Performance comparison of aggressive push and
traditional pull strategies in large distributed systems

Benny Van Houdt
Department of Mathematics and Computer Science
University of Antwerp - IBBT
Middelheimlaan 1, B-2020 Antwerp, Belgium
Email:benny.vanhoudt@ua.ac.be

Abstract—Distributed systems benefit substantially from the
ability to exchange jobs between temporarily heavily and lightly
loaded nodes. Depending on whether the lightly or heavily loaded
nodes initiate the job exchange, such strategies are termed pull
or push strategies. In this paper we compare the performance
of an aggressive push strategy with the more traditional pull
strategies in large distributed systems using mean field models.
We consider homogeneous systems, systems with fast and slow
servers as well as master-worker setups.

We show that even at high loads the aggressive push strategy
can outperform traditional pull strategies in a homogeneous
system (at the expense of increased network traffic), while the
pull strategies are superior in a master-worker setup where the
proportion of masters is low. We also indicate that the choice of
the best strategy is rather insensitive to the variation in the job
processing time and that the queue length distribution under the
aggressive push strategy decays faster than geometric.

I. INTRODUCTION

The performance of large distributed systems is heavily
influenced by the strategy they use to distribute the overall
work among the different processors/nodes. In this regard,
the two main adaptive load sharing mechanisms identified are
the pull and push strategies [3], [13]. Under a pull strategy
idle/underloaded nodes try to pull/take a job from other nodes
with pending jobs, as such the pull strategy is also known as
work stealing. Push strategies work in the opposite manner:
nodes with pending jobs attempt to push/assign some of their
jobs to idle/underloaded nodes.

Both pull and push strategies can be implemented in a
centralized or distributed manner. In the centralized setup,
requests to pull/push a job are sent to a central dispatcher
that has a complete (or partial) overview of the network, as
such requests are typically successful. In a distributed setup,
a node selects another node at random hoping that it can
perform a pull/push operation with this node. Push strategies
are generally considered more suitable for centralized systems,
whereas pull solutions have been implemented in a number of
distributed libraries (e.g., Cilk).

The performance of both push and pull strategies has been
studied by various authors. An initial celebrated comparison
for a homogeneous distributed system was presented in [3],
showing that pull strategies are more effective under high
loads, while push strategies are superior under low to medium
loads. Similar observations were made for heterogeneous
systems in [10], where two types of nodes where studied

using decoupling assumptions as in [3] as well as matrix
analytic methods [7]. A similar approach to study the influence
of task migrations in shared-memory multi-processor systems
was presented in [14]. In all of these papers, a pull operation
is initiated whenever the number of jobs drops below some
threshold 7" > 1, while push operations are initiated by new
arrivals only, i.e., if the number of jobs in the queue is at least
T upon arrival of a new job. When job transfer and signaling
delays are assumed negligible setting 7' = 1 is optimal [10],
[9].

In this paper we will introduce a more aggressive class of
push strategies that attempt to push all the queued jobs at
regular time instants and we compare its performance with
the more traditional pull strategies (with 7" = 1) using mean
field models. Mean field models are a provable approach to
obtain exact results for infinitely large distributed systems (at
time t) [6], [1], [5] and their usefulness in the analysis of large
distributed systems was already demonstrated in [11], [4], that
analyzed a set of distributed pull strategies where idle nodes
steal one or half of the pending jobs, and [15] that considers a
number of centralized push strategies where each node consists
of a set of C' processors and local jobs are pushed as soon as
all the processors in a node are occupied.

Using our models, the following insights on the effective-
ness of the aggressive push strategy are obtained:

1) In a homogeneous system, the aggressive push strategy
outperforms the traditional pull strategy, at the expense
of increased network traffic. The queue length distri-
bution under the aggressive push strategy decays faster
than geometric, as opposed to the traditional strategies
in [3], [10], [11] that have a geometric decayl.

2) The relative performance of the different strategies is
rather insensitive to the job length distribution.

3) When the nodes have different processing speeds, a
good strategy exists in avoiding pull (push) operations
from (to) nodes that are faster (slower). Ignoring the
different processing speeds however causes only a minor
performance degradation.

4) In a master-worker setup (i.e., when all the job arrivals
occur in some of the nodes only, called the masters),
the traditional pull strategies tend to perform better as

'Other push strategies with faster than geometric decay were introduced
and analyzed in [12].

the proportion of masters decreases and are superior to
the aggressive push strategy, while requiring a smaller
request rate.

The paper is structured as follows. Section II introduces
the different push and pull strategies analyzed in this paper
and discusses their relation with existing strategies, while
Section III discusses their corresponding mean field models.
The computational aspects and convergence results of these
models are treated in Section IV and V, respectively. Finally, a
large variety of numerical results and the insights they provide
are found in Section VI

II. PULL AND PUSH STRATEGIES

We consider a discrete-time system consisting of Ny type
k queues, for 1 < k < K, where each queue consists of a
single server and a buffer that is able to store Bj jobs. We
denote 7y, = Ni/N, with N = Zk N}, as the fraction of
queues of type k. As in [4], [11], [10], each type k queue
is subject to its own local Poisson arrival process with rate
Ak. Jobs processed by a type k server require a discrete-time
phase-type [7] distributed amount of work with parameters
(Bk, Hy,), irrespective of where the job originated from.

All the strategies will make use of a stochastic matrix P
with entries p;;, with 1 <4, 7 < K. The use of P is analogue
to the matrix F' in [10] to support what the authors call biased
probing. We start with the introduction of the aggressive push
strategy, called Push, and the somewhat less aggressive Push
R strategy:

1) Push: Whenever a type k queue has ¢ > 0 packets
buffered at the end of a time slot, it will, for each of
its g packets, select a type k' queue at random with
probability pgrs and will transmit a request packet to
this queue to inquire whether it is idle and therefore able
to process one of the waiting jobs. Only idle servers are
allowed to accept a job, thus if an idle server receives
multiple requests, it accepts one at random?.

