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Abstract

This paper presents an improved method to calculate the delay
distribution of a type k customer in a first-come-first-serve (FCFS)
discrete-time queueing system with multiple types of customers, where
each type has different service requirements, and c servers, with c =
1, 2 (the MMAP[K]/PH[K]/c queue). The first algorithms to compute
this delay distribution, using the GI/M/1 paradigm, were presented
in [9, 10]. The two most limiting properties of these algorithms are:
(i) the computation of the rate matrix R related to the GI/M/1 type
Markov chain, (ii) the amount of memory needed to store the tran-
sition matrices Al and Bl. In this paper we demonstrate that each
of the three GI/M/1 type Markov chains used to develop the algo-
rithms in [9, 10] can be reduced to a QBD with a block size which
is only marginally larger than that of its corresponding GI/M/1 type
Markov chain. As a results, the two major limiting factors of each of
these algorithms are drastically reduced to computing the G matrix
of the QBD and storing the 6 matrices that characterize the QBD.
Moreover, these algorithms are easier to implement, especially for the
system with c = 2 servers. We also include some numerical examples
that further demonstrate the reduction in computational resources.

1B. Van Houdt is a postdoctoral Fellow of the FWO Flanders.
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1 Introduction

In this paper we study a class of queues with c (= 1 or 2) servers, correlated
interarrival times and multiple types of customers, where each type has dif-
ferent service requirements, known as the discrete time MMAP[K]/PH[K]/c
queue. The MMAP[K] arrival process, introduced in [3], is a Markovian
arrival process that generates customers of K different types and is a gener-
alization of the batch Markovian arrival process (BMAP). Its potential ap-
plications to telecommunications, manufacturing and service industries have
been demonstrated extensively in [3, 2].

Queues with MMAP[K] input, e.g., MMAP[K]/G[K]/1 queues, with a first-
come-first-served (FCFS) service discipline have been studied in [2, 1, 7, 8].
Within these papers, explicit formulas for the Laplace Stieltjes Transform
(LST) of the actual waiting times of a customer of type k were obtained. In
[9], we developed two algorithms that allowed us to calculate the delay dis-
tribution of a type k customer in a discrete-time MMAP[K]/PH[K]/1 queue,
by constructing a GI/M/1 type Markov chain (MC). The first algorithm in
[9] applies to MMAP[K] arrival processes that do not allow batch arrivals,
the second provides a (limited) solution for MMAP[K] processes with batch
arrivals. The basic idea behind the algorithms in [9] was generalized to the
MMAP[K]/PH[K]/2 queue, where the MMAP[K] arrival process does not
allow batch arrivals [10]. The two most limiting properties of each of these
3 algorithms are: (i) the computation of the rate matrix R related to the
GI/M/1 type Markov chain, (ii) the amount of memory needed to store the
transition matrices Al and Bl. In this paper we demonstrate that the GI/M/1
type Markov chains constructed by each of these algorithms can be reduced
to a QBD with a block size which is only marginally larger than that of the
corresponding GI/M/1 type Markov chain. As a results, the two major lim-
iting factors of each of these algorithms are drastically reduced to computing
the G matrix of the QBD and storing the 6 matrices that characterize the
QBD.

The paper is structured as follows. Section 2 presents the MMAP[K]/PH[K]/c
queue in some detail, Sections 3 and 4 discuss the algorithms for the single
server case without and with batch arrivals, respectively. The system with 2
servers is dealt with in Section 5. Finally, Section 6 presents some numerical
examples to demonstrate the magnitude of the reduction in computational
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resources.

2 The discrete-time MMAP[K]/PH[K]/c queue

The arrival process of the queueing system of interest is a discrete time
Markov arrival process with marked transitions (MMAP[K]). Customers are
distinguished into K different types. An MMAP[K] that does not allow batch
arrivals to occur, is characterized by a set of m × m matrices {Dk | 0 ≤ k ≤
K}, with m a positive integer. The (j1, j2)

th entry of the matrix Dk, for
k > 0, represents the probability that a customer of type k arrives and the
underlying Markov chain makes a transition from state j1 to state j2. The
matrix D0 covers the case when there are no arrivals. If batch arrivals are
allowed, an MMAP[K] is characterized by a set of m×m matrices DC where
C is a arbitrary string of integers between 1 and K (denote |C| as the length
of C), that is, C = c1 . . . c|C| with 1 ≤ cl ≤ K and 1 ≤ l ≤ |C|. The (j1, j2)

th

entry of the matrix DC , for C different from the empty string ∅, represents
the probability that |C| customers arrive, the type of the i-th customer equals
the i-th element of the string C, and the underlying Markov chain makes a
transition from state j1 to state j2. The matrix D, defined as

