On the Maximum Stable Throughput of Tree
Algorithms with Free Access

G.T. Peeters and B. Van Houdt
University of Antwerp - IBBT, Middelheimlaan 1, B-2020 Antwerp, Belgium

Abstract—A simple numerical procedure is presented to de-
termine the maximum stable throughput (MST) of various tree
algorithms with free access by defining an associated multitype
branching process such that the criticality of the branching
process corresponds to the stability of the tree algorithm. More
precisely, a bisection algorithm is proposed that only requires the
computation of the dominant eigenvalue of the expectation matrix
of the branching process, the size of which is typically below 20,
at each step. Using this novel approach, many existing results
on free access tree algorithms are reproduced without much
effort (e.g., channels with/without noise, variable length packets,
interference cancellation, etc.). Furthermore, in an almost plug-
and-play manner, the MST of the free access equivalent of
many existing results on tree algorithms with blocked access
is established (e.g., channels with capture, control signals, multi
reception capabilities, etc.). The method can be applied to the
class of independent and identically distributed arrival processes,
which includes the Poisson process as a special case. Apart from
determining the MST, the probability that a size i collision is
resolved in a finite amount of time when the arrival rate exceeds
the MST, can also be computed. Some limitations of the proposed
methodology are discussed as well.

Index Terms—Communication system performance, Informa-
tion rates, Multiaccess communication, Stochastic processes

I. INTRODUCTION

Tree algorithms [1]-[6] form a well studied class of multiple
access algorithms that were the first to have a provable maxi-
mum stable throughput (MST) above 0. The is defined as the
highest possible (Poisson) input rate A for which a packet has a
finite delay with probability one. Two types of tree algorithms
can be distinguished when looking at the manner in which
new packets are transmitted: free access and blocked access
algorithms. Under free access, new packets are transmitted
immediately' (at the start of the next slot boundary), whereas
under blocked access slightly more involved rules apply (e.g.,
gated access, windowed/grouped access). The latter class of
algorithms typically achieves higher MSTs, is often easier to
analyze and is therefore studied more often.

The most important existing results for free access include
[2], [7] which studies the basic and modified g-ary algorithm,
[8], [9] which deals with channel errors, [10] which considers
variable length packets and [11] where an interference can-
cellation mechanism is deployed. For blocked access many
more variations have been considered, they include channels
with capture [12], control subchannels [13], multi reception
capabilities [14], etc.

'Unless a carrier-sense mechanism is present, in which case they are
transmitted immediately after the end of the current ongoing transmission.

The standard approach to analyze the MST of a free
access algorithm [2], [7], [10] relies on functional equations
and requires some (involved) mathematics. In this paper we
propose a novel method to determine the MST of a free access
algorithm and demonstrate the ease of applying this method-
ology on various existing and novel tree algorithms with free
access. More precisely, we demonstrate how to reproduce the
results in [2], [7]-[11] and determine among others the MST
of the free access equivalent of [12]-[14], in an almost plug-
and-play manner. In each of these settings we analyze multiple
algorithms. It should also be clear from this demonstration that
the method can also be applied without much effort when some
of these channel conditions are combined.

The idea behind the proposed methodology exists in as-
sociating a multitype branching process [15] with each of
these tree algorithms (where the arrival process is part of the
process), such that the criticality of the branching process cor-
responds to the stability of the tree algorithm. As the criticality
of a branching process is easily checked by comparing the
dominant eigenvalue of its expectation matrix with one, we
can set up a simple bisection algorithm that requires hardly
any work during each step, allowing us to determine a highly
accurate value for the MST. The approach is also applicable
if we relax the Poisson arrival process assumption to any
independent and identically distributed arrival process.

The method contains one drawback, being that we need to
upper bound the number of users that can transmit simulta-
neously in a single slot by some d > 0. Even though this
could potentially increase the MST, we demonstrate that even
moderate values of d (< 20) typically suffice to get highly
accurate results (15 digits or more) for the maximum stable
throughput, while setting d as large as a few hundred does not
jeopardize the efficiency of the proposed method.

In [11], [16], [17] the MST of a number of free access algo-
rithms was determined by constructing a tree structured Quasi-
Birth-Death Markov chain (that made use of the same param-
eter d) such that the recurrence of the chain corresponded
to the stability of the algorithm. In principle, we can use this
methodology for each of the algorithms analyzed here, even if
we wish to include Markovian components (such as Markovian
errors or capture). However, setting up these Markov chains is
much more involved (see [11], [17]). Moreover, determining
the stability for a specific arrival rate requires the solution of
a nonlinear matrix equation that is solved using a fixed point
iteration with only linear convergence. Even for the basic cases
in [11], [17] computing the MST to only as many as 5 digits
becomes very time consuming.

Finally, apart from computing the MST of a free access al-
gorithm, we will demonstrate that its corresponding branching
process can also be used to determine the probability that a
size ¢ conflict gets resolved in a finite amount of time when
the arrival rate exceeds the MST. We wish to remark that
the association between tree algorithms with free access and
branching processes is not new [18], however, the approach
taken and problems studied in [18] are of a very different
nature.

The paper is structured as follows. Section II discusses
the standard information theoretical model for multiple access
communications and the operation of the basic tree algorithm.
The required background information on multitype branching
processes and a general description of the branching process
approach to determine the maximum stable throughput of a
free access tree algorithm is given in Section III. Section IV
demonstrates this approach on ten different classes of tree
algorithms. Some limitations and other performance measures
are briefly discussed in Section V.

II. TREE ALGORITHMS

In this section we briefly discuss the standard information
theoretical model for multiple access and the basic operation
of a tree algorithm when operating under this model. As
demonstrated in Section IV, the proposed method in this
paper also applies when some of these assumptions are further
relaxed.

A. Channel model

The standard information theoretical model used by a mul-
titude of authors (for a detailed treatment of these assumptions
we refer to [3]-[5]) assumes the following type of channel and
user behavior:

S1. Slotted system: the channel is divided in fixed length time
slots; each user is allowed only to start transmitting at the
beginning of a time slot; all packets have the same length
equal to one time slot.

S2. Infinite population: there is an infinite set of users whose
packet generation process is a Poisson process with rate
A>0.

S3. Error-free reception by the receiver: a slot is either
received as an idle, success or a collision slot, depending
on whether zero, one or more packets are transmitted.

S4. Error-free feedback: at the end of each slot, the receiver
is assumed to provide binary (collision or not) or ternary
(idle/success/collision) feedback to the transmitters.

With regard to assumption 52, the method developed in
this paper applies to any independent and identically dis-
tributed (i.i.d.) arrival process, such that the probability of
having £ > 0 new arrivals in an arbitrary time slot is by.
The Poisson process corresponds to the special case where
b = /I\T’: exp(—A). We will also consider channels with errors,
capture, multiple reception capabilities, collision detection,
control subchannels, variable length packets, etc.

ABC D E
{4 | | t
(a) Arrivals
ACBABABCDCDCDEDE
C B C D E
2 C
(b) Slots and counters
(¢) Resolution tree
Fig. 1. Tllustration of a free access tree algorithm, applied on an initial

collision of three users. Free access allows new arrivals to occur during
the conflict resolution interval. Each active user maintains a counter, that
reflects the number of (possibly empty) groups that need to be resolved until
retransmission.

