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Abstract

Consider the Geo/Geo/1 queue with impatient customers and letX reflect the patience distribution. We show that systems
with a smaller patience distributionX in the convex-ordering sense give rise to fewer abandonments (due to impatience),
irrespective of whether customers become patient when entering the service facility.
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1. Introduction

The study of single-server queues with impatient
customers has a long history. It seems Palm[8] was
the first to consider customer impatience. Barrar[2]
analyzed the M/M/1+D system, while a key refer-
ence for the general GI/GI/1+GI is Baccelli et al.
[1]. In this work a stability condition was established
for the general case, while for the M/GI/1+GI queue
the virtual waiting time was studied. Markovian ar-
rivals were considered by Combé[6], who studied the
MAP/G/1+M queue and derived an expression for the
transform of the virtual waiting time and the probabil-
ity of abandonment. Most of these studies assume that
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a customer becomes patient when entering the server
(that is, the system has a limited waiting time) and
set up a Markov process using the virtual (offered)
waiting time. Van Houdt et al.[10] developed an al-
gorithm to compute the response time distribution in a
D-MAP/PH/1+D queue, by setting up a finite GI/M/1-
type Markov chain, which was generalized in[11]
by allowing the patience distribution to be general, as
opposed to deterministic. In these studies systems with
both limitedwaitingandsojourn timeswereconsidered.
Bhattacharya and Ephremides[3] showed, for the

GI/GI/m+GI queue, that the number of customers
abandoning the system over any time interval de-
creases stochastically when the patience distribu-
tion becomes stochastically larger (i.e., when the
patience distributionX1 is replaced byX2 with
P [X2�x]�P [X1�x], for all x�0). Thus, as in-
tuitively expected, more patience leads to fewer
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abandonments. An interesting open question therefore
is: What can be said about the probability of aban-
donment for different patience distributionsXwith the
samemean, finite amount of patiencem=E[X]?Mak-
ing use of the results by Brandt and Brandt[5, Theo-
rem 3.1]or Boxma and de Waal[4] it can be shown
easily that in a M/M/1+GI queue, where customers be-
come patient when entering the service facility, smaller
distributions (in the convex-ordering sense) give rise to
fewer abandonments. In both these papers an expres-
sion for the probability of abandonment is established
via the steady-state probabilities of the virtual offered
waiting time. To the best of our knowledge this is the
only result of this type available in the literature.
In this paper we prove the discrete-time counterpart

of the M/M/1+GI result mentioned above as well as
the more difficult system where customers remain im-
patient after entering the service facility, that is, the
Geo/Geo/1+GI queue with a limited waiting or so-
journ time. In the latter case customers are assumed
to be unaware of the required sojourn time upon ar-
rival and may therefore receive partial service (and
waste some of the service capacity). An expression for
the probability of abandonment is derived from the
age process as opposed to the virtual offered waiting
time. Furthermore, we demonstrate that the number
of abandonments in a single-server queue with impa-
tient customers and geometric service times, i.e., the
·/Geo/1+GI queue, is higher for systems with a limited
sojourn time as opposed to a limited waiting time.
LetX be a general, discrete patience distribution on

the non-negative integers and assume without loss of
generality thatP [X = 0] = 0. Further assume that for
eachX there exists somer�0 sufficiently large, such
thatP [X>r] = 0, i.e., the maximum amount of pa-
tience that a customer can have is bounded above by
some constantr (note that we do not assume that a
singler exists for all distributionsX, but given a par-
ticular X such anr can be found). The results in this
paper can be generalized to include distributions for
which such anr does not exist (P [X = ∞] = 0 for
such distributions asm=E[X] is finite, implying that
the Geo/Geo/1+X queue is stable[1]). In Sections 2
and 3 we show that the smaller distributions (in the
convex-ordering sense) induce a lower probability of
abandonment in a Geo/Geo/1+GI system with a lim-
ited sojourn and waiting time, respectively. The lower
number of abandonments achieved by·/Geo/1+GI sys-

tems with limited waiting times, as opposed to limited
sojourn times, is proven in Section 4.

