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Abstract—This paper introduces a numerical solution method
for a class of discrete-time polling systems by relying on the
power method, Kronecker matrix representations and the shuffle
algorithm. The class of polling models considered consists of sev-
eral infinite pseudo queues, deterministic service times, Bernoulli
service and Markovian routing and includes exhaustive, 1-limited
and k-limited service as special cases. A truncated, large finite
state Markov chain is obtained by solving a series of finite state
Markov chains with increasing size. The model is motivated by
the analysis of networks on chips and its superiority over other
existing approximation methods in terms of the accuracy and
computation times is demonstrated.

I. INTRODUCTION

Network-on-Chip (NoC) is an emerging paradigm using
packet-switched networks for communications within large
VLSI systems on-chip. NoCs are poised to provide enhanced
performance, scalability, modularity, and design productivity
as compared with previous communication architectures such
as busses and dedicated signal wires [5], [3]. Since 2007
annual ACM/IEEE symposiums on NoCs are being organized.
The delay performance in a NoC with a single sink (meaning
all packets are routed towards the same destination) has been
studied previously by setting up a queueing network with a
tree topology [1]. Each node in this tree consisted of a polling
station serving a number of waiting rooms. Packets are allowed
to enter the tree at any level and move upwards in the tree until
they are served by the root node. A packet that is served by
the i-th child of a node in the tree joins the i-th waiting room
of its parent node. By assuming deterministic packet lengths
and a Head-of-Line (HoL) service for the root node, it was
proven in [1] that the mean delay in this queueing network
could be obtained by analyzing an equivalent single node
queueing system. The HoL service means that the selection
of the waiting room that is served next depends on the
empty/nonempty state of all the waiting rooms during last
b slots, for some finite b. Thus, it includes exhaustive, 1-
limited and k-limited service (as well as time-limited due to
the fixed length of the packets), but not gated service. In order
to study the mean delay in this reduced single node polling
system, an approximation was proposed in [2] via an iterative
numerical method, where each iteration involved the solution
of an M/G/1-type Markov chain that corresponded to a system
with one infinite waiting room, while all other waiting rooms

had a truncated length of B (B = 1 or 2). Increasing B
typically lead to more accurate results, but also resulted in
increased computation times.

We will study the same single node polling system as
in [2], except that we consider a somewhat more general
subclass of the HoL service disciplines by relying on pseudo
queues. The most significant implication of this relaxation is
that our class also includes the k-limited service disciplines.
Furthermore, the approach presented in this paper relies on
the power method, Kronecker representations and the shuffle
algorithm [6], to compute the steady state of a large finite
Markov chain and is considerably faster to reach the same or
a better degree of accuracy in comparison with [2]. Finally,
the presented approach also enables us to compute the per-type
interdeparture time distributions in a straightforward manner.

II. SYSTEM DESCRIPTION

We consider a discrete-time polling system consisting of
N queues with a waiting room of size Q1, Q2, . . . , QN ,
respectively. All waiting rooms were considered of infinite size
in [2], thus a dynamic truncation procedure to determine Q1

to QN is presented in Section V, such that the loss rate in each
queue is negligable without overdimensioning the queue too
much as larger queues require longer computation times. The
arrivals to queue number i form a batch Bernoulli process
characterized by the probabilities xi(0), xi(1), . . . , xi(Qi),
where xi(j) represents the probability of having j arrivals.
Notice, the probabilities xi(j) with j > Qi are irrelevant as
at most Qi packets can be stored in queue i. The service
times are deterministic and last for one time slot. The service
discipline of the system, that determines the order in which
the queues are served, relies on N̄ ≥ N pseudo queues. With
each pseudo queue i ∈ {1, . . . , N̄} we associate a queue
ψ(i) ∈ {1, . . . , N}. At each time slot, the service discipline
determines the pseudo queue to be served. If pseudo queue i
is selected, queue ψ(i) is served. A pseudo queue i is said to
be empty if its corresponding queue ψ(i) is empty.

The service discipline is Bernoulli with Markovian routing
characterized by a set of probabilities q(1), q(2), . . . , q(N̄) and
an irreducible N̄ × N̄ stochastic matrix R with ri,i = 0 for
all i. The probability q(i) represents the probability that the
server remains at pseudo queue i after serving a packet from



pseudo queue i, i.e., queue ψ(i). Thus, the next server position,
denoted as j, equals i. On the other hand, with probability
1− q(i) the server moves to another pseudo queue, in which
case entry ri,j holds the probability that the server moves
from pseudo queue i to pseudo queue j (recall, ri,i = 0).
If subsequently pseudo queue j is empty, but not all pseudo
queues are empty, the server position evolves according to
the matrix R until a non-empty pseudo queue is encountered.
Finally, if during a particular time slot no packet is served,
because all the queues are empty, the server position remains
identical.

