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Abstract—Recently, tree algorithms have been combined with
successive interference cancellation to achieve a substantially
higher maximum stable throughput (MST). All previous work
assumed either a single or an unbounded number of signal
memory locations, with MSTs of 0.662 and 0.693, respectively.
In this paper, we address the gap between these two algorithms
by designing and analyzing two novel general k-signal memory
location algorithms.

I. INTRODUCTION

Tree algorithms have been proposed as important solutions
for multiple access channels. For example, they have been
recognized as important (if not, superior) contenders during
the development of the 802.14 standard [8] for HFC networks.
Tree algorithms also strongly outperform the class of backoff
algorithms (including the binary exponential backoff (BEB)) in
terms of their maximum stable throughput (MST); the MST
of BEB is zero in the infinitely-many users multiple access
model [1]. In the standard information theoretical setting,
the MST is defined as the highest possible (Poisson) input
rate for which a packet has a finite delay with probability
one, with infinitely-many users. The first tree algorithms were
independently developed in the late 1970s by Capetanakis
[4] and Tsybakov, Mikhailov and Vvedenskaya [15]. These
algorithms were the first to have a provable MST above zero.
Afterward new tree algorithms were developed with MSTs
as high as 0.4878 using the standard information theoretical
multiple access model [3], [6], [13].

The 0.4878 MST, realized under the standard information
theoretical model, has been exceeded in various manners by
introducing additional mechanisms not available under the
standard model, such as energy measurement techniques to
determine the collision multiplicity [10] and additional control
field/bits with separate feedback [9], [14]. Recently, the suc-
cessive interference cancellation tree algorithm (SICTA) which
uses a successive interference cancellation (SIC) mechanism,
was designed and shown to achieve an MST as high as
0.693 [17]. The operation of this interference cancellation
(IC) mechanism can be summarized as follows. Consider two
signals a and b, where b contains the combination of signals
B1, . . . , Bn. We denote a− b as the interference cancellation
operation, which only results in a valid signal if a consists
of B1, . . . , Bn, A1, . . . , Am, and has A1, . . . , Am as a result.
Thus, when combined with a tree algorithm, which recursively
splits each collision into two groups, SIC offers the possibility
to obtain the signal of the second group by canceling the signal
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Fig. 1. Overview of the possible collision splits; the gray slots can be skipped,
since IC retrieves the right slot by subtracting the left from the parent slot.

of the first group from the joint signal, removing the need to
assign a slot to the second group. For example, consider a
collision of two users and assume both users do not choose
the same group, then only one more slot is required to receive
both packets successfully as opposed to two in the classical
model, thereby significantly improving the channel throughput.
SIC was also employed in satellite systems [5], where a packet
was transmitted in two different slots, in the hope that at least
one copy was received successfully. If so, SIC could cancel
out the successful signal in the second slot used by the same
user, which in turn might result in additional successes.

Under the standard assumption of Poisson arrivals, the
number of new arrivals that can occur in a slot is unbounded.
This implies that the maximum number of users involved in a
collision under SICTA is also unbounded and therefore SICTA
requires a (theoretically) unbounded amount of memory loca-
tions for storing signals. In [12] we introduced a novel tree
algorithm using SIC that requires the storage of at most one
signal at a time, achieving minimal memory requirements.
This single memory location stores the signal of the previous
slot if it held a conflict. When this conflict splits into two
groups it thus suffices to transmit the signal of the left group
to obtain the signal of the users in the right group using SIC
and therefore the corresponding slot of the latter group can
be skipped. We will refer to the slot associated to the joint
signal of the group of users that selected the first (second)
group as the left (right) slot. If both groups consist of two or
more users, the signal of the right group cannot be stored as
the memory location is used by the left group. If on the other
hand either the left or right group consists of less than two
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Conditions Actions
Current slot IC Feedback Updated ss Store in cache

Collision ss = cs C/S cs
Collision ss− cs valid C/S cs
Collision ss = ∅ C cs
Collision otherwise C/C cs ss− cs
Success ss− cs valid S/S cache/∅
Success ss = ∅ S ∅
Success otherwise S/C ss− cs

Idle ss = ∅ S ∅
Idle otherwise S/C ss

TABLE I
ALL POSSIBLE SCENARIOS A RECEIVER MAY ENCOUNTER; DEPENDING ON EACH STATE, DIFFERENT FEEDBACK IS PROVIDED TO THE USERS, WHILE
UPDATING THE SAVED SIGNAL ss AND STORED SIGNALS IN THE CACHE. cs HOLDS THE CURRENT SIGNAL, AS IN [12]. POSSIBLE UPDATES TO THE

CACHE ARE DETERMINED BY THE REPLACEMENT POLICY AND ARE NOT DISCUSSED IN THIS TABLE.

