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a b s t r a c t

In this paper we study a broad class of semi-Markovian queues introduced by Sengupta.
This class contains many classical queues such as the GI/M/1 queue, SM/MAP/1 queue and
others, as well as queues with correlated inter-arrival and service times. Queues belonging
to this class are characterized by a set of matrices of size m and Sengupta showed that its
waiting time distribution can be represented as a phase-type distribution of order m. For
the special case of the SM/MAP/1 queue without correlated service and inter-arrival times
the queue length distributionwas also shown to be phase-type of orderm, but no derivation
for the queue length was provided in the general case.

This paper introduces an order m2 phase-type representation (κ, K) for the queue
length distribution in the general case and proves that the order m2 of the distribution
cannot be further reduced in general. A matrix geometric representation (κ, K , ν) is also
established for the number of type τ ⊆ {1, . . . ,m} customers in the system, where a
customer is of type τ if the phase inwhich it completes service belongs to τ .Wederive these
results in both discrete and continuous time and also discuss the numerical procedure to
compute (κ, K , ν). When the arrivals have aMarkovian structure, the numerical procedure
is reduced to solving a Quasi–Birth–Death (for the discrete time case) or fluid queue (for
the continuous time case).

Finally, by combining a result of Sengupta and Ozawa, we provide a simple formula
to compute the order m phase-type representation of the waiting time in a MAP/MAP/1
queue without correlated service and inter-arrival times, using the R matrix of a
Quasi–Birth–Death Markov chain.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider a broad class of semi-Markovian (SM) queues that have been used extensively to assess the
performance of various communication (andmanufacturing) systems (e.g., [1–3]). Characteristic of these queues is that they
support correlated arrival processes, correlation between successive service times, aswell as correlation between the service
and inter-arrival times. Denote T1 < T2 < T3 < · · ·, with T1 = 0 as the customer arrival times, In+1 = Tn+1−Tn, for n ≥ 1, as
the inter-arrival times and Sn, for n ≥ 1, as the service time of the n-th customer. Let {Yn, n ≥ 1} be an irreducible aperiodic
Markov chain with a finite state space {1, . . . ,m}. Then, a single server queue is termed semi-Markovian [4] provided that

P[In+1 ≤ x, Sn ≤ y, Yn+1 = j|Y1, . . . , Yn, S1, . . . , Sn−1I1, . . . , In]
= P[In+1 ≤ x, Sn ≤ y, Yn+1 = j|Yn], (1)
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where the latter probability does not depend on n. In other words, given the state Yn of the Markov chain, the service time
of customer n and the inter-arrival time between customer n and n + 1 are independent of all prior service times and
inter-arrival times. Notice however that given Yn the service time Sn and inter-arrival time In+1 can be correlated.

Many traditional queues with independent inter-arrival times and service times belong to the above-mentioned class,
such as the GI/PH/1 queue [5, Section 3], the SM/PH/1 queue [6, Section 4.2], the MAP/MAP/1 queue and the more general
SM/MAP/1 queue [1], as well as queues with general and semi-Markovian service times. More importantly the class also
contains various queues with correlated service and inter-arrival times (see Section 2), such as the MMAP[K]/PH[K]/1 [7,8],
SM[K]/PH[K]/1 [9,10] multi-type queues, the D-MAP/PH/1 queue [2] and the M/SM/1 queue [11].

The main performance measures of this class of queues, such as their queue length and waiting time distribution, their
transforms and moments, have only been obtained for special cases. For instance, in [11] the inter-arrival times In+1 are
assumed to be exponential, but can still be correlatedwith the semi-Markovian service times. In this case transforms for both
distributions were obtained as well as recursive formulas for their moments. Sengupta [1] considered a very broad subclass
by assuming that the service times Sn are phase-type (but still correlated). More specifically, denoting Ȳn as the phase in
which the service of customer n is started and En as the phase in which customer n ends service, Sengupta demanded that

P[In+1 ≤ x, Sn ≤ y, Ȳn+1 = j, En = v|Ȳ1, . . . , Ȳn, S1, . . . , Sn−1, I1, . . . , In]

= P[Sn ≤ y, En = v|Ȳn]P[In+1 ≤ x, Ȳn+1 = j|En = v], (2)
where the latter two probabilities are again independent of n. Notice, Ȳn assumes the role of Yn in Eq. (1) and Ȳn determines
Ȳn+1, Sn and In+1 as follows. First Ȳn determines the service time Sn and end phase En. Next, the inter-arrival time In+1 and
initial phase Ȳn+1 are determined by En, meaning they are independent of Sn given En. The service and inter-arrival times
can of course still be correlated via En. Furthermore, Sengupta also assumed that given that customer n starts his service in
phase i, his service time is phase-type (PH) with characterization (ei, S) for some m × m matrix S, where ei is a vector with
a 1 in position i and 0 elsewhere.

In this paper we will consider the same subclass of semi-Markovian queues as Sengputa in both continuous and discrete
time. In continuous time (ei, S) is a continuous-time PH (CPH) distribution, that is, the probability that the service has a
duration of length y or more is given by ei exp(Sy)e (with e a vector of ones), and the inter-arrival time can be discrete,
continuous or a mixture of the two. In the discrete-time setting, time is slotted and the service time is a discrete-time PH
(DPH) distribution such that all the service times are multiples of one time slot and the probability that the service lasts at
least y time slots can be expressed by eiSy−1e. The inter-arrival times are also general, but discrete, meaning all the inter-
arrival times are multiples of the length of a time slot as well. It is important to stress once more that the service and
inter-arrival times are correlated.