2) Push R: This strategy is the same as the push strategy
above, but a single queue is only allowed to transmit R
request packets per time slot. The above push method
therefore corresponds to the Push oo strategy. The pa-
rameter R is assumed identical for all the queues.

The aim of this paper is to assess the relative performance of
these new strategies to the following two more traditional pull
strategies:

1) Pull: Whenever a type k server is or becomes idle at
the end of a slot, it attempts to pull (i.e., steal) a job
from another server. To this end, it randomly selects
a type k' queue with probability pgr- and indicates
that it is willing to process one job from this queue’.
In other words a specific type k' queue receives the
request with probability py/ /Ny. As all the idle servers

2Notice, when a single queue transmits ¢ > 1 requests it should clearly
select ¢ different queues. In the mean field the probability of selecting the
same queue twice is zero.

3Actually, when k = k’ the queue should avoid selecting itself, as this
is clearly never useful. However, in the mean field model, the probability of
having such an event is zero.

in the system transmit such a request, a single server
might receive multiple requests. When a server receives
s requests while it has ¢ > 0 packets waiting in its
buffer, it will accept & = min(s, ¢) requests by randomly
assigning a jobs to the s requesting servers.

2) Pull R: This strategy is the same as the pull strategy
above, but aims at reducing the number of requests
packets that need to be transmitted at the end of each
time slot. The parameter R indicates that an idle server
is only allowed to transmit a request if it became idle
during one of the last R time slots. The above pull
method therefore corresponds to the Pull oo strategy.

The traditional pull strategies considered in [3], [10] are
similar to the Pull (R) strategy above. The main difference is
that the pull strategy of [3], [10] (with 7" = 1, which coincides
with the poll when idle strategy in [8]) sends a request only
when the server becomes idle, so at first it looks like the Pull
R =1 strategy, but an idle server will retry when the request
fails (at most L, times). Thus, their pull strategy resembles
a Pull R with R = L, (which even for fairly small L, will
be shown to perform close to the Pull strategy). However,
sending the retries in the same slot as in [3], [10] should
reduce the mean response time somewhat as there are no idle
slots between retries. The push strategies of [3], [10] are quite
different from our Push (R) strategy as a server only tries to
push newly arriving jobs that find the server busy, hence, they
are even less aggressive than our Push 1 strategy.

To compare the performance of the push and pull strategy
we will introduce a mean field model in the next section.
For this model, we will assume that request and job transfer
times are equal to zero as in [3], meaning jobs are exchanged
instantaneously. The assumption of having a zero transfer time
for requests is quite realistic as transferring jobs typically
requires considerably more time than sending a request. The
models in [10], [9] do take an exponentially distributed job
transfer time into account (while still assuming zero transfer
time for the requests). Their results show that when increasing
the transfer time, the delays clearly increase, while the perfor-
mance differences between the various strategies become less
significant (but remain similar).

III. MEAN FIELD MODELS

In this section we present a mean field model for each of
the four strategies introduced in Section II. As explained in
Section V, these models will capture the system behavior when
the number of queues N grows to infinity and will provide us
with a good approximation when the number of queues [V is
large. Notice, when N grows to infinity, the ratios v = N /N
remain identical.

We will observe the queue length and server phase of each
queue at the end of each time slot (and the time since the
server became idle in case of the Pull R strategy). The events
are assumed to occur in the following order: (a) we let the
possible service completion or change of server phase take
place, (b) we add the arrivals that occurred during the last
time slot and (c) we transmit the necessary request packets
and adjust the queue lengths accordingly. The state transition

from time ¢ to £+ 1 in each of the models is therefore described
by the product of three matrices, one for step (a), (b) and (c).

The changes that occur to the state of a specific type k queue
in step (a) and (b) clearly do not depend on the state of the
other queues, as such these will be described by the matrices
Sk (t) and Ay (t). The changes that occur in step (c) clearly do
depend on the state of the other queues. More specifically they
will depend on the fraction of queues that are in a specific state
as explained below and the change of state of a type k queue
during step (c) is therefore described by a matrix Qy(u(t)),
where p(t) will be the occupancy vector at time t.

A. Pull strategy

The state of a single queue of type k at time ¢ under the
pull strategy consists of its queue length b, that takes values
between 0 and By, + 1 with By, the size of the waiting room,
and its current service phase s; that varies between 1 and
ng, where nj is the order of the phase-type representation
(Bk, Hy), that is, i is a stochastic vector of length nj and
Hj, a square substochastic matrix of size n;. When the server
is idle, the phase s; represents the initial phase of the next
customer that will be served by the queue.

Step (a): During this step we take the possible service
completions and changes of service phase into account. The
matrix that captures these transitions is of size ny(Bj + 2)
and the probability of going from state (b, s:) to (b}, s}) is
defined as follows:

(Sk) (bes0),(b),57) =

1 by = b, =0, = s},
(Hk)s,s, 0< b, =b, 0
(1- 2221(Hk)stu)55; 0<by=0b;+1,

0 otherwise,

where (Hy);; represents entry (i,j) of the matrix Hy and
1 — > (Hp)s,u is therefore the probability of having a
service completion given that the server was in phase s;.

Step (b): This step adds the possible arrivals that occurred
during the last time slot. Denote exp(—z)z? /il as a'*) and let
al(i) =i a{™). The arrivals clearly do not affect the service
phase which implies that the probability of going from state
(b}, s}) to (b, s)) is defined as follows:

(Ak) (v, (b7 ,57) =

a™ b 4+i=b!< Byi>0,s =s,

A
) yye U SU =Bi+1,5) =5,)
0 otherwise,

because there are at most By + 1 jobs present in a type k
queue.