2. TheGeo/Geo/1queuewitha limitedsojourn time

In this section, we consider a Geo/Geo/1 queue with
P [arrival]=�,P [departure]=� and with impatient
customers. Customers are assumed to be impatient ir-
respective of whether they are being served or not. Let
X represent the patience distribution of the customers
and denoteP [X=k] asak(X) andP [X�k] aspk(X).
To simplify the notation, we shall write

xk(X) = (1− pk(X))�,

yk(X) = � + ak(X)

1− pk−1(X)
(1− �)

= ak(X) + (1− pk(X))�
1− pk−1(X)

,

for k = 0, . . . , r. When there is no ambiguity as to
which distributionX is meant, we will drop theX
to simplify the notation. Similarly, we will add an
X (or Y) to any other variable when there is a need
to clarify the patience distribution at hand. Note,xk

is the arrival rate (probability) of customers whose
patience is more thank, while yk is the probability
that a customer with agek leaves the server (due to
either impatience or a service completion) given that
an agek customer occupied the server. LetAn be the
age of the customer in service just prior to timen,
whereAn is said to be zero if the system is idle. All
events, such as service completions, arrivals, etc. are
assumed to occur immediately after timen, implying
amongst others that the age of a customer in the service
facility is at least one. As discussed below,(An)n�0
is a Markov chain, the(r + 1) × (r + 1) transition
matrix of which is given by

P=




b1 b0 0 0 . . . 0 0
b2 a11 a10 0 . . . 0 0

b3 a22 a21 a20
. . . 0 0

b4 a33 a32 a31
. . . 0 0

...
...

. . .
. . .

. . .
. . .

...

br ar−1
r−1 ar−1

r−2 ar−1
r−3

. . . ar−1
1 ar−1

0
br+1 ar

r ar
r−1 ar

r−2 . . . ar
2 ar

1



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with

b0 = x0,

b1 = 1− x0,

bi+1 = yi

i∏
k=1

(1− xi−k), for 1< i�r,

ai
0 = 1− yi, for 1� i < r,

ai
l+1 = yixi−l−1

l∏
k=1

(1− xi−k),

for 0< i�r and 0� l < i. (1)

Throughout the paper we assume that(
∏j

k=i . . .) = 1
for i > j . The expressions forb0, b1 andai

0 follow in a
straightforward manner from the definitions ofxk and
yk. Denoten as the current time instant and assume an
agei customer is in service, that is,An = i, thenai

l+1
equals the probability that this customer leaves the
system (which happens with a probabilityyi , notice
that yr = 1 since there can never be a customer with
an age larger thanr in the queue) and there will be a
customer of agei−l in service at timen+1. Therefore,
every customer who arrived at some timen−i+k, with
0<k� l, should reach his critical age no later than
timen (this occurs with probability

∏l
k=1(1− xi−k)),

and finally, with probabilityxi−l−1 there is an arrival
at timen − i + l + 1 of a customer whose patience
is at leasti − l time units. A similar argument can be
given with relation to the expression forbi+1, the only
difference being thatbi+1 corresponds to a transition
to an idle queue and hence no customer will be served
at time instantn + 1.

Lemma 1.

kmax∏
k=kmin

(1− zk) = 1−
kmax∑

k=kmin

zk

k−1∏
m=kmin

(1− zm),

for 1�kmin�kmax.

Proof. The statement follows by induction onkmax.
�

Theorem 1. The steady-state probabilities of the
Markov chain (An)n�0 under consideration are

given by

�0 = 1

N
,

�i = 1

N

(
i−1∏
k=1

1− yk

1− xk−1

)
x0

1− xi−1
, (2)

for i = 1, . . . , r and with N = 1 + ∑r
i=1

(∏i−1
k=1

[(1− yk)/(1− xk−1)]
)
x0/(1− xi−1).

