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1. Introduction

Over the last three decades, broad classes of frequently encountered queueing models have

been analyzed by matrix-analytic methods (Latouche and Ramaswami, 1999; Neuts, 1981,

1989). The embedded Markov chains in these models are two-dimensional generalizations of

the classical birth-death processes, and M/G/1 and GI/M/1 queues. Matrix-analytic models

include notions such as the Markovian arrival process (MAP) and the phase-type distribu-

tion, both in discrete and continuous time. Considerable efforts have been put into the

development of efficient and numerically stable methods for their analysis (Bini et al., 2005)

and software tools that implement these solutions are available online (Bini et al., 2006a,b;

Riska and Smirni, 2002). Apart from the well-known quasi-birth-death (QBD), M/G/1-type

and GI/M/1-type Markov chain paradigms, one of the more recent developments in matrix-

analytic methods has been the generalization to (discrete-time) bivariate Markov chains with

a tree structure (Bini et al., 2003; Takine et al., 1995; Yeung and Sengupta, 1994; Yeung and

Alfa, 1999).
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The key step in determining the steady-state vector of an M/G/1-type Markov chain

exists in finding the smallest non-negative solution G to a nonlinear matrix equation of the

form

G =
N∑
k=0

AkG
k, (1)

where A0, . . . , AN are nonnegative m×m matrices such that A =
∑N

k=0Ak is substochastic

(see Section 2) and X0 is assumed to be the identity matrix, for any square matrix X. The

class of QBD Markov chains is the subclass of the M/G/1-type Markov chains obtained by

setting N = 2. The m×m matrix G is typically computed by iterative methods, where each

iteration has a complexity of at least O(m3N) (Bini et al., 2006a).

The smallest nonnegative solution G is hardly ever known explicitly, the main exceptions

being M/G/1-type Markov chains for which A0 has rank one, and QBD Markov chains

for which A2 has rank one Liu and Zhao (1996). The present paper extends the results

in Van Leeuwaarden and Winands (2006) and Van Leeuwaarden et al. (2009), in which

explicit solutions were obtained for QBD Markov chains where the A0, A1 and A2 matrices

are triangular; see Section 2.4. Indeed, for this case, the sparsity of the matrices, and the

structural properties of the model, may lead to determining G in a particularly efficient

manner. This was already advocated by Neuts (1981, Section 6.5).

In Section 2, we consider the class of M/G/1-type Markov chains, where all the matrices

Ak, for k = 0, . . . , N , are triangular. This class includes several well known models, such as

the longest queue model (Cohen, 1987; Flatto, 1989), a two-class priority model (Jaiswal,

1968; Van Velthoven et al., 2006a), a re-entrant line with infinite supply of work (Adan and

Weiss, 2006), a make-to-order model (Adan and van der Wal, 1998), the M/M/c model

with different service rates for non-waiting customers (Neuts, 1981), queueing systems with

multi-task servers (Zhang and Tian, 2004) and more. We first obtain the entries on the main

diagonal of the (triangular) solution of G, which corresponds to determining the eigenvalues

of G. Next, as opposed to standard spectral decomposition techniques (Grassmann, 1993,

1994), we develop a simple recursive algorithm to compute G one diagonal at a time in an

overall time complexity of O(m3N), clearly outperforming any existing iterative algorithm

(for general M/G/1-type Markov chains) and avoiding the need to construct the correspond-

ing eigenspaces, which may potentially cause some numerical difficulties when eigenvalues

with a multiplicity larger than one occur. Each of the diagonal entries/eigenvalues is the

smallest nonnegative root of a degree N polynomial, for which we derive an explicit expres-
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sion in the form of an infinite series and discuss its probabilistic interpretation. However,

these explicit expressions do not result in a fast computational technique (unless N ≤ 4).

Therefore, we propose to use a scalar Newton iteration for each of the diagonal entries.

Furthermore, without going into detail, we argue that a similar approach can be taken

for GI/M/1-type Markov chains, where the key equation takes on the form R =
∑N

k=0R
kAk.

