
QBDs with Marked Time Epochs: a Framework for Transient Performance
Measures

B. Van Houdt and C. Blondia
University of Antwerp
PATS Research Group

Middelheimlaan 1, B-2020 Antwerpen, Belgium
{benny.vanhoudt,chris.blondia}@ua.ac.be

Abstract

A framework to assess transient performance measures
is introduced by generalizing the theory of the quasi Birth-
and-Death (QBD) paradigm to QBDs with marked time
epochs (QBDm). The distinction with the classical QBD
process is that certain time epochs get marked according to
a specific set of Markovian rules. Our interest lies in ob-
taining the system state at the n-th marked time epoch. The
steady state vector of a so-called reset Markov chain is used
to obtain the above-mentioned system state (either by ap-
proximation or in an exact manner). A fast algorithm, with
limited memory usage, based on solving a single quadratic
matrix equation, a set of Sylvester matrix equations and fast
Fourier transforms is proposed. The generality and flexibil-
ity of our framework is demonstrated on a set of queueing
systems and applied to dimensioning a video playout buffer
and studying the transient throughput of a wireless random
access algorithm.

1 Introduction

A procedure to approximate the queue length distribu-
tion at time t∗ and the waiting time distribution of the n-th
customer in a queue with Markovian arrivals and phase-
type services (i.e., the D-MAP/PH/1 queue) was intro-
duced in [23]. Using the same underlying concepts and
ideas, we develop a new framework, termed quasi Birth-
and-Death processes with marked time epochs (QBDm),
to assess transient performance measures in a plug-and-
play mode. Apart from introducing this framework, the
main contribution of the paper lies within the significant im-
provement achieved—both in terms of the time and mem-
ory complexity—when computing the steady state vector
of the associated reset Markov chain. Amongst others, this
computational gain is realized by reducing the problem of

solving a quadratic matrix equation involving large matrices
to a single quadratic matrix equation and a set of Sylvester
matrix equations of a much smaller dimension. Also, a low
memory solution to the boundary condition, that avoids the
storage of large matrices, is provided.

Transient performance measures have long been recog-
nized as being complementary to steady state measures
[24, 11, 4, 16, 18]. Either because there exist a need to un-
derstand the initial behavior of a system, or simply because
the system has no steady state. Transient studies are also
motivated as a means to investigate the impact of the initial
system state in a simulation environment.

The paper is structured as follows. In Section 2 we in-
troduce the notion of a QBD with marked time epochs. We
demonstrate the flexibility of this framework in Section 3 on
a class of queueing systems. A new and improved compu-
tational algorithm to assess transient performance measures
is discussed in Section 5, whereas some numerical data is
presented in Section 6

2 QBD Markov chains with marked time
epochs

In order to develop a general framework to establish tran-
sient performance measures, we introduce the notion of
a quasi Birth-and-Death (QBD) Markov chain (MC) with
marked time epochs. We start by reiterating the definition
of the well known QBD MC. A QBD MC [10] is character-
ized by a transition matrix P̄ of the form

P̄ =




B̄1 B̄0 0 0 . . .

B̄2 Ā1 Ā0 0
. . .

0 Ā2 Ā1 Ā0
. . .

0 0 Ā2 Ā1
. . .

...
...

. . .
. . .

. . .




, (1)



where B̄1 and Ā1 are square matrices of dimension l and d,
respectively. Such a MC has an infinite state space Ω, whose
states are labeled 1, 2, . . .. The set of states U0 = {1, . . . , l}
is referred to as level zero of the MC, whereas the set of
states Ui = {l+(i−1)d+1, . . . , l+id} is referred to as level
i > 0 of the MC. For further use, relabel the states of level
i > 0 as {1, . . . , d}. Thus, transitions from and to level 0
are governed by the B̄s matrices. The Ās matrices describe
the possible transitions from level i > 0 to i′ = i − 1, i and
i + 1 (with i′ > 0). Throughout the paper we assume that
Ā = Ā0 + Ā1 + Ā2 is irreducible (which is the case for
nearly all applications). A QBD with marked time epochs
(QBDm) has the additional property that

Ās = Āu
s + Ām

s , B̄s = B̄u
s + B̄m

s ,

for some Ām
s , Āu

s , B̄m
s and B̄u

s nonnegative (s = 0, 1 and
2), and B̄m

2 e = Ām
2 e, with e a column vector with all its

entries equal to one (this last constraint can be dropped if
necessary). The (j, j′)-th entry of the matrix Ām

s gives the
probability that, at time t, a transition occurs from state j
of level i > 0 to state j′ of level i − s + 1 (> 0) and time
epoch t is marked, while Āu

s gives the probability for the
same event, but without marking time t. Whether a time
epoch t is marked, therefore depends on the transition from
time epoch t to t + 1. The matrices B̄m

s and B̄u
s have the

same obvious interpretations. For later use, define Ām as
Ām

0 + Ām
1 + Ām

2 .
We refer to the initial time epoch as time t = 0 and limit

ourselves to the case where the MC P̄ is in state qini ∈ U0

at time t = 0. The initial state qini is determined by a
stochastic 1× l vector αini, i.e., qini equals j with probabil-
ity (αini)j . In this paper we develop a procedure to compute
(either exact or by approximation) the state of the Markov
chain characterized by P̄ at the n-th marked time epoch.
Before doing so, we present some examples to demonstrate
the general nature and flexibility of this framework.