D =
∑

C

DC ,

represents the stochastic m×m transition matrix of the underlying Markov
chain of the arrival process. Let θ be the stationary probability vector of
D, that is, θD = θ and θe = 1, where e is a column vector with all entries
equal to one. The stationary arrival rate of type k customers is given by
λk = θ

∑

C N(C, k)DCe, where N(C, k) counts the number of occurrences of
k in C, hence, λk = θDke if there are no batch arrivals.

The service times of type k customers have a common phase-type distribution
function with a matrix representation (mk, αk, Tk), where mk is a positive
integer, αk is a 1 × mk nonnegative stochastic vector and Tk is an mk × mk

substochastic matrix. Let tk = e − Tke, then the mean service time of a
type k customer equals 1/µk = αk(I − Tk)

−1e. Define mser =
∑K

k=1
mk, the
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mser × mser matrix Tser and the mser × 1 vector tser as

Tser =











T1 0 . . . 0
0 T2 . . . 0
...

...
. . .

...
0 0 . . . TK











, tser =











t1
t2
...

tK











,

and let mtot = mserm. The customers are served, by c servers, with c = 1 or
2, according to a first-come-first-serve (FCFS) service discipline.

3 The MMAP[K]/PH[K]/1: no batch arrivals

In [9, Section 2], we constructed an MC of the GI/M/1 type that allowed
us to obtain the delay distribution of a type k customer from its steady
state probabilities. For reasons of completeness, the transition matrix P
corresponding to this MC is presented next:

P =















B1 B0 0 0 0 . . .
B2 A1 A0 0 0 . . .
B3 A2 A1 A0 0 . . .
B4 A3 A2 A1 A0 . . .
...

...
...

. . .
. . .

. . .















, (1)

where Al are mtot × mtot matrices, Bl, l > 1, are mtot × m matrices, B1 is an
m×m matrix and B0 is an m×mtot matrix. In order to express the matrices
Al and Bl, for l ≥ 0, we defined the following m × mtot matrix L:

L = [(α1 ⊗ D1), (α2 ⊗ D2), . . . , (αK ⊗ DK)] .

Based on the probabilistic interpretation of the matrices Al and Bl we found:

A0 = Tser ⊗ Im,

Al = tser ⊗ (D0)
l−1L,

B0 = L,

B1 = D0,

Bl = tser ⊗ (D0)
l−1,
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where ⊗ denotes the Kronecker product between matrices and Im the m×m
unity matrix. Remark, in [9] we denoted tser as T 0

ser. Each of the states
of this Markov chain has a physical interpretation: State j of level zero
corresponds to the situation in which the queue and the server are empty,
while the current state of the MMAP[K] is j. State (k, s, j) of level i of the
MC correspond to the situation in which there is a customer of type k in
service, that arrived i time units ago, while the service process is currently
in phase s and the MMAP[K] arrival process is in state j at time n − i + 1,
where n is the current time instant.

Next, we introduce a method to obtain the steady state probability vector
π of P , by constructing a QBD characterized by the matrices A∗

0, A
∗
1 and

A∗
2 each of dimension mtot + m, avoiding the computation of the matrix R

related to the GI/M/1 type Markov chain.

The idea is the following: Suppose that the GI/M/1 type MC makes a transi-
tion from level i to level i−l with l > 1, then we could split this transition into
l transitions that each decreases the level by one at a time. Ramaswami [6]
already developed such a procedure for a general GI/M/1 type MC, however,
applying his method leads to a level dependent QBD where the dimensions
of the blocks are multiples of mtot (the dimension of the blocks of level i > 0
is imtot). For the Markov chain defined by the transition matrix P , one can
do much better by noticing the particular form of Al and Bl, for l > 1:

Al = tser ⊗ Dl−1

0 B0, (2)

Bl = tser ⊗ Dl−1

0 , (3)

where B0 = L and tser are independent of l. Using the geometric nature of
Al and Bl, we can construct the following QBD:

P ∗ =















B∗
1 B∗

0 0 0 0 . . .
B∗

2 A∗
1 A∗

0 0 0 . . .
0 A∗

2 A∗
1 A∗

0 0 . . .
0 0 A∗

2 A∗
1 A∗

0 . . .
...

...
...

. . .
. . .

