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Abstract. In this paper we present an approach to compute the invari-
ant vector of the N + 1 state Markov chain P presented in (Rogiest et
al., Lecture Notes in Computer Science, NET-COOP 2007 Special Issue,
pp. 4465:185-194) to determine the loss rate of an FDL buffer consisting
of N lines, by solving a related Hessenberg system (i.e., a Markov chain
skip-free in one direction). This system is obtained by inserting addi-
tional time instants in the sample paths of P and allows us to compute
the loss rate for various FDL lengths by solving a single system. This
is shown to be especially effective in reducing the computation time of
the heuristic LRA algorithm presented in (Lambert et al., Proc. NAEC
2005, pp. 545-555) to optimize the FDL lengths, where improvements of
several orders of magnitude can be realized.

1 Introduction

The rapid growth of the Internet traffic has resulted in an increasing demand
for bandwidth as well as support for diverse service demands. As the electronic
switches and routers are becoming the bottlenecks of the backbone network,
these networks must evolve to new architectures based upon all optical switching.
Optical burst switching (OBS) has been proposed [11], [13], [14] as an efficient
and flexible switching method and it combines the benefits of optical circuit
switching and optical packet switching. Although wavelength conversion reduces
the need for OBS network buffering [7], contention can still arise when two or
more data bursts arrive at the same output wavelength. In optical buffering,
fibre delay lines (FDLs) are used to delay a burst for a specified amount of
time, which is determined by the length of the delay line. Several architectures
that make use of an FDL buffer have already been identified [3], [4], [8]. The
main performance measure of an FDL buffer is its loss rate and analytic and
simulation based results concerning the loss rates have been reported in [2], [5],
[6], [9], [10], [12].



While the typical approach is to build an analytic model based on the evolu-
tion of the scheduling horizon, a more effective modeling approach was developed
in [1] by focusing on the waiting time only. This model is applicable for Bernoulli
arrival processes, general burst size distributions and arbitrary sets of FDLs. As
the waiting time of a burst corresponds to the length of one of the FDLs, the
computational complexity in [12] depended solely on the number of FDLs N ,
which is typically small, whereas with the scheduling-horizon-based analysis the
complexity was a function of the length of the longest delay line (in slots).

Eventhough N is typically small, the approach taken in [12] has to be reper-
formed for each set of FDL lengths, which can be very time-consuming in an
FDL length optimization procedure. In this paper we develop a Hessenberg re-
duction of the model presented in [12], which not only allows us to assess the
loss rate more quickly for a single set of FDL lengths, but also enables us to
compute the loss rate for various FDL length settings at the same time. This
significantly reduces the time required to perform an FDL length optimization.

The remainder of this paper is structured as follows. Section 2 introduces the
general notion of FDL buffers. We present the traffic model and the correspond-
ing Markov chain in Section 3. From this we derive the transition probabilities
and loss probabilities. Section 4 makes use of the memoryless nature of the ar-
rival process to reduce the Markov chain to a Hessenberg, i.e., skip-free in one
direction, Markov chain. In Section 5 we present a comparative study between
the different solution methods discussed in this paper.

2 Fibre delay lines

In this paper, we study a single Wavelength Division Multiplexing (WDM) chan-
nel and assume contention for it is resolved by means of a Fibre Delay Line
(FDL) buffer, which can delay, if necessary, data packets, called optical bursts
(OBs), until the channel becomes available again. Unlike conventional electronic
buffers, however, it cannot delay bursts for an arbitrary period of time, but it
can only realize a discrete set of N delay values. In [9, 2] it is shown that this
leads to voids on the outgoing channel. We do not attempt to fill these voids
(as this would alter the order of the bursts). We denote the N delay values as
a1 ≤ a2 ≤ . . . ≤ aN and define a0 = 0. Traditionally, there are two possibilities
for the delay values, either all fibres have the same length, i.e., ak = A with
k = 1, 2, . . . , N , or the values are equidistant, i.e., ak = kD with k = 1, . . . , N ,
where D is termed the buffer granularity. The analysis in this paper, however,
is done for arbitrary lengths. We define the set A as A = {a0, a1, . . . , aN}.