(a) User table for cc

S S/S S/C C C/S C/C C/C
fc > 0 fc ≤ 0

cc = 0 −1 −1 −1 0/1 0/1 0/1 0/1
cc = 1 0 −1 0/1 2 −1 2/3 2
cc ≥ 2 cc− 1 cc− 2 cc cc+ 1 cc cc+ 2 cc+ 1

(b) User table for fc

S/S C/C
PER min(k − 1, fc+ 1) fc− 1
LRU min(k − 1, fc+ 1) max(0, fc− 1) if cc ≥ 3

TABLE II
USER ACTION TABLE FOR THE PROPOSED ALGORITHMS, DEPENDING ON THE FEEDBACK. WHEN A COIN FLIP IS USED TO DECIDE WHETHER cc IS

UPDATED TO x OR y, WE DENOTE THIS AS x/y. cc REPRESENTS THE COUNTER VALUE AS IN [12]. WHEN cc = 0, A USER IS ALLOWED TO TRANSMIT,
cc < 0 IMPLIES THE USER WAS SUCCESSFUL, WHILE fc TRACKS THE NUMBER OF FREE CACHE LOCATIONS, SO INITIALLY fc = k − 1 AND fc IS

UPDATED after UPDATING cc.

users, we can skip the right slot as depicted in Figure 1.
A free access variant of this algorithm with an MST of

0.5698 was developed in [12], where free access implies that
new users are allowed to transmit their packet at the start of
the next slot. As random access algorithms with free access
typically achieve lower MSTs, we also described a blocked
access variant (i.e., where all the new arrivals are blocked until
the ongoing conflict is resolved) in [12] and its MST of 0.6620
for windowed access and 0.5545 for gated access was derived
in [11], [2]. In windowed access, the users are grouped into
sets based on their arrival time, and the users are given access
to the channel one group at a time. Typically, the time axis is
partitioned into intervals of length α0 and the i-th set is formed
by the users in the i-th interval. If a group is granted access
to the channel before the end of its corresponding interval, the
interval is shortened and the subsequent intervals are shifted
back such that the start of the next interval coincides with
the current time epoch. As such gated access corresponds to
having α0 =∞, as all waiting stations are allowed to take part
in the next CRP whenever a conflict gets resolved. Remark that
SICTA employs gated access.

An unanswered question is how many memory locations
are necessary to achieve an MST close to the performance of

the SICTA algorithm, which requires an unbounded number
of signal memory locations. To address this question, we will
describe and analyze two novel tree algorithms, based on the
0.6620 algorithm in Section II. Section III provides numerical
results for both algorithms.

II. K-MEMORY TREE ALGORITHMS

Suppose that we have k > 1 memory locations. The idea is
to use the first memory location in an identical manner as in
the 0.6620 algorithm (see [12], [11] and Figure 1), to construct
a windowed access tree algorithm with IC. The remaining c =
k−1 memory locations will be used as a cache. Only collisions
for which both the left and right slot contain two or more
users, make use of the cache memory. Such an event will be
denoted as C/C, to reflect that we have two collisions. The
collision in the right slot has to be resolved after the left one,
as in any tree algorithm, however instead of transmitting its
corresponding signal, we can retrieve it from the cache (unless
it got replaced by another signal).

As the limited size of the cache cannot store all collision
signals, some right slots are no longer be skipped (as in
SICTA). Whether a right slot will be skipped or not, will
depend on the replacement policy used in the cache. We will
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investigate two policies. In the first, persistent policy, signals
remain in the cache until they are used, meaning a signal is
never overwritten as long as it remains unused. Thus a cache
location remains occupied until the tree algorithm starts with
the resolution of the conflict stored in this location. The second
policy, a least recently used (LRU) based policy, will always
store new signals in the cache, possibly at the expense of
removing an older signal. Notice, once a cached signal is
reused, there is no further use for it, so it can be removed
from the cache.