3 Demonstrating the applicability of QBDms

We will demonstrate the flexibility of our framework on
the D-MAP/PH/1 queue. Obviously, any other (queueing)
system that fits within the QBD paradigm would be suitable
(several examples of QBDs can be found in [10, Chapter1],
[5], [22]). Moreover, M/G/1- and GI/M/1-type Markov
chains may be viewed as a special cases of QBDs [17]. Our
choice for the D-MAP/PH/1 queue was driven by [8], where
the transient behavior of a D-MAP/PH/1 queue was used to
study the playout buffer of a video source.

D-MAP arrival processes [2] form a versatile class of
tractable Markovian arrival processes, which, in general,
are non-renewal. A D-MAP is defined by a set of two posi-
tive matrices D0 and D1: the entries (D1)j1,j2 represent the

probability of having a transition from state j1 to j2 and a
customer arrival, while a transition from state j1 to j2 with-
out an arrival will occur with probability (D0)j1,j2 .

A discrete time phase-type (PH) distribution can be rep-
resented in matrix form as (c, β, T ), where c is a scalar, β
a 1 × c stochastic vector and T a c × c substochastic ma-
trix [15]. The s-th component of the vector β represents the
probability that a customer starts his service in phase s. Let
T ∗ = e−Te, then the s-th entry of T ∗ denotes the probabil-
ity that a customer completes his service provided that he is
in phase s at the current time epoch. Finally, the (s1, s2)-th
entry of T equals the probability that a customer contin-
ues his service in phase s2 at the next time epoch provided
that he is in phase s1 at the current time epoch. The set of
discrete time PH distributions is known to be very useful
in approximating service time distributions encountered in
communications networks [9]. A single work conserving
server is considered.

It is well known [2] that the D-MAP/PH/1 queue forms
a QBD Markov chain with a transition matrix P̄ as in
Eqn. (1), where B̄0 = D1 ⊗ β, B̄1 = D0, B̄2 = D0 ⊗ T ∗,
Ā0 = D1 ⊗ T , Ā1 = (D0 ⊗ T ) + (D1 ⊗ T ∗β) and
Ā2 = D0 ⊗ T ∗β, with ⊗ the matrix Kronecker product.
Notice, depending on whether the load of the queue ρ < 1,
the Markov chain P̄ is stationary or not. Next, we discuss
some transient performance measures that can be obtained
via our framework.

System state at time t = t∗ In order to obtain the system
state at time t∗, we can set n = t∗ + 1 and

Ām
s = Ās, B̄m

s = B̄s,

meaning we mark each time epoch and as such the n-th
marked epoch is simply the system state at time t∗ (as the
first time epoch is time 0).

Waiting time of the n-th customer To compute the wait-
ing time of the n-th customer in a D-MAP/PH/1 queue, it
suffices to know the system state at the n-th arrival epoch.
This time epoch corresponds to the n-th marked time epoch
if we set

Ām
0 = Ā0, Ām

1 = D1 ⊗ T ∗β, Ām
2 = 0,

B̄m
0 = B̄0, B̄m

1 = 0, B̄m
2 = 0.

Notice, we mark each time epoch in which an arrival occurs.

Work left behind by the n-th customer To compute the
work left behind by the n-th customer in a D-MAP/PH/1
queue, it suffices to know the system state at the n-th depar-
ture epoch. We can compute the system state at this time



epoch by considering the n-th marked time epoch if we set

Ām
0 = 0, Ām

1 = D1 ⊗ T ∗β, Ām
2 = Ā2,

B̄m
0 = 0, B̄m

1 = 0, B̄m
2 = B̄2.

Observe that each time epoch in which a departure occurs,
is marked.

System state at the n-th visit to state j of the arrival pro-
cess Let Dj

0 and Dj
1 equal D0 and D1, except that all its

entries on the j-th row are set to zero, respectively. De-
note the matrices As and Bs, for s = 0, 1 and 2, with Di

replaced by Dj
i , for i = 0 and 1, as Aj

s and Bj
s . By setting

Āu
s = Āj

s, B̄u
s = B̄j

s ,

we find that the n-th marked time epoch corresponds to
the n-th visit to the D-MAP state j. This concept can be
extended in a straightforward manner to the n-th visit to a
set of states {j1, . . . , jr}.

Furthermore, combinations of the examples above, e.g.,
the system state at the n-th arrival generated in state j of the
arrival process, also fall within the reach of our framework.

4 Reset Markov chains

We denote πm(n) as the probability vector associ-
ated with the n-th marked time epoch, i.e., πm(n) =
(πm

0 (n), πm
1 (n), . . .) with πm

0 (n) a 1 × l and πm
s (n), for

s > 0, a 1 × d vector. In order to compute πm(n) effi-
ciently (by approximation or exact), we make use of a so-
called reset Markov chain. The concept of reset Markov
chains was first introduced in [23], where the system state
at time t∗ and the waiting time of the n-th customer in a D-
MAP/PH/1 queue was studied. Although the reset Markov
chain introduced here is a simple abstraction of the MCs in
[23], the algorithm used to compute the steady state vector
π of the reset MC is by far more efficient in terms of both its
time and memory complexity. This computational gain was
achieved in three successive steps: (i) as opposed to using
the cyclic reduction (CR) algorithm [13] to compute R in
an iterative manner, we provide a direct recursive scheme,
(ii) the structure of the boundary condition is exploited to
compute π0 and (iii) we make use of a FFT algorithm to
compute the πs (s > 0) components of π from π0 and R.