The abovementioned service discipline supports 1-limited
routing (by setting N̄ = N and q(i) = 0), exhaustive service
(N̄ = N and q(i) = 1), and k-limited service (N̄ = Nk,
ψ(i) = di/ke, q(i) = 0 and R is the stochastic circulant
matrix with a one in the lower left corner). The introduction
of the probabilities q(i) is only required to support exhaustive
service, otherwise we could simply use the stochastic matrix
R̂ with r̂i,i = q(i) and r̂i,j = (1 − q(i))ri,j to determine the
next server position j.

III. TRANSITION MATRIX

Let Li(n) be the queue length of queue i at time n
and F (n) ∈ {1, . . . , N̄} the position of the server at time
n. From the above description it is clear that the process
{(L1(n), L2(n), . . . , LN (n), F (n)), n ≥ 0}, is a Markov
chain with S = N̄

∏N
i=1(1 + Qi) states. In order to specify

its transition matrix P , we will denote it as a product of three
size S matrices D, A and C, such that

P = DAC.

The transition matrix D will capture the departures as well
as the immediate change of the server position due to the
service completion (i.e., the change from pseudo queue i to
j mentioned before). The arrivals are added by the matrix
A, while C takes care of the change of the server position
such that a non-empty queue is visited (unless all queues are
empty).

We will denote the unity matrix of size b,
∏i−1
k=1(1+Qi) and∏N

k=i+1(1+Qi) as Ib, I<i and I>i, respectively. Moreover, we
denote ∆(x) as the diagonal matrix with its diagonal entries
equal to the vector x and let ei be a vector of the appropriate
size with all its entries equal to zero, except for the i-th, the
value of which is one.

To construct the matrix D, we first define Di as a size
(1 +Qi) matrix of the form

Di =


1
1 0

1 0
. . . . . .

1 0

 .
and

D̂ =
N̄∑
i=1

(
I<ψ(i) ⊗Dψ(i) ⊗ I>ψ(i) ⊗∆(ei)

)
.

Hence, D̂ captures the effect of a possible service competion.
After the service completion the server moves according to

R(q) = ∆(q) + (IN̄ −∆(q))R,

with q = (q(1), . . . , q(N̄)). There is however one exception:
if all the queues were empty, the server remains in its initial
position. This implies that D can be expressed as

D =
(
D̂ −∆(e1)⊗ IN̄

)
(IS/N̄ ⊗R(q)) + ∆(e1)⊗ IN̄ ,

because the first N̄ states of the Markov chain correspond to
an empty system.

The matrix A incorporates the arrivals and can clearly be
represented as

A = (A1 ⊗A2 ⊗ . . .⊗AN )⊗ IN̄ ,

with x+
i (j) =

∑
k≥j xi(k) and Ai an upper triangular matrix

of size (1 +Qi) of the form

Ai =


xi(0) xi(1) xi(2) . . . x+

i (Qi)
xi(0) xi(1) . . . x+

i (Qi − 1)
. . . . . .

x+
i (0)

 .
Finally, the matrix C changes the server position such that a
non-empty pseudo queue is served in the next time slot (unless
the system is empty). To ease the notation, we denote bin(i)
as the binary length N representation of i ∈ {1, . . . , 2N − 1}.
Let binj(i) be the j-th bit of bin(i), which we associate with
queue j. Let Nbin(i) = {j, binj(i) = 1}. Furthermore, denote
Ibin(i) as the size S/N̄ , binary, diagonal matrix with ones
on the positions corresponding to a state where all queues in
Nbin(i) are non-empty, while the other queues are empty:

Ibin(i) =
N⊗
j=1

(∆(e1)(1− binj(i)) + ∆(e− e1)binj(i)) .

Next, let Vbin(i) be a size N̄ matrix with its j-th row equal to
the first passage probabilities of the Markov chain character-
ized by R, from state j to the set of states {j′, ψ(j′) ∈ Nbin(i)}
(note, Vbin(2N−1) = IN̄ ). This allows us to specify the matrix
C that describes the change of the server position as

C =
2N−1∑
i=1

Ibin(i) ⊗ Vbin(i).

IV. COMPUTING THE STEADY STATE DISTRIBUTION

To compute the invariant vector of P = DAC, we will
rely on the power method, i.e., we start with some length
S vector x0 and repeatedly multiply this vector with P . The
multiplication with P is split into three steps: first we multiply
with D, next with A and finally with C, each time exploiting
the structure of these matrices.

For the multiplication with A we simply apply the shuffle
algorithm [6] N times together with the identity

N⊗
i=1

Ai =
N∏
i=1

(I<i ⊗Ai ⊗ I>i).