A. Persistent Cache Policy

In the persistent cache policy case, signals will remain
cached until they are used. As such, the right slot of a C/C is
only stored if some of the cache locations are still unoccupied.
A possible algorithmic description for this collision resolution
algorithm can be found in Tables I and II, describing the
actions taken by the receiver and users, respectively. Similar
to other tree algorithms, each user maintains a counter (cc),
which controls the time a user has to wait to (re-)transmit,
with cc = 0 meaning he is allowed to transmit in the next
slot and cc < 0 indicates a successful transmission. This
number is updated based on the feedback provided by the
receiver, which can attain six possible values. Feedback values
S and C correspond to the classical no-collision, collision
feedback, and the operation on cc is identical to standard tree
algorithms. When a collision in the right slot is encountered
(S/C or C/C), the slot of these users (with cc = 1) is skipped
immediately (unless there was no free location in the cache in
case of a C/C). A success or idle in the right slot (S/S or
C/S) considers the possible user with cc = 1 as received, by
decreasing its counter to −1. We require a second counter, fc,
to be maintained by each user, which can be regarded as the
number of free cache locations (although it can also become
negative). When a C/C feedback is issued and the cache is
full, the users in the right slot are not split and the slot is not
skipped. Thus, after each C/C feedback, fc is decremented
by one (possibly making fc negative); when an S/S feedback
is issued (meaning we have two successes), a cached signal
is reused (if fc ≥ 0) and fc is incremented by one. Finally,
ss stores the content of the previous slot, if it was a conflict,
identical to [12] and [11]. Figure 2 illustrates this procedure,
as it resolves a collision of eight users, corresponding to the
splitting tree of Figure 3. We remark that as the counter fc is
identical for all users, we could store its value in the receiver;
who can signal a full cache by sending a C feedback instead
of a C/C.

Define LPERN,c as the average time required to resolve a
collision of N users, with c available cache signal positions,
hence we need LPERN,k−1 as c = k− 1. This algorithm naturally
leads to the following approach to analyze its performance.
The case where we have c = 0 cache positions is identical
in operation as the 0.6620 stack based algorithm (see [12],
[11]). For the other cases, several situations require the use
of one cache location, reducing the effective number of free
cache locations by one. However, as we only store signals of
right slots, the corresponding cache locations can be reused

again as soon as the left slot is resolved. Whether the right
slot is skipped can be determined as soon as the left slot
is transmitted. Indeed, at this point, the IC operation can
determine whether or not both left and right slot contain a
collision and thus require a cache location. Only if this cache
location is available, we skip the right slot. Thus, as long as
we have one or more cache positions available, we can skip
the right slot:

LPERN,c =



LN c = 0,
1 c > 0, N < 2,
N−2∑
i=2

(
N

i

)
pi(1− p)N−i

(
LPERi,c−1 + LPERN−i,c

)
+(pN + (1− p)N )(LPER0,c + LPERN,c )

+N(p(1− p)N−1
+δN>2p

N−1(1− p))(LPER1,c + LPERN−1,c)

otherwise,
(1)

with L0 = L1 = 1, and LN for N > 1 as defined in [12],
[11]:

LN =1 +

N∑
i=0

(
N

i

)
pi(1− p)N−i (Li + LN−i)

− pN − (1− p)N −Np(1− p)N−1

−NpN−1(1− p) + δN=2Np(1− p).

(2)

Notice, the 1-term in Equation (2) has disappeared in Equation
(1) for the case where c > 0 and N ≥ 2, as the right slot can
now be skipped. The other terms in this expression represent
the cases which differ from the default behavior (i.e., for i =
0, 1, N − 1, N ).

B. LRU Cache Policy

The LRU policy employs a more flexible strategy by caching
all signals, and discarding older signals. To be more precise,
when a C/C occurs with a full cache, it will discard the oldest
signal to make room for this new signal. Thus, the decision to
skip a right slot can be reverted later, if too many other C/C’s
occur. The result is that this policy prevents a slot close to the
root from occupying the cache, when several other slots further
down the tree can benefit from this signal cache location.