The key property of the proposed method is that we
can approximate the system state at the n-th marked time
epoch tm(n), by considering the system state at the Zk,n-th
marked time epoch tm(Zk,n), where Zk,n is a negative bi-
nomially distributed random variable—which is the discrete
time counterpart of the Erlang distribution—with k phases
and a mean n, for k (≤ n) sufficiently large. In some cases

we can actually set k = n and obtain exact results, how-
ever k cannot always be set to n as the corresponding reset
MC might become periodic. The idea to approximate time
t by an Erlang distribution is not new and has been explored
some time ago to obtain transient probabilities of finite state
continuous time Markov chains [19, 3]. The choice for the
negative binomial distribution (NBD) to approximate time
tm(n) is in some sense optimal. Telek [20] has proven
that the discrete time PH distribution with k phases, a mean
mu ≥ k and a minimal coefficient of variation is the NBD
with parameters (k/mu, k). Thus, the closest we can get to
a deterministic distribution with a mean mu, if we make use
of a discrete PH distribution with at most k phases, is the
NBD with parameters (p = k/mu, k). Moreover, choos-
ing the NBD as a reset time also provides the reset MC with
useful structural properties that can be exploited when com-
puting its steady state vector.

Let us now explain how to compute the system state at
time tm(Zk,n) via a steady state analysis. Consider the
stochastic process that evolves according to the transition
matrix P̄ , but that is repeatedly reset when leaving the Zk,n-
th marked time epoch. Meaning, if we perform a Bernoulli
trial each time a transition out of a marked time epoch takes
place, with parameter p = k/n, the system is reset when-
ever k successes have occurred. The reset counter is then
defined as the number of pending successes before the next
reset event. Clearly the reset counter takes values in the
range {1, 2, . . . , k}. Although adding the reset counter vari-
able as an additional auxiliary variable to the Markov chain
P̄ increases the size of its transition blocks by a factor k, we
will demonstrate that there is no need to store any matrix of
dimension kl or kd. After adding the reset counter as an
additional auxiliary variable to the Markov chain P̄ , the re-
set process becomes an MC characterized by the transition
matrix Pk,n:

Pk,n =




Bk,n
1 + Ck,n

0 Bk,n
0 0 0 . . .

Bk,n
2 + Ck,n

1 Ak,n
1 Ak,n

0 0
. . .

Ck,n
1 Ak,n

2 Ak,n
1 Ak,n

0

. . .

Ck,n
1 0 Ak,n

2 Ak,n
1

. . .
...

...
. . .

. . .
. . .




,

where

Ak,n
s = (I ⊗ (Āu

s + (1 − p)Ām
s )) + (Mk

0 ⊗ pĀm
s ),

Bk,n
s = (I ⊗ (B̄u

s + (1 − p)B̄m
s )) + (Mk

0 ⊗ pB̄m
s ),

Ck,n
0 = Mk

1 ⊗ (p(B̄m
0 e + B̄m

1 e)αini),

Ck,n
1 = Mk

1 ⊗ (pĀmeαini),

for s = 0, 1 or 2, and p = k/n. The k × k matrix Mk
0

has ones on the first diagonal below its main diagonal and



all other entries equal to zero, while Mk
1 has only one en-

try differing from zero being its last entry on the first row,
which equals one. Notice, the block Ck,n

1 appearing on the
second block row and first block column is a consequence
of having Am

2 e = Bm
2 e.

Let πk,n = (πk,n
0 , πk,n

1 , πk,n
2 , ...), with πk,n

0 a 1× kl and
πk,n

s (s > 0) a 1 × kd vector, be the steady state vector of
Pk,n. Moreover, let πk,n

s = (πk,n
s,1 , . . . , πk,n

s,k ), with πk,n
s,j ,

for j = 1, . . . , k, a 1 × d (1 × l) vector for s > 0 (s = 0).
Conditions for the existence of the vector πk,n are discussed
in Section 5. Provided that πk,n exists, the system state
πm(Zk,n) at time tm(Zk,n), used as an approximation to
πm(n), is the stochastic vector proportional to:

(πk,n
0,1 .φ0, π

k,n
1,1 .φ1, π

k,n
2,1 .φ1, . . .)p,

where φ0 and φ1 are the transposed vectors of B̄m
0 e + B̄m

1 e
and Āme, respectively and ‘.’ denotes the point-wise vector
product. An efficient algorithm to compute πk,n and con-
ditions that guarantee its existence are presented in Section
5.

5 Computing the stationary vector πk,n of
Pk,n

The quasi Birth-and-Death (QBD) reset Markov chain
developed in Section 4 is characterized by a transition ma-
trix P of the form:

P =




B1 + C0 B0 0 0 . . .

B2 + C1 A1 A0 0
. . .

C1 A2 A1 A0
. . .

C1 0 A2 A1
. . .

...
...

. . .
. . .

. . .




.

where Ai, for i = 0, 1 and 2, can be written as a k×k block
matrix

Ai =




Ei 0 . . . . . . 0

Fi Ei
. . .

. . .
...

0 Fi
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 Fi Ei




,

by setting Ei = Āu
i +(1−p)Ām

i and Fi = pĀm
i . The key in

finding the steady state probability vector π = (π0, π1, . . .)
of P , where π0 and πi, for i > 0, have the same dimen-
sion as B1 and A1, respectively, is to solve the following
nonlinear equation (if π exists):

R = A0 + RA1 + R2A2, (2)

as P is a special case of a GI/M/1 type MC [14]. Due to
the structure of the matrices A0, A1 and A2 the smallest
nonnegative solution R of the above equation is a block tri-
angular block Toeplitz (btbT) matrix. A btbT matrix X is
characterized by its first block column as follows:

X =




X1 0 . . . . . . 0

X2 X1
. . .