We do not exploit the structure of Ai as the shuffle operation
requires more time than the product itself and the matrices Ai
are small. To speed up the computation we do store N index
vectors that specify the length S permutations used by the
shuffle algorithm, such that they only need to be determined
once.

In order to multiply the vector with D, it should be clear that
the multiplication with D̂ is the key step, as the ∆(e1) matrices
only affect the first N̄ entries of the vector and multiplying
with (I ⊗R(q)) is trivial. The multiplication with D̂ is found
as the sum of N̄ multiplications with a matrix of the form

I<ψ(i) ⊗Dψ(i) ⊗ I>ψ(i) ⊗∆(ei).

Due to the ∆(ei) matrix, this can be done by selecting the
entries on the positions i + N̄j, for all j, and multiplying
this length S/N̄ vector with I<ψ(i) ⊗Dψ(i) ⊗ I>ψ(i) (via the
shuffle algorithm). As before, we do not exploit the structure
of Di as the shuffle operation is more time consuming and the
matrices are small. The N permutations of length S/N̄ used
by the shuffle algorithm are stored in memory to speed-up the
computation.

Finally, we need to multiply a vector x with C, meaning we
need a fast product with the matrices Ibin(i)⊗Vbin(i) for all i.
As the matrices Ibin(i) are binary diagonal matrices, this step
only involves selecting a subvector of x and a multiplication
with IN(i) ⊗ Vbin(i), where N(i) =

∏
j∈Nbin(i)

Qj . The
selection of the N̄N(i) entries of x is implemented by storing
2N−1 vectors with a total length of N̄

∑2N−1
i=1 N(i) = S−N̄

(the first N̄ entries are not affected by C).

V. SELECTING THE QUEUE LENGTHS Qi

To determine the sizes Qi of the waiting rooms, we will
use a stepwise procedure. The procedure aims at making the
waiting rooms large enough to obtain a good approximation,
while avoiding the need to use unnecessarily large queues as
this would result in poor computation times. This is a delicate
problem as these lengths depend very much on the traffic
characteristics and polling discipline under consideration.

In step 1, we set Q1 = . . . = QN = 1 and solve the
system as discussed in the previous section, with x0 the
uniform vector of length N̄2N . At the end of step i ≥ 1,
we determine the queue with the highest probability of being
full, say queue j, and increase the size of its waiting room
Qj by one, while all the other Qi values remain identical.
Next, in step i+ 1 we solve this updated system and use the
solution of step i as the initial vector x0 (by setting the entries
that correspond to having Qj + 1 packets in queue j equal to
zero), thereby considerably reducing the number of iterations
required by the power method. This stepwise solution finishes
if the probability of having a full queue is below a predefined
threshold ε (e.g., ε = 10−5).

One could also increase the queue length of several queues
by one during a single step, this typically reduces the number
of steps significantly, but each step requires more time. When
the final queue lengths Qi are similar for different i values,
this approach typically realizes the best computation times,

while for more asymmetric queue lengths the former approach
prevails. In our numerical examples, exhaustive service and 1-
limited service with low to medium loads (0.5 and 0.7) often
resulted in similar queue lengths, while the 1-limited service
examples with high loads (0.9) did not.

VI. INTERDEPARTURE TIME DISTRIBUTION

Using the Markov chain characterized by P and the power
method described earlier, it is not hard to devise a simple
procedure to compute the interdeparture time distribution of
type i packets (i.e., packets belonging to queue i). For this
purpose, we define ni(x) of a size S vector x as another size
S vector, with its j-th entry equal to the j-th entry of x if j
is a state for which queue i is nonempty and equal to zero
otherwise.

Next, we define x0 as the normalized vector of ni(π), where
π is the steady state vector (computed by the power method)
of P . Subsequently, we compute yk = xk−1P and let xk =
yk − ni(yk), while P [Ii = k] the probability of having an
interdeparture time of k slots, is found as the sum of the entries
in ni(yk). We perform s steps such that

∑s
k=1 P [Ii = k] >

1− ε, for some ε small.

VII. NUMERICAL RESULTS

In this section we start by comparing our approach to
the aproximation method developed in [2]. To compare the
accuracy and computation times, we rely on the same example
as in [2] and consider a system with N = 4 queues, 1-limited
service, cyclic routing and Poisson distributed batch sizes with
parameter ρi, where (ρ1, ρ2, ρ3, ρ4) = (0.1, 0.2, 0.3, 0.4)ρ,
meaning the overall load is ρ. We applied the power method
until the difference between two consecutive vectors was less
than 10−7 and increased the queue lengths until the probability
of having a full queue was below 10−4. For ρ = 0.9 this
resulted in solving 59 Markov chains with 64 states for the
first and 134640 states for the last chain.