An algorithmic description is also given by Tables I and
II. The changes at the receiver side are located within the
cache operation, which is not discussed in Table I. On the
user side, the value of fc is no longer identical for all users
and is initialized at k−1. As indicated by Table II every right
slot is therefore initially split after a C/C. However, when
k − 1 additional C/C’s follow before the right slot occurs,
the split is undone (i.e., both groups are merged again). The
counter fc keeps track of the additional number of C/C’s that
occurred and is updated only by users with cc ≥ 3 when a
C/C occurs. This latter rule implies that the users in the right
and left slot created by the initial split obtain a different fc
value (k−2 and k−1, respectively), which implies that when
k− 1 more C/C’s have occurred both groups update their cc
value differently and both groups are merged.
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Slot:
(cs) Initial ABCD

EFGH
ABC
DEF

AB A CDEF CD C EF E G

FB: C C/C C/C S/S C C/C S/S C S/S S/S

ss’: φ
ABCD
EFGH

ABC
DEF

AB φ CDEF CD φ EF GH φ

cache: GH GH GH GH GH GH GH

cc=0: ABCD
EFGH

ABC
DEF

AB A CDEF CD C EF E G

cc=1: GH CDEF B G EF D G F H
cc=2: G CDEF H G EF H G
cc=3: H G H G H
cc=4: H H
fc’: 1 1 0 -1 0 0 -1 0 0 1 1

time time

Fig. 2. Example of the persistent cache policy with k = 2 memory locations, solving the collision in Figure 3(a). The first memory location is used for ss,
the remaining location for cached signals. After each slot, the receiver applies the rules of Table I, producing feedback FB. Based on this feedback, the users
follow Table II to update their counter values cc and fc. ss′ represents the new saved signal.

Before we can analyze the average time LLRUN,c required to
resolve a collision of N signals, with c cache locations and an
LRU policy, we need to determine the probability that the right
slot cannot be skipped (i.e., is reverted in the implementation).
For this purpose we define RN,c as the probability that during
the resolution of N users at least c memory locations are
required at some point in time. Remark that in case of a
collision between two users one does not require an additional
memory location.

RN,c =



1 c = 0,
0 c > 0, N ≤ 2,
N−2∑
i=2

[(N
i

)
pi(1− p)N−i·

(1− (1−Ri,c−1)(1−RN−i,c))
]

+(pN + (1− p)N )RN,c +N(pN−1(1− p)
+p(1− p)N−1)RN−1,c

otherwise.
(3)

Now, computing LLRUN,c is straightforward, assuming that each
right slot can be skipped, except when the resolution of the left
slot requires all available memory locations and one location is
also needed for the right slot (i.e., there are at least two users).
Remark that LLRUN,c is not recursively defined as a function of
LLRUN,c−1:

LLRUN,c =


1 N < 2,

N∑
i=0

(
N

i

)
pi(1− p)N−i(LLRUi,c

+LLRUN−i,c + δi≥2δN−i≥2Ri,c) otherwise.
(4)

III. NUMERICAL RESULTS

For a windowed access algorithm stability corresponds to
stating that the average length L̄ of a CRP must be less than

(a) p = 0.5

MST
k Persistent LRU
1 0.66204 0.66204
2 0.68898 0.68903
3 0.69277 0.69277
4 0.69312 0.69312
5 0.69314 0.69314
∞ 0.69314 0.69314

(b) p close-to optimal

MST
k Persistent LRU Optimal p
1 0.66204 0.66204 0.5
2 0.68900 0.68904 0.4972
3 0.69277 0.69278 0.4993
4 0.69312 0.69312 0.4999
5 0.69314 0.69314 0.5
∞ 0.69314 0.69314 0.5

TABLE III
MSTS FOR THE k-SIGNAL MEMORY TREE ALGORITHM.

the window length α0 [3, Section 4.3]. By multiplying both
sides with λ, we can rewrite this as

λ <
λα0∑∞

N=0 L
∗
N

(λα0)Ne−λα0

N !

,

such that the right hand side becomes a function of λα0, with
λ the arrival rate of the Poisson process and ∗ either LRU
or PER. Numerically maximizing this function produces the
results as presented in Table III. A (close-to) optimal p was
obtained by numerical maximization.