. . .
...

...
. . .

. . .
. . .

...

Xk−1
. . .

. . . X1 0
Xk Xk−1 . . . X2 X1




.

Observe that the matrices B0, B1 and B2 of the MC char-
acterized by Pk,n are also btbT. An efficient algorithm to
compute R is presented in Section 5.1.

The product between two btbT matrices as well as the
inverse of a btbT matrix is again btbT. Hence, having found
R, the matrix Rb = B0(I −A1−RA2)−1 is btbT, since B0

is (notice, the blocks of the btbT matrix Rb are not square).
The steady state probability vector π = (π0, π1, . . .) of the
GI/M/1-type matrix P is then found as [14]:

π0 = π0 {(B1 + RbB2)+
(C0 + Rb(I − R)−1C1)

}
, (3)

π1 = π0Rb, (4)

πs = πs−1R, (5)

for s > 1, while π0 and π1 are normalized as π0e + π1(I −
R)−1e = 1. Thus, π exists if all of the following three
criteria are met:

1. R has a spectral radius sp(R) < 1, i.e., (I − R)−1 =∑∞
i=0 Ri exists. A btbT matrix is invertible if its block

on the main diagonal is, therefore, it suffices to show
that sp(R1) < 1 (see Eqn. (6) for its definition). The
matrix E = E0 + E1 + E2 = Ā− pĀm is irreducible,
for p < 1, as Ā is. By applying Corollary 1.3.1 in [14],
we find that the requirement sp(R1) < 1 is always met
as E is irreducible, but not stochastic (for p < 1).

2. The spectral radius of A1 + RA2 has to be less than
one, for Rb to exist. This condition can be simplified
to sp(E1 + R1E2) < 1 as A1 + RA2 is a btbT matrix.

3. Eqn. (3) has a strict positive solution, except for those
entries of π0 corresponding to possible transient states.
Denote BC[R] = (B1 + RbB2) + (C0 + Rb(I −
R)−1C1). By direct calculation, using Eqn. (2), the
matrix BC[R] can be shown to be stochastic, i.e.,
BC[R]e = e. Hence, the only true requirement is that
BC[R] is not reducible.

Conditions 2 and 3 are not very demanding and should be
valid for all practical purposes (as was the case for the nu-



merical examples in Section 6, as well as those reported in
[23]).

5.1 Computing the rate matrix R

Let R1, . . . , Rk denote the k blocks characterizing the
btbT matrix R. Exploiting the structural properties of
Eqn. (2) one finds that the Rs matrices obey the following
set of relations:

R1 = E0 + R1E1 + R2
1E2, (6)

Ks,4 = Ks,1RsKs,2 + RsKs,3. (7)

where, for s = 2, . . . , k,

Ks,1 = R1, Ks,2 = E2, Ks,3 = E1 + R1E2 − I,

−Ks,4 = Rs−1F1 +




s−1∑
j=2

RjRs−j+1


E2 +




s−1∑
j=1

RjRs−j


 F2 + 1{k=2}F0,

where 1A equals 1 if A is true and 0 otherwise. Notice,
each of the four matrices Ks,j , j = 1, . . . , 4, is only a func-
tion of the Ei, Fi and R1, . . . , Rs−1 matrices. As such, we
can compute the first block column of R, which fully de-
termines R, by solving one quadratic equation (Eqn. (6))
and k− 1 Sylvester matrix equations (Eqn. (7) starting with
s = 2 to k). We propose to use the Cyclic Reduction (CR)
algorithm [13] to solve the former and refer to Appendix
A where a Hessenberg algorithm (HA) is given for the lat-
ter. Given the computational complexity of the CR and HA
algorithm, a time and memory complexity of O(d3k2) and
O(d2k), respectively, is achieved to compute R (where d is
the dimension of the Rs blocks).

Remark 1 In the special case where E0 = 0, e.g., set-
ting k = n when computing the waiting time of the n-th
customer in a D-MAP/PH/1 queue in an exact manner, the
expressions for Rs simplify to:

R1 = 0,

Rs = Ks,4(I − E1)−1,

for s > 1. (I − E1) is invertible as E1 is a substochastic
matrix (due to Hadamard’s theorem). Meaning R can be
computed using simple matrix products and sums, without
the need to solve any quadratic or Sylvester matrix equa-
tion. In this particular case Rn = 0, yielding πs = 0 for
s > n. For the D-MAP/PH/1 example mentioned above,
the diagonal block of the btbT matrix Rb is also equal to
zero, hence, πn = 0 as well. Which is obvious as the n-th
customer cannot find more than n − 1 customers present in
the queue at his arrival epoch.

Remark 2 In the special case where E2 = 0, which oc-
curs when we set k = n when computing the system state
at the n-th departure epoch of a D-MAP/PH/1 queue in an
exact manner, the expressions for Rs simplify to:

R1 = E0(I − E1)−1,

Rs = Ks,4(I − E1)−1,

for s > 1. Hence, as in Remark 1, the matrix R can be com-
puted using simple matrix products and sums. Moreover,
having either R1 = 0 or E2 = 0 suffices to meet the 2-nd
condition to guarantee the existence of π as sp(E1) < 1.