Define the scheduling horizon H at time t as the time difference between t′

and t, where t′ (t′ ≥ t) is the earliest time at which all OBs present at time t will
have left the system. When the k−th burst sees a scheduling horizon Hk > 0
upon arrival, with ai < Hk ≤ ai+1 for some 0 ≤ i ≤ N (and with aN+1 = ∞),
it will have to be delayed by ai+1 time units (if i < N , otherwise it is dropped),
possibly creating a void on the outgoing channel (which occurs if i < N and
ai < Hk < ai+1). Bursts that observe a scheduling horizon Hk = 0 do not



experience any delay. Since the length of the longest delay line corresponds to
the maximum achievable delay aN , an OB will be dropped (that is, lost) if the
burst sees a scheduling horizon larger than aN upon arrival.

3 Analysis

As the reduction procedure proposed in this paper heavily builds on the approach
developed in [12], we start with a (brief) discussion of this approach.

3.1 Traffic model

Both the model developed in [12] and the reduction model assume Bernoulli
arrivals, i.e., a new OB arrival occurs in a slot with probability p independently
from slot to slot. In reality, arrivals destined for an output port may not form
a Bernoulli process and the losses do not occur uniformly over time, typically
the majority of the losses may be expected to occur in bursts during so-called
overload periods. Our Bernoulli assumption, with p large such that the load is
close to or above one, therefore corresponds to assuming that these overload
periods have a substantial duration and the arrivals during such a period may
be approximated by a Bernoulli process. When we dimension the FDL buffer in
this manner, we therefore aim for the best possible structure to minimize losses
during overload periods as these contain most of the losses.

Arriving bursts are either accepted upon arrival or dropped. We number the
OBs in the order at which they arrive, but only assign an index to the OBs that
are accepted. With each accepted OB k, we associate an inter-arrival time Tk,
that captures the time between the kth arrival and the next, being the arrival
of (i) burst k + 1, if this next burst is accepted, or (ii) a burst without number,
if this next burst is dropped. For the assumed Bernoulli arrival process, these
inter-arrival times are independent and geometrically distributed (with mean
1/p):

P (Tk = n) = tn = qn−1p n ≥ 1, (1)

where we denote q = 1− p. With each accepted burst, we also associate a burst
size Bk and we assume that consecutive OB lengths are uncorrelated with a
common distribution. Therefore, we can define general probabilities:

P (Bk = n) = bn n ≥ 1, (2)

with 0 ≤ bn ≤ 1 and
∑

n bn = 1. To simplify the notations, we will write
b̄n =

∑n
k=1 bk and t̄n =

∑n
k=1 tk.

3.2 Markov chain

As mentioned, we will track the system’s performance by means of the waiting
time of an OB. We associate the waiting time Wk with the kth burst and define
it as the time between the acceptance of OB k and the start of its transmission.



As described in [12] the next burst is either accepted or dropped resulting in
two possible scenarios for the waiting time transitions. These two scenarios are
based on the horizon value as seen by the next arriving OB. Let H̄k be the value
of the scheduling horizon as seen by the burst, following burst k. Note that this
is not the value of the horizon as seen by the k−th arrival. This horizon value is
given by

H̄k = (Wk +Bk − Tk)+, (3)

where (x)+ denotes max(x, 0).

Scenario 1 We have a lossless transition in case H̄k ≤ aN with the result that
the waiting time of the accepted burst equals

Wk+1 = dWk +Bk − TkeA, (4)

where we adopted the relation dxeA = inf{y ∈ A | y ≥ x}, for x ≤ aN .