In Table I the improved accuracy of the power method for
the queue length distribution of the 4-th queue (this one is
the hardest to approximate) is shown by comparing it with
the simulation results and approximations for B = 2 (and
B = 3) reported in [2]. The computation times for B = 2 and
B = 3 reported were about 2 to 3 seconds and 50 seconds (per
value of ρ), respectively. Thus, increasing B by one augmented
the computation times by a factor close to 20, hence, setting
B = 4 would require many minutes of computation time. It
should also be noted that these computation times also depend
strongly on the value of ρ, but no detailed timings per ρ value
were provided. The power method introduced in this paper
uses less than 5 seconds for ρ = 0.5 and ρ = 0.7 and up to 2.5
minutes for ρ = 0.9. About 50% of the computation time was
devoted to the multiplication with A, 12% with D and 13%
with C. The remaining computation time was mostly spend on
setting up the index vectors needed by the shuffle algorithm.
This part of the computation could be further improved as
they are completely recomputed each time one of the queue



ρ P (Q4 = 0) P (Q4 = 1) P (Q4 = 2) P (Q4 = 3) P (Q4 = 4) P (Q4 = 5) P (Q4 = 6)
0.5 B = 2 .7412 .2109 .0395 .0069 .00126 .00024 .000047

Simul. .7411 .2109 .0395 .0069 .00127 .00024 .000049
Power .7411 .2109 .0395 .0069 .00127 .00024 .000046

0.7 B = 2 .5661 .2756 .0994 .0361 .0137 .0054 .00218
Simul. .5655 .2754 .0994 .0362 .0139 .0056 .00228
Power .5655 .2754 .0994 .0362 .0139 .0056 .00228

0.9 B = 2 .267 .2159 .1438 .0993 .0712 .0520 .0384
B = 3 .265 .2129 .1413 .0974 .0701 .0517 .0387
Simul. .263 .2109 .1394 .0959 .0690 .0510 .0383
Power .263 .2112 .1396 .0960 .0690 .0510 .0383

TABLE I
ACCURACY IN TERMS OF THE QUEUE LENGTH DISTRIBUTIONS

ρ Queue 1 Queue 2 Queue 3 Queue 4
0.7 B = 2 0.615 0.854 1.138 1.462

Simul. 0.618 0.858 1.145 1.475
Power 0.617 0.857 1.143 1.473
BM 0.709 0.938 1.167 1.395
GL 0.539 0.830 1.152 1.503

0.9 B = 2 1.172 1.98 3.50 6.46
B = 3 1.179 2.01 3.59 6.84
Simul. 1.181 2.02 3.66 7.21
Power 1.180 2.01 3.65 7.18
BM 1.590 2.71 4.70 5.97
GL 1.168 1.94 3.04 7.71

TABLE II
ACCURACY IN TERMS OF THE MEAN WAITING TIME

lengths changes. The simulation times reported in [2] required
considerably more time.

In Table II we compare the mean waiting times (via Little’s
formula) of the Power method with the simulation results, the
approach in [2], as well as with the results in BM [4] and
GL [7] for ρ = 0.7 and ρ = 0.9. We find that for ρ = 0.9
the power method (in comparison with B = 3) significantly
improves the mean delay approximation, especially for queue
4. For ρ = 0.7 we also observe a clear improvement over
B = 2, with comparable computation times.

In Table III we used the power metyhod to depict the mean
waiting time per queue for the ρ = 0.7 scenario above, but for
the more general k-limited service for various k values as well
as for the exhaustive service. As expected, while k increases
the results converge towards the exhaustive service discipline.
The size of the final Markov chain grows from 13860 states for
k = 1 to 276480 states for k = 16, while the computation time
grew from 4 seconds to 40 seconds, meaning the computation
time scales well with k. The exhaustive service case required
less than 4 seconds (using 17280 states). The overall mean
waiting time was 1.165 in all cases.

Finally, we study the impact of the number of queues N on
the computation times by varying N from 2 to 6. In [2], small
N values are regarded as practical for the network on chip
architecture. As in [2] the loads ρ1, . . . , ρN of the N queues
are chosen proportional to 1, . . . , N . For a load of 0.7 with 1-
limited cyclic routing the computation times ranged from less
than 5 seconds for N ≤ 4, to about 20 seconds for N = 5 and

ρ Queue 1 Queue 2 Queue 3 Queue 4
0.7 1-lim 0.617 0.857 1.143 1.473

2-lim 0.832 0.904 1.114 1.417
4-lim 1.186 1.130 1.129 1.204
8-lim 1.413 1.288 1.164 1.041
16-lim 1.451 1.323 1.182 1.000

exhaust. 1.452 1.323 1.183 0.999

TABLE III
MEAN WAITING TIME FOR k-LIMITED SERVICE

1.5 minutes for N = 6. The dimension of the final Markov
chain increased from 13860 states for N = 4 to 94500 states
for N = 5 and towards 403200 states for N = 6.
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