Sengupta [1] showed (for the continuous time case), using the age process (see Sections 3 and 4) and the theory ofMarkov
processes with a matrix exponential distribution [5], that the waiting time distribution in such a queuing system has a
phase-type representation of orderm. Moreover, for the special case of the SM/MAP/1 queuewithout dependencies between
the service and inter-arrival times, the queue length distribution was also shown to be phase-type of order m (though the
numerical procedure to compute it converges only linearly). However, no results on the queue length distribution were
provided for the general case considered in [1].

In this paperwederive a phase-type representation (κ, K)of orderm2 for the queue lengthdistribution in the general case
(in both discrete and continuous time) and show that in general this representation cannot be reduced in order. Additionally,
we define customer n as type τ , with τ a non-empty subset of {1, . . . ,m}, if its service end phase En is part of the set τ . An
order m2 matrix geometric representation (κ, K , ν) for the type τ queue length distribution is also established and setting
τ = {1, . . . ,m} results in the above-mentioned phase-type representation (κ, K). The derivation of these representations is
based on theMarkov chain that captures the age of the customer in service and relies on a simple observationmade byOzawa
in [12]. Of course, for various subclasses such as the SM/MAP/1 queue without correlation between the service and inter-
arrival times (and thus also the MAP/MAP/1 queue) this representation is redundant as a smaller, order m representation
is known to exist. An example (with correlated inter-arrival and service times) for which the minimal order lies between
m and m2 is provided as well. We also discuss the numerical issues related to the computation of this order m2 phase-type
representation. Furthermore, we indicate that by combining some of the results of Sengupta [1] with those of Ozawa [12],
the ordermwaiting time distribution of the traditional MAP/MAP/1 queue can be computed with hardly an effort from the
R-matrix of the Quasi–Birth–Death Markov chain that describes the evolution of the queue length [13].

The results presented in this paper also resemble the ones obtained by Ozawa [12] for the class of queues that are defined
by a general Quasi–Birth–Death (QBD) process. This class also supports queues with correlated service and arrival times and
also includes the MAP/MAP/1 queues without such correlation. Actually, the latter queues seem to be the only ones that
reside in the intersection of the queues considered in this paper and the ones considered by Ozawa. In [12] Ozawa derived
an orderm2 phase-type distribution for the sojourn time, while the orderm phase-type representation for the queue length
of such a queue is immediate from Neuts [6]. Hence, there seems to be some form of duality present between our results
and the ones presented in [12]. The minimality of the order m2 representation was not proven by Ozawa for the general
case. However, it is not hard to develop examples for which the orderm2 sojourn time distribution is minimal.

In the next section we start by discussing a number of examples that fit within the subclass of semi-Markovian queues
considered in this paper. In Section 3 we will present our main results for the discrete-time case, whereas Section 4 covers
the somewhat more involved continuous-time setting. We conclude in Section 5 by providing some numerical examples.
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2. Definitions and examples

This section is mostly devoted to providing examples of well-known queuing systems that fit within the subclass of
queues studied in this paper. The first two examples are queues without correlation between the service and inter-arrival
time, these were also discussed in [1]. Recall from the previous section, and more specifically from Eq. (2), that the semi-
Markovian queues considered in this paper are characterized by two sets of probabilities. The first set holds the probabilities

P[Sn ≤ y, En = v | Ȳn = i],

that determine the probability that the service time is smaller than or equal to y and the service ends in phase v, given that
the service started in phase i. The second set is formed by

P[In+1 ≤ x, Ȳn+1 = j | En = v],

holding the probability that the inter-arrival time is smaller than or equal to x and the next customer starts service in phase j,
provided that the current service ended in phase v. The first set of probabilities is denoted as Vi,v(y), meaning V (y) arem×m
matrices for y ≥ 0. Due to the assumption on the phase-type service characterized by (ei, S), we have in the continuous-time
case

V (y) =

 y

z=0
exp(Sz)S∗dz = (Im − exp(Sy))(−S)−1S∗, (3)

where Im is the order m identity matrix, S∗ is a diagonal matrix with S∗e = −Se and e is vector of ones. In discrete time on
the other hand we find

V (y) =

y−1
k=0

SkS∗
= (Im − Sy)(I − S)−1S∗, (4)

where S∗ is a diagonal matrix with S∗e = (I − S)e. The second set of matrices is denoted as Pv,j(x), where P(x) is also a
square matrix of orderm. Throughout the paper we assume that S + S∗


∞

x=0 dP(x) is irreducible and that P(0) = 0, meaning
there are no batch arrivals. Before we provide a number of examples for which we will specify both V (y) (i.e., S) and P(x),
we remind the reader that customer n is said to be of type τ , for τ a non-empty subset of {1, . . . ,m}, if its end service phase
En is part of τ . We also remark that this end phase, determined by V (y), is not affected by S∗ as it is a diagonal matrix.

The GI/PH/1 queue. Consider a queue where the arrivals form a renewal process with inter-arrival time distribution given by
H(t) and assume the service is independent of the inter-arrival times and follows an orderm PH distribution given by (α, S).
This implies that P(x) = H(x)eα and V (y) is determined by S as indicated in (3). This queue was studied by Sengupta in [5],
where an orderm representation for both the queue length and waiting time distribution was given.