Scenario 2 The burst will be dropped if H̄k > aN . In this case the burst following
burst k is not assigned an index, and possibly, even more bursts are dropped
before burst k+ 1 is accepted. As a result of this (and of the memoryless nature
of the arrival process), the waiting time of burst k + 1 no longer relates to Wk

and is defined as
Wk+1 = daN − T̃keA, (5)

where T̃k is the time until the arrival of the next accepted burst, i.e., the reacti-
vation time. In case of geometric inter-arrival times, T̃k has a shifted geometric
distribution:

P (T̃k = n) = t̃n = qnp n ≥ 0. (6)

We are now able to build up the Markov chain, associated with the evolution of
the waiting times. Remark that the waiting time can only take on N+1 different
values ai ∈ A, therefore, the Markov chain consists of N + 1 states. This chain
is characterized by a transition matrix P with probabilities pn,m:

pn,m = P (Wk+1 = am |Wk = an) 0 ≤ n,m ≤ N. (7)

Corresponding to the scenarios discussed above, the probabilities pn,m can be
split up into two separate contributions, i.e., the first term corresponds to the
event of a lossless transition and the second term corresponds to the event of a
transition with loss:

pn,m = P (an +Bk − Tk ≤ aN , am = dan +Bk − TkeA)

+P (an +Bk − Tk > aN , am = daN − T̃keA)
= P (am−1 − an < Bk − Tk ≤ am − an)

+P (Bk − Tk > aN − an)P (aN − am−1 > T̃k ≥ aN − am), (8)



where a−1 = −∞. In order to reduce the computation time it is useful to intro-
duce

Un = P (Bk − Tk ≤ n) =
n∑

i=1

bi(1− qi−n−1) + q−n−1B(q), (9)

where the sum over n disappears if n ≤ 0 and B(z) is the probability generating
function of Bk evaluated in z = q, i.e., B(z) = E[zBk ] =

∑∞
n=1 bnz

n. Adopting
these notations, (8) can be expressed as

pn,m = Uam−an − Uam−1−an + (1− UaN−an)(t̄aN−am−1 − t̄aN−am).

The stationary probability vector π = (π0, . . . , πN ) satisfies π = πP and πe = 1,
where e is column vector with all entries equal to one.

3.3 Loss probability

Up to now, we considered only accepted OBs and even left the dropped bursts
unnumbered. As a consequence the loss probability can be computed from the
expected number of losses generated after each accepted packet. For geometric
inter-arrival times the expected number of such losses is given by

Eloss =
∞∑

k=1

N∑
i=0

πipbk(ai + k − aN − 1, 0)+. (10)

Namely, define the periods during which the system can accept new burst as
available periods, and the periods during which the system drops arriving bursts
as unavailable periods. Hence, (ai + k − aN − 1, 0)+ in equation (10) denotes
the length of the unavailable period, following an accepted burst, which had to
wait ai slots and which had a size equal to k. Finally, the loss probability is
determined as follows

ploss =
Eloss

1 + Eloss
. (11)

4 Skip-free in one direction Markov chain

By exploiting the memoryless nature of the arrival process, we will reduce the
Markov chain characterized by P , to a Markov chain that is skip-free to the
left, i.e., the transition probability matrix P̄ of the new chain has the following
structure:

P̄ =


p̄0,0 p̄0,1 p̄0,2 . . . p̄0,N

p̄1,0 p̄1,1 p̄1,2 . . . p̄1,N

0 p̄2,1 p̄2,2 . . . p̄2,M

...
. . . . . . . . .

...
0 0 . . . p̄N,N−1 p̄N,N

 . (12)



We shall refer to the transition matrix P , defined in Section 3.2, as the dense
matrix and to the transition matrix P̄ (equation (12)) as the Hessenberg matrix.
Besides the computational advantage of the Hessenberg form, which allows us
to compute the invariant vector of P̄ in O(n2) time, an even more important
property of this reduction is that aN , the length of the longest delay line, will only
affect two entries in P̄ , being p̄N,N−1 and p̄N,N . This will allow us to express
the invariant vectors π̄ of P̄ for different aN values in terms of the invariant
vector of the system with aN = aN−1 + 1. This feature will greatly simplify the
optimization step of the LRA algorithm (see Section 5.1).

The idea behind the reduction works as follows. Suppose P makes a transition
from state n to state m without a loss, where am = dan − Tk + BkeA. Then,
P̄ will first go from state n to state n − s, with an−s = dan − TkeA in s steps
(from state n via n− 1, n− 2, etc. to n− s). Afterwards, it will jump from state
n− s to state m in one step. Thus, we insert s additional time instants for each
lossless transition from state n to state m.