Proof. Clearly, � = (�0,�1, . . . ,�r ) is a stochastic
vector, therefore, it suffices to verify whether� is an
invariant vector ofP. By making use of Eqs. (1) and
(2) in the first balance equation

∑r
i=0�ibi+1=�0 and

by eliminating the common factors in the numerator
and denominator we have

(1− x0) +
r∑

i=1

x0yi

i−1∏
k=1

(1− yk)

= 1 ⇔
r∑

i=1

yi

i−1∏
k=1

(1− yk) = 1,

which is proven by applying Lemma 1 withkmin =
1, kmax= r andzk = yk, becauseyr = 1. Inserting the
expressions forb0, ai

i and�i into the second balance
equation�0b0 +∑r

i=1�ia
i
i = �1 allows us to rewrite

this as

x0 +
r∑

i=1

x20yi

1− x0

i−1∏
k=1

(1− yk)

= x0

1− x0
⇔

r∑
i=1

yi

i−1∏
k=1

(1− yk) = 1.

Finally, the (s + 1)th balance equation
∑r

i=s−1
�ia

i
i−s+1 = �s , for 1<s�r, is given by

(
s−1∏
k=1

1− yk

1− xk−1

)
x0

+
r∑

i=s

(
x0xs−1yi

∏i−1
k=1(1− yk)∏s

k=1(1− xk−1)

)
= �sN .
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By the definition of�s we have

(1− xs−1)�sN + x0xs−1
∏s−1

k=1(1− yk)∏s
k=1(1− xk−1)

×
(

r∑
i=s

yi

i−1∏
k=s

(1− yk)

)
= �sN

⇔ (1− xs−1)�s + xs−1�s = �s ,

due to Lemma 1 withkmin = s, kmax= r andzk = yk,
asyr = 1.

Having determined the steady-state probabilities of
the Markov chain(An)n�0, we can easily find an ex-
pression for the rejection probabilityPI that a cus-
tomer leaves the system before his service is com-
pleted/started:PI =1−∑r

i=1P [Z=i]. Here,P [Z=i]
is the probability that a customer is completely served
and has a response time (i.e., waiting time + service
time) equal toi time units. This probability is given by
P [Z = i] = (�/�)�i , as��i is the probability that at
an arbitrary time epoch, an agei customer leaves the
system after completing service, while� is the proba-
bility that an arrival occurs in an arbitrary slot. Using
the stochastic nature of the vector�, it follows that
PI = 1− (�/�)(1− �0).
Keeping � and � fixed, PI is a function of the

patience distributionX only; as such we refer to it
as PI (X). We will prove thatPI (X)�PI (Y ) if X
is smaller thanY in the convex-ordering sense, i.e.,
X�cxY [9].As a consequence, given ameanm,PI (X)

is minimal for the deterministic distribution with mean
mamong all discrete distributionsXon{1,2, . . .} with
E[X] = m (provided thatm is an integer, otherwiseX
with P [X=
m�]=�m�−m andP [X=�m�]=m−
m�
realizes the lowestPI (X)). We start with the follow-
ing lemma.

Lemma 2. If X�cxY , then

i−1∏
k=0

(1− xk(X))�
i−1∏
k=0

(1− xk(Y )).

Proof. Having X�cxY means that
∑i−1

k=0xk(X)�∑i−1
k=0xk(Y ), for all i�1 [9]. Moreover,xk(X) and

xk(Y ), k�0, are both non-increasing rows. Thus,
the vector (x0(X), . . . , xi−1(X)) weakly majorizes
(x0(Y ), . . . , xi−1(Y )) in the sense of Marshall and

Olkin [7]. A theorem by Tomi´c [7, Proposition 4.B.2]
implies that

∑i−1
k=0g(xk(X))�∑i−1

k=0g(xk(Y )) for any
continuous increasing convex functiong. Letting
g(x) = − log(1− x) proves the lemma.�

Theorem 2. LetX�cxY , thenPI (X)�PI (Y ),mean-
ing a smaller patience distribution(in the convex-
ordering sense) achieves a lower probability of aban-
donment in aGeo/Geo/1queue with impatient cus-
tomers in the system.