Apart from M/G/1-type and GI/M/1-type Markov chains, we also consider triangular tree-

like QBD Markov chains. Explained in more detail in Section 3, the key equation for such

an Markov chain is of the form

V = B +
d∑
j=1

Uj(I − V )−1Dj, (2)

where B,Uj and Dj for j = 1 to d characterize the Markov chain behavior away from the

boundary. We will focus on the specific case were these matrices are all triangular. Such

Markov chains occur when applying the framework presented in Van Velthoven et al. (2006b)

to any scalar tree-like QBD Markov chain; various examples of such scalar Markov chains

are given in He (2000). As with the G matrix for M/G/1-type Markov chains, we develop a

simple recursive algorithm to compute the diagonals of the smallest nonnegative (triangular)

solution V one at a time in O(m3d). In this case, we also have an explicit expression for the

entries on the main diagonal (as these are the solutions of a quadratic equation) and elaborate

on their stochastic interpretation. The computational gain for tree-like QBD Markov chains

is even more significant than for the M/G/1 case, because most of the iterative algorithms

for tree-like QBDs converge linearly or require the solution of a large linear system during

each iteration (Bini et al., 2003).

2. Triangular M/G/1-type Markov chains

A discrete-time M/G/1-type Markov chain with a general boundary condition is character-

ized by a transition matrix P of the form

P =



B0 B1 B2 B3 . . .

C1 A1 A2 A3
. . .

C2 A0 A1 A2
. . .

C3 0 A0 A1
. . .

C4 0 0 A0
. . .

...
...

. . . . . . . . .


, (3)
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where B0 and A1 are square matrices of dimensions m0 and m, respectively. Hence, P is the

transition matrix of a bivariate Markov chain {(Xt, Nt), t ≥ 0} with (Xt, Nt) taking values

in {(0, i)|1 ≤ i ≤ m0}∪{(l, i)|l ≥ 1, 1 ≤ i ≤ m}. We will refer to Xt as the level of the chain

and to Nt as its phase at time t. Traditionally, the matrices Ck, for k ≥ 2, are assumed to

be zero. However, their presence only affects the boundary condition of the Markov chain

and Eqn. (1) is still the key equation that needs to be solved.

We focus on a subclass of these Markov chains, for which the Ak matrices are triangular,

that is,

Ak =



a
(k)
1,1 a

(k)
1,2 . . . . . . a

(k)
1,m

0 a
(k)
2,2

. . . . . . a
(k)
2,m

0 0 a
(k)
3,3

. . .
...

...
. . . . . . . . . a

(k)
m−1,m

0 . . . 0 0 a
(k)
m,m


,

and Ak = 0 for k > N . Note that, due to the presence of the matrices Ck, for k ≥ 2, the

sum of the matrices Ak, for k ≥ 0, is not necessarily a stochastic matrix. The key in finding

the steady-state probability vector π = (π0, π1, . . .) of P (if π exists), is to find the smallest

nonnegative solution to the nonlinear equation (1). Due to the triangular structure of the

Ak matrices this solution G is also triangular:

G =


g1,1 g1,2 . . . . . . g1,m

0 g2,2
. . . . . . g2,m

0
. . . g3,3

. . .
...

...
. . . . . . . . .

...
0 . . . . . . 0 gm,m

 .

It is worth mentioning that gm,m = 1 if the sum of the Ak matrices, for k ≥ 0, is a stochastic

matrix, which means that Ck = 0 for k ≥ 2.

2.1. Main diagonal of G

By exploiting the structural properties of Eqn. (1), one finds that the diagonal entries gi,i

are the smallest nonnegative solution to the nonlinear equations

gi,i =
N∑
k=0

a
(k)
i,i (gi,i)

k. (4)

At the end of this section we show how such equations can be solved explicitly. However, this

solution does not naturally lead to an efficient implementation. A fast way to compute the
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entries gi,i uses Newton’s method with starting value gi,i(0) = a
(0)
i,i and the recursive relation

gi,i(n+ 1) = gi,i(n)− f(gi,i(n))

f ′(gi,i(n))
,

where f(x) =
∑N

k=0 a
(k)
i,i x

k − x and f ′(x) =
∑N

k=1 ka
(k)
i,i x

k−1 − 1. It is well known that

the convergence is quadratic or faster if the function f(x) is continuously differentiable, its

derivative does not vanish at gi,i, and it has a second derivative at gi,i. Hence, the above

iteration converges at least quadratically to gi,i, which implies that there exists a positive

constant c such that ||gi,i(n+ 1)− gi,i|| ≤ c||gi,i(n)− gi,i||2.