B. Basic tree algorithm

The basic principle of a binary tree algorithm exists in
resolving collisions by splitting the group of colliding users
recursively, until each user receives his own slot. More specif-
ically, suppose we have an initial collision slot with n > 1
users, which we will also refer to as a slot holding n users.
Each of the n users, typically by means of a coin flip, chooses
either group A or group B (sometimes referred to as the left
or right group respectively). In the next slot, only group A
is allowed to retransmit, while group B has to wait until
A is completely resolved. Indeed, if A contains more than
one user, we still have a collision; therefore group A splits
again into two subgroups. The algorithmic solution to have
group B wait, relies on the use of counters. Once a user
becomes active, it maintains a counter which reflects the
number of (possibly empty) groups that need to be resolved
until (re)transmission. After becoming active, this counter is
initialized at zero, meaning the user may transmit immediately
(as we are considering free access algorithms). A user that
transmits successfully becomes inactive; otherwise his counter
is either set to zero or one, depending on the outcome of the
coin flip. When an active user who did not transmit (i.e., with
a counter > 0) receives feedback that indicates that a conflict
occurred on the channel, his counter is increased by one (as
one of the groups that needs to be resolved first is split into
two groups); while a success or idle slot decreases his counter
by one (as one group got resolved). Each conflict and the
associated group splits can be visualized using a tree. Note due

to the free access, a tree will typically resolve more packets
than those part of the initial collision, as shown in Figure 1.
The g-ary algorithm is a generalization of the binary one,
where the group of colliding users split in ¢ > 2 groups. Active
users that did not transmit increment their counter by ¢ — 1
when a collision occurs, as ¢ — 1 extra groups are created.

III. MAXIMUM STABLE THROUGHPUT VIA BRANCHING
PROCESS THEORY

In this section we provide a general description of our
proposed methodology after reviewing the necessary multitype
branching process results.

A. Branching process background

A multitype branching process is a process which describes
the evolution of the individuals part of some population. Each
individual is characterized by a type 4, with ¢ € {1,...,m}
for some m > 0 finite. The population of users evolves as
follows. Given a single individual of a given type i, this
individual will die (after an exponential amount of time with
some parameter fi;, which is irrelevant for our purpose) either
with or without generating some offspring. Whether offspring
is generated is independent of the number of individuals and
their types present in the population. In other words, with some
probability a; the individual dies without offspring, while with
some probability A; j j,.. ;. the individual dies and generates
an offspring of r individuals, the type of the k-th being ji.
Clearly we have,

az+ZZZAZ’JU2J’ = 1, (1)

?”21 J1 Jr

for ¢ = 1,...,m. Notice that this type of branching process
is equivalent to a process that allows individuals to change
types or to generate offspring without dying, by regarding the
rightmost child as the continued life of the parent. When the
population initially starts with a single individual of type ¢,
its evolution can be depicted using a tree rooted by a type @
branch, where each type £ individual is represented as a type
k branch.

An important question related to such a branching process
is whether a tree rooted by a type ¢ branch, for i =1,...,m,
becomes extinct in a finite amount of time with probability
one. To answer this question, it suffices to determine the
m X m expectation matrix M, whose (i,j)-th entry M ;
contains the expected number of type j children of a single
type ¢ individual. It is well known [15] that a multitype
branching process becomes extinct with probability one if and
only if sp(M) < 1, with sp(M) the largest eigenvalue of
the (nonnegative) matrix M, provided that the matrix M is
irreducible (meaning, for each i,j € {1,...,m} there exists
an n > 0 such that the (i,j)-th entry of M™ is strictly
positive?). For our purpose it will suffice to determine the
matrix M, meaning there is no need to compute the individual
probabilities A; j, j,...;,. and a;.

2This can be checked in O(m + p) time using a Breadth-First-Search
algorithm, where p is the number of nonzero entries in M.

B. Free access tree algorithms as branching processes

In this section we provide a general description of our
methodology to determine the maximum stable throughput of
a free access tree algorithm by relying on the above-mentioned
branching theory result. In the next section we provide a
detailed discussion for a multitude of free access algorithms.

Roughly speaking, we will associate a branch with some of
the time slots part of the multiple access channel. Typically,
these will be the slots holding ¢ > 2 packets (including both
new transmissions and retransmissions), that is, the collision
slots. In some special cases, we will also associate a branch
with idle or successful slots, or even distinguish between two
types of slots that hold ¢ packets, see Section IV. A slot
holding c packets is therefore regarded as a type ¢ > 2 branch.
Depending on the splitting decisions and possibly new arrivals,
a collision slot may induce zero or more new collision slots,
which corresponds to the creation of offspring. More precisely,
when a collision of c users occurs, the c users involved are split
into a number of groups, say G to G. Let n; be the number
of new arrivals that transmit in the slot that allows group G; to
retransmit and ¢; the number of users that selected group G;.
Then, the number of type k > 2 children of a type c branch,
equals the number of groups for which ¢; +n; = k.

By defining a branching process in the above manner, we
find that a tree rooted by a type ¢ > 2 branch will go extinct
in a finite amount of time with probability one if and only if
the conflict of size c is resolved in a finite amount of time with
probability one. If all conflicts get resolved in a finite amount
of time with probability one, the multiple access algorithm is
stable. Hence, to test the stability of an algorithm, we must
check whether the dominant eigenvalue of the corresponding
matrix M is less than or equal to one. Notice, as the amount
of offspring is influenced by the number of new arrivals, the
probabilities b; of having ¢ new arrivals in a slot affect the
matrix M, as expected.

The current model still has one unresolved issue: we as-
sociated a type c branch with each slot holding ¢ packets.
Clearly, this number c is in principle unbounded, meaning we
require an infinite number of types in the branching process.
However, the branching processes considered above only allow
a finite number of types. To resolve this issue, we introduce
an approximation, that turns out to have little to no influence
on the maximum stable throughput as demonstrated in detail
in the next section®. More precisely, we assume that at most d
users can coexist in a slot. Whenever a slot appears that holds
more than d packets, due to the arrival of new packets, we
assume that some of these new arrivals are dropped (i.e., lost).
As demonstrated in the next section (where we investigate the
influence of d on the accuracy of the resulting maximum stable
throughput), it turns out that even moderate values of d (e.g.,
d < 20), result in highly accurate values for the maximum
stable throughput.

Hence, to determine the maximum stable throughput of a
free access algorithm, we propose the following approach.
Define a branching process (with d sufficiently large) by asso-

3A similar approximation was used in [11], [16], [17] where tree algorithms
are modeled using tree structured Markov chains.

ciating a branch with (some of) the slots part of the multiple
access channel and determine the expectation matrix M, which
is a function of)\, the arrival rate of the (Poisson) arrival
process. As the dominant eigenvalue sp(M) is a function
of the arrival rate A\, we determine the MST numerically by
finding the point where this function reaches a value of 1.
This can be done easily by employing a bisection algorithm
on (0,1). The number of iterations required can be further
reduced by relying on the Brent/Dekker root finding algorithm
on (0, 1). For the model with multiple reception capabilities of
Section IV-E, we clearly need to apply the bisection algorithm
on (0,m) as the MST can be larger than one. For some of
the models with a noisy channel (see Section IV-C), only the
arrival rates A € (Apin, Amaz) Tesult in stability, meaning
sp(M) — 1 has two zeros in (0,1). To determine both, we
first apply a golden section search on (0,1), which returns
the arrival rate A\ with sp(M) minimal (assuming sp(M)
is a unimodal function of \). Next, we apply the bisection
algorithms on both (0,) and (), 1) to find A\pin and Apaz.

In the next section, we treat several existing and new
tree algorithms with free access using this branching process
approach and determine their maximum stable throughput.
From this multitude of examples, it should be clear that
many other variations of these free access algorithms can
be analyzed in an almost plug-and-play manner using this
methodology.