Step (c): During this step the request packets are transmitted
and the queue lengths get adjusted according to the outcome
of these requests. With respect to the state of a type k queue,
we need to know (i) the probability that a request is accepted
as this determines the probabilities out of the states of the
form (0, s}) and (ii) the probability that r requests arrive to
a type k queue as this affects the transition probabilities of

the states of the form (b}, s}) with by > 1 as the number of

buffered packets equals b} — 1.

These probabilities will depend on the fraction of the
queues that are in a specific state (b}, s}'), as such we denote
wr (Y, sy) as the fraction of queues that are: (i) type k and (ii)
in state (b}, s}) after step (b). Denote (t) as the stochastic
vector of length), ny(Bj + 2) that holds all the values
wr (Y, sy). Further let oy (b)) = Z:{le w(by,sy), ie., it is
the fraction of queues that are: (i) type k and (ii) have a queue
length of b;.

To simplify the derivation of these probabilities, we start
with the special case of a homogeneous system, i.e., K =1,
and drop the index k. If we consider a system consisting of
N queues, we find that Na(0) queues will send out a request
packet and therefore any queue will receive r request packets
with probability

Na(0)\ 1 1\ YO a0y
< r(>>NT (1 - N) — <7") exp(—a(0))

3)
as N goes to infinity. In other words the number of requests
received has a Poisson distribution with parameter (0). In a
heterogeneous system, one similarly derives that the number
of requests received by a type k queue from the idle type k'
queues is Poisson distribution with parameter oy (0)pg/x /7

RERIEL

- Pk Nay,/ (0)—r
Ni,

exp(—au (0)prri /i)

and the total number of requests received by a type k queue
is therefore Poisson with parameter

K
Akreq(p(t)) = Z i (0)prr / V-
k=1
We will simply refer to this rate as Ay cq.
This observation allows us to specify the probability of
going from state (b}, s}) to state (byy1, s¢+1) during step (c)
for b > 0 as follows:

(Qr (1) b 57),(ber1,5011) =

Ao o
ag k,req) 1<bipr =b —i,0>0,8) = S¢41,

>\ re

Ebff;f)l 1=bip1 <b/,s) = 5141, @
0 otherwise,

where the dependency on the vector pu(t) is via the request
rate g req, Which depends on the values p (0, sy) for &' =
1,...,Kand sf =1,...,np.

When by = 0, we are considering a type k queue that
transmitted a request and we need to know the probability that
this request got accepted to determine whether b;,; equals 0
(not accepted) or 1 (accepted). Notice, a request can also be
rejected when there are ¢ > 0 waiting jobs in case the number
of arriving requests r exceeds q. To simplify the derivation we
start once more with the homogeneous system, i.e., K = 1.

The probability that the request gets rejected depends on
the number of jobs buffered in the selected queue, this number

equals ¢ — 1 with probability «(), and on the number of other
requests received by the selected queue, which has a Poisson
distribution with parameter «(0) and is independent of the
number of buffered jobs. As a result the probability that the
request is not accepted equals

B+1 e’}

, r+1—(i—-1)
D+ > a6) Y a <“(0>>—T o —
=2 r=i—1

which can be simplified to
i—1

1) +za(i) (a ~ 50 agi(’)),

if &(0) > 0 and otherwise it equals «(1). In the heterogeneous
case one similarly finds that a request send by a type k queue
is rejected with probability gy re;(1(t))

(a0)
(i-1)+

pkk'
Qk,rej Z O‘k’ + Qr (1)+
p—1 F
R i) (P AL O
D awl) (s = a7),)
i—2 k' ,req

where the &/-th term equals pyir o (1) /v whenever A\ req
equals zero. The transition probabilities for b} = 0 therefore
equal

(Qr(1(t))) (0,57, (besr,5051) =
re,res (1(1)) by = bir1 = 0,8 = s41,
L= Grrej(u(t)) b =bip1 —1=10,5/ = 5141,(6)
0 otherwise.

B. Pull R strategy

The mean field model for the pull R strategy is very similar
to the one for the pull strategy, except that we need more state
information when the server is idle. More specifically, we will
replace each state of the form (0, s;) by a set of states (—b, s¢)
with 0 < b; < R, where state (—b, s;) indicates that the server
is idle, that b; more requests may be transmitted and the next
job that is served will start service in phases s;. This affects
the matrices Sy, Ay and Qg (1(t)) in the following manner.

Step (a): When the server becomes idle we no longer enter
a state of the form (0, s}), but instead enter state (—R, s}). In
case the queue was in a state of the form (b, s;) with b, <0,
we simply remain in the same state. In other words,

(Sk) (b0, (050) =
1 by = by < 0,5 = s,
(Hk:)stsi 0< bt = b;’
(1= 205 (He)sw)Be, 1<bi=bi+1, (D
or by =1,b, = —R,
0 otherwise.

Step (b): For b, > 0 all the transition probabilities remain
as in Eqn. (2). Whenever the system state (b}, s}) is such that
b, < 0, we remain in state (b}, s}) with probability a(()’\’“) or
move to state (i, s};) with probability ag'\"' for 0 < i < By

(and to state (B + 1, s}) with probability a%z)+1)+).

Step (c): We define pp(b),s}) and (b)) as in step
(c) of Section III-A, except that ay O‘)? no longer equals

Dei—a (0, s7), but equals 30, 7o (b, sy) in-
stead. Additionally we define
-5 S

// =1 b//_l

such that the number of requests received by a type k queue
is Poisson with parameter

E Ozk/

k'=1

Ae.req (14 —)Prrk/ Vs
which we denote as My .4 to ease the notation.