Proof. Based on Theorem 1 and the expression found
for PI , it is sufficient to show�(X)��(Y ), where
� is defined as

�(X) =
r(X)∑
i=1

(
i−1∏
k=1

1− yk(X)

1− xk−1(X)

)
x0(X)

1− xi−1(X)

=
r(X)∑
i=1

(1− pi−1(X))(1− �)i−1x0(X)∏i
k=1(1− xk−1(X))

=
r(X)∑
i=1

xi−1(X)(1− �)i−1∏i−1
k=0(1− xk(X))

,

where the first equality is obtained by rewriting(1−
yk(X)) as(1−�)(1−pk(X))/(1−pk−1(X)) and the
second by observing thatx0(X) = �. HavingX�cxY

yields r(X)�r(Y ). Rewrite �(X)��(Y ) by sub-
tracting the firstr(X) terms of�(Y ) on both sides of
the inequality and by dividing them by(1 − �)r(X).
As 0<�<1, it now suffices to show

r(X)∑
i=1

xi−1(X)∏i−1
k=0(1− xk(X))

�
r(Y )∑
i=1

xi−1(Y )∏i−1
k=0(1− xk(Y ))

. (3)

Dividing both sides of the equality given in Lemma 1
by
∏kmax

m=kmin
(1− zm) results in

kmax∑
k=kmin

zk∏kmax
m=k(1− zm)

= 1∏kmax
k=kmin

(1− zk)
− 1.

By combining this equation forkmin =1, kmax= r(X)

(and r(Y )), andzk = xr(X)−k (andxr(Y )−k), with (3)
we find

1∏r(X)−1
k=0 (1− xk(X))

� 1∏r(Y )−1
k=0 (1− xk(Y ))

,

and this inequality is valid because of Lemma 2 (notice
1− xk(X) = 1, for k�r(X)). �
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In the next section we prove that this theorem is
also valid for the Geo/Geo/1 queue where impatient
customers become patient when entering the service
facility.

Remark 1. The formulaPI=1−(�/�)(1−�0), which
we can be rewritten as�(1−PI )/�=1−�0, is some-
what unexpected as onemight get the incorrect impres-
sion that only successful customers occupy the service
facility. However, the mean service time of successful
customers (arriving with a rate�(1−PI )) is less than
1/�, while the remaining service capacity is wasted
by customers leaving the system prematurely.

3. The Geo/Geo/1 queue with a limited waiting
time

Consider the same Geo/Geo/1 queue as in Section
2, but instead of having a limited sojourn time we as-
sume that the limitation applies to the waiting time.
This implies that once a customer has entered the ser-
vice facility, he remains there until his service is com-
pleted. We further assume that a customer abandons
the system even if he reaches his critical age at the
exact time instant that the server becomes available
to him. Let Ân be the age of the customer in service
just prior to timen, whereÂn is said to be zero if the
system is idle. Notice, due to the patient nature of the
customers in the service facility and the unbounded
geometric service time, the state space of the process
(Ân)n�0 is infinite and equals{0,1,2, . . .}. It is eas-
ily seen that(Ân)n�0 is a Markov chain. Moreover,
if we censor this Markov chain on the state space
{0,1,2, . . . , r} its transition matrixP̂r is identical to
P if, for i=1, . . . , r−1, we replaceyi by � in the var-
ious expressions of Eq. (1) (recall,yr =1). Indeed, the
probability that an agek customer leaves the service
facility equals� as opposed toyi as in Section 2 and
the probability that the Markov chain(Ân)n�0 makes
a transition from some stater + k, for k >0, to a state
i ∈ {0, . . . , r} does not depend uponk, meaning we
can act as if ager customers simply leave the system
with probability 1 when censoring on{0,1,2, . . . , r}.