The SM/MAP/1 queue. Consider the queue with semi-Markovian arrivals, i.e., the arrival process is a Markov renewal process,
and Markovian services. Let the entries Hi,j(t) hold the probability of having an inter-arrival time smaller than or equal to t ,
while the state of the Markov renewal process changes from i to j (for i, j ∈ {1, . . . ,ma}). Similarly let the size ms matrices
S0 and S1 characterize the Markovian service, meaning the service time of a customer starting in phase i is an order ms PH
distribution characterized by (ei, S0), while (S1)i,j holds the probability that customer n+1 starts service in phase j given that
customer n ended his service in phase i. In this case a semi-Markovian queue is obtained by setting P(x) = H(x) ⊗ S1, while
thematrix S in (3) is given by Ima ⊗S0, with⊗ denoting thematrix Kronecker product. An orderm = mams PH representation
for both the queue length and waiting time distribution was provided by Sengupta in [1]. The popular MAP/MAP/1
queue clearly belongs to the set of SM/MAP/1 queues and we will provide a much faster way to compute Sengupta’s
order m representation for its waiting time distribution. Finally, Neuts studied the special case of the SM/PH/1 queue in
[6, Section 4.2].

The SMK/PHK/1 queue. The SM[K] arrival process is a multi-type Markov renewal process characterized by the ma × ma

matrices H(k)(t), for k = 1, . . . , K . Entry H(k)
i,j (t) holds the probability of having an inter-arrival time smaller than or equal

to t , while the state of the Markov renewal process changes from i to j and the type of the arriving customer is k. The PH[K]
service process indicates that type k customers follow an order m(k)

s phase-type distribution with parameters (αk, Sk), for
k = 1, . . . , K . Notice, consecutive service times are correlated via the correlation between the customer types and as such
there is also correlation between the service and inter-arrival times. To represent this queue as a semi-Markovian queue
with m = ma


k m

(k)
s , it suffices to set

S =


S1 0 . . . 0

0 S2
. . .

...
...

. . .
. . . 0

0 . . . 0 SK

⊗ Ima ,



4 B. Van Houdt / Performance Evaluation ( ) –

and
P(x) = (e ⊗ Ima)


α1 ⊗ H(1)(x) · · · αK ⊗ H(K)(x)


.

Examples 5–7 given in [1] are a special case of an SM[K]/PH[K]/1 queue in continuous time. HE [9,10] analyzed the
SM[K]/PH[K]/1 queue in discrete and continuous time andprovided an orderm PH representation for the overall and per type
waiting time distributions. In the discrete-time paper [9] no results were provided for the queue length, while in continuous
time a recursive algorithm was provided that required the solution of a Sylvester matrix equation during each step in the
special case of MMAP[K] arrivals. Thus, no phase-type representation for the overall (or per type) queue length distribution
was given. In [7,8] the special case of the MMAP[K]/PH[K]/1 queue in discrete time was considered.

As a special case of our main result, we establish an order m2 PH representation for the overall queue length in an
SM[K]/PH[K]/1 queue and obtain a matrix geometric representation for the type k queue length distribution by setting τ =

{
k−1

i=1 m(i)
s ma + 1, . . . ,

k
i=1 m

(i)
s ma}. Furthermore, for the continuous-time MMAP[K]/PH[K]/1 queue, we also introduce

the first algorithm with quadratic convergence (by means of a reduction to a fluid queue) to compute the matrix T needed
to obtain the above-mentioned phase-type representation of both the waiting time and queue length distribution.
The D-MAP/PH/1 queue with correlated service and inter-arrival times. The discrete-time Markovian arrival process (MAP) is
characterized by the order ma matrices D0 and D1, while a customer starting service requires an order ms DPH distributed
amount of service characterized by (ei, T ). Customer n + 1 will start service in phase i according to the probability vector
αl provided that the inter-arrival time between customer n and n + 1 is equal to l, meaning the service time and inter-
arrival time are clearly correlated. In [2] it was shown that this queue is equally general as assuming that the service time of
customer n+1 is DPHwith characterization (αl, Tl), for somematrices Tl. This queue can be represented as a semi-Markovian
queue by setting S = T ⊗ Ima , while

P(x) =

x
l=1

eαl ⊗ (Dl−1
0 D1),

for x = 1, 2, . . .. This queue was studied in [2] where the more general SM/PH/1 queue with correlated service and inter-
arrival times was also discussed. This more general model is also a semi-Markovian queue (simply replace Dl−1

0 D1 by Hl in
the expression for P(x)). Although the queue length distribution was computed using some recursive computations in [2],
no phase-type representation was found (see also Section 3.3).

3. Semi-Markovian queue in discrete time

In this section we consider the discrete-time semi-Markovian queue, which implies that S is a substochastic matrix and
P(x) is a step function with steps at x = 1, 2, . . .. Denote Q (x) = P(x) − P(x − 1), i.e., the matrix holding the phase
changes when the inter-arrival time equals x. We will derive an order m2 matrix geometric representation (κ, K , ν) for
the type τ queue length distribution, i.e., we determine a stochastic vector κ of size m2 and a substochastic matrix K such
that the probability of having i or more type τ customers in the queue (provided that it is busy) equals κK i−1ν, for i ≥ 1.
Furthermore, for τ = {1, . . . ,m}, meaning if we consider the overall queue length, ν = e and the representation is a phase-
type representation. Wewill also show that in general this orderm2 representation cannot be reduced, though special cases
are known for which a smaller representation exists, e.g., the SM/MAP/1 queue without correlation between the service and
inter-arrival times.

To obtain the order m2 representation, we will rely on the discrete-time version of the age process used by Sengupta
in [1] and we will make use of a simple lemma by Ozawa [12]. The age process of the discrete-time semi-Markovian queue
is characterized by a GI/M/1-type Markov chain with transition matrix:

P =


C0 A0 0 0 0 . . .
C1 A1 A0 0 0 . . .
C2 A2 A1 A0 0 . . .
C3 A3 A2 A1 A0 . . .
...

...
...

. . .
. . .

. . .

