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Abstract

The throughput characteristics of a random access system (RAS) which usesQ-ary tree algorithms (whereQ is the number
of groups into which colliding users are split) of the Capetanakis–Tsybakov–Mikhailov–Vvedenskaya type are analyzed
for an infinite population of identical users generating packets. In the standard model packets are assumed to be generated
according to a Poisson process. In this paper we greatly relax this assumption and consider a rich class of Markovian arrival
processes, which, in general, are non-renewal. This class of arrival processes is known to lend itself very well to modeling
bursty and correlated arrival processes commonly arising in computer and communication applications. Blocked and grouped
channel access protocols are considered in combination withQ-ary collision resolution algorithms that exploit either binary
(“collision or not”) or ternary (“collision, success or idle”) feedback. For the resulting RASs the corresponding maximum
stable throughput is determined. It is concluded that the resulting RASs maintain their good stability characteristics under the
wide range of arrival processes considered, thereby further extending the theoretical foundations of tree algorithms.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Random access systems (RAS) of the Capetanakis–Tsybakov–Mikhailov–Vvedenskaya (CTMV) type
have been studied extensively over the past 20 years[1–7]. Underlying most of the theoretical work done
in this area are the following key assumptions[8,9]:

1. New arrivals occur according to a Poisson process with rateλ.
2. The number of nodes or stations is assumed to be infinite. In practice, the number of nodes is always

finite. Assuming an infinite number provides us with pessimistic estimates for finite populations[9,10].
In particular, each finite set of nodes can regard itself as an infinite set of virtual stations, one for each
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arriving packet. This situation is equivalent to the infinite node assumption and allows a station with
backlogged packets to compete with itself.

3. A single error-free channel provides immediate—that is, at the end of the slot—binary (collision or
not) or ternary (collision, success or empty) feedback.

4. If two or more stations transmit simultaneously, then there is a collision, meaning that the transmissions
interfere destructively so that none succeeds.

5. Time isslottedand may be considered discrete. Users are synchronized with respect to the time slots.
Each slot has a fixed duration equal to the time required to transmit a packet.

A number of algorithms belonging to the class of the CTMV type have been studied with some of the
assumptions weakened. For instance, Polyzos and Molle[11] have considered finite population models
for the grouped access strategy, which they refer to as window access. In case of a finite population,
one generally assumes that the new arrivals occur according to a Bernouilli process instead of a Poisson
process (in which case the number of arrivals in consecutive slots is still independent). Kessler, Seri
and Sidi[12,13] have relaxed the third and fourth assumption and studied the performance of splitting
algorithms in noisy channels with memory and Markovian capture. Many researchers have also considered
different types of feedback, e.g., “success–failure” and “something–nothing”, and early/delayed feedback.
A comprehensive overview of most of the extensions made to a non-standard environment can be found
in [9, Section 6].

What is apparent from this overview is that almost all researchers assume Poisson arrivals, except
for some of the results on blocked access algorithms and a limited number of finite population stud-
ies that consider Bernouilli arrivals. This might seem like an obvious choice, especially in case of an
infinite population, because the traffic generated by a very large population with independent users
approaches a Poisson process. Nevertheless, studying the performance of an algorithm with an infi-
nite population under a broad set of arrival processes might be very useful because such an infinite
population model is a pessimistic estimate for a finite population. Thus, we can further extend the
theoretical foundation of algorithms of the CTMV type by proving that these algorithms have good
stability characteristics in such an environment. In 1998, during the 50th birthday of the IEEE Trans-
actions on Information Theory Society, there was a survey article by Ephremides and Hajek[14] that
stated that the union between information theory and communication networks has been only partially
successful. The following statement on this unconsummated union was made: “The principle reason
for this failure is twofold. First, by focusing on the classic point-to-point, source-channel-destination
model of communication, information theory has ignored the bursty nature of real sources. Early on
there seemed to be no point in considering the idle periods of source silence or inactivity. However,
in networking, source burstiness is the central phenomenon that underlies the process of resource shar-
ing for communication.” It is the bursty nature of the arrivals that separates D-BMAPs from Poisson
arrivals.

In this paper we leave the last four above-mentioned assumptions unchanged, instead we greatly relax
the assumption made on the arrival process. That is, instead of assuming Poisson arrivals with a mean
rateλ, we consider a rich class of arrival processes commonly known as discrete-time batch Markovian
arrival processes (D-BMAPs). This class of arrival processes is known to lend itself very well to modeling
bursty and correlated arrival processes commonly arising in computer and communication applications
[15–23]. The aim of this work is to demonstrate that the good efficiency characteristics of RASs of the
CTMV type with blocked or grouped access (seeSection 2for definitions) remain valid when we replace
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the Poisson arrival process by a general D-BMAP arrival process. Earlier work[24,25]focussed on RASs
with free access and D-BMAP arrivals.

1.1. Maximum stable throughput or efficiency

A lot of attention has gone into determining the maximum stable throughput—which is sometimes called
the efficiency or capacity—of random access systems. In the standard model, that is, under assumptions
1–5, the maximum stable throughput can be thought of as the highest possible arrival rateλ, denoted as
λcrit, for which each packet is successfully transmitted with a finite delay with probability one. For the
blocked access algorithms—which are sometimes called gated access algorithms—the maximum stable
throughput is generally known with sufficient precision for any practical purpose (meaning that an interval
of size 0.001 or less is known to holdλcrit). For most free and grouped access schemes these values are
known exactly.

If we relax the first assumption and allow the new arrivals to occur according to a D-BMAP process,
we define the maximum stable throughput as follows. A D-BMAP process is characterized by an infinite
set of matricesBn. For each primitive D-BMAP—seeSection 3for its definition—we can easily calculate
the mean arrival rateλ, that is, the expected number of new packets generated in a time slot. For each
RAS considered, the set of all primitive D-BMAPsS can be subdivided into two subsetsS1 andS2, with
S1 ∪ S2 = S andS1 ∩ S2 = ∅, such that the RAS is stable if and only if the new arrivals are generated
according to a D-BMAP belonging toS1. From now on, unless otherwise stated, we simply refer to the
set of all primitive D-BMAPs as the set of all D-BMAPs.