Theorem 3. The steady-state probabilities of the
Markov chain (Ân)n�0 under consideration are

given by

�̂0 = 1

N̂
,

�̂i = 1

N̂

(1− �)i−1x0∏i
k=1(1− xk−1)

,

for i�0 and withN̂ = 1+∑∞
i=1

(
(1−�)i−1x0∏i
k=1(1−xk−1)

)
.

Proof. For 0� i�r, define�i (�, y) as �i with yk,
for 1�k�r − 1, replaced by� (notice,yr = 1 is not
to be replaced by�). Due to the censoring argument
presented above we have that(�̂0, . . . , �̂r ) is propor-
tional to(�0(�, y), . . . ,�r (�, y)). Clearly,�̂i =�̂r (1−
�)i−r , for i�r. Hence, fori�r, �̂i is proportional to
�r (�, y)(1−�)i−r =�r (�, y)(1−�)i−r/(

∏i
k=r+1(1−

xk)) asxk = 0 for k > r. Using the expression for�i

in Eq. (2), we find that̂�i , for i�0, is proportional
to (1− �)i−1x0/(

∏i
k=1(1− xk−1)), which proves the

theorem as(�̂0, �̂1, �̂2, . . .) is a stochastic vector.�

For � and� fixed, the probability of abandonment
is a function of the patience distributionX only, there-
fore, we refer to it asP̂I (X).

Theorem 4. Let X�cxY ; then P̂I (X)� P̂I (Y ),
meaning a smaller patience distribution(in the
convex-ordering sense) achieves a lower probability
of abandonment in aGeo/Geo/1queue with impatient
customers in the waiting room.

Proof. Analogous to Section 2, we can establish the
following relation P̂I (X) = 1 − (�/�)(1 − �̂0(X)).
Hence,P̂I (X)� P̂I (Y ) if �(X)��(Y ), which we de-
fine as:

�(X) =
∞∑
i=1

(
(1− �)i−1∏i

k=1(1− xk−1(X))

)
.

This inequality holds due to Lemma 2.�

Remark 2. Theorem 4 also applies for the Geo/Geo/1
queue with waiting time-aware customers as the loss
probability in a GI/GI/1+GI queue is not affected
by the awareness[1]. Waiting time-aware customers
only enter the waiting room provided that they can be
served without losing patience.
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4. Queues with impatient customers and
geometric service times

Consider a discrete-time first-come-first-served
(FCFS) queueing systemS with a single server that
serves customers in a geometric time. Label the ar-
riving, impatient customers in order of their arrival
starting from 0 and letX be their patience distribu-
tion. We shall refer to the queueing systemS in which
customers remain impatient during their sojourn time
asSSand the one where customers are only impatient
while waiting asSW.

Lemma 3. Consider an arbitrary realization� of S;
then if customer i is being served in the SS system at
time n, there will be a customer j present in the service
facility of the SW system at time n, with j � i.

Proof. The result is immediate from a sample-path
argument. �

Theorem 5. The loss probabilityPI (SW)�PI (SS)

for any patience distribution X, meaning the·/Geo/1
queue where customers are only impatient while wait-
ing (as opposed to during their sojourn time) achieves
fewer abandonments.

Proof. Lemma 3 shows us that if theSS sys-
tem is busy, then so is theSW system, i.e.,
Pidle(SW)�Pidle(SS). In [11] it is shown that the
relationPI = 1 − �

� (1 − Pidle) holds both in theSS
andSWsystem, where� is the stationary arrival rate,
yieldingPI (SW)�PI (SS). �

Remark 3. Theorem 5 does not generally apply to
any queue with impatient customers (see[10] for an
example).
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