2.2. Superdiagonals of G

Having computed the main diagonal of G, we shall now discuss how its remaining entries

can be retrieved. Because G is triangular, so is its j-th power Gj. Let g
(j)
i,i+s denote the

(i, i+ s)-th entry of Gj. Further, let ∆(G, s) denote the matrix

∆(G, s) =


g1,1 . . . g1,s

. . . . . .

gm−s+1,m

. . .
...

gm,m

 ,

that is, the matrix holding the first s (super)diagonals of G. Note that ∆(G, s) and its

j-th power ∆j(G, s), for j ≥ 0, are completely determined by the elements gi,i+k, for k =

0, . . . , s− 1. Moreover, the first s superdiagonals of ∆j(G, s) coincide with those of Gj.

Let {X}i,i+s denote the (i, i + s)-th entry of the matrix X. Entry g
(j)
i,i+s, for j > 0,

represents the probability that starting from state (l + j, i) at time t0 = 0, for l > 0, the

chain eventually visits the set of levels {0, . . . , l} for the first time by visiting state (l, i+ s)

(see Neuts (1981); Latouche and Ramaswami (1999)). As the level l + j can only decrease

by one at a time (unless we have a transition to level 0, which does not contribute to G as

l > 0), we must first visit level l + j − 1 for the first time, followed by level l + j − 2 and

so on until our first visit to level l. Denote the time epochs at which these visits occur as

t1, t2, . . . , tj, and let Ntr denote the phase at time tr, for r = 0, . . . , j. Further, as the phase

i can only increase, the increase from i to i + s can only occur in two manners: either the

differences Ntr −Ntr−1 , for r = 1, . . . , j are all less than s, or the phase remains identical to

i up to time tk−1, equals i+ s at time tk and remains identical to i+ s from time tk to time
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tj, for some k ∈ {1, . . . , j}. The sum of the probabilities of all the sample paths of the first

type are captured by {∆j(G, s)}i,i+s as this entry contains the sum of all the products of the

form
∏j

r=1 gi+Ntr−1 ,i+Ntr
, with Ntr −Ntr−1 < s. The sample paths of the second type have a

probability mass of (gi,i)
k−1gi,i+s(gi+s,i+s)

j−k. These observations allow us to conclude that

g
(j)
i,i+s = {∆j(G, s)}i,i+s +

j∑
k=1

(gi,i)
k−1gi,i+s(gi+s,i+s)

j−k. (5)

Therefore, we can retrieve gi,i+s, for s > 0, from Eqn. (1) as

gi,i+s =
N∑
j=0

s∑
k=0

a
(j)
i,i+kg

(j)
i+k,i+s

=

∑N
j=0

∑s
k=1 a

(j)
i,i+kg

(j)
i+k,i+s +

∑N
j=2 a

(j)
i,i {∆j(G, s)}i,i+s

1−
∑N

j=1 a
(j)
i,i

∑j
k=1(gi,i)

k−1(gi+s,i+s)j−k
. (6)

Note that the lower index of the sum starts at j = 2 as {∆j(G, s)}i,i+s is identical to zero

for j = 0 or 1. In this manner we can henceforth compute the G matrix one diagonal at a

time, resulting in the following O(m3N) algorithm to compute G from g1,1, . . . , gm,m:

• Start by computing the main diagonal of Gj for j = 2 to N (in O(mN) time). At this

point, the first diagonal of the matrices Gj, for j = 1, . . . , N , has been computed.

• Next, for s = 1 to m− 1:

– Compute the (s + 1)-th diagonal of ∆j(G, s), for j = 2 to N (containing the

(i, i + s)-th entries) from the first s diagonals of the matrices Gj−1 and G in

O(m2N) time using

{∆j(G, s)}i,i+s =
s∑

k=0

{∆j−1(G, s)}i,i+k{∆(G, s)}i+k,i+s

=
s−1∑
k=1

g
(j−1)
i,i+k gi+k,i+s + {∆j−1(G, s)}i,i+sgi+s,i+s.