With this modified value for A ,.cq, We can now make use
of Eqn. (4) to describe the transitions out of the states with
by > 0. Further, with the new definition of «(0) Eqn. (5) still
expresses the probability that a request from a type k queue
is rejected. Thus, when b} < 0 we now find

(Qk(ﬂ(t)))(bél»sf)v(bt+1,5f,+1) =
Qrres (1(1)) bip1 =0 +1<0,8 = 5411,
L= Grrej(p(t)) b < 0,041 = 1,8 = 5441,
1 bg = bt+1 = 0, Sg = St+1
0 otherwise,

®)

as the number of attempts to pull in a job is reduced by one
after each failed attempt, while the queues with by = 0 do not
send requests.

C. Push (R) strategy

The Push and Push R strategy can be captured by means
of a single mean field model where setting R = oo results in
the Push strategy. As in the pull model of Section III-A, the
state of a type k queue is represented by (b:,s;) where the
queue length b; varies from 0 to By + 1 and the service phase
s¢ from 1 to ng. Moreover, both step (a) and (b) are identical
to the pull model, meaning the matrices Sy, and Ay are given
by Eqn. (1) and Eqn. (2), respectively. As such it suffices to
determine the matrices Q(u(t)) of step (c).

Step (c): We define (b}, sy) and oy (b)) as in step (c) of
Section III-A. Additionally, we define

R—1 By
+) = dap(i+ 1)+ R ap(i+1).
=1 i=R

Analogue to the pull model one finds that the number of
requests that are received by a queue is Poisson with parameter
a(+) in the homogeneous case, while in a heterogeneous
system a type k queue receives a Poisson distributed amount
of requests with parameter

t) = Z ap (+)

k=1

Ak,req (14(Pk / Ve

which we denote as Ay ., for brevity. The probability that
an idle type k£ queue remains idle is therefore equal to
exp(—Ag,req), Otherwise it will accept one job and move from
state (0,s}) to (1,s)).

When a type k queue transmits 7 request packets (because it
was in a state of the form (r + 1, s}) after step (b) if » < R),
we must determine the probability that j of these requests
are successful, for j = 0 to r. A request is successful with
probability 1/(i + 1) in case ¢ other queues transmit a request
to the same queue and given that this queue is idle. Thus,
in the homogeneous system, i.e., when K = 1, a request is
successful with probability

< glal+)

Qe (1)) = ()3 “

)

which simplifies to a(0)(1—exp(—a(+)))/a(+) if a(+) >0
and to «(0) otherwise. In this case the number of suc-
cessful requests is binomially distributed with parameters
(7 Gsuc(u(?)))-

In the heterogeneous system the number of successful
requests is still binomially distributed, but the success proba-
bility depends on k and is determined by

1 — exp(—Ak,req)
Ak:,req

Prk
Qs 0
Yk ()

K
ke suc(p(t)) = Z

k'=1

b

where the &’-th term equals pgxr v (0) /v, Whenever A\ req
equals zero. To ease the notation we refer to gy suc(p(t)) as
qk,suc-

In conclusion, the matrix Q(u(t)) can be written as

(Qk(M(t)))(b;/’sy)v(bt-u»St+1) =
exp(_)\k,req)
1-— exp(_Ak,Teq) ‘
(Z)qllasuc(l - qk,suc)ril

bt+1 = b;/ = 0, Sé/ = St+1,
bt+1 = 1, bg = O7 S;I = St+1,
bt+1 = b;/ —1 2 1,82/ =
sty1,7 = min(by — 1, R),

0 otherwise,

IV. PERFORMANCE MEASURES

As some of the main performance measures can be com-
puted more naturally from the system state after step (b),
we let pp(t) denote the state at time ¢ after step (b). We
define p(0) = (7,0, ...,0), meaning we start with an empty
system at time ¢ = (. Next, the occupancy vector at time ¢+ 1
can be computed naturally as

pr(t + 1) = (1) Qr(1(t)) Sk Ak,

fork=1,..., K, where u(t+1) = (1 (t+1),. .., pr(t+1)).
In order to approximate the steady state of the finite system
with N queues, we compute a fixed point by repeating this
iteration until ||u(t +1) — (t)]|co < €, for some € small (e.g.,
10712).

When the system is not highly loaded, this iterative scheme,
that requires O(Y 4, n2B2) time per iteration, converges
very quickly. However, when the system is highly loaded
(meaning some queues are close to being unstable if the queues
have infinite length), many thousands of iterations might be
required, making the iteration slow. Therefore, we rely on the
slightly modified iteration below

pe(t+1) = pr(t + 1)Qr(u(t)) Sk Ak,

where the first py(t) is replaced by ug (¢ + 1) on the right-
hand side. This implies that we need to solve a linear system
during each iteration, as opposed to a vector-matrix multi-
plication, which increases the time complexity per iteration
to O(Yr_ n?B3). However, the number of iterations is
substantially smaller and remains small even when the system
is highly loaded, while both iterations were found to converge
to the same solution. As such this iteration computes the
performance measures of any of the systems discussed in this
paper, irrespective of the load, in a matter of seconds.

Having obtained the fixed point p, with entries py(b”, s”),
fork=1,....K, " =0,...,By+1and s" = 1,...,n,
we can compute performance measures such as (a) the rate of
pull/push requests, (b) the rate of job migrations (i.e., amount
of network traffic) and (c) the mean response time (via Little’s
formula). Whenever we compute the mean delay, we ignore the
0.5 slots that should be added as the Poisson arrivals occur
uniformly within a slot. For instance, for the heterogeneous
Pull model these are found as

K ng
@ >y (08"

k=1s""=1

K ng
(b) Z Z 1120, 5") (Qr (1)) (0,57), (1,57

k=1s""=1
> / (Z Ak’Yk) ~
k

K np Bip+1
© (Z
Similar expressions can be obtained for the other strategies.