Ideally, there exists aλcrit such thatλ < λcrit if and only if the D-BMAP belongs toS1. In such case
we defineλcrit as the maximum stable throughput. Unfortunately, such aλcrit does not seem to exist.
However, if we exclude a trivial subset of the D-BMAPs, we find, for the blocked access algorithms, a
λcrit and aδ small such that all D-BMAPs withλ < λcrit − δ are a part ofS1 and all D-BMAPs with
λ > λcrit + δ are a part ofS2. For the grouped access algorithms we will show that there exists aλmin and
a λmax such that all D-BMAPs withλ < λmin belong toS1 and all D-BMAPs withλ > λmax belong to
S2. The difference betweenλmin andλmax depends on the length of the grouping interval∆—the length
of this interval is sometimes referred to as the window size. Moreover, the difference betweenλmin and
λmax decreases rapidly as∆ increases. We also prove that the value ofλmin, respectively,λmax, can hardly
be increased, respectively, decreased, meaning that we can find aδ small such that there exits a D-BMAP
with an arrival rateλmin +δ that is part ofS2 and a D-BMAP with an arrival rateλmax−δ that is part ofS1.

In order to get an idea of the statistical nature of the arrival processes that result in the worst and the
best stability results, we examine a number of simple subclasses of the D-BMAPs. To achieve this, we
have developed a procedure that allows us to study the stability of each of the RASs considered under any
primitive D-BMAP arrival process. These explorations indicate that the stability results are the poorest
under bursty and correlated arrival processes. Nevertheless, the obtained results are, in general, not far
below the well known Poisson results, indicating that the good efficiency of the blocked and grouped
access algorithms is maintained under D-BMAP arrivals. We believe that this result contributes to the
theoretical foundation of algorithms of the CTMV type.

The paper is organized as follows.Section 2presents the conflict resolution algorithms (CRAs) and
channel access protocols (CAPs) considered. InSection 3we introduce the discrete-time batch Markovian
arrival processes (D-BMAPs).Section 4focusses on the blocked access algorithms, whereasSection 5
evaluates the grouped access schemes. Conclusions are drawn inSection 6.
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2. Specification of the random access systems

Random access systems are formed by combining a conflict resolution algorithm with a channel access
protocol. A CAP states the rules for the first transmission attempt of a newly arrived packet, whereas the
CRA indicates how collisions are resolved. We consider the following three well known channel access
protocols:

1. Blocked access.After an initial collision ofn stations, all new packets postpone their first transmission
attempt until then initial stations have resolved their collision. The time elapsed from the initial
collision until the point where then stations have transmitted successfully, and are aware of this, is
called the collision resolution interval (CRI). Suppose thatm new packets are generated during the
CRI. Then, a new CRI starts (withm participants) when the previous CRI (withn stations involved)
ends. In conclusion, when the blocked access mode is used new arrivals are blocked until the CRI
during which they arrived has ended. They will participate in the next CRI.

2. Grouped access.All packets are subdivided into an infinite number of groups based on their arrival
time, that is, the arrival-time axis is subdivided into an infinite number of fixed length intervals of
size∆ and a packet belongs to groupi if its arrival time is part of theith interval (the left boundary
of theith interval coincides with the right boundary of thei− 1th). Packets part of groupi attempt a
first transmission if all prior groups, i.e., group 1 toi− 1, have been resolved and if theith grouping
interval has ended (that is, if the first grouping interval starts at timet = 0, the current time must be
equal to or larger thant = i∆). Hence, a possible collision of thei − 1th group is resolved before
groupi packets are allowed to transmit.

3. Free access.New packets are transmitted immediately at the beginning of the next slot following
their arrival. RASs with free access CAP are not considered within this paper. Results on free access
schemes with D-BMAP arrivals can be found in[24,25]; therefore, we do not consider this CAP here.

The blocked access protocol is sometimes referred to as the gated access protocol, whereas the grouped
access protocol is also known as the simplified window protocol[9]. The following two conflict resolution
algorithms are considered in this paper:

1. The basicQ-ary CTM algorithm.Consider an arbitrary time slott. Stations are allowed to transmit in
slot t whenever theirindexfor slot t is equal to one. Hence, new packets that are allowed to make their
first transmission attempt in time slott by the CAP initialize their index for slott at one. The index
values are assigned as follows. Whenevern ≥ 2 stations collide in slott, each station involved flips a
“Q-sided coin” with values 1, . . . ,Q (theQ-ary coins need not to be fair, although we focus on fair
coins unless otherwise stated). This splits the set ofn colliding stations intoQ subsets. To each of these
subsets, we assign as an index the value which was flipped (some subsets may be empty). Stations part
of theith subset set their index for slott+ 1 equal toi. Stations that were not involved in the collision
at slott, but who have an index for slott equal toi > 1, set their index for slott+ 1 ati+ (Q− 1). If,
on the other hand, the outcome of slott is “no collision”, all stations who have an indexi > 1 for slot
t, set their index for slott + 1 at i − 1 (if there was a single station with an index for slott equal to
one, then a successful transmission occurred and the station deletes the index). The basicQ-ary CTM
algorithm distinguishes only “collisions” and “no collisions”, therefore, binary feedback suffices.

2. The modifiedQ-ary CTM algorithm.The mechanism used to resolve the collisions is the same as
in the basic algorithm, except that the algorithm tries to improve the basic algorithm using ternary
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feedback, namely, a successful transmission is distinguished from an idle slot. If, after a collision, the
nextQ−1 slots turn out to be empty, then the next slot must hold a collision when the basic algorithm
is applied (because all the stations involved in the last collision must have chosen theQth subset).
Thisdoomedslot can be skipped by having all stations immediately act as if it had occurred.

A detailed description of both algorithms, examples of their transmission process, their motivation, and
many of their properties can be found in a variety of papers, for example[2,4,6,9,10].

Combining the three CAPs with the two CRAs results in six different random access systems. We will
study the stability of four of these algorithms when the Poisson arrivals of the standard model are replaced
by D-BMAP arrivals (that is, the blocked and grouped access RASs).