When operating under the persistent cache policy, a single
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Fig. 3. Smallest example where the LRU and persistent cache policy differ
in terms of the number of skipped slots, with k = 2 memory locations. The
skipped slots are marked gray.

slot typically occupies the cache longer than in the LRU case;
intuitively, the LRU policy should therefore achieve a higher
MST. This is confirmed by Table III, but the gain is marginal
because the operation of both algorithms only differs when
there are at least six initial users (when k = 2). In terms of the
number of skipped slots, at least eight initial colliding users are
required, see Figure 3 for an example. Since windows having
that many participants are rare, the influence on the MST is
small.

By choosing a (close-to) optimal p (i.e., the probability of
choosing the left slot), the MSTs can be marginally increased.
This asymmetrical optimal choice for p can be explained by
noting that a right slot has more cache locations available
during its resolution, thus having on average slightly more
users in the right slot is optimal.

The effect of the window length α0 is shown in Figure 4.
We notice that the optimal number of arrivals (i.e., window
size α0) increases as a function of k. This seems obvious as
more memory locations only become beneficial if larger initial
collisions occur and SICTA is optimal for gated access. We
also see that the difference between the LRU and the persistent
policy becomes more pronounced for larger window lengths
α0. The persistent policy typically skips slots close to the root,
whereas the LRU policy skips mostly slots near the leafs. As
α0 approaches infinity (i.e., gated access) the effect of the
having additional memory locations vanishes for the persistent
policy. Intuitively, its limiting behavior should coincide with
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Fig. 4. Throughput for general k-memory windowed access algorithms, with
p = 0.5. x represents the average number of users in a length α0 window.
Gated access corresponds to x =∞.

the single memory location algorithm that has an MST of
0.5545 for gated access [11], [2]; simulation runs support this
intuition. As the LRU policy is mostly effective near the leaf
nodes, we do not expect convergence to the same point for all
k, as Figure 4 seems to confirm.

IV. CONCLUSION

Two variations of the SICTA algorithm that uses only k
signal memory locations were defined which differ only in the
replacement policy of the cache. The persistent policy, which
is less complex to design and analyze, has only a marginally
lower MST than the more complex LRU based policy. As k
increases, we can obtain throughputs arbitrarily close to the
SICTA algorithm, the MST of which equals ln(2) = 0.6931.
Indeed for k = ∞ both algorithms coincide. The results also
show that choosing k around 4 is already sufficient to obtain
an MST ∈ [0.693100, 0.693147].

REFERENCES

[1] D. Aldous. Ultimate instability of exponential back-off protocol for
acknowledgement-based transmission control of random access com-
munication channels. IEEE Trans. Inf. Theory, IT-33:219–223, 1987.

[2] Sergey Andreev, Eugeny Pustovalov, and Andrey Turlikov. Sicta modifi-
cations with single memory location and resistant to cancellation errors.
In NEW2AN ’08 / ruSMART ’08: Proceedings of the 8th international
conference, NEW2AN and 1st Russian Conference on Smart Spaces,
ruSMART on Next Generation Teletraffic and Wired/Wireless Advanced
Networking, pages 13–24, Berlin, Heidelberg, 2008. Springer-Verlag.

[3] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall Int., Inc.,
1992.

[4] J.I. Capetanakis. Tree algorithms for packet broadcast channels. IEEE
Trans. Inf. Theory, 25(5):319–329, 1979.

[5] E. Casini, R. De Gaudenzi, and O. del Rio Herrero. Contention
resolution diversity slotted ALOHA (CRDSA): An enhanced random



6

access scheme for satellite access packet networks. IEEE Trans. Wireless
Commun., 6:1408–1419, April 2007.

[6] A. Ephremides and B. Hajek. Information theory and communica-
tion networks: an unconsummated union. IEEE Trans. Inf. Theory,
44(6):2416–2434, October 1998.

[7] N. Golmie, F. Mouveaux, and D. Su. A comparison of MAC protocols
for hybric fiber/coax networks: IEEE 802.14 vs. MCNS. In Proceedings
of the 16th International Conference on Communications, pages 266–
272, Vancouver, Canada, June 1999.

[8] N. Golmie, Y. Saintillan, and D.H. Su. A review of contention resolution
algorithms for IEEE 802.14 networks. IEEE Communication Surveys,
2(1), 1999.

[9] D. Kazakos, L.F. Merakos, and H. Deliç. Random multiple access
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