Z Z b”,uk(b”,s”)

k=1s""=1b"=1

V. PROOFS OF CONVERGENCE

Each of the four models introduced in Section III fits in
the framework introduced in [1] for a general system of
interacting objects. When the number of objects tends to
infinity and under some mild conditions, such a system is
shown to converge to its mean field [1]. In our case, the
objects are of K different classes, the length ¢, = ng(Bx+1)
occupancy vector at time ¢ of the type k objects in the finite
system with N objects is denoted as M} (¢) and the evolution
of the system is described by some matrix Ry (M (t)), with
MN(t) = (M (t),...,ME(t)). The main convergence result
in [1] is re-stated here, in a simplified form that suffices for the
model at hand, as Theorem 1, which relies on the following
condition.

Condition 1 (Hypothesis H in [1]). For all ¢,j, as N — oo,
[RY (m)];; converges uniformly in m € RY, with £ =", ly,
to some [Ry(m)];;, which is a continuous function of m.

Theorem 1 (Theorem 4.1 in [1]). Assume that the initial
occupancy measure M,ﬁv (0) converges almost surely to a
deterministic limit (1,(0). Define p(t) = (p1(t),. .., pr(t))
iteratively from its initial value 11(0) = (u1(0),...,ux(0)),
fort >0, as pp(t+1) = pr(t)Ri(u(t)). Then, for any fixed
time t, almost surely, imy_, oo M (t) = pr(t).

Therefore, to apply Theorem 1 we need to ensure the almost
sure convergence of MY (0) to uy(0), as N — oo, as well
as to verify that Condition 1 holds. For our models Ry(m) =

25 T T T T T T T T T

PullR=1, p =0.95
o 1

ny
o
T

Mean delay (slots)
o

Pull, p = 0.95
I———— * % ol 8 1

-
o
T

Pull R=1, p=0.8
Pull, p=0.8
e * * * * * * o
5
25 50 100 200 400 800 1.600 3.200 infinity
Number of queues N

Figure 1. Convergence to the fixed point of the mean field for the Pull
strategies

Qr(m)SkAyg, for k = 1,..., K. These matrices are clearly
continuous in m as the entries of Qx(m) are combinations of
polynomials and exponentials in the entries of m (i.e., they are
even continuously differentiable in m). Although we have not
discussed the transition matrices Rj’ (m) in Section III, it is
not hard to see that these converge uniformly to Ry (m). For
instance, for the homogeneous Pull model, this follows directly
from the fact that the convergence in Eqn. (3) is uniform in
a(0) for «(0) € [0, 1].

To establish the almost sure convergence of MY (0) to
1k (0), we first need to specify the type k of each of the N
queues. We do this in a manner similar to [5], where we define
| Nvik| = | Nk queues of type k. The remaining N—>_, | Ny
< K queues are allocated randomly with the probability
of being a type k£ queue proportional to the fractional part
of N7, — |Nk|. Additionally, we assume that the system
is empty at time zero, that is, my(0) = (7%,0,...,0) and
M} (0) = (| Ng|+i,0,...,0)/N given that i of the remaining
queues are of type k. As in [5], this guarantees the almost sure
convergence of M (0) to 11x(0).

By applying Theorem 8 in [5], we can also show that the
difference between the finite system and the mean field at
time ¢ decreases according to /N (for any t). These results
however are only related to the convergence at time ¢, while we
are interested in the limit as ¢ goes to infinity. To prove that the
fixed point* is the limit of the steady state distributions of the
finite systems, one additionally needs to prove that (i) the fixed
point is a global attractor (i.e., the same fixed point is obtained
irrespective of the state at time ¢ = 0) and that the limits in
N and t can be exchanged. Our numerical experiments seem
to indicate that this is the case, but we do not have a formal
proof (which is not uncommon when developing models of
this type, see [11], [4]).

In order to demonstrate the convergence in N of the steady
state of the finite system towards the fixed point, we used time

4We have at least one fixed point due to Brouwer’s theorem as the set of
stochastic vectors is convex and compact, while the entries of Ry (m) are
continuous in m

18 T T T T T T T T T
16 J
Push R=1, p =0.95
141 .
)
[S)
w 12f 1
>
o
3 10} 1
S Push, p = 0.95
1)
s st .
Push R=1,p =0.8
ol e x * * x o |
I * * * *—x o
Push, p =0.8
4t i
25 50 100 200 400 800 1.600 3.200 infinity
Number of queues N
Figure 2. Convergence to the fixed point of the mean field for the Push
strategies
16
141
@
]
w 12f
[} Push R
£ No Push
o 10 i
(72}
c
o
jo N
g 8]
C
©
[}
= 6
4F i
0.1 0.15 0.2 0.25
Arrival rate A (packets per slot)
Figure 3. Mean packet delay as a function of the arrival rate A for the Push
strategies

consuming simulations in Figures 1 and 2 for the mean delay
of the Pull, Pull 1, Push and Push 1 strategy in a homogeneous
system with a load of 0.8 and 0.95 (as well as for other cases
not depicted here). Each of the simulation results was obtained
from a single long simulation run, such that the width of the
95% confidence intervals was well below 1% of the mean
delay using the batch means method. From these figures it
is apparent that, for a fixed N, the mean field becomes less
accurate as the load increases (this was also confirmed using
additional experiments), but convergence to the mean field
still occurs. Furthermore, the relative order of the strategies
seems quite insensitive to the number of queues in the system.
Finally, the mean field is always optimistic in comparison
with the finite system, which is not all that surprising as the
system becomes more deterministic as the number of queues
increases.