3. Discrete-time batch Markovian arrival processes (D-BMAPs)

The D-BMAP is the discrete time counterpart of the BMAP[26,27]and was first introduced in[28].
Formally, a D-BMAP is defined by an infinite set of positivel× lmatrices(Bn)0≤n<∞, with the property
that

B =
∞∑
n=0

Bn (1)

is a transition matrix. By definition the Markov chainJt associated withB and having{i; 1 ≤ i ≤ l} as
its state space, is controlling the actual arrival process as follows. SupposeJ is in statei at timet. By
going to the next time instancet + 1, there occurs a transition to another or possibly the same state, and
a batch arrival may or may not occur. The entries(Bn)i,j represent the probability of having a transition
from statei to j and a batch arrival of sizen. So, a transition from statei to j without an arrival will occur
with probability(B0)i,j. Define byXt the number of arrivals generated at timet.

We assume that the transition matrixB is an aperiodic irreducible matrix[29]. Notice that the stability
of an algorithm under reducible D-BMAP arrivals depends on the initial state at timet = 0, whereas this
is not the case for irreducible D-BMAPs. Aperiodic irreducible matrices are often referred to as primitive
matrices. Thus, whenever we refer to a primitive D-BMAP we mean to say that its transition matrixB is
aperiodic and irreducible. ForB primitive the Markov chainJt has a unique stationary distribution. Let
β be the stationary probability vector of the Markov chainJt, i.e.,βB = β andβe = 1 with e a column
vector of 1’s. The mean arrival rateλ = E[Xt] of the D-BMAP (Bn)n is given by

λ = β
( ∞∑
n=1

nBn

)
e. (2)

Due to the Ergodic theorem for primitive Markov Chains[29] we have

lim
L→∞

E[
∑L−1
i=0 Xt+i|Jt = j]

L
= λ (3)

for 1 ≤ j ≤ l. D-BMAPs for whichBn = 0, for n ≥ 2, are referred to as discrete time Marko-
vian arrival processes (D-MAPs). Many properties like the autocorrelation function or the index of
dispersion for count (IDC) can be found in[15,28,30]. Another important characteristic of D-BMAPs
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is that any finite superposition of D-BMAPs is again a D-BMAP. A few very simple D-BMAP sub-
classes, used for later discussions, are presented inAppendix A. The D-BMAPs used to model nowa-
days communication network traffic are, of course, much more complicated and often have 50 or more
states, e.g., in[22,23] an individual video source (based on a Bond movie trace) is modeled by 65
states.

4. Analysis of the RASs with blocked access

It is well known[1,2,4] that if the input traffic is Poisson with a meanλ and if a CRA has an expected
running timeT(n), to resolven participants, then the corresponding RAS with blocked access is stable
for all λ < lim inf n/T(n); unstable forλ > lim supn/T(n). The expression forT(n) depends upon the
CRA. Therefore, it is sufficient to study the asymptotic behavior ofn/T(n) for n to infinity in order to
determine the stability of a blocked access algorithm under Poisson input. This behavior is, obviously,
independent of the arrival process. It is fairly easy to generalize this to the following theorem:

Theorem 1. A RAS with blocked access, corresponding to a CRA that resolves conflicts of multiplicityn

in an expected timeT(n), is stable under primitive D-BMAP traffic if

1. λ < lim inf n/T(n)

and unstable if

1. λ > lim supn/T(n),
2. n > 1 and1 ≤ i, j ≤ l exist such that(Bn)i,j �= 0, that is, the D-BMAP is not a D-MAP.

The stability part of this theorem is straightforward as Cidon and Sidi[4, Theorem 8]have proven the
following theorem. Letσ = lim inf n/T(n) and letNt,t+L be the number of new packets arriving to the
system in the interval(t, t + L]. Then, the system is stable if there exists aδ > 0 and anL∗ such that
E[Nt,t+L] < (σ−δ)L for all t andL > L∗. FromEq. (3)we know that the expected number of arrivals of
a primitive D-BMAP that occur in an interval of lengthL approachesλL asL approaches infinity, where
λ is the mean arrival rate (whichever the state at the start of the interval is). Because the number of states
of the D-BMAP l is finite, we find that for anyε > 0 there exists anL∗ such thatE[Nt,t+L] < (λ+ ε)L
for all t andL > L∗. Thus, wheneverλ+ ε < σ, it suffices to chooseδ between 0 and(σ − λ)− ε > 0
to fulfill the required equation.

We did not manage to find a formal proof of a result similar to that of Cidon and Sidi, in the existing
literature, that allows a short proof of the instability condition. Therefore, we have extended Massey’s
argument[2] for the Poisson result to D-BMAPs. Because it requires a number of Epsilons we give a
rigorous proof inAppendix B.

Recall, the expressionT(n) is the expected time required by the CRA to resolve a collision ofn

participants. Thus, it does not depend on the arrival process. As a result, the all well known efficiency
results for the CRAs presented inSection 2(with fair and biased coins) and Poisson arrivals are also valid
for D-BMAP arrivals. For example, if the basic binary CTM is used as the CRA, we have a stable system
for any D-BMAP arrival process if the arrival rateλ < 0.3464. Similarly, the system is always unstable if
λ > 0.3471. This immediately closes the discussion of the blocked access algorithms. Next, we consider
grouped access systems, which are more difficult to analyze.
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5. Analysis of the RASs with grouped access

We restrict ourselves to the case where∆, the length of the grouping interval, is an integer value andQ,
the splitting factor, is equal to 2. The arguments presented in this section can easily be extended to the case
whereQ > 2. Most of the researchers working on RASs with grouped access focus on CRAs withQ = 2
because the basic idea behind grouping is to form groups with a small number of contenders (ideally,
[slightly more than] one in each group[10]). Therefore, it is important to have a CRA that performs
well for groups with very few contenders. The basicQ-ary CTM algorithm is known to perform best
in resolving groups withn ≤ 3 participants forQ = 2. The same can be said about the modified CTM
algorithm forn ≤ 7 [6]. Moreover, the resulting RASs achieve the highest maximum stable throughput
when the length of the grouping interval∆ is optimized (under Poisson arrivals). The fact that the binary
CRAs are the best in resolving small groups does not depend on the statistics of the arrival process; hence,
we also expect the binary CRAs ofSection 2to perform best under BMAP input traffic if∆ is small
(except for some of the more artificial processes belonging to the class of the D-BMAPs).

We start by proving that a RAS that uses a grouping algorithm as its CAP is stable under primitive
D-BMAP traffic if the expected time required to resolve an arbitrary groupE[G] is smaller than∆ and
unstable ifE[G] > ∆. Afterwards we indicate how to obtain tight upper and lower bounds onE[G]. For
the two CRAs introduced inSection 2, with Q = 2 and fair coins, these bounds allow us to determine
the maximum stable throughput with sufficient accuracy.