– Obtain gi,i+s, for i = 1 to m− s, using relation (6) and

j∑
k=1

(gi,i)
k−1(gi+s,i+s)

j−k = gi,i

j−1∑
k=1

(gi,i)
k−1(gi+s,i+s)

j−1−k + gj−1
i+s,i+s,

in O(m2N) time.
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– Finally, using relation (5), compute the elements g
(j)
i,i+s, for j = 2 to N , from

{∆j(G, s)}i,i+s in O(mN) time, that is, the (s+ 1)-th diagonal of Gj.

This results in an overall time complexity of O(m3N) and memory complexity of O(m2N).

Recall that all of the (general purpose) iterative algorithms (see Bini et al. (2006a)) to

determine G require at least the same amount of memory and time per iteration, while the

algorithms with quadratic convergence—like the cyclic reduction, Ramaswami reduction or

invariant subspace approach algorithm—require considerably more time per iteration.

2.3. Explicit solution for the main diagonal

We shall now derive an explicit expression for the diagonal entries gi,i defined by (4). Using

ϕi(w) = a
(0)
i,i + a

(1)
i,i w + · · ·+ a

(N)
i,i w

N , (7)

we see that the diagonal entry gi,i satisfies gi,i = ϕi(gi,i), where we assume that ϕi(0) =

a
(0)
i,i 6= 0 (if a

(0)
i,i = 0, we have gi,i = 0). In fact, gi,i is the solution wi = w ∈ (0, 1] of

w = ϕi(w). Note that wi = 1 if and only if ϕi(1) = 1 and ϕ′i(1) ≤ 1. Let [wk] denote the

operator that extracts the coefficient of wk from a power series in w. A standard application

of the Lagrange inversion formula (see De Bruijn, 1981) then yields

gi,i =
∞∑
k=0

1

k + 1
[wk]ϕi(w)k+1.

The coefficient [wk]ϕi(w)k+1 can be expressed explicitly (see e.g. Pitman, 1998), leading to

gi,i =
∞∑
k=0

1

k + 1

∑
Sk

(
k

n0, . . . , nn

) n∏
j=0

(a
(j)
i,i )nj , (8)

where the second summation is over the finite set Sk of all sequences of non-negative integers

(nj, j = 0, . . . , n) with
∑
nj = k + 1 and

∑
jnj = k. Here(

k

n0, . . . , nn

)
=

k!

n0! · · ·nn!

is the multinomial coefficient (for which efficient iterative procedures are available).

Special cases of ϕi(w) lead to more tractable expressions. For example, an interesting

special case is ϕi(w) = a
(0)
i,i + a

(N)
i,i w

N , for which we have that

[wk]ϕi(w)k+1 = 0 if k mod N 6= 0,
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and hence

gi,i =
∞∑
j=0

1

jN + 1
[wjN ]ϕi(w)jN+1

=
∞∑
j=0

Cj,N(a
(N)
i,i )j(a

(0)
i,i )j(N−1)+1, (9)

with Cj,N being the generalized Catalan numbers

Cj,N =
1

j(N − 1) + 1

(
jN

j

)
, j = 0, 1, 2, . . . . (10)

Expression (9) is reminiscent of expressions for the busy period in queues with batch arrivals

(see Takács (1962)) that can be analyzed through ballot problems. Indeed, Cj,N is the

solution to the following ballot problem:

In an election in which candidate A gets j votes and candidate B gets (N − 1)j

votes, what is the number of ways of counting the ballots so that candidate B

never has more than N − 1 times as many votes as candidate A?

The probabilistic interpretation of the matrix G may further explain the analogy to busy

periods and ballot problems. Recall that the entry gi,i denotes the probability that the

Markov chain starts in state (l + 1, i) and visits level l for the first time in state (l, i).