. . .















, (4)

where A∗
l are (m + mtot) × (m + mtot) matrices, B∗

2 is an (m + mtot) × m
matrix, B∗

1 an m × m matrix and B∗
0 an m × (m + mtot). The matrices A∗

l ,
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for l = 0, 1 and 2, are defined as follows:

A∗
0 =

[

0 0
0 A0

]

, (5)

A∗
1 =

[

0 B0

0 A1

]

, (6)

A∗
2 =

[

D0 0
tser ⊗ D0 0

]

. (7)

While the matrices B∗
l , for l = 0, 1 and 2, are equal to

B∗
0 = [0 B0] , (8)

B∗
1 = B1, (9)

B∗
2 =

[

D0

tser ⊗ D0

]

, (10)

where A0, A1, B0 and B1 were defined at the start of this section and 0 is
a zero matrix with the appropriate dimension. The states of level 0 are
denoted as {j | 1 ≤ j ≤ m}, while the states of level i > 0 are written as
{j | 1 ≤ j ≤ m} ∪ {(k, s, j) | 1 ≤ k ≤ K, 1 ≤ s ≤ mk, 1 ≤ j ≤ m}. The
states of level zero and the states of the form (k, s, j) of level i have the same
physical interpretation as the states of the GI/M/1 type MC characterized
by the transition matrix P . The states of the form j of level i, for i > 0, have
no real physical interpretation and are therefore called artificial states. It is
easy to see that if we observe this QBD only at the time instants when it
visits a state other than an artificial state, we obtain the GI/M/1 type MC
with transition matrix P .

The key in finding the steady state probability vector π∗ = (π∗
0, π

∗
1, . . .) of P ∗,

where π∗
0 and π∗

i , for i > 0, are 1×m and 1×(m+mtot) vectors, respectively,
is to solve the following equation:

G = A∗
0 + A∗

1G + A∗
2G

2. (11)

We propose to use the Cyclic Reduction algorithm to compute G [5]. This
algorithm is very easy to implement, requires a low amount of memory, con-
verges quadratically and is numerically stable. Having found G, one com-
putes R as A∗

0(I − A∗
1 − A∗

0G)−1 [4]. The steady state probability vectors π∗
i
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are then found as:

[π∗
0 π∗

1] = [π∗
0 π∗

1]

[

B∗
1 B∗

0

B∗
2 A∗

1 + RA∗
2

]

, (12)

π∗
i = π∗

i−1R, (13)

where i > 1, π∗
0 and π∗

1 are normalized as π∗
0e + π∗

1(I − R)−1e = 1.

Let π = (π0, π1, . . .) be the steady state vector of P , where π0 and πi, for
i > 0, are 1 × m and 1 × mtot vectors, respectively. Denote π∗

i , for i > 0,
as [π∗

i (m), π∗
i (mtot)], with π∗

i (s) a 1 × s vector. Then, π0 = π∗
0/(1 − c) and

πi = π∗
i (mtot)/(1 − c), for i > 0. The constant c equals

∑

i>0
π∗

i (m)e. Using
π, it is easy to obtain the probability P [dk = i] that a type k customer
experiences a delay2 of i time units [9]:

P [dk = i] =

mk
∑

s=1

(tk)s

λk

m
∑

j=1

πi(k, s, j),

for i ≥ 1, with λk the arrival rate of the type k customers, while (tk)s

represents the s-th component of the column vector tk. Notice, P [dk = 0] = 0,
because a customer spends at least one time unit in the server.

4 The MMAP[K]/PH[K]/1: batch arrivals

The algorithm developed in [9] to calculate the delay distribution of a type
k customer in an MMAP[K]/PH[K]/1 queue with batch arrivals is composed
of two steps: First, we create a new MMAP[K] arrival process, character-
ized by the am × am matrices D̃k for k = 0, 1, . . . , K, that does not allow
batch arrivals (for some a > 1, with m the number of states of the original
MMAP[K]), see [9, Section 4]. Afterwards, we create a GI/M/1 type MC us-
ing the new MMAP[K] as indicated in [9, Section 3] and calculate the delay
distributions from its steady state.

2Here, the delay is defined as the waiting time plus the service time. One can obtain
the waiting time distribution from dk by means of a deconvolution, as the service time is
independent from the waiting time.
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In this section, we demonstrate that one can easily reduce the GI/M/1 type
MC developed in [9, Section 3] to a QBD by adding m artificial states as we
did in the previous section. Let P̃ be the transition matrix of the GI/M/1
type MC:

P̃ =















B̃1 B̃0 0 0 0 . . .