5.1. A stability condition for D-BMAP input

A RAS that applies a grouping strategy as its CAP under primitive D-BMAP input traffic can be seen
as a queue with the following characteristics. We assumed that∆ is an integer. The customers arriving in
the queue correspond to the groups produced by the algorithm. Thus, every∆ time slots a new customer
arrives—that is, we have a deterministic arrival process. The queue has an infinite waiting room and a
single server. A customer is said to be of typej with 1 ≤ j ≤ l if the state of the input D-BMAP at
the start of the corresponding grouping interval wasj. The group types are therefore determined by a
primitive discrete time Markov chain with transition matrixB∆, whereB is the transition matrix of the
input D-BMAP, i.e.,B = ∑

n Bn. Thus, if the type of customern is i than the type of customern + 1
is j with probability (B∆)i,j. The service time of a customer—that is, the time required to resolve the
corresponding group—depends upon the type of the customer. Hence, the service time of a customer of
typej is t with some probabilityGj(t). Meaning, the service time distribution of a customer depends on
the state of the D-BMAP at the start of the corresponding grouping interval. Forl the number of states
of the D-BMAP, or else the number of customer types, equal to one the above-mentioned queue reduces
to aD/G/1 queue and such a queue is known to be stable forρ < 1 [31]. This condition is obviously
equivalent toE[G] < ∆. Another way to prove thatE[G] < ∆ is a sufficient condition for stability when
l = 1 is to use the stability lemma of Pakes[10, p. 264]. For l > 1, things are slightly more complicated.

The arrival process of our queue can be seen as a special case of the discrete time version of a Markovian
arrival process with marked arrivals[32,33], denoted asMMAP[K]. Such a Markov arrival process is
characterized by a set ofm × m matricesM0 andMJ with J a string of integers, where each integer is
part of [1,K]. The i, jth element ofMJ , with J = j1, . . . jn, n > 0, represents the probability that a
transition is made from statei to j and thatn arrivals occur. The type of thesen arrivals is as follows:
thekth customer that arrives is a customer of typejk. The matrixM0 characterizes the transitions when



364 B. Van Houdt, C. Blondia / Performance Evaluation 57 (2004) 357–377

no new arrivals occur. ForK = 1 theMMAP[K] arrival process reduces to a D-BMAP arrival process
(if we identify the matrixBn with MJ whereJ is a string that consists ofn ones). It is easily seen that
the arrival process of our queue of interest is actually aMMAP[K] process withK = l andm = ∆l. The
matrixM0 has the following form:

M0 =




0 I 0 . . . 0 0

0 0 I . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . I 0

0 0 0 . . . 0 I

0 0 0 . . . 0 0



, (4)

whereI is thel× l unity matrix. The matricesMk, 1 ≤ k ≤ l, obey the following equation:

Mk =




0 0 0 . . . 0 0

0 0 0 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . 0 0

0 0 0 . . . 0 0

B∆(k) 0 0 . . . 0 0



, (5)

whereB∆(k) is obtained fromB∆ by keeping thekth column of the matrixB∆ and setting all other elements
to zero. The entries of the matricesMJ with J a string of length 2 or more are all zero. Now that we know
that the input is aMMAP[K], the queue we are interested in is a special case of aMMAP[K]/G[K]/1
queue.

He[32] has shown that aMMAP[K]/G[K]/1 queue with a work conserving service discipline is positive
recurrent ifρ = λ1E[G1] + · · · + λKE[GK] < 1 and is transient ifρ > 1, whereλi corresponds to the
average number of typei customers arriving in the queueing system (per time unit) andE[Gi] to the
expected service time of a typei customer. In our case, the vector(λ1, . . . , λK) is nothing but the vector
β/∆, whereβB = β andβe = 1 (becauseβ is also the invariant vector ofB∆). Thus,∆ρ is equal to the
expected service time of an arbitrary customer—that is, the expected time required to resolve an arbitrary
group. This proves that we get a stable, respectively, unstable, system wheneverE[G] < ∆, respectively,
E[G] > ∆. Notice, that the stability of a grouped access RAS corresponds to saying that the number of
waiting groups does not grow to infinity.

5.2. Tight bounds onE[G]

Following Massey’s approach[2], it is fairly straightforward to obtain a tight upper and lower bound on
E[G] when the basic or modified binary CTM algorithm is used to resolve the groups. First, we determine
the probability that a group containsn contenders—that is,n arrivals occur in the corresponding interval
of length∆. The probability that the state of the D-BMAP isj, 1 ≤ j ≤ l, at the start of a grouping
interval is equal toβj, whereβj is thejth component of the stationary vectorβ corresponding to the
input D-BMAP becauseβ is also an invariant vector ofB∆. The probability of havingn arrivals in an
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interval of length∆ provided that the state isj at the start of the interval, sayPj(n), is easily computed
as follows. Define the matricesBn,i, i > 1, n ≥ 0, as

Bn,i =
n∑
j=0

Bj,i−1Bn−j (6)

with Bn,1 equal toBn. Then,Pj(n) is found as thejth component ofBn,∆e. Therefore, the probability
that a group containsn arrivals, sayP(n), is nothing but

∑l
j=1 βjPj(n).