 , (5)

where Ci =


s>i As. Them×mmatrices As, for s ≥ 1, are said to decrease the level of the chain by s− 1, while A0 increases
the level by one. Entry (i, j) of As is said to change the phase of the chain from i to j. The semi-Markovian queue will be
observed by this chain whenever the server is busy and the level will represent the age of the customer in service, while
the phase maintains the current phase of the DPH service process. The age a of a customer is defined as the number of time
slots between the current time epoch t and its arrival time t − a. We assume that we observe the system just prior to time
t , meaning the age of a customer, while the server is busy, is at least one.

Thus, the matrix A0 holds the probabilities that the server continues to serve the same customer (age increases by one),
while As holds the probability that a service completion occurs and the next customer arrives s time units later (meaning
the age at the next point of observation decreases by s − 1). In other words,

A0 = S,
As = S∗Q (s),
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for s = 1, 2, . . .with S∗ the diagonal matrix such that S∗e = (Im − S)e. The matrices Cs, for s ≥ 0 capture the case where the
server becomes idle after the service completion (assuming arrivals occur after any possible service completions at time t).
As we only observe the queue when the system is busy, the age a during the next point of observation must be one.

Due to Neuts [6], this chain is positive recurrent if and only if θ


∞

s=1 sAse > 1, with θ the invariant vector of A =


∞

s=0 As

(notice, A is irreducible as S + S∗


∞

0 dP(x) = S + S∗


∞

s=1 Q (s) was assumed to be irreducible). Its stationary distribution
π = (π(1), π(2), . . .), with π(i) a 1×m vector, has a matrix geometric form, that is, π(n) = π(1)Rn−1, with R the smallest
non-negative solution to

R =

∞
s=0

RsAs = S +

∞
s=1

RsS∗Q (s).

Notice, this R-matrix is the discrete-time analogue of the T -matrix of Sengupta [1]. Also remark that we cannot simply set
up a Markov chain that has the number of customers in the queue as the level of the chain, except for special cases like the
MAP/MAP/1 queue and others, because in general the phase at the end of the service of customer n influences the inter-
arrival time between customer n and n + 1.

3.1. Order m2 representation

To obtain the order m2 representation, we will make use of the following lemma by Ozawa [12] that can be proven by
direct verification. Let

ξ =


eT1
eT2
...

eTm

 ,

and let a and b be two arbitrary 1 × m vectors, then

(a ⊗ b)ξ = abT = baT ,

where T denotes the transposed vector.
Let Nb(τ ) be the random variable representing the number of type τ customers in the queue provided that it is busy

(otherwise, the number is zero), that is, P[Nb(τ ) = n] is the probability that the queue holds n type τ customers (including
the possible type τ customer in service) at an arbitrary point in time given that the server is busy.

Theorem 1. The queue length distribution Nb(τ ) of the type τ customers has amatrix geometric representation (κ, K , ν) of order
m2 given by

κ = ξ T (Im ⊗ ∆(θ)), K = (I − K(τ c))−1K(τ ) (6)

and

ν = (I − K(τ c))−1((Im − S)−1∆(eτ )(Im − S)e ⊗ e) (7)

with

K(ζ ) = ((I − S)−1∆(eζ ) ⊗ Im)

s≥1

(As ⊗ Gs), (8)

where τ c
= {1, . . . ,m} \ τ , G = ∆−1(θ)RT∆(θ), ∆(x) denotes a diagonal matrix such that ∆(x)e = xT and eζ for ζ a subset

of {1, . . . ,m}, is a vector with entry i equal to one if i ∈ ζ and zero otherwise. Furthermore, the vector κ is stochastic and the
matrix K is substochastic.

Proof. Define Ās(ζ ) = (Im − A0)
−1∆(eζ )As and C̄i(ζ ) = (Im − A0)

−1∆(eζ )Ci, with ζ a subset of {1, . . . ,m} (the inverse
(Im − A0)

−1 exists as A0 = S is a strictly substochastic matrix). Via the stationary probability vector π of the age process we
can express P[Nb(τ ) = n] as

P[Nb(τ ) = n] =

∞
i=1

π(i)Pτ ,n(i − 1)e, (9)

with Pτ ,n(i) an m × m matrix defined as follows. Given that an arrival occurred in phase j at time 0, entry (j, j′) of Pτ ,n(i)
equals the probability that either (i) the arrival at time zero is of type τ c and n type τ arrivals occur on the time epochs
t = 1 to i, while the phase is j′ when the first arrival at time t > i occurs or (ii) if n > 0, the arrival at time zero is of type
τ and n − 1 type τ arrivals occur on the time epochs t = 1 to i, while the phase is j′ when the first arrival at time t > i
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occurs. Notice, we make use of the probabilities Pτ ,n(i − 1) instead of Pτ ,n(i) as we are observing the system just prior to
any possible arrivals or service completions, hence arrivals and service completions occurring at time t are not part of the
system state at time t .

Using the matrix geometric form of π and the above-mentioned lemma of Ozawa with aT = Pτ ,n−1(i)e and b = π(1)Ri,
we find

P[Nb(τ ) = n] =


i≥0

π(1)RiPτ ,n(i)e

= (eT ⊗ π(1))

i≥0


PT

τ ,n(i) ⊗ Ri ξ . (10)

Notice, Ās(τ ) (Ās(τ
c)) holds the probabilities that the customer arriving at time 0 is of type τ (τ c), while the next arrival

occurs at time s. As such the matrices Pτ ,n(0) = 0 for n > 1, Pτ ,1(0) =


s>0 Ās(τ ) and Pτ ,0(0) =


s>0 Ās(τ
c), while

Pτ ,0(i) =


s>i

Ās(τ
c) +

i
s=1

Ās(τ
c)Pτ ,0(i − s)

Pτ ,1(i) =


s>i

Ās(τ ) +

i
s=1


Ās(τ )Pτ ,0(i − s) + Ās(τ

c)Pτ ,1(i − s)