5.2 Solving the boundary condition

In order to efficiently compute π0 we can take advan-
tage of the specific structure of BC[R]. As B1 and B2

are btbT, so is (B1 + RbB2), while C0 and C1 have all
their entries equal to zero, except for their last block col-
umn, which implies that only the last block column of
(C0 + Rb(I − R)−1C1) is nonzero. When the nonzero
entries of a matrix Z are all positioned in the last block
column, we refer to Z as an lbC matrix. Thus, BC[R]
is the sum of a btbT and an lbC matrix and this sum is
the transition matrix P0 of the MC, characterized by P ,
when censored on the states corresponding to π0. Let
π0 = (π0,1, . . . , π0,k), where π0,i, for i = 1, . . . , k, is a
1 × l vector, and denote the j-th state corresponding to π0,i

as 〈i, j〉. Next, define Gi, for i = 2, . . . , k, as an l× l matrix
whose (j, j′)-th entry equals the expected number of visits
to state 〈k − i + 1, j′〉 starting in state 〈k, j〉 until the first
return to some state 〈k, s〉, for 1 ≤ s ≤ l. These matrices
allow us to express the components of π0 as a function of
π0,k as follows:

π0,k−i+1 = π0,kGi,

for i = 2, . . . , k. Let Y1, . . . , Yk, resp. Z1, . . . , Zk, be the
blocks characterizing the btbT matrix (B1 + RbB2) and
the lbC matrix (C0 + Rb(I − R)−1C1). Denote Si =
{〈i, j〉 |j = 1, . . . , l} as the set of states corresponding to
π0,i for i = 1, . . . , k. Let P0;i be the transition matrix when
censoring P0 on

(∪k−i+1
j=1 Sj

) ∪ Sk, for i = 2, . . . , k + 1
(see Eqn. (8)). Given the stochastic interpretation of Gi, for
i = 2, . . . , k, we have:

Gi = Vk−i+2,i(I − Y1)−1

and π0,k is the solution of π0,k = π0,kP0;k+1, where
P0;k+1 = W1. Expressions for the Vk−i+2,j , for i =
2, . . . , k and j ≥ i, and Wk−i+2, for i = 2, . . . , k + 1,



P0;i =




Y1 0 0 . . . 0 Z1

Y2 Y1 0
. . . 0 Z2

Y3 Y2 Y1
. . . 0 Z3

...
...

. . .
. . .

...
...

Yk−i+1 Yk−i Yk−i−1
. . . Y1 Zk−i+1

Vk−i+2,k Vk−i+2,k−1 Vk−i+2,k−2 . . . Vk−i+2,i Wk−i+2




(8)

matrices can be found via the following recursive relations:

Vk,j = Yj ,

Vk−i+2,j = Vk−(i−1)+2,j + Vk−(i−1)+2,i−1

(I − Y1)−1Yj−(i−1)+1,

Wk = Y1 + Zk,

Wk−i+2 = Wk−(i−1)+2 + Vk−(i−1)+2,i−1

(I − Y1)−1Zk−(i−1)+1,

for i > 2 and j ≥ i. Therefore, the following algorithm, the
time and memory complexity of which equal O(l3k2) and
O(l2k) respectively, can now be devised to compute π0,k

and the matrices Gi:

1. Let G1 = Y1 + Zk and set Gi = Yi for i = 2, . . . , k,

2. for i = 3 to k + 1 do
Gi−1 = Gi−1(I − Y1)−1

for j = i to k do
Gj = Gj + Gi−1Yj−(i−1)+1

end
G1 = G1 + Gi−1Zk−(i−1)+1

end

3. π0,k is the solution of π0,k = π0,kG1 and π0,ke = 1.

Observe that, after the (i−2)-th iteration in step 2, we have
G1 = Wk−i+2 and Gj = Vk−i+2,j , for j ≥ i, while the
computation of Gj is completed for j = 2, . . . , i − 1.

5.3 Computing π from π0 and R

By combining both algorithms, presented in Sections
5.1 and 5.2, with Eqn. (4) we can calculate π0, R and π1

in a O(max(d, l)3k2) time and a O(max(d, l)2k) mem-
ory complexity. Using Eqn. (5), the next s compo-
nents π2, . . . , πs+1 of π can be obtained in O(d2k2s)
time, using O(d2k + dks) memory. Moreover, as indi-
cated below, the time complexity can be further reduced
to O((d2N log N) + (dN log N + d2N)s), where N =
2�log2(2k−1)�, by making use of fast Fourier transforms
(FFTs).

Fast vector and block triangular block Toeplitz multipli-
cation In this section we present an FFT based algorithm
to compute the product

(y1, y2, . . . , yk) =

(x1, x2, . . . , xk)




R1 0 . . . 0

R2 R1
. . . 0

...
. . .

. . .
...

Rk Rk−1 . . . R1




,

where xs and ys are both 1 × d vectors and and Rs a
d × d matrix, for 1 ≤ s ≤ k. The idea behind this al-
gorithm is similar to [12, Chapter 2] where an FFT algo-
rithm was introduced to multiply a block vector with a block
Toeplitz matrix. Define R(z) =

∑k−1
s=0 Rs+1z

s, x(z) =∑k−1
s=0 xk−sz

s and ŷ(z) =
∑2k−2

s=0 ŷs+1z
s = x(z)R(z).