B̃2 Ã1 Ã0 0 0 . . .

B̃3 Ã2 Ã1 Ã0 0 . . .

B̃4 Ã3 Ã2 Ã1 Ã0 . . .
...

...
...

. . .
. . .

. . .















, (14)

where Ãl are amtot × amtot matrices, B̃l, l > 1, are amtot ×m matrices, B̃1 is
an m × m matrix and B̃0 is an m × amtot matrix. The matrices Ãl and B̃l,
for l > 1, can be written as

Ãl =

[

tser
0

]

⊗ Dl−1

0 B̃0, (15)

B̃l =

[

tser
0

]

⊗ Dl−1

0 , (16)

where D0 is the m × m matrix of the original MMAP[K], B̃0 is determined
by the first m rows of D̃k and by the vectors αk, for k = 1, . . . , K, and 0 is
a zero matrix of the appropriate dimension (that is, (a − 1)mser × 1). For
further details on Ãl and B̃l, for l ≥ 0, we refer to [9, Section 3].

Similar to what we did in the previous section, we construct a QBD, charac-
terized by its transition matrix P̃ ∗, as

P̃ ∗ =















B̃∗
1 B̃∗

0 0 0 0 . . .

B̃∗
2 Ã∗

1 Ã∗
0 0 0 . . .

0 Ã∗
2 Ã∗

1 Ã∗
0 0 . . .

0 0 Ã∗
2 Ã∗

1 Ã∗
0 . . .

...
...

...
. . .

. . .
. . .















, (17)

where Ã∗
l are (m + amtot) × (m + amtot) matrices, B̃∗

2 is a (m + amtot) × m
matrix, B̃∗

1 an m×m matrix and B̃∗
0 an m× (m + amtot). The matrices Ã∗

l ,
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for l = 0, 1 and 2, are defined as follows:

Ã∗
0 =

[

0 0

0 Ã0

]

, (18)

Ã∗
1 =

[

0 B̃0

0 Ã1

]

, (19)

Ã∗
2 =





D0 0
[

tser
0

]

⊗ D0 0



 . (20)

While, the matrices B̃∗
l , for l = 0, 1 and 2, are equal to

B̃∗
0 =

[

0 B̃0

]

, (21)

B̃∗
1 = B̃1, (22)

B̃∗
2 =





D0
[

tser
0

]

⊗ D0



 , (23)

where 0 is a zero matrix with the appropriate dimension. The remaining
steps of the procedure are analogue to the previous section.

5 The MMAP[K]/PH[K]/2: no batch arrivals

In [10] we developed a GI/M/1 type MC that allowed us to calculate the
waiting time distribution of a type k customer in a MMAP[K]/PH[K]/2 queue
without batch arrivals. The age of the oldest customer waiting in the waiting
room was reflected by the level of this MC. A short description of this MC
that is used further on, is given in Appendix A. It is possible to reduce this
MC to a QBD by introducing some artificial states to each level. However,
there exists a different procedure that uses an alternative QBD with even
smaller blocks as follows. In [10] we indicated that one could also construct
a GI/M/1 type MC by defining the level of the MC as the minimal age of
the customers in service (the chain is at level 0 if there are less than two
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customers in service). The block sizes of both these GI/M/1 type MCs are
the same (except for level 0), as is the rate at which the transition matrices
Al decrease to zero, therefore, their performance is similar. However, when
making a reduction to a QBD, we found a QBD with smaller blocks using
the minimal age approach.

We start by describing the GI/M/1 type MC, followed by the reduction to
the QBD. Recall, mser =

∑K

k=1
mk and let msv = m2

ser +
∑K

k=1
m2

k and m̄tot =
msvm/2. Notice, in [10] we use a slightly different notation. Consider an MC
with an infinite number of states labeled 1, 2, . . .. The set of states {1, . . . , m}
is referred to as level 0a of the MC, the states {m + 1, . . . , m + mserm} as
level 0b, finally, the states {m + mserm +(i − 1)m̄tot + 1, . . . , m + mserm+
im̄tot} are referred to as level i, i > 0, of the MC. To simplify the notation
further on, define mzero as m(1 + mser). The states of level 0a are labeled as
1 ≤ j ≤ m, those of level 0b as (k1, s1, j), where 1 ≤ k1 ≤ K, 1 ≤ s1 ≤ mk1

and 1 ≤ j ≤ m, whereas the states of level i > 0 are labeled as (k1, k2, s1, s2, j)
where 1 ≤ k2 ≤ k1 ≤ K, 1 ≤ si ≤ mki

(for i = 1, 2) and 1 ≤ j ≤ m.