IV. EXAMPLES
A. Basic tree algorithm

1) Binary tree algorithm: We start by studying the binary
tree algorithm and associate a type ¢ branch to each slot
holding ¢ packets for ¢ > 0, meaning initially we also
include idle and success slots (as opposed to the discussion in
the previous section). Due to the assumptions made by the
standard model in Section II-A, slots holding only one or
zero packets are successfully received, hence, we state that
idle or success slots do not induce any other slots. Collision
slots however result in a conflict and the users involved in
the collision are always split into two new groups. The two
slots in which these two groups retransmit may be regarded
as the offspring of the collision slot, meaning a collision slot
induces two other slots (that may also hold some new arrivals).
Colliding users select the first group with probability p, and
the second group with probability 1 —p, where setting p = 0.5
is known to maximize the MST, which can be intuitively
understood by the symmetric operation of the algorithm.

The operation of the standard binary tree algorithm can
be captured by a branching process with the following finite
expectation matrix M obtained by truncating the number of
packets that is allowed to coexist in a slot to d. To construct
M, we first define the size d + 1 square matrix B®), where
entry Bi(?j) contains the expected number of groups with j
packets after the size ¢ collision is split (i.e., new arrivals are
not taken into account by B)

5@ _ [G A=p) T +p (L =p)) i22i>
,j 0

otherwise,

2

where C} is defined as the number of possible ways to choose
7 out of ¢ items. Indeed, the expected number of groups that
hold j packets equals the expected number of left branches
with j packets, which equals Cip’ (1—p)*~7, plus the expected
number of right branches holding ;7 packets, which equals
Cipi (1 - p).

To determine the types of the 2 offspring slots, we must
include the possible new arrivals. We notice that a type ¢ slot
actually corresponds to a slot holding 7 — k£ > 0 packets that
require retransmission, together with & new arrivals, for some
k > 0. Therefore, the expectation matrix is given by B E
with F a square matrix of size d + 1 with

bop by ba b3 > nea Ok
bo b1 b2 D hed1 bk
e bo b k—d—2 Uk
o bo f—d—3 Dk ’

Dreobr =1
where b; characterizes the independent and identically

. e*))\k
distributed (i.i.d.) arrival process, with by = 7~ represent-

ing the Poisson arrival process.

The branching process defined thus far holds type 0 and
1 branches, however, as these branches never generate any
offspring, the finiteness of the tree is not influenced if all these
branches where pruned. This means that we can simply ignore
type 0 and 1 branches and study the dominant eigenvalue
sp(M), with

M = x2(BPE), 3)

where x (X) removes the first k£ rows and columns of a matrix
X. Under Poisson arrivals all entries of M are nonzero and
as such the matrix is irreducible (if 0 < p < 1).

Finally, the MST can be calculated using a bisection algo-
rithm on (0, 1) that determines the dominant eigenvalue of the
expectation matrix M at each step. As B(®) is independent of
the arrival process, we only need to recalculate the matrices
F and M during each iteration.

2) g-ary tree algorithm: The standard binary tree algorithm
has been generalized to a g-ary tree algorithm, where instead
of two slots, a colliding user can now choose out of g slots,
each with probability p; (such that Z;’Zl p; = 1). In a manner
completely analogous to that for binary tree algorithms we can
construct a branching process by first constructing the matrix
B

i N4 J i—j . :
Bz((i) — Cj Zk:lpk(]'*pk) J 222’1.2] 4)
’ 0 otherwise.

The stability can then be determined with the resulting expec-
tation matrix M (9):

M@ = xy(BOE),)

where the matrix E remains identical to the one of the binary
algorithm.

MST
0.3601770279580446268284528
0.4015993701841809323892300
0.3992228263141945684577376
0.3872414075375053778824552
0.3733545985943108059381336
0.3597311236486659781602567

TABLE 1
MST OF THE BASIC g-ARY TREE ALGORITHM.

N O R WK

40 + R
35 1
- 30r ~
9
=
é 25 + R
£ 2+t 1
20
a 4
15 + q=T7 1
q=0 -~
10 | Q=5 b
=4 q:4
5 q=3 -~ 1
=2 e
O - 1 1 1 a 1
0 5 10 15 20 25 30
Truncation of the number of arrivals d
Fig. 2. Influence of the truncation d on the approximated MST for the basic

g-ary tree algorithm.

3) Results: The MST of the basic g-ary tree algorithm is
given in Table I for ¢ = 2 to 7. As these are known results,
we are mainly interested in the influence of d on the obtained
MST. The most accurate result for the binary scheme we
found in the literature was 0.360177147 [19], which seems
to contradict Table I. However, this result was obtained from
the fact that the MST corresponds to the smallest positive root
of the equation:

2e~2A o o2a Y A A A
et T(1l—2)—1—-2(5)2 4922) = 1.
14 (62 (=) . 21)
>0
(6)

This equation is however numerically troublesome (for in-
stance, 2° grows rapidly, while the terms between brackets
tend to zero). Alternatively, this condition can be rewritten as
in [7] in a numerically more suitable form, with ¢ = 2:

q1-A)-1 _
/\qu—)\q/(q—l) o

Z i <iiq1 1)(q)ZAi
z‘z1z+1 O g—1/) il
We used Maple to solve this equation for ¢ up to 1000, with
100 digits precision, which gave a perfect match with our
findings in Table L.

Figure 2 shows the accuracy of the MST obtained by the
branching process for d ranging from 2 to 30. These results
were obtained by running our algorithm in 50 digit precision,
using Maple, when compared with the 100 digit evaluation of
(7). As expected, increasing d tends to increase accuracy of the

(7

MST and more surprisingly an accuracy of more than 15 digits
is acquired using d values as small as 20. Hence, the amount of
computation time is minimal as the Brent/Dekker root finding
algorithm requires about 10 iterations and each iteration only
involves computing the dominant eigenvalue of a positive size
d — 1 matrix. These results also indicate that the instability is
not so much caused by the occurrence of occasional collisions
between many packets, but mainly by the frequency of low
order collisions. Further, for larger splitting factors ¢ truncation
is less damaging. This can be understood intuitively using the
following example: suppose two successive slots hold a; and
as new arrivals with a; and as close to d. Then, on average
a1/q + az new arrivals will transmit simultaneously (if p; =
1/q) in the second slot, meaning large ¢ values cause fewer
lost packets due to truncation.

B. Modified q-ary tree algorithm

In the standard g-ary tree algorithm, ¢ > 2 users involved
in a collision might all select the last group to retransmit. If
the feedback allows us to distinguish between an idle slot and
a success, we could easily detect this situation, whenever a
collision is followed by a series of ¢ — 1 idle slots. As the
next slot is guaranteed to hold a collision, this group can be
split immediately (i.e., the collision slot can be skipped). This
modification was proposed by Massey [6] and others.

To model this modified algorithm, in which certain slots
can be skipped, we need to adapt our branching process.
There are a number of ways to incorporate these skipped slots.
Previously, we associated with each slot holding ¢ > 2 users a
branch of type c. One way to deal with the skipped collisions
is to treat a skipped slot with ¢ > 2 users also as a branch of
type c. However, in this virtual slot, we do not allow any new
arrivals. Note that, although we loose the close connection
between real slots and branches, this does not influence the
MST. Whenever a conflict is solved in a finite number of slots
with probability one, it is also solved in a finite number of slots
with probability one if we do count the skipped slots. It is also
possible to achieve a one-to-one correspondence between real
slots and branches as in the previous section, however this
slightly complicates the description of the expectation matrix
M@

To obtain M (9, we construct the square matrix P@ with
d—+1 rows, entry Pi(:? of which contains the expected number
of virtual slots with j users induced by a slot holding 7 packets:

o) _ { pilb)t™t i=j>2, .
©J 0 otherwise.
Notice, a virtual slot occurs whenever all ¢ users pick the
last group and no new arrivals occur in the first ¢ — 1 slots
(otherwise they are not idle). As we do not allow any new
arrivals to occur in a virtual slot, we can construct the matrix
M9 representing the branching process, as follows:

M@ — X2((B(q) _ p(fI))E + P(Q)). 9)

The maximum stable throughput for ¢ = 2 to 7 is given in
Table II together with the optimal p, value (for the g-ary
scheme setting p; = ... = py—1 is known to be optimal).

g p1=...=pg-1 MST

2 0.40680 0.393225073128056
3 0.31454 0.407614789045566
4 0.24445 0.400851418664151
5 0.19791 0.387803252352080
6 0.16575 0.373582232584529
7 0.14241 0.359834533583306

TABLE II

MST OF THE MODIFIED ¢-ARY TREE ALGORITHM.

