =k],fork=1,...,D —1,



N ‘mean[‘m:m‘mmo‘n - L3 = (L1 + Ly1)/2 (half of the bursts have a length @2,

the other half a length 0256) and Ly = 9L,/10 + L5/10.
The location of the peaks for thes and L, distribution are
found by superimposing the location of the peaks.gfand
L,. Moreover, the curves fob; and L, look very much like
a weighted sum of thé,; and L, curves (where the weights
are related to the probability that a packet has lengt or
256 slots).

It is easy to prove that the stability condition obtained in
this section is still valid even when the burst lengths are
correlated, as long as there is no cross-correlation betwee
the burst lengths and the inter-arrival times. The detaiés a
omitted for brevity.

I1l. LOSS RATE IN AFINITE FDL BUFFER

In this section we assume that the FDL buffer has a finite
size N, thus the maximum achievable delayNsD slots. OBs
that see a horizodl > ND when arriving, are dropped. In
this section we develop an analytical method to compute the
loss rate of OBs. As in Section Il we assume that new OBs
arrive according to a general Markov process charactebiyed
the matriceg B;)s>0-

As before, the coupléH,,, J,),>0 forms a discrete-time
Markov chain (MC), the transition matrix of which we call
Py. Recall, H,, is the value of the scheduling horizon at
time slotn and J,, the state of the arrival process at time
n (for all n > 0). Clearly, transitions from a state of the
e form (h, j), with h < N D, are identical to the infinite FDL
Y — system, meaning that the firsN D + 1) block rows of Py

granularity D are identical toP (see, Eq. (1)). If(H,, J,) = (h, j1), with

Influence of the distributiod. on the maximum channel utilization h > ND, th_enH"*_l =h-1 _Smce any new incoming OB_
is dropped immediately. In this case, the state of the drriva
process]nﬂ equalsj, with probability (B);, ;,.

Let 7V = [x)xl ... w%DwND# .| be the stochastic
natural number. As the correlation increases we observestgady state vector aPy, wherer;", for i > 0, isal x b
sharp increases ¢f,,.,. at the(E[B] —1)/n values, whereas vector. In order to compute’Y, fori =0,..., ND, we start
a decrease occurs for granularitiBsthat are located halfway by censoring the MCPy on the set of state$(h Nk <
between two such peaks. This can be understood by noticig”}- Given the structure oPy it is not hard to check that
that during the on period new bursts arrive fairly close te othe censored chain is characterized by the transition xatri
another, thus if the OB length is a multiple &f the void in P~ (see [12, Restricted MCs]):
between two such bursts will be limited as well. Recall, the Py
length of thek-th void is distributed aér;, — ;) mod D, thus, -

max o
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Fig. 3. Influence of correlation opy,q. for deterministic distribution with
mean of256 bytes (IBP arrivals, uncorrelated burst lengths).

1

k- mean on = 807.79, mean off 8077.9

o Tmax o
© ©
T T

e
o
T

1=
>
T

Maximum channel utilization:p

o
@
T

Fig. 4.
pmaz (IBP arrivals, uncorrelated burst lengths).

if 1, is close to zero moduld®, the size of the void will be ZZZ ]gBND““ b B
well approximated by the IAT. On the other hand if an OB =0 DD+1+¢
has a size ofn+1/2)D slots for some natural number the pul :

length of the void in between bursts is often close to or above ND Ym0 Bov-1)pt14i B
D/2. Another conclusion that can be drawn from Figure 3 Yoo OB 9 D41+i B
is that the correlation matters most over time scales that ar :

in the order ofD: there is hardly any difference between the $< Bl+i B

sy = 807.79 and s, = 652530.45 scenario. Thus, long term 00 0 0 B Zi’ig B I

correlation has no major impact on the results. Finally, the

approximationyq. ~ (E[L]+(D—1)/2)~! clearly becomes where P{%,, represents the square matrix of dimensigib
worse with increased correlation. found in the upper left corner oP. The transition matrix

In Figure 4 we have fixed; = 807.79 slots and considered Py is skip-free in one direction (sincé/ cannot decrease
four OB length distributionsl: L; is deterministic with a by more than one at a time). Therefore, we can make use
mean of192, L, is deterministic with a mean df56 (slots), of the Latouche-Jacobs-Gaver algorithm [13] to compute the
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Fig. 5. Influence of the granularityp on the loss probability for Bernoulli Fig. 6. Influence of the loag on the loss probability for IBP traffic with
traffic with p = 0.5 and N = 15. sg = 28.42,s1 = 10sg and N = 15.

stochastic steady state vectdn = [7)...7Np], where to support higher traffic intensities. Figure 5 shows thaseh
N is a1l x b vector, in a time and memory complexity ofvalues are also good choices when considering the loss rate
O(b®*N2D?) and O(b> N D), respectively. MoreoverFNc = of a finite FDL buffer. The loac = pE[B] = 0.5 for each
7V, foralli =0,..., ND, and some constaatwhich equals of the curves presented in Figure 5, whereas the number of

the probability that the MC characterized By, has a horizon FDLs is N = 15.

H < ND. The constant can be computed as As indicated in [8], [9], there exists a trade-off between
N increasing the time resolution of the FDL buffer - smaller
1 N -N (_) values ofD decrease the effect of reduced capacity due to the
P 1+ [7 - 7ol : ) creation of voids - and maximum achievable delay - which,
N assumingN is fixed, can increase only by increasirg.