The states of the MC have the following interpretation. Assume that we
observe the system at an arbitrary time instant n. Then, the MC is in state
j of level 0a at time n if the waiting room and both servers are empty at time
n, while the state of the MMAP[K] at time n equals j. The MC is in state
(k1, s1, j) of level 0b at time n if the waiting room is empty and one server is
busy with a customer of type k1, the service of which is in phase s1, and the
state of the MMAP[K] at time n equals j. Finally, if both servers are busy
(with a type k1 and a type k2 customer in phase s1 and s2, respectively),
then the MC is in state (k1, k2, s1, s2, j) of level i > 0 if the minimal age,
i.e., youngest, customer in service arrived at time n − i and the MMAP[K]
arrival process is in state j at time n − i + 1. In conclusion, the level of the
MC at time n corresponds to the “age” at time n of the youngest customer
in service (level 0 = 0a ∪ 0b corresponds to at least one empty server)3.

Using arguments similar to [10] one easily finds that P̄ , the transition matrix,

3Notice, we do not know which customer occupies which server. We can easily add this
information to the MC by stating that the type ki customer occupies server i. However,
this would imply that the condition k1 ≥ k2 is lost, hence, the number of states that are
part of each level increases (up to a factor 2). Adding this additional info would however
simplify the description of the transition probabilities.
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has the following form:

P̄ =















B̄1 B̄0 0 0 0 . . .
B̄2 Ā1 Ā0 0 0 . . .
B̄3 Ā2 Ā1 Ā0 0 . . .
B̄4 Ā3 Ā2 Ā1 Ā0 . . .
...

...
...

. . .
. . .

. . .















, (24)

where Āl are m̄tot × m̄tot matrices, B̄l, l > 1, are m̄tot × mzero matrices, B̄1

is an mzero × mzero matrix and B̄0 is an mzero × m̄tot matrix. Instead of
describing all these matrices in detail, we restrict ourselves to Ā0, Ā1, B̄0 and
B̄1, an expression for the other B̄l and Āl matrices can be obtained using
similar arguments. We shall not derive them here as they are not required
to construct the corresponding QBD.

The matrix B̄1 describes the transitions from level 0 = 0a ∪ 0b to 0. Using
the probabilistic interpretation one finds

B̄1 =

[

D0 L
tser ⊗ D0 Tser ⊗ D0 + tser ⊗ L

]

, (25)

where L = [(α1 ⊗D1), . . . , (αK ⊗DK)]. The matrix B̄0 covers the transitions
from level 0 to level 1. Clearly, if the MC is in a state of level 0a, it cannot be
in a state of level 1 at the next time instant (because this requires an arrival
of two customers at once). Thus, the first m rows of B̄0 are zero. Define
B̄0(k1; k

′
1, k

′
2) as the mmk1

× mmk′

1
mk′

2
submatrix of B̄0 that describes the

transitions from the states of level 0b labeled (k1, ., .) to the states of level 1
labeled (k′

1, k
′
2, ., ., .). Then,

B̄0(k1; k
′
1, k

′
2) = 1{k1=k′

1
}(Tk1

⊗ αk′

2
⊗ Dk′

2
)

+1{k′

1
>k1=k′

2
}(αk′

1
⊗ Tk1

⊗ Dk′

1
). (26)

Indeed, in order to go from level 0b to level 1, a new customer has to ar-
rive, while the one in service (of type k1) needs to remain in service. The
distinction between the two terms is caused by the fact that k′

1 ≥ k′
2.

To facilitate the description of Ā0 and Ā1 we define the mmk1
mk2

×mmk′

1
mk′

2

submatrices Ā0(k1, k2; k′
1, k

′
2) and Ā1(k1, k2; k

′
1, k

′
2) in the obvious way. The

matrix Ā0 covers the transitions from level i to i + 1. Such transitions occur
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only if no service completion occurs (otherwise a new arrival, that necessarily
arrived after time n − i, enters the server, meaning that its age is at most i
at time n + 1). Hence,

Ā0(k1, k2; k
′
1, k

′
2) = 1{k1=k′

1
∩ k2=k′

2
}(Tk1

⊗ Tk2
⊗ Im). (27)