These results are in perfect agreement with all prior published
results.

C. Tree algorithms on a noisy channel

In this section we study both the basic and modified ¢-
ary tree algorithms when errors occur on the channel [8],
[6, Section 5.2], [20], [9]. The following two types of errors
are considered: (i) an idle slot is incorrectly perceived as a
collision and (ii) a successful transmission is regarded as a
collision. We assume that these errors are memoryless and that
the first event occurs with probability ¢ and the second with
probability ¢, where J is typically smaller than e. This model
corresponds with [8], while the limited case were § = ¢ was
analyzed in [9] for the basic g-ary algorithm with free access.

1) Basic q-ary tree algorithm: The adaptations required to
incorporate errors are limited. Apart from having branches that
correspond to slots holding ¢ > 2 packets, we also introduce
type 0 and 1 branches that correspond to slots holding O or
1 packets that are incorrectly perceived as collisions. Hence,
as opposed to Section IV-A2 where we removed all the type
0 and 1 branches as they never generate any offspring, slots
holding 0 or 1 packet now do create offspring with probability
0 and e, respectively. As such, we define BSQ)

1: q vl _ i—j . . .
(Béq))’i,j = { C] Zk:lp%(]- pk) 22077/2;7 (10)

otherwise,

where only the first two rows differ from B(?). The stability
can ghen be determined with the resulting expectation matrix
Me(q :

M9 = BWED,, (11)

where D, is a diagonal matrix with entries (d,¢,1,...,1)
that multiplies the first two columns of B£Q)E by J and e,
respectively.

2) Modified q-ary tree algorithm: The modified scheme
requires some more care. As for the modified scheme without
channel errors, we have type ¢ > 2 branches for both real
and virtual slots holding ¢ packets. We now also include real
and virtual slots with 0 and 1 packet that were regarded as
collisions. As such, we first consider Béq), the (7, j)-th entry
of which gives the expected number of size j groups induced
by a type ¢ branch. With probability p!((1 — &)bo)?"" the
last group corresponds to a virtual slot and therefore no new
arrivals need to be added to this slot. The real slots holding
0 or 1 packet will only correspond to a type 0 or 1 branch
with probability § and ¢, respectively, while the skipped slots
holding 0 or 1 packet always correspond to such a branch.

Arrival Rate A

0 0.1 0.2 0.3 0.4 0.5 0.6
Error Probability ¢

Fig. 3. Stability region for the basic g-ary tree algorithm as a function of
the error probability J, with e = 0 or 4.

Maximum Stable Throughput

0 0.2 0.4 0.6 0.8 1
Error Probability e

Fig. 4. MST for the basic g-ary tree algorithm as a function of the error

probability € when § = 0.

Therefore, the stability can be determined from the expec-
tation matrix Me(q):

M = (B — P)ED, + P{?, (12)
where
@y, _ | pe((1=08)b)™" i=j>0,
(Fe)rs { 0 otherwise. (13)

3) Results: The results for the basic/modified g-ary scheme
on a channel with errors, are somewhat different in nature
as the algorithm is no longer necessarily stable for all A €
[0, Anaz] With Ayq. the maximum stable throughput if 6 > 0.
Instead there also exists a A,,;, such that stability is only
achieved for A € [Apmin, Amaz]-

A plot that depicts the stability region for ¢ = 2 to 4, while
e = 0 or § is given in Figure 3, these are in agreement
with [8], [9]. For ¢ = 0, A,;, becomes larger than zero
when § exceeds 1/¢. Indeed, having 6 > 1/¢ suffices to
cause instability for any arrival rate, unless errors cannot
occur during a success and the arrival rate is large enough to
guarantee enough successes. Figure 4 depicts the MST when

0.45 T T T T T T T T
~ J
[}
= J
a1
E 1
g
< J
0 005 01 015 02 025 03 035 04 045
Error Probability ¢
Fig. 5. Stability region for the modified g-ary tree algorithm as a function

of the error probability §, with e = 0 or 4.

0 = 0 and indicates that under high error rates the binary
scheme becomes superior.

For the binary modified scheme, the existence of a A, > 0
can be understood intuitively as follows. Suppose an idle slot is
incorrectly perceived as a collision. As long as no new arrivals
or errors occur, the channel will remain idle and the number
of unresolved groups remains identical as all the right slots
are skipped (which causes the well known deadlock in case of
blocked access). However, each time an error occurs during
this interval without new arrivals, the number of unresolved
groups increases by one. Thus, if the arrival rate is sufficiently
small compared to the error rate, these false collisions cause
instability as the number of unresolved groups will grow to
infinity.

More formally, for the binary scheme, we find that entry
(0,0) of the matrix M can be written as

(M®)g0 = exp(=A\)(1 + 6) — exp(—2)\)(1 — 6)5. (14)

When (M?)o0 > 1 the dominant eigenvalue sp(M{?) is
guaranteed to exceed one, implying instability. From the above

equation one finds
1—0)2 + 462
(s) . (15)

‘ B (1+9) —

Note, this inequality holds for all ¢ including ¢ = 0. The
stability region for ¢ = 2 to 4 is shown in Figure 5 for e =0
or ¢, together with the lower bound for A,,;,. When § = 0,
Amin becomes zero again and we get similar curves as in
Figure 4 for the basic g-ary scheme.

D. Tree algorithms on a channel with collision detection

Consider a channel that supports a collision detection mech-
anism [6, Section 5.3], meaning collisions on the channel can
be detected before the end of the time slot. Define /. < 1
as the fraction of a time slot needed to detect a collision.
We further assume that the collision feedback is also issued
as soon as the collision is detected, allowing us to shorten the
length of collision slots in our analysis. Hence, slots following

a collision slot will typically carry fewer new arrivals as less
time was available for them to arrive. As before, let b; and
bECd) be the probability of having ¢ new arrivals in an ordinary
and collision slot, respectively. Thus, under Poisson arrivals,
we have b; = exp(—A)A?/i! and bECd) = exp(—M.) (M) /il.

1) Basic g-ary tree algorithm: Once more we associate a
type ¢ branch with every slot holding a collision of ¢ packets.
Each collision is split into ¢ groups. The first group will
retransmit in the next slot, which immediately follows the
collision slot. Hence, the number of new arrivals added to
the first group is determined by (bg(:‘i))izo. For the remaining
q — 1 groups, it is important to remark that they will receive a
slot after the last slot of the conflict resolution interval (CRI)
that solved all prior groups. By definition, the last slot of a
CRI never holds a collision, thus all the remaining groups will
receive new arrivals according to (b;);>o.

This results in the following expectation matrix. Define E.q4
as F, but with b; replaced by bECd) and for k = 1 to g define
B](f) as

Ciph(1—pp)'™7 i>2,i>j

(Bz(gq))i,jZ{ gl

Notice, 3, B = B@ and (B\”)); ; represents the expected
number of type j groups after splitting a type ¢ branch that
form the k-th group. Set

M@ = o((BY — BE+BYE,). (7

2) Modified q-ary tree algorithm: When analyzing the MST
of the modified scheme using collision detection, we first
associate a different type of branch to a real collision of
¢ > 2 packets (type ¢) and a skipped collision of the same
multiplicity (type ¢(°¥). This is useful as the left child of a
skipped collision also receives new arrivals according to b;, as
opposed to bECd) for a real collision, because the left child of
a skipped collision follows an idle slot, while the left child of
a real collision follows the collision itself.