Pτ ,n(i) =

i
s=1


Ās(τ )Pτ ,n−1(i − s) + Ās(τ

c)Pτ ,n(i − s)


(11)

for i > 0 and n ≥ 1. This implies for n > 1

PT
τ ,n(i) ⊗ Ri

=

i
s=1


(PT

τ ,n−1(i − s) ⊗ Ri−s)(ĀT
s (τ ) ⊗ Rs) + (PT

τ ,n(i − s) ⊗ Ri−s)(ĀT
s (τ

c) ⊗ Rs)

,

yielding
i≥0


PT

τ ,n(i) ⊗ Ri
=


i≥0

(PT
τ ,n−1(i) ⊗ Ri)


s≥1

(ĀT
s (τ ) ⊗ Rs)


+


i≥0

(PT
τ ,n(i) ⊗ Ri)


s≥1

(ĀT
s (τ

c) ⊗ Rs)


.

Thus, if we define

M(ζ ) =


s≥1

(ĀT
s (ζ ) ⊗ Rs),

for ζ subset of {1, . . . ,m}, one finds for n > 1
i≥0


PT

τ ,n(i) ⊗ Ri
=


i≥0

(PT
τ ,n−1(i) ⊗ Ri)


M(τ )(I − M(τ c))−1,

where the existence of (I − M(τ c))−1 will follow from the substochastic nature of K(τ c).
Using (11), one similarly finds

i≥0


PT

τ ,1(i) ⊗ Ri
=


i≥0

(PT
τ ,0(i) ⊗ Ri)


M(τ )(I − M(τ c))−1

+


i≥0

(C̄T
i (τ ) ⊗ Ri)(I − M(τ c))−1,

and 
i≥0


PT

τ ,0(i) ⊗ Ri
=


i≥0

(C̄T
i (τ c) ⊗ Ri)(I − M(τ c))−1.

This allows us to express the probabilities P[Nb(τ ) = n] via (10) in a matrix geometric form of orderm2 as

P[Nb(τ ) = 0] =


i≥0

((C̄i(τ
c)e)T ⊗ π(1)Ri)


(I − M(τ c))−1ξ,

P[Nb(τ ) = n] = α(I − M(τ c))−1 M(τ )(I − M(τ c))−1n−1
ξ,

for n > 0 with

α =


i≥0

((C̄i(τ
c)e)T ⊗ π(1)Ri)(I − M(τ c))−1M(τ ) +


i≥0

((C̄i(τ )e)T ⊗ π(1)Ri).
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By expanding C̄i(ζ ) and switching the order of the sums, we can rewrite


i≥0((C̄i(ζ )e)T ⊗ π(1)Ri), with ζ a subset of
{1, . . . ,m} as

s≥1

(eT ĀT
s (ζ ) ⊗ π(1))

s−1
i=0

(Im ⊗ Ri) = (eT ⊗ π(1)(Im − R)−1)

s≥1

(ĀT
s (ζ ) ⊗ (Im − Rs))

which leads to
i≥0

((C̄i(ζ )e)T ⊗ π(1)Ri) = (eT ⊗ π(1)(Im − R)−1)((((Im − A0)
−1∆(eζ )(Im − A0))

T
⊗ Im) − M(ζ )).

If we define ST (ζ ) = ((Im − A0)
−1∆(eζ )(Im − A0))

T , α can be expressed as

α = (eT ⊗ π(1)(Im − R)−1)

((ST (τ c) ⊗ Im) − M(τ c))(I − M(τ c))−1M(τ ) + (ST (τ ) ⊗ Im) − M(τ )


,

which can be further simplified to

α = (eT ⊗ π(1)(Im − R)−1)(ST (τ ) ⊗ Im)(I − (I − M(τ c))−1M(τ )),

by noting that eT ST (τ )+ eT ST (τ c) = eT . Due to the form of Ci, π(1)(Im − R)−1 is readily recognized as the unique stochastic
invariant vector ofA =


s≥0 As, whichwedenoted earlier on as θ . Thus, by further simplifyingα, one finds that P[Nb(τ ) = n]

can be written as

P[Nb(τ ) = n] = (eT ST (τ ) ⊗ θ)(I − M(τ c))−1(I − M)Mn−1ξ

withM = M(τ )(I − M(τ c))−1.
Moreover, P[Nb(τ ) ≥ n] = (eT ST (τ ) ⊗ θ)(I − M(τ c))−1Mn−1ξ , meaning Nb(τ ) has a matrix geometric representation

((eT ST (τ )⊗θ)(I−M(τ c))−1,M, ξ) of orderm2. If θ > 0,which holds due to the irreducibility assumption onA, P[Nb(τ ) ≥ n]
can be rewritten as

P[Nb(τ ) ≥ n] = (eT ST (τ ) ⊗ θ)(Im ⊗ ∆−1(θ))(Im ⊗ ∆(θ))(I − M(τ c))−1(Im ⊗ ∆−1(θ))

×

(Im ⊗ ∆(θ))M(Im ⊗ ∆−1(θ))

n−1
(Im ⊗ ∆(θ))ξ = νT (K T )n−1κT .

This proves the theorem provided that κ is stochastic and K = (I − K(τ c))−1K(τ ) is strictly substochastic. The matrix
G = ∆−1(θ)RT∆(θ) is recognized as the G-matrix of the Ramaswami dual of the GI/M/1-type Markov chain characterized
by P [14]. As P is positive recurrent, its dual process is a transient M/G/1-type Markov chain and therefore G is strictly
substochastic [15]. As a result K(τ ) + K(τ c) is strictly substochastic due to


s≥1(Im − A0)

−1Ase = e. Hence, K(τ ) and
K(τ c) are strictly substochastic, the inverse (I − K(τ c))−1 exists and K is strictly substochastic. The vector κ is clearly
stochastic. �

Corollary 1. The overall queue length distribution Nb has a phase-type representation (κ, K) of order m2 given by

κ = ξ T (Im ⊗ ∆(θ)), K =


s≥1

(Ās ⊗ Gs), (12)

where Ās = (Im − A0)
−1As, G = ∆−1(θ)RT∆(θ) and ∆(x) denotes a diagonal matrix such that ∆(x)e = xT .