The reduction for transitions that do involve losses is somewhat more in-
volving. As with the lossless transitions, the chain characterized by P̄ starts by
visiting state n − s1 (in s1 steps) after which it will jump to state N (in one
step). From state N , we repeatedly travel down (one step at a time) to some
state n− sj (where an−sj

= daN − T̃k,jeA, with T̃k,j having a shifted geometric
distribution with parameter p), for j ≥ 2 and jump back to state N as long as
T̃k,j < Bk,j , with Bk,j distributed as Bk. As soon as T̃k,j ≥ Bk,j , we go from
state n− sj to state m, with m = daN − T̃k,j +Bk,jeA. We can split the original
loss transitions in this manner, because conditioned on T̃k,j ≥ Bk,j , one easily
checks that T̃k,j−Bk,j is distributed according to a shifted geometric distribution
as required.

For ease of notation we introduce

Fn = P (Bk − Tk ≤ 0 & Tk ≤ n) =
n∑

i=1

tib̄i. (13)

Due to the upper Hessenberg form we have p̄n,m = 0 if m < n− 1. Furthermore,
there is a transition from state n to state n − 1 in case the inter-arrival time
is larger than an − an−1 (for n = 1, . . . , N), i.e., p̄n,n−1 = 1 − t̄an−an−1 . For
0 < n < N , we find, analogous to the derivation of the transition probabilities
in Section 3.2, p̄n,n = Fan−an−1 , whereas for 0 < n < m < N

p̄n,m =
an−an−1∑

i=1

ti(b̄i+am−an
− b̄i+am−1−an

)

= qan−am(Fam−an−1 − Fam−an)− qan−am−1(Fam−1−an−1 − Fam−1−an),

and for 0 ≤ m ≤ N − 1 we find p̄0,m = Uam
− Uam−1 .

Only in the last column we need to add a contribution that corresponds to the
event of a transition with loss. This leads to the probability p̄0,N = 1 − UaN−1 ,



for 0 < n < N we get

p̄n,N =
an−an−1∑

i=1

ti(1− b̄i+aN−1−an)

= t̄an−an−1 − qan−aN−1(FaN−1−an−1 − FaN−1−an
),

and finally p̄N,N = t̄aN−aN−1 . Remark that the transition probabilities p̄n,m are
somewhat easier to compute than the transition probabilities pn,m.

The stationary probability vector of P̄ will be denoted as π̄ = (π̄0, . . . , π̄N ).
To compute the loss probability we need the stationary probability vector π of
P , where we will prove the following relation between π and π̄:

πj =
∑N

i=0 π̄ip̂i,j∑N
k=0

∑N
i=0 π̄ip̂i,k

, (14)

where p̂i,j is defined as

p̂0,m = p̄0,m = Uam
− Uam−1 , 0 ≤ m < N

p̂n,m = 0, m < n
p̂n,n = p̄n,n = Fan−an−1 , 0 < n < N
p̂n,m = p̄n,m = qan−am(Fam−an−1 − Fam−an)

−qan−am−1(Fam−1−an−1 − Fam−1−an
), 0 < n < m < N

p̂0,N = UaN
− UaN−1

p̂n,N = qan−aN (FaN−an−1 − FaN−an
)

−qan−aN−1(FaN−1−an−1 − FaN−1−an), 0 < n < N
p̂N,N = FaN−aN−1 .

(15)

Recall, the idea behind the Hessenberg reduction makes that for each sample
path of the dense system P (of Section 3.2), there is a corresponding path for
P̄ . The probabilities p̂i,j are exactly those contributions to P̄ for which the visit
to state j also occurs in the corresponding sample path of P .