To express the size 2(d — 1) expectation matrix M C(g), we
first introduce

(16)

otherwise.

(p<g>>ij:{ B (o)1 i= 20,

18
0 otherwise. (18)

Notice, the (7,7)-th entry holds the expected number of
skipped collisions consisting of j packets induced by a real
collision of 7 packets. The offspring of a skipped collision is
identical to the offspring of any collision in a system without
collision detection, thus the expectation matrix becomes:

i@ — | x2(CLE+ B{" Eea) x2(PLY)
cd XQ((B((I) — P(Q))E) XQ(p(q)) ’

with C; = (B@ — B%q) . Pc(g)). The dominant eigenvalue of
this matrix is identical to the one of the following size d — 1
matrix:

X2(C1E+ B Ecq) + x2(PP) Cax2((BW — POYE), (20)

(19)

where C5 is a size d — 1 diagonal matrix with entries
1/(1— Pi(g)) for i = 2,...,d. The above matrix corresponds
to the expectation matrix of the branching process that only
associates branches with real collisions.

0.75

Modified
Basic

0.7 pa=2

Maximum Stable Throughput

0.35 . .
0 0.2 0.4 0.6 0.8 1

Collision Detection Time £,

Fig. 6. Maximum stable throughput on a channel with collision detection
using fair coins (p1 = ... = pg = 1/9).
k basic MST(1/2) mod MST(p1) P1
2 0.7442511116 0.76241672333 0.46049
3 1.1454969435 1.15342900688 0.48581
4 1.5586068844 1.56181625774 0.4902
5 1.9802585084 1.98150077748 0.49827
6 2.4083773927 2.40884285823 0.49940
7 2.8415984822 2.84176851091 0.49980
8 3.2789739965 3.27903486348 0.49993
9 3.7198159722 3.71983741049 0.49998
10 4.1636069203 4.16361437217 0.49999
TABLE III

MST OF THE BINARY TREE ALGORITHM ON A CHANNEL WITH MULTIPLE
RECEPTION CAPABILITIES.

3) Results: Figure 6 shows the MST as a function of the
collision detection time ¢, when using fair coins (p; = ... =
pg = 1/g). It demonstrates that the binary scheme becomes
superior when collisions can be detected early, while the
gain achieved by the modified algorithm diminishes quickly.
This is not entirely unexpected as the modified scheme skips
collisions, that now require less capacity on the channel (when
compared to a success or an idle slot). There is however still a
gain of 0.1% as ¢, approaches zero, which can be understood
by remarking that the new arrivals interact differently with the
retransmissions for both algorithms even if the collision slots
have a near zero length.

Fair coins are no longer optimal when a collision detection
mechanism is present. One can achieve higher MSTs by
increasing p; somewhat, which is no surprise as the first of
the g groups formed by a collision receives fewer new arrivals
(according to bECd)) when compared to the remaining ¢ — 1
groups.

E. Tree algorithms on a channel with multiple reception
capabilities

In this section we consider a multiple access channel with
multiple reception capabilities [14], [21]. On such a channel
all simultaneous transmissions involving & or less packets can
be retrieved successfully by relying on coding techniques.
Hence, any collision consisting of at most &k packets is resolved

Maximum Stable Throughput

1f 0.8783 k=21
r———m—— . Hh=4|
0.4015 e —
0 1 1 1 1 1
2 4 6 8 10 12 14

Splitting Factor ¢

Fig. 7. MST for the basic g-ary tree algorithm on a channel with multiple
reception capabilities as a function of the splitting factor q.

immediately and the receiver acknowledges this using the no
collision or success feedback signal (depending on whether
the feedback is binary or ternary).

To determine the maximum stable throughput for the basic
and modified g-ary algorithm, it suffices to notice that any
type ¢ branch with ¢ € {2,...,k} no longer generates any
offspring. Hence, for the binary scheme the expectation matrix
becomes

M = xp41(BYE), 1)
while for the modified one we have
M) = x41 (B — PO)E 4 P@), (22)

Notice, there is no need to set the first k + 1 rows of B FE
or (B9 — P@)E + P9 to zero as they are removed by the
Xk+1 operation.

The maximum stable throughput for the binary scheme is
given in Table III (where d = 50 was used to get accurate
results for the larger k values), where p = 1/2 is still optimal
for the basic scheme. For the modified scheme the optimal p
value tends to 1/2 as k increases. Further, the gain achieved
by the modified scheme reduces as k grows, making it less
worthwhile to exploit ternary feedback. Figure 7 indicates that
the optimal splitting factor g grows as a function of the number
of simultaneous transmissions k that can be decoded correctly
(for the basic scheme with fair coins).

F. Interference cancellation tree algorithm

A free access tree algorithm that uses interference
cancellation (IC) to improve the MST was introduced in
[11]. Similar to the modified tree algorithm, some of the
slots can be skipped, because the receiver can deduce its
content from prior transmissions. This additional information
is provided by IC, which allows one to “subtract” signals.
More precisely, if a group of colliding packets splits into
two subgroups, the second group can be reconstructed by
subtracting the signal of the first from the signal of the original
group. Under blocked access this allows one to skip the right
child of any collision (as was done in [22], [23]). However,

free access prevents this approach, because new arrivals may
occur in the first group, which obstructs the recovery of the
right child via cancellation. The algorithm introduced in [11]
solves this problem by skipping the second group only when
the cancellation is guaranteed to succeed and makes use of
a control field that indicates whether a particular packet is
transmitted for the first time. The following cases allow us
to skip the right child, where the notation z/y denotes that z
and y packets selected the first and second group, respectively.
The number of packets belonging to the parent slot is denoted
as n; the sum of z and y exceeds n whenever new arrivals
occur:

o 0/n: this case is identical to the modified tree algorithm.
e 1/n — 1: a successful reception of one packet, together
with the indication that it is retransmitted, reveals that the
subtraction can produce the signal of the second group.

e 1/n: this is similar to the previous case, but this time
the packet is transmitted for the first time, meaning the
second group is just a repetition of the parent group.

o n/0: if the signal of the first group is identical to that of
the parent, we know that the second group is empty.

e n — 1/1: if we perform the subtraction of the signal of
the first group from that of the parent and decode a single
retransmitted packet, we know that there is exactly one
packet in the second group. Furthermore, this packet is
also successfully received.

e n+ 1/0: if we perform the subtraction of the signal of
the parent from that of the first group, and we decode a
single new packet, we know that a new arrival occurred,
while all the colliding packets selected the first group.
Apart from skipping the second group, the first group
continues with n instead of n + 1 users.

To summarize, if all users choose either the first or the
second group, with at most one arrival in the first, the second
slot can be skipped (case 1,3,4 and 6). Similar, if all but one
choose either the first or the second group with no arrivals in
the first, the second can also be skipped (case 2 and 5). To
model this algorithm as a branching process, we first define
the probability p,skip (4, j) that the right slot induced by a size
1 collision can be skipped, provided that j out of 7 colliding
packets choose the first group. Given the above observation,
we find:

Prskip(isJ) = 0j=ovj=i(bo + b1) + dj=1vj=i—1bo, (23)

with §x equal to one if X is true and zero otherwise. Using
Prskip(i, 1), we define PU€)

}w@:{Cﬂﬂﬂ—mi%mm@JDiZQJZj
1,7 0

otherwise.
(24)

This allows us to construct the expectation matrix M ()
M) = xo((B® — PUNE 4 PEI L R), (25)

with R defined as follows:
piby 2<j=i<d
Rij=¢ -p'bi 3<j=i+1<d (26)
0 otherwise.