The expected time required to resolve an arbitrary groupE[G] is found asE[G] = ∑
n P(n)T(n),

whereT(n) represents the expected time required by the CRA to resolve a set ofn contenders. Massey[2]
obtained the following upper and lower bounds onT(n) for the basic and modified binary CTM algorithm.
In order to distinguish both algorithms we writeTb(n) for the expected time required by the basic binary
CTM algorithm andTm(n) as the expected time required by the modified binary CTM algorithm. For the
basic binary CTM algorithm we have

Tb(n) ≤ a1n− 1 + 2δ0,n + (2 − a1)δ1,n + (6 − 2a1)δ2,n + (26
3 − 3a1)δ3,n (7)

with a1 ≈ 2.8867 andδi,j = 0 if i �= j and 1 ifi = j. Moreover,

Tb(n) ≥ a2n− 1 + 2δ0,n + (2 − a2)δ1,n + (6 − 2a2)δ2,n + (26
3 − 3a2)δ3,n (8)

with a2 ≈ 2.8810. Whereas for the modified binary CTM we find

Tm(n) ≤ b1n− 1 + 2δ0,n + (2 − b1)δ1,n + (11
2 − 2b1)δ2,n + (8 − 3b1)δ3,n (9)

with b1 ≈ 2.6651 and

Tm(n) ≥ b2n− 1 + 2δ0,n + (2 − b2)δ1,n + (11
2 − 2b2)δ2,n + (8 − 3b2)δ3,n (10)

with b2 ≈ 2.6607. If we calculateE[G] = ∑
n P(n)T(n) and replaceT(n) by its lower, respectively,

upper, bound we obtain a lower, respectively, upper, bound onE[G]. Whenever the lower bound is larger
than∆ we know fromSection 5.1that the RAS is unstable, whereas if the upper bound is smaller than
∆ we have a stable RAS. For those cases that produce an upper bound larger than∆ and a lower bound
that is smaller we know nothing about the stability.

5.3. Numerical results

In this section we will show that there exists aλmin and aλmax for each RAS considered such that the
RAS is stable for all primitive D-BMAPs withλ < λmin and unstable for all primitive D-BMAPs with
λ > λmax The difference betweenλmin andλmax depends on the length of the grouping interval∆. We also
prove that the value ofλmin, respectively,λmax, can hardly be increased, respectively, decreased, meaning
that there exists aδ small such that there exits a D-BMAP with an arrival rateλmin + δ for which the RAS
is unstable and a D-BMAP with an arrival rateλmax − δ for which the RAS is stable.

Theorem 2. A RAS with grouped access, that uses the basic binary CTM algorithm as its CRA, is stable
under primitive D-BMAP traffic if

λ <
1

a1

(
1 − 1

∆

)
≈ 0.3464

(
1 − 1

∆

)
, (11)
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wherea1 ≈ 2.8867,and unstable if

λ >
1

a2

(
1 + a2 − 1

∆

)
≈ 0.3472

(
1 + 1.8810

∆

)
, (12)

wherea2 ≈ 2.8810.

Proof. UsingEq. (7)andTb(n) ≤ a1n for n > 0, we haveE[G] = ∑
n≥0P(n)Tb(n) ≤ ∑

n>0 a1nP(n)+
P(0) = a1λ∆ + P(0). Hence,λ < (1/a1)(1 − P(0)/∆) is a sufficient condition for having a stable
algorithm. Obviously,P(0) < 1 if λ > 0. As a result we have stability ifλ < (1/a1)(1 − 1/∆) for
any primitive D-BMAP input traffic. UsingEq. (8), we haveE[G] = ∑

n P(n)Tb(n) ≥ a2
∑
n nP(n) −∑

n P(n) + 2P(0) + (2 − a2)P(1) + (6 − 2a2)P(2) + (26/3 − 3a2)P(3) ≥ a2λ∆ − 1 + (2 − a2) =
a2λ∆− (a2 − 1). Thus, the grouping algorithm that uses the basic binary CTM algorithm is unstable if
λ > (1/a2)(1 + (a2 − 1)/∆). �

From the proof ofTheorem 2it should be clear that only the presence of empty groups might reduce
the maximum stable throughput below 1/a1 ≈ 0.3464. Similarly, we can prove the following theorem
for the modified binary CTM algorithm:

Theorem 3. A RAS with grouped access, that uses the modified binary CTM algorithm as its CRA, is
stable under primitive D-BMAP traffic if

λ <
1

b1

(
1 − 1

∆

)
≈ 0.3752

(
1 − 1

∆

)
, (13)

whereb1 ≈ 2.6651,and unstable if

λ >
1

b2

(
1 + b2 − 1

∆

)
≈ 0.3758

(
1 + 1.6607

∆

)
, (14)

whereb2 ≈ 2.6607.

Numerical results for different values of∆ are presented inTable 1. Obviously, for∆ large we find that
the interval reduces to [1/a1,1/a2], respectively [1/b1,1/b2]. Both these intervals are rather small and
contain the maximum stable throughput of the corresponding RASs with blocked access (seeSection 4).
Thus, whether the basic, respectively modified, binary CTM algorithm uses a blocked access strategy or
a grouping strategy (with∆ large) makes little difference as far as the stability under primitive D-BMAP
traffic is concerned. The fact that these blocked access and grouped access, with∆ large, algorithms
perform similar was already known for Poisson input traffic[9]. The following property proves that the
size of the intervals inTable 1can hardly be decreased.

Property 1. Consider a RAS with grouped access, that uses the basic binary CTM algorithm as its CRA.
Then, for eachε > 0 it is possible to find a primitive D-BMAP with an arrival rate1/a2(1 − 1/∆) + ε
for which the RAS is unstable, and a primitive D-BMAP with an arrival rate1/a1(1 + (a1 − 1)/∆)− ε
for which the RAS is stable.
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Table 1
Numerical values for the four quantities inTheorems 2 and 3

∆ Basic binary Modified binary

1 0 1 0 1
2 0.1732 0.6736 0.1876 0.6879
3 0.2309 0.5647 0.2501 0.5839
4 0.2598 0.5103 0.2814 0.5319
5 0.2771 0.4777 0.3002 0.5007

10 0.3118 0.4124 0.3377 0.4383
20 0.3291 0.3797 0.3565 0.4070
50 0.3395 0.3602 0.3677 0.3883

100 0.3430 0.3536 0.3715 0.3821
1000 0.3461 0.3478 0.3748 0.3765

10000 0.3464 0.3472 0.3752 0.3759
∞ 0.3464 0.3471 0.3752 0.3758

Proof. For∆ = 1 the proof is trivial. For∆ ≥ 2, consider the D-BMAP with(2∆ − 1) states and the
following matrixB0, whereIj represents thej × j unity matrix

B0 =




0 0 0 0 0

0 0 I∆−2 0 0

1 − 1

p
0 0

1

p
0

0 0 0 0 I∆−2

0 0 0 0 0



. (15)