Let p̈i,j be the remaining probability p̄i,j − p̂i,j (hence, P̄ = P̂ + P̈ ), then
equation (14) can be proven as follows. Due to the sample path correspondence
we have P = (I − P̈ )−1P̂ , while the steady state vector of P̄ satisfies

π̄ = π̄(P̂ + P̈ )
⇔ π̄(I − P̈ ) = π̄P̂

⇔ π̄ = π̄P̂ (I − P̈ )−1

⇔ π̄P̂ = π̄P̂ (I − P̈ )−1P̂

⇔ π̄P̂ = π̄P̂P.

Therefore we can conclude that the steady state vector π can be computed as
described in equation (14).

5 Numerical Results

Since in practical cases the number of delay lines is small (typically 5 to 10), the
gain of the reduction to the Hessenberg matrix, as discussed in Section 4, will be



limited when considering a single set of FDL lengths. However, the contribution
of our new model lies in its applicability in optimization studies, where the gain of
the computational complexity will be more explicit. In this section we will make
a comparative study for a specific optimization algorithm, namely the Largest
Reduction Addition algorithm. This study illustrates that the exploitation of the
skip-free to the left structure of the transition matrix places us in a position to
deal with larger systems, while drastically reducing the computation times.

5.1 Largest Reduction Addition (LRA) algorithm

In [10] we studied how the loss rate of the classic equidistant FDL buffer can be
improved by considering alternate delay line structures, which means that the
delay line lengths ak are not necessarily a multiple of the constant D. Therefore
we developed and compared three different heuristic algorithms. Due to per-
formance and computational reasons, the Largest Reduction Addition (LRA)
algorithm was superior to the other two algorithms. When applying the LRA
algorithm, we assume that the size of the buffer N and the maximum packet
length Bmax are known. Besides we define A0 = {a0} and the addition of the
delay value an+1 to the set An is denoted by An+1 = {An, an+1}. In each step
of the LRA algorithm an FDL is added. The length of this FDL is chosen as
the one whose addition causes the largest reduction in the loss rate. The inter-
val in which we have to look for the optimal an+1, given the set An, will be
given by In+1 = [an + 1, an + Bmax − Tmin], where Tmin denotes the minimal
inter-arrival time. By default the LRA algorithm sets the minimal value of the
optimization domain to an + 1 (various numerical experiments, not reported
here, have indicated that the optimum was always found beyond an + 1). To
upper bound the interval one can reason as follows. Consider the FDL set An

and assume that the last accepted burst experienced a delay of an time units.
The highest observable horizon value equals an plus Bmax, the largest possible
burst size, minus the minimal inter-arrival time Tmin. Hence, the next burst will
always be accepted if the buffer has an additional delay line an+1 with length
an+1 = an +Bmax − Tmin. Therefore, selecting an+1 beyond this value will only
cause more losses as such an an+1 value would result in a higher horizon value
without being able to accept more bursts.

The LRA algorithm consists of the following N steps:

– Step 1: an FDL buffer consisting of one FDL is constructed. Its length is
given by a1 = argminω∈I1

(
p
{A0,ω}
loss

)
, where pAloss denotes the loss probability

for the specific set A of FDLs.
– Step n = 2 to N : The set An−1 is updated to An by adding one delay value.

The length of the delay value is chosen as an = argminω∈In

(
p
{An−1,ω}
loss

)
.

In [10] the computation of the loss probabilities in each step and for each of the ω-
values was based on the horizon approach. Using the approach taken in [12], one
significantly reduces the computation time. However, most of the computations
have to be redone when altering the value of ω. In the next section, we will show



that for the Hessenberg reduction, we can retrieve the loss probability for all ω
values by solving a single Markov chain (in O(n2) time).