This R matrix corresponds to case 6 and captures the fact that
only the initial n packets need to be resolved, thus a type n
branch is created instead of a type n + 1.

Using this branching process we find a maximum stable
throughput of 0.56985336033524 when p = 0.47103, this
result matches entirely with [11], where a time consum-
ing iterative procedure for tree structured Quasi-Birth-Death
Markov chains indicated that the MST was part of the interval
[0.56983,0.56988] for p optimal.

G. Tree algorithms with control subchannels

In this section we determine the MST of some tree algo-
rithms when a single slot consists of g > 2 control minislots
and one data slot (with a length equal to one packet) [13].
Each of the g subchannels as well as the data channel provides
separate feedback at the end of the slot (this is the DF case
in [13]). These g control channels are used in the following
manner: whenever a user transmits a packet on the data
channel, the users also flips a fair g-sided coin and transmits
a control signal in the corresponding control subchannel. We
consider the same two types of feedback as in [13] for the
control and data channels (resulting in 4 possibilities: BF/BF,
BF/TF, TF/BF and TF/TF). The binary feedback (BF) on
the control channel is somewhat different as it distinguishes
between empty and nonempty slots (i.e., something/nothing),
as opposed to the default collision/no collision.

The algorithms operate as follows. With BF/BF feedback,
a collision creates a new slot for each nonempty subchannel,
thus it operates as a g-ary splitting algorithm, except that it
knows the identity of the empty groups and therefore refrains
from assigning a slot to these groups. As such we can get the
MST by looking at the expectation matrix

(9) _ (9)
Mg e = X2(Bip ppE), 27)
where B]ggl)m IBF is identical to B(‘I), with ¢ = g, except that

the first column is equal to zero. As we cannot benefit in the
usual way from ternary feedback on the data channel, we also
use this algorithm for the BF/TF setting.

When TF/BF feedback is provided, a collision generates a
slot for each subchannel holding a single signal, while for
the subchannels holding a collision, two slots are provided by
immediately splitting the collision in a binary manner. This
implies that we are now faced with the following expectation
matrix:

(9) _ (9) (9) 2
MTgF/BF = XQ(BTgF/BFlE + BTgF/BFzB('E), (28)
where B;q} /BF1 is zero, except for the entries (¢, 1) which are

identical to those of B9, with q = g, while B(Tgl),/BF2 equals
B9, with ¢ = g, except that the entries (4,) for j = 0, 1 are
Zero.

Finally, under TF/TF feedback we can skip a guaranteed
collision whenever a binary split of the TF/BF algorithm
results in an empty left slot. The easiest way to express the
expectation matrix is to assign a different type of branch to

g BF/BF TF/BF TF/TF
2 0.376815 0.470771 0.481219
3 0.455546 0.503665 0.509799
4 0.488476 0.519728 0.523989
5 0.506464 0.529281 0.532518
10 0.538895 0.548256 0.549692
100 0.564490 0.565255 0.565381
10000 0.567116 0.567124 0.567125
00 0.567143 0.567143 0.567143

TABLE IV

MAXIMUM STABLE THROUGHPUT OF TREE ALGORITHMS WITH g
CONTROL CHANNELS (NOT COUNTING OVERHEAD).

all the skipped collisions, which results in

(9) (9)
X2(BTgF/BF1E) X2(BTgF/BF2)

9
X2((B® — POYE) xo(PW?)

TF/TF —

)

(29)
which similar to Section IV-D2, can be reduced to a size d —1
matrix.

Table IV holds the MST for each of the algorithms when
varying the number of control channels. In practice, the g
channels require some fraction r of the length of a slot,
implying that the data throughput is actually (1 + r) times
smaller. Also note that all MSTs converge to the same value
as g grows to infinity. This value corresponds to the upper
bound for free access algorithms introduced by Kelly [24].

H. Tree algorithms on a channel with variable length packets

In this section we consider a system with variable length
packets, where [denotes the probability that a packet is
k > 1 slots long. As in [25], [26] we assume that the channel
becomes reserved for the remainder of a multislot packet if
it succeeds in transmitting its first slot successfully. Thus,
all new arrivals that occur during a packet transmission only
transmit in the slot following the last slot of the successful
transmission. As in [25], all new arrivals that occurred during a
successful transmission are resolved first and separately (with
some possible even newer arrivals), which is easily established
by allowing backlogged users to decrease their counter only
upon seeing idle slots. In [26], the new arrivals are not resolved
separately*. When the mean packet length is large (> 10) the
approach considered here is slightly superior [25], otherwise
[26] typically prevails.

It is worth noting that the model above can be regarded
as a channel with a collision detection and a carrier sensing
mechanism (CSMA-CD) in case a single slot corresponds to
the time needed to detect an idle or busy channel, while the
packet lengths are multiples of one time slot (see [10]).

To analyze this basic g-ary protocol with variable length
packets via a branching process, it suffices to remark that
the success slots now also induce some offspring. More
specifically, the expectation matrix M532 is of size d and is
identical to y; (B? E), except that entry 7 on the first row now

4No exact results are provided for the MST in this case, only lower and
upper bounds are established.

0.9
0.8
0.7 v
0.6

05} |/

Maximum Stable Throughput

04 |/

0.3 L L L L L L L 1‘ L
0 5 10 15 20 25 30 35 40 45 50

Mean Packet Length

Fig. 8. Maximum stable throughput on a channel with variable length packets
using fair coins (p1 = ... = pg = 1/¢).

holds the probability that ¢ arrivals occur during a successful
transmission:

(M{D)1: =Y leexp(—Ak)(Ak)'/il.
k=1

(30)

Figure 8 depicts the MST as a function of the mean packet
length for ¢ = 2 (the results for larger ¢ values are analogue),
in case of the C; curve all packets have the same length
between 1 and 50, while for the C5 curve packets have either
length 1 or 100, where the probabilities are tuned to have the
correct mean. These results coincide with [10], [25, Figure 1].

L. Tree algorithms on a channel with capture

In this section we consider a channel that allows capture
to occur. We consider both the feedback with and without
capture model of [12], where a group of dominating users
(DG users) generates packets according to a Poisson process
with rate Ap and a group of nondominating users (NDG
users) with rate An p. The only difference with the basic g-ary
protocol occurs when a collision takes place that consists of
a single packet from a DG user, as well as k£ > 0 packets
belonging to k& NDG users; as the DG packet is captured,
meaning it is still received correctly. As in [12], two types
of feedback are considered: feedback with capture (FWC) and
feedback without capture (FWOC). The FWC feedback allows
the receiver to indicate that a capture event has occurred,
therefore the & > 0 NDG packets are retransmitted in the
next slot (together with possible new arrivals). In the FWOC
case, the receiver uses a different signal for the success of a
DG and NDG user, but is no longer able to determine whether
any NDG users transmitted simultaneously in case of a DG
success. Thus, after a DG success, the possibly empty set of
NDG users is resolved first. We assume that both types of users
use the same splitting probabilities, though this assumption can
be relaxed easily.

To determine the throughput of the FWC model, we will
use branches of type (ipg,inpa) for slots that hold ipg DG
and iy pg NDG packets. Hence, the expectation matrix is of

Maximum Stable Throughput

0.3 L L L L L L L L L
03 04 05 06 07 08 09 1

Percentage of DG Users

Fig. 9. Maximum stable throughput on a channel with capture using fair
coins (p1 =...=pq = 1/9).

size (d+1)2. To construct it, we define the size d+ 1 matrices
B(?ll, for k=1to g, as

€

Cipl(1=pr)' ™0 i>0,i>
B(‘I) R itk - =
(e,k)w 0 otherwise.