That is, in matrix form

(ŷ1, . . . , ŷ2k−1) = (xk, xk−1, . . . , x1)


R1 R2 . . . Rk 0 . . . 0

0 R1
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 R1 R2 . . . Rk




.

This shows that ys = ŷk−s+1 for s = 1, . . . , k. In sum-
mary, an FFT based algorithm to compute y = (y1, . . . , yk)
proceeds as follows:

1. Evaluate R(z) at the N -th roots of unity, ωs
N , for

s = 0, . . . , N − 1 and N ≥ 2k − 1. In practice we
choose N = 2�log2(2k−1)�. This step requires d2 dis-
crete Fourier transforms (DFTs) of order N .

2. Evaluate x(z) at the N -th roots of unity, ωs
N , for s =

0, . . . , N and N ≥ 2k − 1, using d DFTs of order N .

3. Compute the N products ŷ(ωs
N ) = x(ωs

N )R(ωs
N ), for

s = 0, . . . , N − 1, resulting in a cost of O(Nd2).

4. Perform d inverse DFTs of order N to find the vectors
ŷs, for s = 0, . . . , 2k − 2. Set ys = ŷk−s+1 for s =
1, . . . , k.



0 200 400 600 800 1000 1200 1400
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Slots s

P
r[

W
ai

tin
g 

tim
e 

n−
th

 c
us

to
m

er
 =

 s
]

n = 50, 100, 150, …, 450, 500

Figure 1. Dimensioning a video playout buffer

The total costs of this algorithm are dominated by step 1
and equal O(d2N log N), while the costs of the other steps
are O(dN log N + d2N). It is worthwhile noting that when
computing the components of π, we always multiply with
the same matrix R. Hence, step 1 should only be performed
once. This leads to a O((d2N log N)+(dN log N+d2N)s)
time complexity to compute the next s components of π.

6 Applications

Two sets of numerical examples are included: the first,
amongst others, reproduces the results presented in [8] and
is mainly used to demonstrate the computational strength of
our framework, the second investigates the transient behav-
ior of a wireless random access algorithm (FS-ALOHA [5])
under overload conditions.

6.1 Dimensioning a video playout buffer

In [8] it was argued that a video playout buffer can be
dimensioned via the transient analysis of a D-MAP/PH/1
queue. More specifically, by considering the 10−9-quantile
of the sojourn time distribution of its n-th customer, the
initial delay ∆ that the player has to wait before starting
the video playout, can be estimated. For the specifics of
the 4-state D-MAP arrival process, as well as the 10-phase
PH distribution, we refer to [8]. As explained in Section
3, this results in block matrices Ās of size 40 × 40. In
order to produce exact results we have set k = n, for
n = 50, 100, . . . , 500 (see Figure 1). Notice, in [8] no re-
sults were reported for n above 142, as the inversion of the
probability generating function already took many hours for
this particular example.

Table 1 holds the CPU time (in seconds) required to com-
pute the exact waiting time distribution of the n-th customer

n CPU time rate matrix R Total CPU time
50 0.375 2.844
100 1.328 10.125
150 2.906 26.344
200 4.984 38.047
250 7.469 60.453
300 11.141 150.547
350 14.672 188.828
400 18.813 215.682
450 23.859 256.688
500 29.125 306.094

Table 1. A video playout buffer, Computation
times in seconds

on a PC with a 2Ghz Intel Pentium processor and 512 MB
RAM. The peak memory usage of the MATLAB session
as reported by the windows task manager was 194 MB and
the timing was performed by the MATLAB profiler. No-
tice, the R, As, etc. matrices involved are square with a
dimension d = 40n (however, during our computations we
only need to store their first 40 columns). The CPU times
can be further reduced by making use of an FFT algorithm
to calculate the inverse of the btbT matrices (I − R) and
(I − A1 − RA2) [13, Chapter2]. In the current MATLAB
implementation, about 30% of the utilized CPU time was
spent on inverting these matrices. The total CPU time con-
tains a mild step behavior due to the FFT component. Fi-
nally, part of the increase in computational costs for n large
is contributed by the need to compute more components πs

of π (as they decrease less rapidly).

6.2 FS-ALOHA: a wireless random access algo-
rithm

For several decades, one of the key properties of a ran-
dom access algorithm (RAA) has been its maximum sta-
ble throughput (MST). This is the maximum input rate for
which the RAA can guarantee that each packet has a finite
delay (with probability 1). However, even if the offered in-
put traffic rate is above the MST, the channel might operate
smoothly for some time (e.g., slotted ALOHA). Therefore,
it is useful to gain insight on the initial (transient) behavior
of the channel throughput.

In this section we demonstrate that the transient channel
throughput of Fifo-by-Sets ALOHA (FS-ALOHA) can be
determined using our framework. FS-ALOHA is an RAA
that maintains the simplicity of ALOHA, while significantly
improving its performance. It was specifically designed to
operate in a wireless LAN environment where the uplink
channel—that is, from the end-user to the network—is al-