Because we restrict to triangular Markov chains, the only way that this can occur is that

the Markov chain, between its start in state (l + 1, i) and first visit to state (l, i), remains

at phase i. The set of events that gives rise to gi,i then clearly resembles a busy period of a

queue in which a customer gets served w.p. a
(0)
i,i or a new batch of N − 1 customers arrives

w.p. a
(N)
i,i . An alternative formulation is in terms of a ballot problem.

2.4. Triangular QBD Markov chains

A discrete-time QBD Markov chain with a generalized boundary condition is characterized by

a transition matrix P as in (3), with N = 2 and Bk = 0 for k ≥ 2. As with the M/G/1-type

Markov chains, the matrices Ck, for k ≥ 2, are allowed to be nonzero. In Van Leeuwaarden

et al. (2009), generalizing earlier work in Van Leeuwaarden and Winands (2006), explicit

solutions were obtained for a QBD with homogeneous transition probabilities that do not
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depend on the phase, that is, a
(n)
i,i+k := a

(n)
k for all i. It was shown that, for i, ν ∈ {1, . . . ,m},

gi,i+ν =
∑

n1+n2=ν

∞∑
j=max(n2,n1−1)

Cj,2 ·
(
j + 1

n1

)(
j

n2

)(
2j + ν − n1 − n2

ν − n1 − n2

)
×
(
a

(0)
1

)n1
(
a

(1)
1

)ν−n1−n2
(
a

(2)
1

)n2
(
a

(2)
0

)j−n2
(
a

(0)
0

)j+1−n1

. (11)

Here (9) with N = 2 corresponds to the special case ν = 0. In Van Leeuwaarden et al. (2009)

it is further shown that the infinite series in (11) can be written in terms of hypergeometric

functions. We have not pursued a similar analysis for the present model, as its level of

generality considerably increases the complexity of the required combinatorial expressions.

Instead, we have presented explicit solutions for the main diagonal elements gi,i in Sections

2.1 and 2.3, and a recursive algorithm to compute the remaining elements of G in Section

2.2.

3. Tree-like QBD Markov chains

Let us first briefly describe the class of tree-like QBDs with a generalized boundary condition.

Consider a discrete time bivariate Markov chain {(Xt, Nt), t ≥ 0} in which the values of Xt

are represented by nodes of a d-ary tree, for d ≥ 1, and where Nt takes integer values

between 1 and m. We refer to Xt as the node and to Nt as the auxiliary variable of the

Markov chain at time t. The root node of the d-ary tree is denoted as ∅ and the remaining

nodes are denoted as strings of integers, where each integer takes a value between 1 and d.

For instance, the k-th child of the root node is represented by k, the l-th child of the node

k by kl, and so on. Let f(J, 1), for J 6= ∅, denote the rightmost element of the string J and

let J − f(J, 1) represent the parent node of J .

The following restrictions need to apply for a Markov chain {(Xt, Nt), t ≥ 0} to be a

tree-like QBD process. At each step the chain can only make a transition to its parent (i.e.,

Xt+1 = Xt−f(Xt, 1), for Xt 6= ∅), to itself (Xt+1 = Xt), to one of its children (Xt+1 = Xt+s

for some 1 ≤ s ≤ d) or to the root node (Xt+1 = ∅). Moreover, the state of the chain at time
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t+ 1 is determined as follows:

P [(Xt+1, Nt+1) = (J ′, j)|(Xt, Nt) = (J, i)] =

f i,j J ′ = J = ∅,
ci,j J ′ = ∅, J 6= ∅,
bi,j J ′ = J 6= ∅,
di,jk J 6= ∅, f(J, 1) = k, J ′ = J − f(J, 1),
ui,js J ′ = J + s, s = 1, . . . , d,
0 otherwise.

We define the m ×m matrices Dk, C, B, F and Us with respective (i, j)th elements given

by di,jk , ci,j, bi,j, f i,j and ui,js , for k, s = 1, . . . , d. This completes the description of the class

of tree-like QBD processes; hence, such a process is fully characterized by the matrices Dk,

C, B, Us and F . Note that tree-like QBDs with d = 1 correspond to a standard QBD with

B0 = F , B1 = U1, A0 = D1, A1 = B, A2 = U1 and Ci = C, for i ≥ 1.