Entry (7,j) holds the probability that the k-th group holds
7 packets if a set of ¢ > 0 packets is split. As the splitting
events are all independent, the matrix Bpy ¢ is defined® as
ZZ:1(B£?13 ® Bé?,z), except that row (0,0), (0,1) and (1,0)
is zero, as such slots generate no offspring, while the only
nonzero entry on row (l,inpg), for ixnpg > 0, is entry
(0,inDpg), the value of which is one due to the capture event.
The number of DG and NDG arrivals is also independent,
therefore

€2y

M@, = Brwc(Ep ® Exp), (32)

where E, is identical to E with b; = exp(—\;)(\,)?/i! for
x =D and ND.

The branching process of the FWOC model is nearly
identical, except that a (1, 0) slot now also has some potential
offspring as the receiver resolves the empty NDG group
(together with some new arrivals) first. Hence, M FqWOC =
BFWOC(ED ® END) where BFWOC is identical to Bpwc,
except that its (1,0)-th row now holds a 1 in position (0, 0).

Figure 9 depicts the MST for ¢ = 2,3 as a function of
the percentage of DG users (i.e., Ap/(Ap + Axp)) for both
the FWC and FWOC model. For both models, slightly higher
throughputs are achieved when the DG group is somewhat
larger than the NDG group, while the ternary scheme remains
optimal (higher ¢ values are not shown for clearness). For the
FWOC model, the MST degrades quickly when most of the
users are DG. This is as expected, as the NDG group hiding
behind a DG success is often empty and therefore it is better
not to resolve this set separately. In case all users become DG
users, an MST of 0.328226 is attained, which corresponds to
the MST of the variable packet length algorithm of [10], [25]
and Section IV-H in case all packets have length 1.

3® denotes the Kronecker matrix product

k 1-by-1 2-by-2

1 0.5671432904 -

2 1.0750631447 0.91409902869
3 1.6185228340 1.48541522999
4 2.1908056123 2.11203466481
5 27862417308 2.74084924902
6 3.4007493405 3.39247963770
7 4.0313395238 4.05656034133
8 4.6757552422 4.73068257264
9 5.3322428980 5.41956847542
10

5.9994066059 6.11213027150

TABLE V
THE MST FOR THE COORDINATED SPLITTING ALGORITHM ON A
CHANNEL WITH MULTIPLE RECEPTION CAPABILITIES.

J. Tree algorithms with coordinated splitting

In this section we study the MST of a multiple access
algorithm under free access on a channel with multiple re-
ception capabilities where the users that collide are allowed
to communicate amongst each other. Hence, new arrivals still
transmit immediately and the retransmitting users are unaware
of the arrival times of the new packets.

A first possibility exists in achieving a collision free retrans-
mission by splitting every collision of size 7 in ¢ groups holding
one packet. The branching process used for a channel that is
able to resolve any collision of k or less packets, associates
a type ¢ > k branch with each slot holding c¢ packets.
Hence, a type ¢ > k branch induces c slots each holding one
retransmitted packet and possibly some new packets. Thus the
expectation matrix becomes:

M.y = Xx41(BE), (33)

where B is a size d + 1 matrix with entry (i,7) equal to 7 if
7 = 1 and zero otherwise. The resulting MSTs are presented
in Table V. Notice, the value for kK = 1 coincides with
the well known upper bound of F. Kelly [24], as collision
free retransmissions are optimal in case k¥ = 1. For k > 1,
retransmitting the packets one-by-one may not be optimal as
a slot may be under utilized if no new arrivals are added.
Table V also holds the results if the collisions are retransmitted
two-by-two (where the last set contains only one packet if
an odd number of packets was involved in a collision). It
indicates that slightly higher MSTs can be realized for larger
k. Retransmitting in groups of three packets did not further
improve the MSTs for £ < 10. The values in Table V are
below the more general bounds presented in [21].

V. LIMITATIONS AND OTHER PERFORMANCE MEASURES
A. Limitations

The previous section demonstrates that the branching pro-
cess technique often allows one to determine the MST with
very little effort. There are however also a number of inter-
esting cases that seem less suitable for the branching process
technique.

a) Markovian components: A first set of cases are those
where some of the model components have a Markovian
nature: Markovian arrivals [16], [17], Markovian capture [27],
Markovian noise [28], etc. In order to use the branching

process technique for such a system, one typically needs to
know the probability that the Markovian component is in any
particular state at the end of the CRI of the first group, as this
influences the type of the second branch. These probabilities
are however not readily available, except for some exceptional
cases. For instance, if the underlying Markov chain of the
Markovian noise has two states, such that there is never an
error in state 1 and always an error in state 2. In this case,
the state at the end of the CRI must be state 1, as an error is
perceived as a collision and a CRI never ends with a collision.

b) Carrier sense mechanism: In the previous section
we demonstrated that the MST of a channel with collision
detection can be analyzed using a simple branching process.
A carrier sense mechanism allows one to shorten the length of
the idle slots to /. instead of the length of the collision slots.
The problem that arises now is that the CRI of the left branch
may end with an idle slot, implying that fewer new arrivals
become part of the right branch. Hence, in order to determine
the MST, we need the probability that a CRI of i users ends
with an idle slot (under free access). Remark, in the slightly
modified algorithm of [10], a CRI always ends in an idle slot
and therefore we can determine the MST using a branching
process as discussed in IV-H. Even for the original algorithm,
we can still determine lower and upper bounds on the MST by
bounding these probabilities. For instance the obvious upper
bound of 1 indicates that the MST is below the MST of the
channel with a collision detection mechanism (Section IV-D),
when the time needed to detect an idle coincides with the time
required for detecting a collision.

c) Erasers: When a successful or collision slot is
incorrectly interpreted by the receiver as an idle slot, a
channel eraser is said to occur [8], [20]. The users involved
in this erasure are clearly aware of its occurrence, while the
remaining users consider the current group as empty, i.e.,
resolved. There are two main approaches to address these
erasures: either we consider the packets of the users involved
in the erasure event as lost [8], or we retransmit them in
the next time slot (that is, we use the persist strategy of
[20]). The first case causes no problems when setting up a
branching process, however, in the second case we need to
know the probability that the CRI of a left child ends with an
erasure of j packets, given that the CRI started with ¢ packets
(under free access).

It should be noted that the traditional analysis of free
access algorithms using functional equations cannot be applied
directly either as it requires the same probabilities. This is for
instance also why only upper and lower bounds were estab-
lished in [26]. The methodology that relies on tree structured
Quasi-Birth-Death Markov chains developed in [16], [17] does
not have these limitations, however, the computation times
to get even a fairly rough approximation of the MST are
considerably higher as one needs to solve a set of nonlinear
matrix equations to determine whether an algorithm is stable
for a specific arrival rate. This equation is typically solved
using a fixed point iteration with linear convergence [29],
implying that thousands or more iterations may be required
to get a fairly accurate approximation. Furthermore, the effort

1 4
=
%
Fé 0.8 F 2 A
Q-‘ b
= 3
2
g 06y 4
i)
g
~
5 04} .
s=1
=1
Q
O
02 | 1
1 1 1 1 1 1 1 1 1

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4 0.405
Arrival Rate

Fig. 10. Conflict resolution probability of a size 2 to 11 conflict as a function
of the arrival rate X\ for the basic binary tree algorithm.

required to set up these Markov chains is considerably higher
in comparison with the simplicity of the branching process
methodology (see [11], [17]).

B. Other performance measures

Apart from computing the MST for a variety of tree algo-
rithms with free access, we can also exploit its corresponding
branching process to determine the probability that a size @
conflict gets resolved in a finite amount of time when the
arrival rate exceeds the MST. These probabilities correspond to
the entries of the extinction probability vector of the branching
process, as the i-th entry of this vector gives us the probability
that a tree rooted by a type ¢ branch dies out in a finite amount
of time. For a binary splitting algorithm, this vector is the
smallest nonnegative solution to the extinction equation

r=a+ Az ® z), (34)
where the vector a and matrix A were defined in Section III-A.
This matrix equation can be solved efficiently using a Newton
iteration [30]. In Figure 10 the conflict resolution probability
of the basic binary tree algorithm with free access is depicted
for size 2 to 11 conflicts. When A exceeds the MST these
probabilities suddenly drop below one and fan out as we move
away from the MST. We are not aware of any prior results on
these probabilities.