n
&)

Request rate (requests per slots)
(&)

0.5

0.15 0.2 0.25
Arrival rate A (packets per slot)

Figure 4. Request rate as a function of the arrival rate A for the Push
strategies
16]
|
I
141 fl
& I
5 |
@ 12 H
© |
E No Pull I
@ 10 I
2 /
c
S /
@ /
o 8 /
c
@
(4}
= 6 1
4 =" 4
0.1 0.15 0.2 0.25
Arrival rate A (packets per slot)
Figure 5. Mean packet delay as a function of the arrival rate A for the pull
strategies

VI. NUMERICAL RESULTS
A. Homogeneous system

In the homogeneous system setup, all the queues are subject
to the same arrival rate, while the processing time of a job is
assumed to be geometric with a mean of 4 slots. The arrival
rate will be varied from 0 to 0.25, meaning the system load is
between O and 1. The buffer size was set to B = 60, meaning
the loss rate can be neglected.

We start by comparing the mean packet delay and request
rate for the push strategies in Figures 3 and 4, respectively.
As expected increasing R reduces the delays, where moderate
values of R suffice, unless the system load is close to one. The
signaling overhead for the Push strategy is substantial for high
loads, but perhaps not as high as expected. Indeed, the request
rate of the Push strategy corresponds to the mean queue length
and even for loads as high as 99% this value stays below 3.
The Push R strategy causes some reduction in the signaling
overhead, but the reduction is only significant when the load
approaches one.

0.5

0.45

0.4r

0.35

0.3f

Pull R=2

Request rate (requests per slots)
5

Pull R=1

0 0.05 0.1 0.15 0.2 0.25
Arrival rate A (packets per slot)

Figure 6. Request rate as a function of the arrival rate X for the pull strategies

Figures 5 and 6 compare the mean packet delay and request
rate for the traditional pull strategies, respectively (where the
results for the Push strategy are repeated for the purpose of
comparison). Again, increasing R reduces the mean delay at
the expense of a higher request rate. More importantly, when
we compare the Pull and Pull R strategies, small R values are
able to approximate the mean delay of the Pull strategies rather
well while significantly reducing the signaling overhead for a
broad range of arrival rates A. This result somewhat resembles
the one in [3], where small L, values where shown to suffice
as well (see Section II for its definition).

When comparing the Pull and Push strategies, we find that
all perform well for low and medium loads. The Push strategy
however outperforms the Pull strategy for all the arrival rates
A, there the gains become quite significant at high loads. Of
course, this reduction in the mean packet delay comes at the
expense of a higher request rate. The performance of the
Pull strategy can clearly be further improved by allowing idle
servers to send multiple requests in the same slot. However,
selecting the proper number of request packets is hard for
an idle server as it has no information to rely on. This is
in contrast to the Push strategy where the number of waiting
packets is known and used.

Figure 7 depicts the queue length distribution for various
pull and push strategies for a system with a load of 0.95. The
tails of the distributions all appear to be geometric except for
the Push strategy. This observation is in agreement with the
results for the pull strategies in [11], for which the queue
length distribution was proven to decay geometrically (for
the simple models). The faster than geometric decay of the
aggressive Push strategy can be understood intuitively as
follows. The queues that belong to a distributed system that
uses a push strategy have an effective service rate that is clearly
larger than the speed of their server, as some jobs are pushed
to other queues. This relative rate is clearly bounded when we
apply the Push R strategy (resulting in a geometric decay),
but grows proportionally with the number of buffered jobs in
case of the Push strategy. Such a proportional growth, as in
a traditional M/G/oco queue, leads to a faster than geometric

107 g
Pull R=1
>10"t
=
]
Ke]
e
o 10° ¢
107° |
M/G/e queue
10_10 L L L L
0 5 10 15 20 25 30 35 40
Queue length n
Figure 7. Queue length distribution for various Pull and Push strategies for
p=0.95

o
o
T

No Pull/Push /

o
T
L

>

&)
T
.

Pull R=1

IN
T
\
s

Relative increase in mean delay
w
w (3]
. T
\
.

251 - - 4
7 Pull e
2r _ JEESSREEE 1
-
/ - -
15F /A7 T 1
// Push
1 = L L L
0 5 10 15 20
SCV of the processing time
Figure 8. Mean delay as a function of the SCV divided by the mean delay

when the job lengths are deterministic

decay, that is, the number of busy servers in an M/G/oco queue
is Poisson distributed with parameter p (its distribution is
also depicted in Figure 7, for p = 0.95, showing a similar
behavior). This fast decay also explains the short mean queue
lengths even when the load is high.

B. Impact of job length variability

In this section we study the impact of the variability of
the processing time of a job. As in the previous section we
assume a mean processing time of 4 slots, but let the squared
coefficient of variation (SCV) vary from 0 to 20, where
an SCV of 3/4 corresponds to the geometric distribution.
To obtain a discrete-time phase-type distribution (3,S) that
matches the mean and SCV, we use the method of [2].

Figure 8 shows the mean delay as a function of the SCV
divided by the mean delay when the job lengths are determin-
istic and this for the Pull, Pull 1, Push and Push 1 strategy.
The arrival rate was fixed at 0.225, meaning the system has
a load of 0.9 (similar results are obtained for other loads).
We find that the Push strategy is the least sensitive to the job

Mean delay / log(SCV)

er Push

0
0 20 40 60 80 100

SCV of the processing time

Figure 9. Mean delay as a function of the SCV divided by log, SCV

length distribution, followed by the Pull, Push 1 and Pull 1
strategy. This implies that the relative order of the strategies is
quite insensitive to the SCV and focusing on geometric service
times is also quite representative for other distributions.