located in a dynamic way (through a contention/reservation
channel and a piggybacking mechanism). The uplink chan-
nel is partitioned in fixed length frames, where a fixed part
(being T contention slots) of each frame is dedicated to the
contention channel. The contention channel is used by a
mobile station to report its bandwidth requirements via a
request message, unless it has an ongoing data exchange
with the network access point allowing the mobile node to
piggyback the request to the end of a data transmission. For
the results presented in Figure 2, we have set the protocol
parameters S and N equal to 5. These two parameters play
the following role. The T contention slots in each frame
are divided into two disjoint sets of S and N slots such that
T = S+N . The operation of FS-ALOHA is as follows: (A)
Newly arrived requests are transmitted, for the first time, by
randomly choosing one out of the S slots; this is the first
set of S slots after the request was generated. If some of
the transmissions taking place in the S slots of a frame are
unsuccessful, because multiple MSs transmitted in the same
slot, the unsuccessful requests are grouped into a Transmis-
sion Set (TS), which joins the back of the queue of TSs
waiting to be served. (B) The other N slots are used to
serve the queue of backlogged TSs on a FIFO basis. Back-
logged TSs are served, one at a time, using slotted ALOHA,
that is, all the requests part of the TS select one out of the N
slots and are transmitted in this slot. The requests that were
transmitted successfully leave the TS, the others retransmit
in the N slots of the next frame using the same procedure.
The service of a TS lasts until all the requests part of the
TS have been successfully transmitted, in which case the
service of the next TS, if there is another TS in the queue,
starts service in the N slots of the next frame. If there are no
queued TS, all T = S +N slots are used for newly arriving
customers.

A more detailed description of the operation and prop-
erties of FS-ALOHA would lead us to far astray and can
be found in [5, 21]. In Figure 2 we consider an arrival rate
of λ = 3, 3.4, 3.7, 5 and 8 request packets per frame, lead-
ing to an input rate of λ/10 requests/slot on the contention
channel. The MST for FS-ALOHA (with S = N = 5)
equals 0.348744 (see [5]). Thus, in three of the five cases
(λ = 3.7, 5 and 8) the system is unstable and the number of
backlogged stations grows to infinity as time evolves, while
in the remaining two scenarios a steady state is reached.

In [5], it is shown that the behavior of FS-ALOHA can
be captured by a QBD MC, the f -th time epoch of which
corresponds to the f -th uplink frame. Hence, if we mark
each time epoch of this QBD MC (by setting Am

s = As and
Bm

s = Bs, for s = 0, 1 and 2), we can approximate the
transient throughput during frame f = 10, . . . , 1000, by as-
sessing the system state at the n = f + 1-th marked time
epoch. In this case setting k = n would result in a periodic
MC, as such the best approximation we can get is by letting

10
1

10
2

10
3

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

Frame number f

T
hr

ou
gh

pu
t i

n 
F

ra
m

e 
f MST

λ = 3 pks/frame

λ = 3.4 pks/frame

λ = 3.7 pks/frame

λ = 5 pks/frame

λ = 8 pks/frame

Figure 2. Transient throughput of FS-ALOHA

k = n − 1 = f . For n > 200, we have limited k to 200, as
this suffices to get accurate results, i.e., n = min(f, 200).
A simulation program confirms the high degree of accuracy
that these approximated results have (that is, the ‘+’ data
in Figure 2). The simulated results were averaged over 105

runs. Another way to get an idea on the accuracy of the
results, due to the choice of k, is to compare the results
with a different, larger choice for k. For instance, having
k = min(f, 300) only changes the transient throughput by
9.2 10−6 (for n = 1000 and λ = 3.7). Finally, exact tran-
sient throughput figures can also be gathered using a brute-
force recursive technique.

We also computed the throughput in frame f = 105,
with k = 200, and found a match up to the 14-th digit be-
tween the transient throughput in frame f and the limit of
this throughput for t going to infinity. This limit equals λ if
the system is stable and can be computed from the protocol
parameters λ, S and N otherwise. It is worthwhile noting
that the transient throughput of FS-ALOHA can be com-
puted from π0 and

∑∞
s=1 πs = π1(I − R)−1, thus, there is

no need to compute the components πs separately. This is
especially useful when studying the transient throughput in
an overload scenario with f large (e.g., 105).

Figure 2 shows that during the first couple of frames the
mean number of backlogged stations grows as the through-
put is below the input rate. However, for λ = 3 and 3.4 a
steady state is reached as the transient throughput quickly
converges to λ. The rate of convergence decreases as the
input rate is closer to MST, which is obvious as the mean
number of backlogged stations in steady state is larger in
such cases. For the unstable scenarios, we observe that the
number of backlogged stations starts to build from the first
few frames and continues to do so indefinitely. Thus, as
opposed the slotted ALOHA [6] there is no initial period
during which the overloaded system operates smoothly (the
MST of slotted ALOHA equals zero, as opposed to what



the flawed analysis of Abramson shows [1]).
For the sake of completeness, we briefly indicate how

to solve a Sylvester matrix equation of the form AXB +
CX = D (Equation (7) can be written in this form by
taking the transposed). The Hessenberg algorithm pre-
sented below can be found in [7], as well as a (computa-
tionally more expensive) Schur algorithm. We start with a
Hessenberg-triangular decomposition of (A, C):

WAV = Lbar, WCV = Nbar,

where W and V are unitary (meaning WW ∗ = V V ∗ =
I , with Z∗ denoting the complex conjugate of a matrix
Z), Lbar a Hessenberg and Nbar a triangular matrix. Let
U∗BU = T be a complex Schur decomposition of B, with
U unitary and T a triangular matrix. Then, premultiply-
ing and postmultiplying AXB + CX = D by W and U ,
transforms the system to LbarY T + NbarY = F , where
Y = V ∗XU and F = WDU . Denote zi and zij as the
i-th column and (i, j)-th entry of a matrix Z , respectively.
Equating the i-th column in LbarY T + NbarY = F leads
to

[Nbar + tiiLbar] yi = fi −
i−1∑
j=1

tjiLbaryj .