To get a transition from level i to level i, we need one service completion
(while the other type kl customer remains in service) and an arrival (of a
type k′

l customer) at time n − i + 1, therefore,

Ā1(k1, k2; k
′
1, k

′
2) = 1{k′

1
>k1=k′

2
}

(

αk′

1
⊗ Tk1

⊗ tk2
⊗ Dk′

1

)

+

1{k1=k′

1
}

(

Tk1
⊗ αk′

2
⊗ tk2

⊗ Dk′

2

)

+ 1{k2=k′

2
}

(

tk1
⊗ αk′

1
⊗ Tk2

⊗ Dk′

1

)

+

1{k′

2
<k2=k′

1
}

(

tk1
⊗ Tk2

⊗ αk′

2
⊗ Dk′

2

)

, (28)

where the first term corresponds to having kl = k1 and k′
l > k1, the second to

kl = k1 and k′
l ≤ k1, the third to kl = k2 and k′

l ≥ k2 and the last to kl = k2

and k′
l < k2.

Next, we construct a QBD, characterized by P̄ ∗, by adding mzero = m +
mserm artificial states to the levels i > 0 as follows:

P̄ ∗ =















B̄∗
1 B̄∗

0 0 0 0 . . .
B̄∗

2 Ā∗
1 Ā∗

0 0 0 . . .
0 Ā∗

2 Ā∗
1 Ā∗

0 0 . . .
0 0 Ā∗

2 Ā∗
1 Ā∗

0 . . .
...

...
...

. . .
. . .

. . .















, (29)

where Ā∗
l are (mzero+m̄tot)×(mzero+m̄tot) matrices, B̄∗

2 is an (mzero+m̄tot)×
mzero matrix, B̄∗

1 an mzero ×mzero matrix and B̄∗
0 an mzero × (mzero + m̄tot).

Intuitively, being in the m artificial states described in the previous 2 sections
meant that we were tracking the time instant where the next arrival occurs.
In this section we have m+mserm artificial states. One could say, intuitively,
that the first m states, labeled j (with 1 ≤ j ≤ m), correspond to tracking
the first of two arrivals (both the servers are free), whereas the other mserm
states, labeled (k1, s1, j) (with 1 ≤ k1 ≤ K, 1 ≤ s1 ≤ mk1

and 1 ≤ j ≤ m),
correspond to looking for an arrival knowing that one server holds a type k1

customer in phase s1. Similar to the previous sections, B̄∗
0 , B̄

∗
1 , Ā

∗
0 and Ā∗

1 are

12



defined as

B̄∗
0 =

[

0 B̄0

]

, (30)

B̄∗
1 = B̄1, (31)

Ā∗
0 =

[

0 0
0 Ā0

]

(32)

Ā∗
1 =

[

0 C̄0

0 Ā1

]

. (33)

The matrix C̄0 is nearly identical to B̄0, that is, its first m rows are also zero,
while its remaining mserm rows are described by Equation (26) if we replace
the matrices Tk1

by Imk1

. The matrices Ā∗
2 and B̄∗

2 are defined as

Ā∗
2 =

[

S1 0
S2 0

]

, (34)

B̄∗
2 =

[

S1

S2

]

, (35)

where S1 and S2 are an mzero×mzero and an m̄tot×mzero matrix, respectively.
These two matrices are discussed next:

S1 =

[

D0 L
0 Imser

⊗ D0

]

, (36)

where Il is an l × l unity matrix. Define the following matrices S2(k1, k2)
and S2(k1, k2; k

′
1) as the submatrices of S2 that correspond to the transitions

from the states labeled as (k1, k2, ., ., .) to the artificial states labeled (.) and
(k1, ., .), respectively. Then,

S2(k1, k2) = tk1
⊗ tk2

⊗ D0, (37)

S2(k1, k2; k
′
1) = 1{k1=k′

1
}(Tk1

⊗ tk2
⊗ D0) + 1{k2=k′

1
}(tk1

⊗ Tk2
⊗ D0)

+ tk1
⊗ tk2

⊗ (αk′

1
⊗ Dk′

1
). (38)

This concludes the description of P̄ ∗.

When we observe this QBD only at the time instants when the MC is not
visiting an artificial state, we obtain the GI/M/1 type Markov chain defined

13



by P̄ . This follows from the fact that the matrices Āl and B̄l, for l > 1, can
be written as

Āl = S2S
l−2

1 C̄0, (39)

B̄l = S2S
l−2

1 . (40)

This identity can be verified using the probabilistic interpretation of the
matrices Āl and B̄l. Notice, these equations are similar to those in the
previous two sections if we denote the upperleft and lowerleft blocks of the
matrices A∗

2 and Ã∗
2 as S1 and S2 (and B0 and B̃0 as C0), respectively.