5.2 A fast LRA implementation based on the Hessenberg matrix

The structure of the Hessenberg matrix provides a fast implementation of the
LRA algorithm. We denote the transition matrix that characterizes the Markov
chain corresponding with the set An as P̄

(n) and the corresponding probabilities
p̄i,j , respectively p̂i,j , as p̄

(n)
i,j , respectively as p̂

(n)
i,j . Assume the set An−1 is known

and we have to determine the optimal length for an which has to be searched
in the interval In. We first construct the transition matrix P̄ (n,1) corresponding
with the delay line length an = an−1 + 1. It is not hard to verify that

P̄ (n,1) =



p̂
(n−1)
0,n−1 p̄

(n)
0,n

P̄
(n−1)
l p̂

(n−1)
1,n−1 p̄

(n)
1,n

...
...

p̂
(n−1)
n−1,n−1 p̄

(n)
n−1,n

0 . . . 0 p̄
(n)
n,n−1 p̄

(n)
n,n


,

where P̄
(n−1)
l represents the n × (n − 1) matrix found in the upper left corner

of P̄
(n−1). So we can construct the transition matrix P̄ (n,1) by recomputing at

most n+ 2 elements. Furthermore, the probabilities p̂(n,1)
i,j can be extracted im-

mediately from the transition matrix P̄ (n,1) except for 0 ≤ i ≤ n = j. Thus,
recomputing 2(n + 1) + 1 elements suffices to determine π(n,1) and its corre-
sponding loss probability p

(n,1)
loss = p

{An−1,an−1+1}
loss . For the other possible delay

line lengths within the interval In, i.e., an = an−1 +x, with x > 1, we can easily
determine the steady state vector π(n,x) without the need to compute P̄ (n,x) or
π̄(n,x). This can be explained as follows. Since the transition matrix P̄ (n,x) differs
only in two entries from P̄ (n,1), namely in p̄

(n,x)
n,n−1 and p̄

(n,x)
n,n , the steady state

vector π̄(n,x) can be expressed in terms of π̄(n,1):

π̄
(n,x)
i =

π̄
(n,1)
i∑n

j=0 π̄
(n,x)
j

i = 0, . . . , n− 1 (16a)

π̄(n,x)
n =

θ(n,x)∑n
j=0 π̄

(n,x)
j

, (16b)

where

θ(n,x) =

∑n−1
k=0 π̄

(n,1)
k p̄

(n,1)
k,n

(1− t̄x)
. (17)



This can be used to determine the steady state vector π(n,x) based on equation
(14):

π
(n,x)
i =

∑i
k=0 π̄

(n,1)
k p̄

(n,1)
k,i∑n

j=0 π
(n,x)
j

i = 0, . . . , n− 1 (18a)

π(n,x)
n =

∑n−1
k=0 π̄

(n,1)
k p̂

(n,x)
k,n + θ(n,x)p̂

(n,x)
n,n∑n

j=0 π
(n,x)
j

. (18b)

Remark that we do not have to compute π̄(n,x) to get π(n,x), but we can compute
π(n,x) immediately from π̄(n,1) and the probabilities p̂(n,x)

i,n with 0 ≤ i ≤ n.
Therefore we have to recompute only n+ 1 elements for each value of x.

At the end of each step of the LRA algorithm, we determine xopt such that

p
(n,xopt)
loss = minx∈In

(
p
(n,x)
loss

)
and we denote the corresponding transition ma-

trix P̄ (n,xopt) as P̄
(n) and the corresponding probabilities p̄(n,xopt)

i,j , respectively

p̂
(n,xopt)
i,j , as p̄

(n)
i,j , respectively p̂

(n)
i,j .

Notice, for the dense matrix approach of [12], we can only reuse some of the
intermediary results of the calculation of P (n−1) when computing the transition
matrices P (n,x).

5.3 Execution times of the fast LRA algorithm

As explained in Section 3.1, we focus on overload periods during which we as-
sume Bernoulli arrivals with p large such that the load is close to or above one.
Therefore, when regarding the loss probabilities computed in this section, we
should keep in mind that these are the loss rates during the overload periods
and not the long-run loss probabilities, which will be several orders of magnitude
smaller. Clearly, the results and conclusions drawn in this section remain signi-
ficative when the overload loss rates are scaled down to the long-run situation.