The key in computing the steady state of a tree-like QBD Markov chain exists in deter-

mining a set of d matrices that are the smallest nonnegative solution to

Gk = Dk +BGk +

(
d∑
j=1

UjGj

)
Gk,

for k = 1, . . . , d, which can be done by first solving

V = B +
d∑
j=1

Uj(I − V )−1Dj, (12)

and using the relation Gk = (I − V )−1Dk. When the matrices B, Dk and Uk are triangular,

so are the V and Gk matrices.

3.1. Main diagonal of V

To retrieve the diagonal elements of V , denoted as vi,i, it suffices to solve the quadratic

equation

vi,i = bi,i +
d∑
j=1

u
(j)
i,i (1− vi,i)−1d

(j)
i,i ,

where bi,i′ , u
(j)
i,i′ and d

(j)
i,i′ denote the (i, i′)-th elements of B, Uj and Dj, respectively. Hence,

vi,i =
(1 + bi,i)−

√
(1− bi,i)2 − 4

∑
j u

(j)
i,i d

(j)
i,i

2
,
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with g
(k)
i,i , the i-th diagonal element of Gk, equal to d

(k)
i,i /(1− vi,i).

The entries vi,i can also be expressed in a manner similar to (9). That is, using the

binomial series
√

1− 4z = 1− 2
∞∑
j=1

Cj−1,2z
j,

with ξ = 1
(1−bi,i)2

∑d
j=1 u

(j)
i,i d

(j)
i,i , we find that

vi,i =
(1 + bi,i)− (1− bi,i)

√
1− 4ξ

2

= bi,i + (1− bi,i)
∞∑
j=1

Cj−1,2ξ
j

= bi,i +
d∑

k=1

u
(k)
i,i

(
∞∑
j=0

Cj,2ξ
j

1− bi,i

)
d

(k)
i,i . (13)

The probabilistic interpretation of the matrix V explains the above identity. Entry vi,i de-

notes the taboo probability that starting from state (J, i), with J 6= ∅, the process eventually

returns to node J by visiting (J, i), under the taboo of its parent node. The first term bi,i

gives the probability of this happening in a single transition, while the k-th term of the

summation considers all the paths that start with a transition from (J, i) to (J + k, i) and

end by going from state (J + k, i) to (J, i). Moreover, the j-th term of the inner summation

accumulates the likelihood of all the paths from (J + k, i) to (J + k, i) containing exactly j

transitions from a node to one of its children, under taboo of node J . Indeed, the probability

of such a path equals (
2j+1∏
s=1

bns
i,i

)(
j∏
t=1

u
(mt)
i,i d

(mt)
i,i

)
,

for some ns ≥ 0 and mt ∈ {1, . . . , d}. By summing over all ns and mt and taking into account

that the number of transitions from a node to one of its children must dominate the number

from a node to its parent, this amounts to Cj,2

(∑d
l=1 u

(l)
i,id

(l)
i,i

)j
/(1−bi,i)2j+1 = Cj,2ξ

j/(1−bi,i).

11



3.2. Superdiagonals of V

To recover the (s + 1)-th diagonal of the Gk matrices, it suffices to compute the first s + 1

diagonals of V . Similar to the previous section we define ∆(V, s) as

∆(V, s) =


v1,1 . . . v1,s

. . . . . . . . .

vm−s+1,m−s+1
. . . vm−s+1,m

. . .
...

vm,m

 .

Notice, ∆(V, s) and (I − ∆(V, s))−1 are completely determined by the elements vi,i+k, for

k = 0, . . . , s− 1 and the first s diagonals of (I −∆(V, s))−1 coincide with those of (I −V )−1.

Recalling the probabilistic interpretation of the matrix V , the entry {(I − V )−1}i,i+s
represents the probability that starting from state (J, i) at time t1 = 0, with J 6= ∅, the

chain eventually visits state (J, i + s) under taboo of its parent node, just prior to making

a transition to its parent node at time t′ (or to the root node ∅). Node J is visited v times

between time t1 = 0 and t′ for some v ≥ 1 and we denote the time of the r-th visit as tr.