Analogue to what we did at the end of Section 3, we can compute the steady
state vector of P̄ , denoted as π̄ = (π̄0, π̄1, π̄2, . . .), from the steady state vector
of P̄ ∗. In order to compute the waiting time distribution of a type k customer,
we proceed as follows. First, we compute the steady state vector π̄+ (defined
in Appendix A) from π̄. The physical interpretation of the states of both the
GI/M/1 type MCs involved (see Section 5 and Appendix A), leads to

[π̄+

0a
, π̄+

0b
] = π̄0 (41)

π̄+

0c
=

∑

j≥1

π̄j











Dj−1

0 0 . . . 0

0 Dj−1

0 . . . 0
...

...
. . .

...

0 0 . . . Dj−1

0











, (42)

π̄+

i =
∑

j≥i+1

π̄j











Dj−i−1

0 E 0 . . . 0

0 Dj−i−1

0 E . . . 0
...

...
. . .

...

0 0 . . . Dj−i−1

0 E











, (43)

where i > 0 and E equals the diagonal matrix diag((D−D0)e). Afterwards,
we can simply apply the formula presented in [10] to obtain the probability
P [w+

k = i] that a type k customer experiences a waiting time of i time units

14



from the steady state vector π̄+:

P [w+

k = i] =

1

λk

[

∑

k1,k2,s1,s2,j

π̄+

i (k1, k2, s1, s2, j)(Dke)j

((D − D0)e)j

((tk1
)s1

+ (tk2
)s2

− (tk1
)s1

(tk2
)s2

)+

∑

i′>i

∑

k1,k2,s2,s2,j

π̄+

i′ (k1, k2, s1, s2, j)
((D − D0)D

i′−i−1

0 Dke)j

((D − D0)e)j

(tk1
)s1

(tk2
)s2

]

(44)

for i ≥ 1, with λk the arrival rate of the type k customers, while (tki
)si

represents the si-th component of the column vector tki
.

6 Numerical Examples

6.1 Single server, with batch arrivals

The main computational cost of determining the delay distribution for a type
k customer in an MMAP[K]/PH[K]/1 queue (with or without batch arrivals)
is to find the rate matrix R. This is true whether we use the GI/M/1 (see [9])
or QBD approach4. For the GI/M/1 approach one generally considers the
matrices Ãl and B̃l as zero for l > nε, where nε is the minimal integer such
that

∑∞
l=nε+1

Ãle < 10−14e. The value of nε thus depends on the rate at which

Ãl decreases to zero, which in turn depends on the rate that Dl
0 decreases to

zero. In many cases nε easily reaches a value of several hundreds, and in some
cases—e.g., if the MMAP[K] has a state where no arrivals occur and the mean
sojourn time in this state is 1000 slots—even many thousands. The storage of
the matrices Ãl and B̃l requires 16nε(amtot)

2 bytes, while the time complexity
is at least 2nε(amtot)

3 flops per iteration (depending on the algorithm used
to compute R). If we compare this with the QBD approach we find that
the matrices Ã∗

l and B̃∗
l occupy ≈ 48(amtot + m)2 bytes, while an a single

iteration requires 4(amtot)
3 flops, using the classic iterative scheme by Neuts,

or 14(amtot)
3 flops, using the Cyclic Reduction Algorithm [5]. Moreover, for

4Of course, both systems have a different R matrix.
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the QBD a variety of quadratically converging algorithms exist to determine
R (via G), e.g., the Cyclic Reduction Algorithm.

Let us demonstrate the difference between both approaches once more by
repeating the numerical example presented in [9]. Consider a single server
queue with three correlated input sources A, B and C; their customers are
referred to as type one, two and three. Each source generates zero or one
customer during a time instant. The superposition of these three correlated
sources is assumed to be a 3 state MMAP[3]. The three states are traversed
one by one and the sojourn time in each state is geometrically distributed
with a mean of 1000 time units. While in state one, source A generates a
customer with probability 1/5, source C with probability 1/100, while source
B is silent. In state two, source A and C generate a customer with probability
1/100, while source B generates a customer with probability 1/28. Finally,
in state three, source B generates a customer with probability 1/100, source
C with probability 1/20, while source A is silent. Given that we are in state
1 ≤ j ≤ 3, the three sources A, B and C are independent (e.g., the probability
that a type one and type three customer are generated while in state two is
9.643 10−5). In this example, the majority of the arriving customers while
in state j, are customers of type j. We further assume that the batches
are ordered, that is, whenever a batch arrival occurs, the type one customer
arrives first, followed by the type two customer and finally the type three
customer.