REFERENCES

[1] J. Capetanakis, “Tree algorithms for packet broadcast channels,” IEEE
Trans. Inf. Theory, vol. 25, no. 5, pp. 319-329, 1979.

[2] B. S. Tsybakov and V. Mikhailov, “Free synchronous packet access in
a broadcast channel with feedback,” Problemy Peredachi Informatsii,
vol. 14, no. 4, pp. 32-59, 1978.

[3] D. Bertsekas and R. Gallager, Data Networks.
1992.

[4] A. Ephremides and B. Hajek, “Information theory and communication
networks: an unconsummated union,” IEEE Trans. Inf. Theory, vol. 44,
no. 6, pp. 2416-2434, October 1998.

[5] M. L. Molle and G. Polyzos, “Conflict resolution algorithms and their
performance analysis,” University of Toronto, CS93-300, Tech. Rep.,
1993.

Prentice-Hall Int., Inc.,

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

J. Massey, “Collision resolution algorithms and random-access com-
munication,” in Multi-Users Communication Networks, G. Longo, Ed.,
CISM Courses and Lectures No. 256. Wien-New York: Springer Verlag,
1981, pp. 73-137.

P. Mathys and P. Flajolet, “Q-ary collision resolution algorithms in
random-access systems with free or blocked channel access,” IEEE
Trans. Inf. Theory, vol. IT-31, no. 2, pp. 217-243, 1985.

N. Vvedenskaya and B. S. Tsybakov, “Random multiple access of
packets to a channel with errors,” Problemy Peredachi Informatsii,
vol. 19, no. 2, pp. 69-84, 1983.

R. M. Liang and H. H. Tan, “On the error analysis of single-channel free-
access collision resolution algorithms,” in IEEE Aerospace Conference
Proceedings, Vol. 1, Big Sky, Montana, USA, 2000, pp. 129 — 140.

P. Jacquet and E. Merle, “Analysis of a stack algorithm for CSMA-CD
random length packet communication,” IEEE Trans. Inf. Theory, vol. 36,
no. 2, pp. 420-426, 1990.

G. T. Peeters, B. Van Houdt, and C. Blondia, “A multiaccess tree
algorithm with free access, interference cancellation and single signal
memory requirements,” Performance Evaluation, vol. 64, pp. 1041-
1052, 2007.

M. Sidi and I. Cidon, “Splitting protocols in presence of capture,” [EEE
Trans. Inf. Theory, vol. IT-31, no. 2, pp. 295-301, March 1985.

D. Towsley and P. Vales, “Announced arrival random access protocols,”
IEEE Trans. Commun., vol. COM-35, no. 5, pp. 513-521, May 1987.
N. Likhanov, E. Plotnik, Y. Shavitt, M. Sidi, and B. S. Tsybakov,
“Random access algorithms with multiple reception capabilities and n-
ary feedback channel,” Problemy Peredachi Informatsii, vol. 29, no. 1,
pp. 82-91, 1993.

C. J. Mode, Multitype Branching Processes, R. Bellman, Ed. American
Elsevier Publishing Company, Inc., 1971.

B. Van Houdt and C. Blondia, “Stability and performance of stack algo-
rithms for random access communication modeled as a tree structured
QBD Markov chain,” Stochastic Models, vol. 17, no. 3, pp. 247-270,
2001.

——, “Throughput of Q-ary splitting algorithms for contention resolu-
tion in communication networks,” Communications in information and
systems, vol. 4, no. 2, pp. 135-164, 2005.

H. Mohamed and P. Robert, “Dynamic tree algorithms,” CoRR, vol.
abs/0809.3577, 2008.

P. Flajolet and P. Jacquet, “Analytic models for tree communication
protocols,” INRIA, Tech. Rep. 648, 1987.

I. Cidon and M. Sidi, “Erasures and noise in splitting multiple access
algorithms,” IEEE Trans. Inf. Theory, vol. IT-33, no. 1, pp. 132-143,
January 1987.

B. S. Tsybakov, V. Mikhailov, and N. B. Likhanov, “Bounds for
packet transmission rate in a random-multiple-access system,” Problemy
Peredachi Informatsii, vol. 19, no. 1, pp. 61-81, 1983.

Y. Yu and G. B. Giannakis, “SICTA: a 0.693 contention tree algorithm
using successive interference cancellation.” in INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies, Miami (USA), March 2005, pp. 1908-1916.

[23] ——, “High-throughput random access using successive interference
cancellation in a tree algorithm,” IEEE Trans. Inf. Theory, vol. 53, no. 12,
pp. 4628-4639, Dec. 2007.

F. Kelly, “Stochastic models of computer communication systems,”
Journal of the Royal Statistical Society (Series B), vol. 47, no. 3, pp.
379-395, 1985.

P. Jacquet and E. Merle, “Analysis of a stack algorithm for random
length packet communication,” INRIA, Tech. Rep. 831, 1988.

B. S. Tsybakov and S. Fedortsov, “Local-area network with random-
multiple-access communications,” Problemy Peredachi Informatsii,
vol. 22, pp. 49-58, 1986.

M. Seri and M. Sidi, “Splitting algorithms in channels with Markovian
capture,” European Transactions on Telecommunications and Related
Technologies, vol. 5, no. 1, pp. 19-26, January-February 1994.

I. Kessler and M. Sidi, “Splitting algorithms in noisy channels with
memory,” IEEE Trans. Inf. Theory, vol. IT-35, no. 5, pp. 1034-1043,
September 1989.

D. Bini, G. Latouche, and B. Meini, “Solving nonlinear matrix equations
arising in tree-like stochastic processes,” Linear Algebra Appl., vol. 366,
pp. 39-64, 2003.

S. Hautphenne, G. Latouche, and M.-A. Remiche, “Newton’s iteration
for the extinction probability of a Markovian Binary Tree,” Linear
Algebra and its Applications, vol. 428, pp. 2791-2804, 2008.

[24]

[25]

[26]

[27]

[28]

[29]

(30]

Gino T. Peeters received his M.Sc. degree in Computer Science from the
University of Antwerp (Belgium) in July 2005. In September 2005, he joined
the “Performance Analysis of Telecommunication Systems” research group,
at the Mathematics and Computer Science Department of the University of
Antwerp. His main research interests include the performance evaluation
of telecommunication systems, more specifically medium access control
problems and scheduling issues in satellite communication networks.

Benny Van Houdt received his M.Sc. degree in mathematics and computer
science, and a PhD in science from the University of Antwerp (Belgium) in
July 1997, and May 2001, respectively. From August 1997 until September
2001 he held an Assistant position at the University of Antwerp. Starting
from October 2001 onwards he has been a postdoctoral fellow of the FWO-
Flanders. In 2007, he became a professor at the Mathematics and Computer
Science Department of the University of Antwerp, where he is a leading
member of the PATS research group. His main research interest goes to
the performance evaluation and stochastic modelling of wired and wireless
communication networks and random access systems in particular. Other
areas of interest include manufacturing, operating systems, tool develop-
ment, etc. He has published various papers, containing both theoretical and
practical contributions, in a variety of international journals (e.g., IEEE
JSAC, Performance Evaluation, Journal of Applied Probability, Stochastic
Models, Queueing Systems, etc.) and in conference proceedings (e.g., ACM
Sigmetrics, Networking, Globecom, Opticomm, ITC, etc.).