The symbol 0 in the matrixB0 is sometimes used for a vector of zeros, a matrix of zeros or simply a zero.
The dimension of each of these 0 entries should be clear from the fact that the D-BMAP has 2∆−1 states.
Notice thatp is a parameter that we fix later on. The matrixB1 is a matrix with all its entries equal to zero,
except for(B1)1,2 = 1. All the otherBimatrices withi > 1 are zero, except forBm, wherem is a parameter.
As for the matrixB1, the matrixBm has only one entry differing from zero:(Bm)2∆−1,1 = 1. Thus, our
D-BMAP is completely determined once we fix the parametersm,p and∆. It is fairly straightforward
to prove that this D-BMAP is a primitive one (actually, it follows from the fact that the greatest common
divisor of∆ and 2∆ − 1 equals one). Moreover, the invariant vectorβ can be obtained explicitly as a
function ofm,p and∆. With this vector one finds the following arrival rateλ and probabilitiesP(n):

λ = m+ p
∆p+∆− 1

, P(1) = ∆p− 1

∆p+∆− 1
, P(m) = ∆− 1

∆p+∆− 1
,

P(m+ 1) = 1

∆p+∆− 1
,

the other probabilitiesP(n) are equal to zero. With these probabilities, andEq. (8), we can find the
following upper bound for the expected service timeE[G] of an arbitrary group:

∆(p− 1)+ a1m∆+ a1 − 1

∆p+∆− 1
. (16)
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Provided that this upper bound is smaller than∆ we have a stable algorithm for this D-BMAP input
traffic. This stability condition can be rewritten as

1

∆− 1

(
a1 − 1

∆
+ a1m−∆

)
< p. (17)

Hence, if we choosep asε > 0 plus the left-hand side ofEq. (17)we have a stable algorithm. Having
done this the arrival rateλ can be written as

λ = m(a1 +∆− 1)+ (a1 − 1)/∆−∆+ ε(∆− 1)

a1∆m+ a1 − 2∆+ ε∆(∆− 1)
. (18)

This value can be optimized by lettingm go to infinity, in which caseλ approaches 1/a1(1+ (a1−1)/∆).
This proves half of the theorem. The construction of the D-BMAP used to prove the other half is very
similar and aims at finding a D-BMAP that either generates empty groups or very large groups.�

Using the same primitive D-BMAP arrival processes we can prove the following property as well.

Property 2. Consider a RAS with grouped access, that uses the modified binary CTM algorithm as its
CRA. Then, for eachε > 0 it is possible to find a primitive D-BMAP with an arrival rate1/b2(1−1/∆)+ε
for which the RAS is unstable, and a primitive D-BMAP with an arrival rate1/b1(1 + (b1 − 1)/∆)− ε
for which the RAS is stable.

Numerical results for different values of∆ are presented inTable 2. If we compare these values with
Table 1, it is clear that the values inTheorems 2 and 3can hardly be increased, respectively, decreased,
that is, the difference is at most 0.0007 for any∆ ≥ 1. As with many of the arrival processes belonging
to the class of the D-BMAPs, the processes used to proveProperties 1 and 2are quite artificial and are
not very likely to be used as a model for the input traffic of a communication network. To get an idea
of the statistical properties that influence the maximum stable throughput, we study the maximum stable
throughput of the RASs for a number of very simple D-BMAP arrival processes described inAppendix A.

Table 2
Numerical values for the four quantities inProperties 1 and 2

∆ Basic binary Modified binary

1 0 1 0 1
2 0.1736 0.6732 0.1879 0.6876
3 0.2315 0.5643 0.2506 0.5835
4 0.2604 0.5098 0.2819 0.5314
5 0.2778 0.4771 0.3007 0.5002

10 0.3125 0.4118 0.3383 0.4377
20 0.3298 0.3791 0.3570 0.4077
50 0.3403 0.3595 0.3683 0.3877

100 0.3437 0.3530 0.3721 0.3815
1000 0.3469 0.3471 0.3755 0.3758

10000 0.3472 0.3465 0.3758 0.3753
∞ 0.3472 0.3465 0.3758 0.3753
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Fig. 1. The impact of∆ on the maximum stable throughput (basic).

5.3.1. Two-state Markov modulated Poisson processes (TMMPP)
We start with a discussion of the two-state Markov modulated Poisson processes described in

Appendix A.3. As with the class of the primitive D-BMAPs, there exists noλcrit such that all two-state
Markov modulated Poisson process with aλ < λcrit result in a stable algorithm;λ > λcrit result in an
unstable algorithm. However, if we fix the parametersa andb and makeλ2 a function ofλ1, such aλcrit

can be found. We refer to thisλcrit as the maximum stable throughput of theM(·, f(λ1), a, b) process,
where the dot indicates that the arrival rate of state 1 is the variable of the process.

Fig. 1, respectively,Fig. 2, compares the maximum stable throughput as a function of∆ (2 ≤ ∆ ≤ 10)
for a few TMMPPs when the basic, respectively, modified, binary CTM algorithm is combined with a
grouping strategy. We denotex, a multiple of 0.0005, as the maximum stable throughput if the interval
[x, x+ 0.0015] holds the maximum stable throughput of the arrival process considered. Both figures are
almost identical, except that the modified scheme supports throughputs which are a few percentages higher.
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Fig. 2. The impact of∆ on the maximum stable throughput (modified).
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A first conclusion drawn from both figures is that a rather serious degradation of the maximum stable
throughput might occur if the burstiness of the arrival processes—that is, the variance of the number of
arrivals in a time slot—increases, especially if∆ is very small. The reason for this is the presence of
the empty groups (this follows from the proof ofTheorem 2). Although the probabilityP(0) of having
an empty group does not decrease that rapidly when increasing∆, the throughput degradation does
disappear rather quickly. This is due to the fact that the throughput can be written as a weighted sum of
the throughputsTi, whereTi is the throughput associated with a collision resolution interval (CRI) that
corresponds to a grouping interval starting in statei. We refer to such a CRI as a typei CRI. DenoteCi
as the expected time required by the CRA algorithm to resolve a CRI of typei. Then, the weightwi that
corresponds toTi equals

wi = βiCi∑
j βjCj

. (19)

In the case of ourM(·,0, a, b)processes,T2 ≈ 0 becauseλ2 = 0. Increasing∆ results in a decreasingP(0).
However,P(0) decreases slowly (especially ifb is large). Nevertheless, the maximum stable throughput
recovers quickly when increasing∆. This follows from the fact thatw2 decreases rapidly when increasing
∆. Indeed, we find that the expected number of contenders associated with a type 1 CRI increases rapidly
as∆ increases; hence,C1 increases rapidly. Whereas the expected number of contenders in a type 2 CRI
remains close to zero (for∆ � b); hence,C2 remains small. This implies that the weightw2 associated
with T2 ≈ 0 decreases rapidly when∆ increases, which explains the rapid restoration of the maximum
stable throughput when∆ is increased.