Proof. The proof is immediate from the previous theorem by noting that τ = {1, . . . ,m}, such that K(τ c) = 0 and
ν = e. �

3.2. Redundancy of the representation

In this section we provide an example of a semi-Markovian queue with m = 2 such that its order m2
= 4 phase-type

representation (κ, K) for the overall queue length distribution cannot be represented by a phase-type (or matrix geometric)
distribution with an order below four. This implies that the m2 order cannot be reduced in general. Examples with m > 2
can be constructed in a similar manner.

We consider a queue with 2 types of customers, both customer types require a geometric amount of service. Type 1
customers have a mean service time of 1/(1− s) time slots, while the type 2 customers require a mean service of 1/(1− r)
time slots. The arrival process is periodic in the sense that at times 3t , for t = 0, 1, 2, . . . there is a type 1 arrival and at times
3t + 1, for t = 0, 1, . . . we have a type 2 arrival. There is no need to consider a process with periodic arrivals, one can also
easily generate examples for which the arrival process is aperiodic, neither does the type of the customer need to alternate
between type 1 and type 2. Thus, the queue under consideration has

S =


s 0
0 r


, Q (1) =


0 1
0 0


, Q (2) =


0 0
1 0


.
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As A2 is of rank 1, the positive recurrent GI/M/1-type Markov chain is actually a Quasi–Birth–Death Markov chain and its G
matrix is equal to

G =


1 0
1 0


.

As a result, R = A0(Im − A1 − A0G)−1 is the rational matrix

R =
1

(1 − r)(1 − s)


s s(1 − s)
r2 r(1 − s)


and the phase-type representation (κ, K) is found as

κ =


1 − r

2 − r − s
, 0, 0,

1 − s
2 − r − s


,

and

K =
1

(1 − r)(1 − s)



0 0 s r2
1 − s
1 − r

0 0 s(1 − r) r(1 − s)

s(r2 + s − r2s)
(1 − r)(1 − s)

r2(r + s − rs)
(1 − r)2

0 0

s(r + s − rs)
1 − s

r2

1 − r
0 0


.

The matrix K is periodic due to the periodicity of the arrival process. Examples where K is aperiodic are also easy to find.
In order to prove that a DPH representation (β, T ) of order n is minimal, one first computes mk = β(In − T )−ke for
k = 0, . . . , 2n − 2 and checks whether the Hankel matrix defined by these 2n − 1 values has a determinant different from
zero [16–18]. Actually, the results in [16–18] are for continuous-timephase-type (CPH) distributions, but can be useddirectly
in discrete time by remarking that any order n DPH characterized by (β, T ) can be transformed into a CPH characterized by
(β, T − In) that has mk as its k-th moment. A smaller order representation will exist for the DPH if and only if it exists for
the CPH. We also remark that in general the minimal order does not coincide with the number of distinct eigenvalues of T
as examples can be given where the minimal order is smaller.

As K is in rational form, we can computem0 tom6 in rational form and perform an exact computation of the determinant
of the corresponding Hankel matrix, which is a rational function of r and s. If we now fix r = 1/4 (this value was chosen
arbitrarily), we obtain a rational function of s for the determinant. This function has three real zeros: s = 0, 1/4 and 1. Thus,
for all s values different from these three the queue length distribution Nb does not have a phase-type (or matrix geometric)
representation with an order below 4. For s = 1, the system is unstable, while for s = 1/4, the service time of all customers
is geometric with mean 4/3, meaning the service time and inter-arrival times are independent and an order 2 phase-type
representation is known to exist as the queue reduces to an SM/M/1 queue. The last case s = 0 is rather interesting: type
1 customers require a deterministic service and type 2 a geometric one. Also, there is still correlation between the service
and inter-arrival times and it turns out that the rank of its Hankel matrix is 3, with m < 3 < m2. Hence, examples exist for
which the minimal order lies betweenm andm2. Even for any 0 < r < 1 and s = 0, the minimal phase-type representation
of the queue length distribution is of order 3 and can be represented by κ = ((1 − r)/(2 − r), 0, 1/(1 − r)) and

K =


0 0

r2

(1 − r)2

0 0
r

1 − r

0
r2

(1 − r)2
0

 .

3.3. Computation of the queue length distribution

3.3.1. General case
To compute the representation (κ, K , ν), one first computes θ , the invariant vector of


s As, from which κ is obtained

via Eq. (6). Next, the matrices A(r)
s that characterize the Ramaswami dual of P are computed as

A(r)
s = ∆−1(θ)AT

s ∆(θ),

for s = 0, 1, . . .. These matrices characterize a transient M/G/1-type Markov chain and its G matrix is the smallest non-
negative solution to

G =


s≥0

A(r)
s Gs.
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This non-linear equation can be solved using the cyclic reduction algorithm [19]which converges quadratically. Thematrices
K(τ ) and K(τ c) can be computed from G using Eq. (8), from which K and ν can be readily obtained. The probabilities
P[Nb(τ ) ≥ n] can now be computed as κK n−1ν.