This trade-off leads to an optimal FDL granularif,,:. For

deterministic OB length distributiong, all our numerical

experiments resulted in an optimum located at one of the

value$ (E[L] — 1)/n, for some integer.. Increasing the load

p causesD,,; to decrease in jumps, for instance if all OBs

have a length ofl92 time units andp = 0.7, the optimal D

is located at6 (whereas forp = 0.5, D, is found at191).

rN = Z (s — ND + [i/D]D — 1)B,1,. More uniform OB length distributiond. ( mod D), tend to
s>ND—[i/D]D+1 smoothen the loss probability curves and make the optimum

broader (as a result, the exact valuedf,, becomes more

sensitive to and a smoother function of the offered lpad

wherer is ab x 1 vector whosek-th element equals the
expected number of visits that the MC characterizedHay
makes in the set of statggh,j)| h > ND} until the first
return to a state of the forrth, j), with h < N D, provided
that the MC started in statg, k). Looking at the structure of
Py one finds that"¥ can be computed as

Having found the normalization constantwe can compute
the loss probability from the vectorg", fori = 0,..., ND

as B. Markovian Arrivals

ND N
(Zi:o Ti ) (I' = Bo)Ly 9 In this section we assume that new incoming OBs arrive
A ’ according to the IBP process defined in Section 1I-D. The

since the loss rate can be found as one minus the ratio betwkamgths of consecutive OBs are assumed to be independent and
the number of new incoming OBs that are not dropped dividelistributed according to some distributidn Figure 6 and 7
by the total number of new incoming OBs during an arbitrarghows the influence of the offered loadand the number of
time slot. Let us now consider the loss in an FDL buffer feBDLs N on the loss probability, respectively. In both figures
by the same arrival processes as used in previous sectionthe OB length distribution is chosen to be deterministichwit
a mean of256 (time units). These figures illustrate that the
optimal granularityD,,; can be rather narrow when either the

Assume that a new OB arrival occurs in a slot with probasffered load decreases or the number of FDLs increases. For
bility p independently from slot to slot, that is, the IATs argnstance, forp = 0.2, settingD = 225 instead 0f255 causes
independent and geometrically distributed (with méap). a difference in the loss rate of a factt®00. The location of
Also, assume that consecutive OB lengths are uncorrelatid ghis optimum seems less sensitive (though the sensitivitlyeo
follow a distributionL. In section 1I-B we demonstrated thatexact value ofD,,; increases for more uniform distributions
some particular choices for the granularify which depend
on the OB length distribution, allow an infinite FDL buffer S5Thatis, the integer nearest {&[L] — 1)/n.

Ploss = 1-

A. Bernoulli Arrivals



cases, cause the loss rate to increase by several orders of
magnitude. As the burst size distribution (modiilp becomes
more uniform, the loss probability curves tend to smoothen,
creating a broader optimumy. Increased burstiness of the
arrival process has the opposite effect. Additional nuoari
experiments, not reported here, further showed that (i) the

Loss Probability

L
200

L
150

Granularity D

250

Fig. 7. Influence of the number of FDL& on the loss probability for IBP
traffic with so = 28.42, s1 = 10s2 andp = 0.2.

L). Although D, is always located &55 in Figures 6 and 7,

value of the optimal granularityp is rather insensitive to the
burstiness of the arrival process, as opposed to the breadifie
the optimum which is strongly influenced by it. (i) When we
correlate the burst lengths with the temporary traffic istign
the OB length distributions related to the most intensequoisri
matter most.

In conclusion, selecting the granularity of an FDL buffer
should not be taken lightly as this might severely influence
the network performance.
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7 is very bursty, because the mean length of the off period

(= s1) is 10 times as long as the mean length of the on period

(= s2). This implies that the offered load during the on period]
is 11 times as high ag. For less bursty arrival processes (e.g.{z]
s1 = s2), we find more regular loss curves.

IV. CONCLUSIONS (3]

Within this paper we presented a detailed analysis of the
maximum achievable channel utilization and loss rate in a
optical FDL buffer. Using matrix analytic methods, we were
able to study the influence of correlated inter arrival timegs]
and burst sizes, as well as cross-correlation between the tw
Moreover, Eqn. (9) provided us with an exact expression fojg)
the loss probability, as opposed to earlier studies.

With respect to the maximum achievable channel utilizam
tion (MACU) the following conclusions were drawn: (i) The
MACU is only affected by the burst size distribution modulo
D, with D the buffer granularity. This implies that many (8]
statistical properties, e.g., heavy tails, can be ignofdte
optimal value for the granularity parametér was shown to
be closely related to the modulb distribution of the burst
sizes. (ii) Unless there is cross-correlation between tier i
arrival times and the burst size distribution, the MACU is
insensitive to possible correlation between consecutiwstb

. . L . L (11]
sizes. (iii) Introducing correlation in the inter arrivdmes
strongly affects the MACU and increases its sensitivityre t [12]
granularity D, especially when the burst size distribution i?13]
close to deterministic. However, correlation matters noestr
time scales that are in the order of the granuladily (iv)

As opposed to a classic infinite RAM buffer, increasing the
burstiness of the arrival process, while keeping the metn ra
fixed, can cause instability in an optical FDL buffer.

We further demonstrated that granularity valuBs that
resulted in a high MACU, are also good choices when trying
to establish a low loss rate. Choosing a granulafitythat
deviates only10% from the optimal, can, in some extreme

(9
[10]
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