Figs. 1 and 2also indicate that correlation is of lesser importance. For instance, theM(·,0,30,30), the
correlation functionr(k) of which decays as 0.9333k, performs only slightly better than theM(·,0,300,
300), which has a correlation functionr(k) that decays as 0.9933k. Moreover, the results for theM(·,0,
3000,3000) arrival process, which are not included in the figures, are almost identical to those of the
M(·,0,300,300) process. This comes as no surprise because the grouping mechanism breaks the cor-
relation (Moreover, the order in which the groups are resolved is of no importance with respect to the
efficiency, indeed, He’s theorem used to obtain the stability condition inSection 5.1is valid for any work
conserving scheduling discipline.)

Notice, the maximum stable throughput underM(·,0,30,210) input traffic is only a few percentages
higher than 1/a1(1 − 1/∆), respectively, 1/b1(1 − 1/∆) (seeTable 1). We can easily define a TMMPP
for which the maximum stable throughput is even closer to 1/a1(1− 1/∆), respectively, 1/b1(1− 1/∆).
For instance, the basic, respectively, modified, CTM algorithm with grouping has a maximum stable
throughput underM(·,0,30,3000) input traffic of≈0.1770, respectively,≈0.1915. TheM(·,0,30,3000)
process is very bursty: the average sojourn time in the silent state is 3000 slots, whereas the average time
in the active state is only 30 slots. Therefore, all the traffic is more or less concentrated in 1% of the
grouping intervals of length∆.

5.3.2. Erlang arrival process
As with the TMMPPs, there exists noλcrit for all Erlang processes (seeAppendix A.2for a definition),

however, fixing the parameterk results in a unique maximum stable throughput.Fig. 3 and 4present the
results for the Erlang arrival processes. As expected we get a higher maximum stable throughput ifk is
increased, i.e., if the process becomes more deterministic. Also, the results for the ER(·,10) process are
only a few percentages below 1/a2(1 + (a2 − 1)/∆), respectively, 1/b2(1 + (b2 − 1)/∆). For k = 50
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Fig. 3. The impact of∆ on the maximum stable throughput (basic).
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Fig. 4. The impact of∆ on the maximum stable throughput (modified).

we found a maximum stable throughput for∆ = 2 of ≈0.623, respectively,≈0.6415. It is easy to prove
that the maximum stable throughput for∆ = 2 converges to 0.625, respectively, 0.6429, ask approaches
infinity. Erlang arrival processes withk large can be used to model constant bite rate (CBR) traffic sources
in communication networks.

Similar figures can be obtained for other arrival processes belonging to the D-BMAP class.

6. Conclusions

This paper examines the maximum stable throughput of a random access system which usesQ-ary tree
algorithms (whereQ is the number of groups into which colliding users are split) of the Capetanakis–



372 B. Van Houdt, C. Blondia / Performance Evaluation 57 (2004) 357–377

Tsybakov–Mikhailov–Vvedenskaya type for an infinite population of identical users generating packets
according to a discrete-time batch Markovian arrival process (D-BMAP). Blocked and grouped channel
access protocols have been considered in combination withQ-ary collision resolution algorithms that
exploit either binary (“collision or not”) or ternary (“collision, success or idle”) feedback. For the resulting
RASs the corresponding maximum stable throughput is determined.

For the RAS with blocked access, it was shown that the well known stability results for the Poisson
traffic also apply to D-BMAP arrival processes. Thus, for each CRA, there exists aλcrit and aδ small
such that the RAS with blocked access is stable under all primitive D-BMAPs with a mean arrival rate
λ < λcrit − δ and unstable ifλ > λcrit + δ.

For the grouped access RAS it was shown that for each CRA there exists aλmin and aλmax such that
the RAS with grouped access is stable forλ < λmin and unstable forλ > λmax. The difference between
λmin andλmax depends on the length of the grouping interval∆. We have also proven that the value of
λmin, respectively,λmax, can hardly be increased, respectively, decreased, meaning that there exists aδ

small such that there exits a D-BMAP with an arrival rateλmin + δ for which the RAS is unstable and a
D-BMAP with an arrival rateλmax − δ for which the RAS is stable. Additional numerical explorations,
in Section 5.3, have indicated that the stability results are the worst if the arrival process is bursty, and to
a lesser extend, highly correlated. However, provided that the length of the grouping interval∆ is not too
small, i.e.,∆ ≥ 10, the stability remains high, i.e., above 30%.

In general, it is concluded that the RASs considered maintain their good stability characteristics under
the wide range of D-BMAP arrival processes—with the exception perhaps of grouped access RASs with
∆, the length of the grouping interval, small—thereby further extending the theoretical foundations of
tree algorithms.
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Appendix A. Some D-BMAP subclasses

A.1. The discrete time Poisson process

The discrete time Poisson process is obtained by observing the continuous time Poisson process at the
slot boundaries. Arrivals that occurred in the interval(t, t+1] are now assumed to arrive on the boundary
of slot t andt+ 1, i.e., at timet+ 1. We can model the discrete time Poisson process as a D-BMAP with
a single state by lettingBn = e−λλn/n! for n ≥ 0. For later reference, we abbreviate the Poisson process
as PP(λ).

A.2. The discrete time Erlang process

We define the continuous time Erlang process as follows. The continuous time Erlang process has
independent and identically distributed interarrival times that obey an Erlang distribution with parameters
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k andλe (this λe is not to be confused with the arrival rateλ of the corresponding D-BMAP). Clearly,
for k = 1 the Erlang process is reduced to the Poisson process. By observing the Erlang process at
the slot boundaries we obtain the discrete time Erlang process (arrivals are assumed to occur on slot
boundaries). The discrete time Erlang process can be modeled as a D-BMAP in the following way. Let
γn = e−λλn/n!, n ≥ 0, and letBn, n ≥ 0, bek × k matrices defined as

(Bn)i,j = γnk+j−i, nk ≥ j − i, (A.1)

(Bn)i,j = 0, nk< j − i. (A.2)

The arrival rateλ of this D-BMAP isλe/k. For later reference, we abbreviate the Erlangk process as
ER(λe, k).