The service times are assumed to be as follows. Type one customers have a
deterministic service time of two time units. The service time distribution
of a type two customer on the other hand, is phase-type with three phases,
being three geometric phases with a mean of two, three and two time units.
Finally, type three customers require a geometric service time with a mean
of 5 time units. Hence,

T1 =

[

0 1
0 0

]

, T2 =





1/2 1/2 0
0 2/3 1/3
0 0 1/2



 , T3 = [4/5] ,

and α1 = [1 0], α2 = [1 0 0], and α3 = [1]. As a result, the matrices Ãl are
72× 72 matrices (see [9]). Figure 1 represents the delay distribution of type
one, two and three customers. Both the GI/M/1 and QBD approach found
the same delay distributions. The value for nε turned out to be 565, thus the
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Figure 1: Delay distribution of type one, two and three customers

GI/M/1 approach uses about 46.86 Mb to store the Ãl and B̃l matrices, for
the QBD approach we need 270 Kb. The computation time was also reduced
by more than a factor 130, resulting in a computation time of 0.22 seconds
on a 167 MHz (dual) processor (using MATLAB).

6.2 Two servers, no batch arrivals

In this case we find a similar result as in the previous section, that is, the
time and memory requirements of the GI/M/1 approach depends in a linear
manner on the rate at which the matrices Āl decrease to zero. We also re-
produced the results presented in [10] using the QBD approach. The amount
of memory needed, was reduced from 28.89 Mb to 442 Kb, the computation
time by more than a factor 12 (actually, computing R for the QBD is no
longer the bottleneck in this example).
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Appendix

A Two servers, no batch arrivals

In this section we shortly describe the physical interpretation of the steady
state vector of the GI/M/1 type MC developed in [10] to compute the waiting
time distribution of a type k customer in a MMAP[K]/PH[K]/2 queue.

The MC in [10] has an infinite number of states labeled 1, 2, . . .. The set
of states {1, . . . , m} was referred to as level 0a of the MC, the states {m +
1, . . . , m + mserm)} as level 0b, the states {m + mserm + 1, . . . , m + mserm +
m̄tot} as level 0c and finally, the states {m + mserm +im̄tot + 1, . . . , m +
mserm + (i + 1)m̄tot} were referred to as level i, i > 0, of the MC. The
variable m̄tot is defined at the start of Section 5. The states of level 0a

are labeled as 1 ≤ j ≤ m, those of 0b as (k1, s1, j), where 1 ≤ k1 ≤ K,
1 ≤ s1 ≤ mk1

and 1 ≤ j ≤ m, whereas the states of level 0c and i > 0
are labeled as (k1, k2, s1, s2, j) where 1 ≤ k2 ≤ k1 ≤ K, 1 ≤ si ≤ mki

(for
i = 1, 2) and 1 ≤ j ≤ m.

The states of the MC have the following interpretation. Assume that we
observe the system at an arbitrary time instant n. Then, the MC is in state
j of level 0a at time n if the waiting room and both servers are empty at
time n, while the state of the MMAP[K] at time n equals j. The MC is in
state (k1, s1, j) of level 0b at time n if the waiting room is empty and one
server is busy with a customer of type k1, the service of which is in phase
s1, and the state of the MMAP[K] at time n equals j. If the waiting room
is empty at time n and both servers are occupied, with customers of type
k1 and k2 (with k1 ≥ k2), the service phases equal to s1 and s2, respectively
and the state of the MMAP[K] at time n equals j, then the MC is in state
(k1, k2, s1, s2, j) of level 0c at time n. Finally, if both servers are busy (with
a type k1 and a type k2 customer in phase s1 and s2, respectively) and there
is at least one customer waiting in the waiting room, then the MC is in state
(k1, k2, s1, s2, j) of level i > 0 if the first, i.e., oldest, customer waiting in the
waiting room arrived at time n − i and the MMAP[K] arrival process is in
state j at time n − i.

Denote the steady state vector of this MC as π̄+ = (π̄+

0a
, π̄+

0b
, π̄+

0c
, π̄+

1 , π̄+

2 , . . .),
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where the subvectors π̄+
x have a length equal to the number of states belonging

to level x.
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