If m is large, the construction of K(τ ) and K(τ c) can be avoided by noting that they are a sum of Kronecker products
and the required multiplications can be performed using the shuffle algorithm [20] (after rewriting (I − K(τ c))−1 as an
infinite sum). It might also be beneficial to compute the probabilities P[Nb(τ ) = n] directly from Eq. (9) by first computing
the necessary Pτ ,n(i) matrices recursively using the relation in (11) (unless the spectral radius of R is close to one). This
approach was used to compute the overall queue length distribution Nb in [2] for the discrete-time D-MAP/PH/1 queue with
correlated service and inter-arrival times. In the continuous-time setting such a direct approach seems less attractive due
to the numerical integrations involved. Furthermore, if we are only interested in the first few moments of the queue length
distribution, we can compute these from (κ, K , ν) directly, avoiding the need to compute the entire distribution.

Next, we consider a special case for which we can compute G using a Quasi–Birth–Death process with blocks of size 2m,
which results in an even better time and memory complexity.

3.3.2. Markovian inter-arrival times
Assume Q (u) can be written as Q (u) = D̄u−1

0 D̄1 for some m × m matrices D̄0 and D̄1, such that (D̄0, D̄1) characterizes
a discrete-time MAP process. Notice, apart from D̄0 and D̄1, the service process influences the arrival process as well via
the matrix S, meaning in general the arrival process is not the MAP characterized by (D̄0, D̄1). In this case we can define a
Quasi–Birth–Death process characterized by the size 2m matrices Â0, Â1 and Â2 (where Â0 captures the upward transitions
and Â2 the downward transitions)

Â0 =


0 0
0 S


, Â1 =


0 D̄1

0 S∗D̄1


, Â2 =


D̄0 0

S∗D̄0 0


.

Let the 2m × 2m matrix R̂ be the smallest non-negative solution to

R̂ = Â0 + R̂Â1 + R̂2Â2,

which can be computed using the cyclic (or logarithmic) reduction algorithm with quadratic convergence [19]. Looking at
the probabilistic interpretation of the matrices R and R̂ (see [6]), we find that R is identical to the size m lower right corner
of R̂. Thus, having computed R̂, we can retrieve R, compute G and determine K(ζ ) for ζ = τ and τ c via

K(ζ ) = ((Im − S)−1∆(eζ )S∗
⊗ Im)(I − (D̄0 ⊗ G))−1(D̄1 ⊗ G).

The idea of theQuasi–Birth–Death reduction introduced above is a further generalization of themethod first developed in [8]
for theMMAP[K]/PH[K]/1 and later generalized to the SM[K]/PH[K]/1 queue in [9],where the reductions in computation time
were illustrated by various examples.

4. Semi-Markovian queue in continuous time

Let us now consider the continuous-time case. As indicated in Section 2, the continuous-time semi-Markovian queues
considered in this paper are characterized by an order m rate matrix S (i.e., the diagonal entries of S are negative, the
remaining elements are non-negative and the row sums are non-positive) and a set of matrices P(u), for u > 0. The matrix
S describes the evolution of the phase while a customer remains in service, while entry (i, j) of P(u) held the probability of
having an inter-arrival time smaller than or equal to u, while a customer ended his service in phase i and the next customer
starts service in phase j. Recall that S∗ was defined as a diagonal matrix such that S∗e = −Se, i.e., it contains the rates at
which a service completion occurs and define A(u) = S∗P(u) as the rate of having a service completion followed by an
inter-arrival time smaller than or equal to u. Denote dA(u) as the rate of having a service completion and an inter-arrival
time between u and u + du.

As in [1], we consider the age process that observes the queue during the busy periods and that keeps track of the age
of the customer in service and the current phase of the server. Thus, the age of the customer in service increases linearly
while the phase evolves according to S until a service completion occurs that causes the chain to jump down by u according
to dA(u). In other words, this age process is a Markov process with a matrix-exponential steady state distribution, provided
that it is positive recurrent [5]. Notice, such a process is similar to the GI/M/1-type Markov chains introduced by Neuts [6],
but the level is a continuous variable that takes values in [0, ∞). This irreducible Markov process is positive recurrent if and
only if θS∗


∞

0 udP(u)e > 1, where θ is the unique invariant vector of S + S∗


∞

0 dP(u) [1].
Let πi(x) denote the density of having a customer of age x in service in phase i at an arbitrary moment in time provided

that the server is busy. Due to Sengupta, π(x) has a matrix exponential form, meaning π(x) = π(0) exp(Tx) for some size
m matrix T and π(0) = −θT . The matrix T is the minimal solution to the non-linear integral equation

T = S +


∞

0
exp(Tu)dA(u). (13)
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4.1. An order m2 representation

Theorem 2. The type τ ⊆ {1, . . . ,m} queue length distribution Nb(τ ) has a matrix geometric representation (κ, K , ν) of order
m2 given by

κ = ξ T (Im ⊗ ∆(θ)), K = (I − K(τ c))−1K(τ ) (14)

and

ν = (I − K(τ c))−1((−S)−1∆(eτ )(−S)e ⊗ e) (15)

with

K(ζ ) = ((−S)−1∆(eζ ) ⊗ Im)


∞

x=0
(dA(x) ⊗ exp(Qx)), (16)

where τ c
= {1, . . . ,m} \ τ , Q = ∆−1(θ)T T∆(θ), ∆(x) denotes a diagonal matrix such that ∆(x)e = xT and eζ for ζ a subset

of {1, . . . ,m}, is a vector with entry i equal to one if i ∈ ζ and zero otherwise. Furthermore, the vector κ is stochastic and the
matrix K is substochastic.