A.3. The two-state discrete time Markov modulated Poisson process

Two-state discrete time Markov modulated Poisson processes are characterized by two parameters
λ1, λ2 and a 2× 2 matrixT . The process will generate arrivals according to a Poisson process with a
mean rateλi when the current state isi. Transitions from one state to another can occur at the end of each
time slot according to a 2× 2 transition matrixT :

T =




1 − 1

a

1

a

1

b
1 − 1

b


 . (A.3)

The expected sojourn time in state 1, respectively, state 2, isa, respectively,b, time slots. The matrices
Bn are found as

Bn =



λn1 e−λ1

n!

(
1 − 1

a

)
λn1 e−λ1

n!

1

a

λn2 e−λ2

n!

1

b

λn2 e−λ2

n!

(
1 − 1

b

)

 . (A.4)

Notice,
∑
n Bn = B = T . The arrival rateλ is calculated as(λ1a + λ2b)/(a + b). For later refer-

ence, we abbreviate the two-state Markov modulated Poisson process with parametersλ1, λ2, a andb as
M(λ1, λ2, a, b).

Appendix B. Proof of Theorem 1

Let Yi andXi denote the length and the number of participants of theith collision resolution interval
(CRI), whereX0 andY0 correspond to the CRI beginning at timet = 0. LetZi denote the state of the
primitive D-BMAP at the start of theith CRI, whereZ0 is the state at timet = 0. LetT(n) be the expected
time required by the CRA to resolve a set ofn contenders, i.e.,T(n) = E[Yi|Xi = n]. Using the law of
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total probability, we have

E[Yi] =
∞∑
n=0

P [Xi = n]E[Yi|Xi = n]. (B.1)

Let τ = lim supn/T(n), then for anyε1 > 0 there exists anN such thatn/T(n) ≤ τ + ε1 for n > N. In
other words,T(n) ≥ n/(τ + ε1) for n > N. Therefore, we can writeEq. (B.1)as

E[Yi] ≥ 1

τ + ε1
∑
n>N

nP[Xi = n] +
∑
n≤N

E[Yi|Xi = n]P [Xi = n]. (B.2)

LetT(n) = n/(τ+ε1)+g(n), whereg(n) is a correction that can be either positive or negative. Therefore,

E[Yi] ≥ 1

τ + ε1E[Xi] +
∑
n≤N

g(n)P [Xi = n]. (B.3)

Wheneverg(n) ≥ 0 we use 0 as a lower bound forg(n)P [Xi = n]; otherwise, we useg(n) as an lower
bound forg(n)P [Xi = n]. Hence,

E[Yi] ≥ 1

τ + ε1E[Xi] + e, (B.4)

whereε1 > 0, e ≤ 0 is a fixed number that depends upon the value ofε1 and the CRA, but that does not
depend uponi. We know fromEq. (3)that for any primitive D-BMAP the expected number of arrivals in
an interval of lengthL approachesλL asL approaches infinity, whereλ is the arrival rate of the D-BMAP
(independent of the state at the start of the interval). Thus, because the number of states of a D-BMAP is
finite, we have that for anyε2 > 0 there exists aK such thatE[Xi+1|Yi = L] ≥ (λ − ε2)L for L > K.
Hence, by means of the law of total probability

E[Xi+1] ≥ (λ− ε2)
∑
L>K

LP[Yi = L] +
∑
L≤K

P [Yi = L]E[Xi+1|Yi = L]. (B.5)

RecallZi is the state of the D-BMAP at the start of theith CRI. Obviously,

E[Xi+1|Yi = L] ≥ min
j
E[Xi+1|Yi = L ∩ Zi = j]. (B.6)

The expression minjE[Xi+1|Yi = L ∩ Zi = j] is nothing but the expected number of arrivals generated
by the input D-BMAP during an interval of lengthL, provided that the state at the start of the interval
is j. Hence, we can write it as(λ − ε2)L + h(L), whereh(L) is a correction that is either positive or
negative, to obtain

E[Xi+1] ≥ (λ− ε2)E[Yi] +
∑
L≤K

h(L)P [Yi = L]. (B.7)

Forh(L) negative, respectively, positive, we replaceh(L)P [Yi = L] by h(L), respectively, 0, to find that

E[Xi+1] ≥ (λ− ε2)E[Yi] + f, (B.8)
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wheref ≤ 0 is a fixed number that depends uponε2, the input D-BMAP and CRA, but that does not
depend uponi. CombiningEqs. (B.4) and (B.8)provides us with the following equation:

E[Xi+1] ≥ λ− ε2
τ + ε1E[Xi] + (λ− ε2)e+ f (B.9)

for i ≥ 0. When the equality is taken inEq. (B.9), we have a first-order linear recursion whose solution for
the initial conditionX0 = N andZ0 = j is a lower bound onE[Xi]. This lower bound can be rearranged
to the following form:

E[Xi] ≥
(
N − [(λ− ε2)e+ f ]

1 − (λ− ε2)/(τ + ε1)
)(

λ− ε2
τ + ε1

)i
+ [(λ− ε2)e+ f ]

1 − (λ− ε2)/(τ + ε1) (B.10)

with e ≤ 0 andf ≤ 0. Define [(λ − ε2)e + f ]/(1 − (λ − ε2)/(τ + ε1)) asq. For (λ − ε2) > (τ + ε1)
we findq ≥ 0. Thus, for(λ − ε2) > (τ + ε1) the lower bound forE[Xi] presented inEq. (B.10)grows
without a bound asi goes to infinity ifN is large enough—that is, larger thanq. ForN smaller thanq the
lower bound forE[Xi] decreases to minus infinity and we know nothing fromEq. (B.10).

Notice, Eq. (B.10)actually states that if a CRI with more thanq participants occurs,E[Xi] grows
without bound—that is, the algorithm is unstable under D-BMAP traffic—forλ > τ. It is not difficult to
prove, by means of a finite Markov chain with an absorbing state, that a CRI with more thanq contenders
occurs, when the CRAs ofSection 2are used, with probability one if the input D-BMAP is not a
D-MAP.
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