For the system without pulling or pushing (i.e., when we
have a set of independent M /PH/1 queues) the mean delay
equals

A(SCV +1)m?
2(1—=>xm)
where m = 4 is the mean service time, i.e., the mean
delay increases linearly with the SC'V. For the pull and push
strategies, the increase behaves more like a function of the
logarithm of the SCV, see Figure 9 where we divided the mean
delay as a function of the SCV by the logarithm of the SCV.

C. Fast and slow servers

In this section we look at a heterogeneous setup and assume
we have two types of queues: queues with fast (type 1) and
slow (type 2) servers. We assume that a job processed by a
fast server requires a mean service of 3 time slots, while the
slow servers process the same job in an average time of 5
slots. Given the results in the previous two sections we limit
ourselves to geometric service times and only compare the
Pull and Push strategy. We further assume uniform arrivals,
meaning each queue (whether type 1 or 2) is still subject to
Poisson arrivals with rate A\ and therefore the slow servers
are more heavily loaded. The systems considered in [10]
also include setups with fast and slow servers (called type-2
systems), but in their case the load in each queue is assumed
identical.

We will consider three different selection strategies for
sending the request packets, which results in the following
combined strategies:

o Pull/Push Uniform: when a server transmits a request, it
randomly selects its destination irrespective of whether it
is slow or fast (P = (0.5,0.5;0.5,0.5))

e Pull Slow: a server only tries to pull jobs from slow
servers, i.e., it randomly selects a slow server (P =
(0,1;0,1))

Pull Unif

- - -
o N S

Mean response time (slots)
oo

01 012 014 016 018 02 022 024 026
Arrival rate A (packets per slot)

Figure 10. Mean delay as a function of the arrival rate X for the pull strategies
in a fast/slow server setting

16

- - -
o] o n S

Mean response time (slots)

(2}

.
0.14 0.16 0.18 0.2 022 024 0.26

Arrival rate A (packets per slot)
Figure 11. Mean delay as a function of the arrival rate A for the push

strategies in a fast/slow server setting

o Push Fast: a server only tries to push jobs towards the
fast servers, i.e., it randomly selects a fast server (P =
(1,0;1,0))

« Pull Slower: a server is not allowed to send a request to
a faster server (P = (0.5,0.5;0,1))

o Push Faster: a server is not allowed to send a request to
a slower server (P = (1,0;0.5,0.5))

These strategies can be compared to the different types of
biased probing considered in [10]. Note, we only consider
strategies that are independent of the system parameters and do
not attempt to optimize the entries of P as such optimal values
will clearly depend on the detailed statistics of the arrival and
service processes.

In Figure 10 and 11 we compare the mean delay of the pull

and push strategies, respectively.

a) Pull Strategies: A first observation is that the Pull
Slower strategy outperforms the Pull Uniform for all loads,
thus if we know the identities of the fast and slow servers, we
can achieve some gains over the entire range of loads. The

Pull Slow strategy on the other hand is less effective, unless
the load is very high. The superiority of the Pull Slow strategy
under high loads stems from its stability properties discussed
next.

If we consider a system with N queues of infinite length,
where a fraction ~; of the servers is fast (with a mean service
time of my) and 72 = 1 — 73 is slow (with a mean service
time of my), one can show that the system is stable under the
Pull Slow strategy as long as

A< Ly 02 9)

To prove this it suffices to show that if the system becomes
unstable, all the slow queues become saturated simultaneously.
When the slow servers are saturated any request from a
fast server is successful under the Pull Slow strategy. Thus,
the highest allowable arrival rate corresponds to the average
service rate of a server.

For the Pull Uniform and Pull Slower one can also argue
that instability corresponds to saturated slow servers. However,
instability occurs sooner as some of the requests send by the
fast servers may be unsuccessful even when the slow servers
are saturated. Thus, there is a positive probability that some of
the fast servers are idle. When the slow servers are saturated
the Pull Uniform and Pull Slower strategy coincide as they
only differ in the selection strategy of the slow servers, but a
slow server never transmits a request.

Determining the exact value for the instability point is very
hard in this case and seems to depend on the service time
distributions (and not merely on their means). Nonetheless, a
tight lower bound that applies to any service time distribution
can still be derived. For the example in Figure 10 this bound
equals 9/35 ~ 0.2571, while the average service rate is
4/15 ~ 0.2666.

b) Push Strategies: Similar to the pull strategies the
Push Uniform is always outperformed by the Push Faster,
indicating that one can exploit the knowledge of the fast and
slow servers. The Push Fast is however not the best strategy
under high loads, because as opposed to the pull strategies,
all the push strategies have the same stability characteristics
(given by Eqn. (9)). This can be understood easily by showing
that instability corresponds once more to saturated slow servers
and when some of the servers are saturated all the idle fast
queues will receive requests even if a request is only send to
a fast server with a low positive probability.

For low and medium loads, the Push Fast strategy performs
best and achieves a mean delay below 4 (which is the mean
delay as A approaches zero), as some of the jobs that would
require on average 5 time slots in a slow server are now served
by a fast server with a mean of 3 slots only.

D. Master-worker system

In this section we consider a master-worker setup as in
[4], that is we consider a system with two types of queues
where the type 1 queues, called masters, receive all the work,
while the type 2 queues, called workers, receive no jobs.
The objective is to compare the performance of the Pull and
Push strategy only, given that a fraction 7; of the queues are

16 T
— Push, y1=1/2
14r ———Push, y,=1/3 1
,,,,,,,,, Push, y1=1/10
@ 3 Pull, y,=1/2 /]
© .
3 — ——Pull, y1=1/3
% 10} 1
< || Pull, y,=1/10
©
T 8 .
)
=
6f ... J
g e 1
0.75 0.8 0.85 0.9 0.95 1
System load p
Figure 12. Mean delay as a function of the arrival rate A for the Pull and

Push strategy in a master-worker setting

masters. Notice, in such a setting we cannot deploy the Pull R
strategy as a worker would become disabled if R consecutive
requests failed. The Push R strategy can still be used, but to
get a reasonable performance R should be chosen sufficiently
large (e.g., 1/71), in which case the Push R would behave
very similar to the Push strategy, except when the system is
highly loaded.