Thus, to compute X we need to solve d linear Hessenberg
systems (where d denotes the dimension of the square ma-
trices A, B, C and D). As such the Sylvester matrix equa-
tion AXB + CX = D can be solved in time O(d3). Each
of the decomposition algorithms required is a Matlab build-
in function (i.e., hess and schur). Moreover, the ‘\’ Matlab
command to solve the d linear systems automatically rec-
ognizes the Hessenberg form, thereby solving each system
in O(d2) time.

Acknowledgment

B. Van Houdt is a post-doctoral fellow of the FWO-
Flanders.

References

[1] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall
Int., Inc., 1992.

[2] C. Blondia. A discrete-time batch markovian arrival pro-
cess as B-ISDN traffic model. Belgian Journal of Opera-
tions Research, Statistics and Computer Science, 32(3,4):3–
23, 1993.

[3] R. Carmo, E. de Souza e Silva, and R. Marie. Efficient solu-
tions for an approximation technique for the transient anal-
ysis of markovian models. Technical report, IRISA Publica-
tion Interne N 1067, 1996.

[4] G. Choudhury, D. Lucantoni, and W. Whitt. Multidimen-
sional transform inversion with applications to the transient

M/G/1 queue. Annals of Applied Probability, 4:719–740,
1994.

[5] D. V. Cortizo, J. Garcı́a, C. Blondia, and B. Van Houdt.
FIFO by sets ALOHA (FS-ALOHA): a collision resolution
algorithm for the contention channel in wireless ATM sys-
tems. Performance Evaluation, 36-37:401–427, 1999.

[6] P. Flajolet. Evaluation de protocols de communication: as-
pects mathematics. Technical Report 797, INRIA, 1988.

[7] N. Higham and H. Kim. Solving a quadratic matrix equation
by Newton’s method with exact line search. SIAM J. Matrix
Anal. Appl., 23:303–316, 2001.

[8] T. Hofkens, K. Spaey, and C. Blondia. Transient analysis
of the D-BMAP/G/1 queue with an application to the di-
mensioning of a playout buffer for VBR traffic. In Proc. of
Networking 2004, Athens, Greece, 2004.

[9] A. Lang and J. L. Arthur. Parameter approximation for
phase-type distributions. In Matrix-Analytic Methods in
Stochastic Models, (S. R. Chakravarthy and A. S. Alfa (Ed-
itors)), pages 151–206, New York, 1996. Marcel-Dekker,
Inc.

[10] G. Latouche and V. Ramaswami. Introduction to Matrix An-
alytic Methods and stochastic modeling. SIAM, Philadel-
phia, 1999.

[11] D. Lucantoni, G. Choudhury, and W. Whitt. The transient
BMAP/PH/1 queue. Stochastic Models, 10:461–478, 1994.

[12] B. Meini. Fast algorithms for the numerical solution of
structured Markov chains. PhD thesis, University of Pisa,
1998.

[13] B. Meini. Solving QBD problems: the cyclic reduction al-
gorithm versus the invariant subspace method. Advances in
Performance Analysis, 1:215–225, 1998.

[14] M. Neuts. Matrix-Geometric Solutions in Stochastic Mod-
els, An Algorithmic Approach. John Hopkins University
Press, 1981.

[15] M. Neuts. Structured Stochastic Matrices of M/G/1 type
and their applications. Marcel Dekker, Inc., New York and
Basel, 1989.

[16] L. L. Ny and B. Sericola. Transient analysis of the
BMAP/PH/1 queue. I.J. of Simulation, 3(3-4):4–14, 2003.

[17] V. Ramaswami. The generality of QBD processes. In Ad-
vances in Matrix Analytic Methods for Stochastic Models,
pages 93–113. Notable Publications Inc., Neshanic Station,
NJ, 1998.

[18] A. Remke, B. Haverkort, and L. Cloth. Model checking
infinite-state Markov chains. In TACAS 2005, LNCS 3440,
Springer, pages 237–252, Feb 2005.

[19] S. Ross. Approximating transient probabilities and mean oc-
cupation times in continues-time markov chains. Probability
in the Engineering and Informational Sciences, 1:251–264,
1987.

[20] M. Telek. Minimal coefficient of variation of discrete phase
type distributions. In 3rd International Conference on Ma-
trix Analytic Methods in Stochastic Models, pages 391–400,
Leuven, Belgium, 2000. Notable Publications Inc.

[21] B. Van Houdt and C. Blondia. Robustness properties of
FS-ALOHA(++): a contention resolution algorithm for dy-
namic bandwidth allocation. Mobile Networks and Applica-
tions (MONET), Special Issue on Performance Evaluation of
QoS Architectures in Mobile Networks, 8(3):237–253, 2003.



[22] B. Van Houdt and C. Blondia. The waiting time distribution
of a type k customer in a MMAP[K]/PH[K]/c (c=1,2) queue
using QBDs. Stochastic Models, 20(1):55–69, 2004.

[23] B. Van Houdt and C. Blondia. Approximated transient queue
length and waiting time distributions via steady state analy-
sis. Stochastic Models, 21(2-3):725–744, 2005.

[24] J. Zhang and E. Coyle. Transient analysis of quasi-birth-
death processes. Stochastic Models, 5(3):459–496, 1989.