The study in [10] made use of packet traces collected by the NLANR (Na-
tional Laboratory for Applied Network Research). More specifically, in this paper
we will use an IP packet trace coming from the following link: AIX (a mea-
surement point that sits at the interconnection point of NASA Ames and the
MAE-West interconnection of Metropolitan Fiber Systems). The distribution of
the packet sizes of the considered trace is depicted in Figure 1. Furthermore we
use an FDL buffer with N = 10 FDLs. In order to keep the computation time
in [10] limited, we had to define the length of a single slot equal to a number
of bytes (more specifically, 50 bytes), as a result the packet sizes distribution
had to be clustered (such that all packets had a multiple of 50 bytes as their
packet length). With the approach taken in [12], clustering is no longer required
as the packet length distribution has no impact on the size of the state space
of the Markov chain. In other words, we can select the slot length equal to one
byte. The main objective of this section exists in demonstrating the substantial
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computational gain that is realized by the Hessenberg reduction over the dense
matrix solution of [12] when running the LRA algorithm.

Figure 2(a) shows the execution times as a function of the number of FDLs,
with a load ρ = 0.9. From this figure we can conclude that the Hessenberg
solution offers a gain of several orders of magnitude over the dense matrix ap-
proach. Similar results are observed in Figure 2(b) that shows the execution
times as a function of the load in case there are 10 FDLs. In order to quantify
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Fig. 2. Execution times for the different strategies that can be used to solve the LRA
algorithm

the loss reduction typically realized by the LRA algorithm, Figure 3(a) shows
the loss probability as a function of the load for both equidistant delay values,
with D = Bmax − 1, and for the combination of delay values found by the LRA
algorithm.

Figure 3(b) shows the loss probabilities for different FDL length settings as
they are calculated during the N steps of the LRA algorithm with load ρ = 0.9.
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Fig. 3. Loss probabilities determined with the LRA algorithm

Table 1. FDL lengths ak and differences dk between subsequent FDL lengths deter-
mined with the LRA algorithm

ρ = 0.2 ρ = 0.9
FDL k ak dk ak dk

1 1499 1499 491 491
2 2998 1499 841 350
3 4497 1499 1114 273
4 5996 1499 1386 272
5 7495 1499 1612 226
6 8994 1499 1827 215
7 10493 1499 2005 178
8 11992 1499 2187 182
9 13491 1499 2360 173
10 14990 1499 2531 171

The curve of FDL 1 shows the loss rate as influenced by the length of the first
line. A minimum is realized at a1 = 491 bytes and serves as a starting point
for the second step of the LRA algorithm. During the second step, the optimal
length for the second FDL is found in a2 = 841 (FDL 2 in Figure 3(b)). This
procedure is repeatedly executed until N FDL lengths are found. Note, the LRA
algorithm is a heuristic algorithm to find useful non-equidistant FDL lengths,
but it does not necessarily realize a global minimum. The resulting FDL sets and
differences between subsequent FDL lengths (i.e., dk = ak − ak−1) are displayed
in Table 1. The results for the scenario with a low load of ρ = 0.2 are also
included in this table.

The experimental results of this section indicate that for low loads the perfor-
mance of the LRA algorithm coincides with the equidistant FDL buffer, whereas
for higher loads we can realize a substantial reduction in loss when using non-
equidistant delay values. This observation was already made in [10] based on the



clustered trace, confirming our intuition that generally a clustered trace should
suffice to get a good understanding of the system behavior.

6 Conclusion

This paper presented a novel approach to compute the invariant vector of the
N + 1 state Markov chain presented in [12], based on a Hessenberg reduction,
and resulting in a fine-tuned fibre delay line length optimization scheme. While
previous work already allowed to compute the loss rate of a general FDL buffer
[12], it was not adapted to the iterative scheme typically associated with opti-
mization and as such inefficient to determine the optimal FDL length. Applying
the Hessenberg reduction to the Largest Reduction Addition algorithm [10], we
showed how the exploitation of the specific structure of the transition matrix
(skip-free to the left) allows to compute the loss rate for an entire range of FDL
lengths at the same time. This places us in a position to deal with larger systems,
while drastically reducing the computation times. Finally, a comparative study
showed how non-equidistant FDL sets are especially useful during overload pe-
riods, however, the results and conclusions remain of course significative when
the overload loss rates are scaled down to the long-run situation.
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