Once more we assume geometric service times with a mean
of 4 slots. Under the Push strategy, only the masters will
perform push operations and they will only push jobs towards
workers (i.e., p12 = 1). For the pull strategy there is clearly
no use in pulling jobs from a worker as it never has any jobs
waiting (i.e., we can set By = 0), thus all the queues send
a request to a master when becoming/being idle. This is in
contrast to some of the strategies considered in [4] where a
worker steals several jobs (half) and therefore often has some
waiting jobs.

Figure 12 depicts the mean delay as a function of the system
load for v; = 1/2,1/3 and 1/10, meaning half, one third
and one tenth of the queues are masters, respectively. For
~v1 = 1/2, we find that the Push strategy outperforms the Pull
strategy for all system loads p, while the reverse is true when
~v1 = 1/10. When one third of the queues are masters, the Push
strategy results in lower delays under high loads only. Further,
the Pull strategy tends to perform better when the proportion
of masters is smaller, while the Push strategy first slightly
improves as well, but becomes worse as ~y; further decreases.
In short, the aggressive Push strategy no longer outperforms
the traditional Pull strategy when there are far more workers
than masters.

With respect to the request rate (not shown here), we should
add that the Pull strategy still requires fewer messages, but
the rate increases as 7y; decreases. More specifically, in the
homogeneous system we noticed that the request rate under the
Pull strategy decreases to zero as the load approaches one, this
can clearly no longer be the case in a master-worker setting,
instead the request rate decreases to (1 — 7;)/4 (when the
mean service time is 4) as the load approaches one.

VII. CONCLUSIONS AND MODEL EXTENSIONS

In this paper we introduced a class of aggressive push
strategies for large distributed systems and compared their
performance with a more traditional set of pull strategies.
We developed a number of mean field models and identified
the best strategies in a number of different settings, i.e., the
homogeneous system, slow/fast servers and the master-worker
setup. The models presented in this paper can be extended
in various manners. For instance, it is easy to incorporate
a parameter P > 1 such that the queues only attempt to
push/pull jobs every P time slots (essentially by observing the
system every P time slots and using Qy,(14(¢))(Sk(t) Ax(t))F
instead of Qp(u(t))Sk(t)Ax(t)). Similarly, we could also
introduce L rounds of push/pull attempts during each time
slot instead of just one. With some additional effort it is also
possible to analyze strategies that rely on a threshold 7" > 1
as in [3], [10] or to pull or push multiple jobs at once as in

[S].

REFERENCES

[1] J. L. Boudec, D. McDonald, and J. Mundinger. A generic mean field
convergence result for systems of interacting objects. In Proc. of QEST
2007, pages 3-15, Edinburgh, UK, 2007.

[2] R. Boute, S. Disney, M. Lambrecht, and B. Van Houdt. An integrated
production and inventory model to dampen upstream demand variability
in the supply chain. European Journal of Operational Research,
178:121-142, 2007.

[3] D.L.Eager, E. D. Lazowska, and J. Zahorjan. A comparison of receiver-
initiated and sender-initiated adaptive load sharing. Perform. Eval.,
6(1):53-68, 1986.

[4] N. Gast and B. Gaujal. A mean field model of work stealing in large-
scale systems. SIGMETRICS Perform. Eval. Rev., 38(1):13-24, 2010.

[5] N. Gast and B. Gaujal. A mean field approach for optimization in
discrete time. Discrete Event Dynamic Systems, 21(1):63-101, 2011.

[6] T. Kurtz. Approximation of population processes. Society for Industrial
and Applied Mathematics, 1981.

[7] G. Latouche and V. Ramaswami. [Introduction to Matrix Analytic
Methods and stochastic modeling. SIAM, Philadelphia, 1999.

[8] M. Livny and M. Melman. Load balancing in homogeneous broadcast
distributed systems. In Proceedings of the Computer Network Perfor-
mance Symposium, pages 47-55, New York, NY, USA, 1982. ACM.

[9]1 R. Mirchandaney, D. Towsley, and J. A. Stankovic. Analysis of the
effects of delays on load sharing. IEEE Trans. Comput., 38(11):1513—
1525, 1989.

[10] R. Mirchandaney, D. Towsley, and J. A. Stankovic. Adaptive load
sharing in heterogeneous distributed systems. J. Parallel Distrib.
Comput., 9(4):331-346, 1990.

[11] M. Mitzenmacher. Analyses of load stealing models based on families
of differential equations. Theory of Computing Systems, 34:77-98, 2000.

[12] M. Mitzenmacher. The power of two choices in randomized load
balancing. IEEE Trans. Parallel Distrib. Syst., 12:1094-1104, October
2001.

[13] N. G. Shivaratri, P. Krueger, and M. Singhal. Load distributing for
locally distributed systems. Computer, 25(12):33—44, 1992.

[14] M. S. Squillante and R. D. Nelson. Analysis of task migration in shared-
memory multiprocessor scheduling. SIGMETRICS Perform. Eval. Rev.,
pages 143155, 1991.

[15] B. Van Houdt, C. Develder, J. Perez, M. Pickavet, and B. Dhoedt. Mean
field calculation for optical grid dimensioning. IEEE/OSA Journal of
Optical Communications and Networking, 2(6):355-367, 2010.