As with the argument presented to establish Eqn. (5), we can distinguish between the case

where Ntr − Ntr−1 < s for all r = 2, . . . , v or Ntr − Ntr−1 = s for some r ≥ 2. Similarly to

Eqn. (5), these observations lead to

{(I − V )−1}i,i+s = {(I −∆(V, s))−1}i,i+s + (1− vi,i)−1vi,i+s(1− vi+s,i+s)−1, (14)

so that in light of Eqn. (12) and its relationship to Gk, it follows that

g
(j)
i,i+s = {(I −∆(V, s))−1Dj}i,i+s + (1− vi,i)−1vi,i+s(1− vi+s,i+s)−1d

(j)
i+s,i+s. (15)

We obtain vi,i+s from Equation (12) as

vi,i+s = bi,i+s +
d∑
j=1

s∑
k=0

u
(j)
i,i+kg

(j)
i+k,i+s (16)

=
bi,i+s +

∑d
j=1

(∑s
k=1 u

(j)
i,i+kg

(j)
i+k,i+s + u

(j)
i,i {(I −∆(V, s))−1Dj}i,i+s

)
1−

∑d
j=1 u

(j)
i,i (1− vi,i)−1(1− vi+s,i+s)−1d

(j)
i+s,i+s

.

In this manner we can compute the G matrices one diagonal at a time, resulting in the

following O(m3d) algorithm to compute the Gk matrices from v1,1, . . . , vm,m:

12



• Start by computing the main diagonal of (I − V )−1 and Gj for j = 1 to d (in O(md)

time). At this point, the first diagonal of the matrices (I−V )−1 andGj, for j = 1, . . . , d,

has been computed.

• Next, for s = 1 to m− 1:

– Compute the (s + 1)-th diagonal of (I − ∆(V, s))−1 (containing the (i, i + s)-th

entries) from the first s diagonals of the matrices (I−V )−1 and V in O(m2) time,

using

{(I −∆(V, s))−1}i,i+s =

∑s−1
k=0{(I −∆(V, s))−1}i,i+k{∆(V, s)}i+k,i+s

1− vi+s,i+s

=

∑s−1
k=1{(I − V )−1}i,i+kvi+k,i+s

1− vi+s,i+s
.

– Compute the (s+1)-th diagonal of (I−∆(V, s))−1Dj, for j = 1, . . . , d (containing

the (i, i+s)-th entries) from the first s+1 diagonals of the matrix (I−∆(V, s))−1

in O(m2d) time.

– Obtain vi,i+s, for i = 1 to m− s, using relation (16) in O(m2d) time.

– Finally, using relations (14) and (15), compute the elements {(I − V )−1}i,i+s and

g
(j)
i,i+s from the (s + 1)-th diagonal of (I −∆(V, s))−1 and (I −∆(V, s))−1Dj, for

j = 1 to d, in O(md) time, that is, the (s+ 1)-th diagonal of (I − V )−1 and Gj.

This results in an overall time complexity of O(m3d) and memory complexity of O(m2d).

All of the (general purpose) iterative algorithms (see Bini et al. (2003)) to determine V

require at least the same amount of memory and time per iteration, while the only algorithm

with quadratic convergence—being the Newton iteration—requires the solution of a linear

system with m2 equations and m2 unknowns per iteration.

4. Conclusion

In this paper we considered the highly structured subclass of triangular M/G/1-type and tree-

like QBD Markov chains and provided an efficient direct solution of its key matrix equation.

The realized time and memory complexity for the class of M/G/1-type Markov chains is

O(m3N) and O(m2N), respectively, while for tree-like QBD Markov chains a time and

memory complexity of O(m3d) and O(m2d), respectively, was achieved. These complexities

13



are, in both cases, comparable to the best possible complexity of a single iteration when

applying a general purpose iterative algorithm for solving such matrix equations. We also

gave explicit expressions for the diagonal entries of the matrix solutions along with their

probabilistic interpretations.
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Bini, D.A., B. Meini, S. Steffé, B. Van Houdt. 2006a. Structured Markov chains solver:

algorithms. SMCtools Workshop. ACM Press, Pisa, Italy.
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