Proof. The proof is analogue to the discrete-time case and as such presented in a more compact form. By making use of the
age process, the probability of having n type τ customers in the queue at an arbitrary busy time epoch is given by

P[Nb(τ ) = n] =


∞

x=0
π(x)Pτ ,n−1(x)edx,

where the (i, j)-th element of Pτ ,n(x) holds the following probability: given an arrival in phase i at time 0, entry (i, j) holds
the probability that either (i) the arrival at time zero is of type τ c and n type τ arrivals occur in the interval (0, x], while
the phase is j when the first arrival at time t > x occurs or (ii) if n > 0, the arrival at time zero is of type τ and n − 1
type τ arrivals occur in the interval (0, x], while the phase is j when the first arrival at time t > x occurs. Expanding the
matrix exponential exp(Tx) and applying the aforementioned Lemma of Ozawa [12] with aT = Pτ ,n−1(x)e and b = π(0)T k

results in

P[Nb(τ ) = n] = (eT ⊗ π(0))


∞

x=0


PT

τ ,n−1(x) ⊗ exp(Tx)

dxξ .

By definition Pn(0) = 0 for n > 0 and

Pτ ,0(x) =


∞

u=x
dĀτ c (u) +

 x

u=0
dĀτ c (u)Pτ ,0(x − u)

Pτ ,n(x) = 1[n=1]


∞

u=x
dĀτ (u)


+

 x

u=0


dĀτ (u)Pτ ,n−1(x − u) + dĀτ c (u)Pτ ,n(x − u)


for n > 1, where dĀζ (x) = (−S)−1∆(eζ )dA(x) and 1[n=1] equals 1 for n = 1 and zero otherwise. This allows us to rewrite

∞

x=0


PT
n (x) ⊗ exp(Tx)


dxwhich, similar to the discrete-time case, yields

P[Nb = n] = α(I − M(τ c))−1Mn−1ξ,

where M(ζ ) =


∞

x=0(dĀ
T
ζ (x) ⊗ exp(Tx)), M = M(τ )(I − M(τ c))−1 and

α =


∞

x=0


∞

u=x
(dĀτ c (u)e)T


⊗ π(0) exp(Tx)dx


(I − M(τ c))−1M(τ )

+


∞

x=0


∞

u=x
(dĀτ (u)e)T


⊗ π(0) exp(Tx)dx.

By switching the order of the integrations, noting that−π(0)T−1 is the unique stochastic invariant vector of


∞

u=0 dA(u)+ S,
which we denoted as θ , and remarking that


∞

x=0(dĀτ (x) + dĀτ c (x))e = e, α can be simplified to α = (eT ⊗ θ)(ST (τ ) ⊗

Im)(I − M), where ST (τ ) = ((−S)−1∆(eτ )(−S))T .
This implies that Nb(τ ) has a matrix geometric representation ((eT ⊗ θ)(I − M(τ c))−1,M, ξ) of orderm2, which can be

transformed into thematrix geometric representation (κ, K , ν) as θ > 0 (due to the irreducibility assumption).K(τ )+K(τ c)
is strictly substochastic as Q = ∆(θ)−1T T∆(θ) was shown to be the generator of a transient Markov chain by Sengupta and

∞

x=0(dĀτ (x) + dĀτ c (x))e = e. This suffices to show that the inverse (I − K(τ c))−1 exists and that K is substochastic as well.
The vector κ is clearly stochastic. �



B. Van Houdt / Performance Evaluation ( ) – 11

Corollary 2. The overall queue length distribution Nb has a phase-type representation (κ, K) of order m2 given by

κ = ξ T (Im ⊗ ∆(θ)), K =


∞

x=0
(dĀ(x) ⊗ exp(Qx)), (17)

where dĀ(u) = (−S)−1dA(u) and Q = ∆(θ)−1T T∆(θ).

4.2. Redundancy of the representation

Proving that examples exist for which the queue length distribution has a minimal order of m2 is more difficult in
continuous time. Mostly because we wish to find an explicit expression for the phase-type representation (κ, K) and its
first few moments, such that an exact evaluation of the determinant of its Hankel matrix can be performed. Thus, we need
to specify the S and P(u)matrices such that T and its matrix exponential can be expressed explicitly, where T was a solution
to the integral equation (13). As opposed to the discrete-time setting, where examples can be constructed such that R is
known explicitly, there is no continuous-time analog for which T is known explicitly.

To construct such a rational T , we make use of a queue somewhat similar to the one considered in Section 3.2, that is, we
define m = 2, τ = {1, 2}, P(1) = Q (1) and P(2) = Q (1) + Q (2) and set dP(u) = 0, for all u ≠ 1, 2. Notice, even for the
continuous-time case P(u) may be chosen as a discrete distribution, which implies that the Stieltjes integration in (13) is a
simple summation. Denote the 2 × 2 rate matrix S as

S =


−x1 x2
x3 −x4


.

Next we determine S such that T is the rational matrix below

T =


−1 3/4
1/3 −1


,

with matrix exponential

exp(T ) =


1
2
e

−1
2 +

1
2
e

−3
2

3
4
e

−1
2 −

3
4
e

−3
2

1
3
e

−1
2 −

1
3
e

−3
2

1
2
e

−1
2 +

1
2
e

−3
2

 .

Because of (13), it suffices to solve the linear system with 4 equations and 4 unknowns

T = S + exp(T )


0 x1 − x2
0 0


+ exp(2T )


0 0

x4 − x3 0


,

because of the form of the matrices P(u). As T , exp(T ) and its square exp(2T ) are known explicitly, the solution for x1, x2, x3
and x4 can be determined as

x1 =
16q6 + 8q5 + 24q4 + 5q3 + 21q2 + 5q + 5

8q2(2q4 + q3 + 2q2 + 1)

x2 =
12q7 − 8q6 + 6q5 − 19q4 + 6q3 − 16q2 − 5

8q2(2q5 − q4 + q3 − 2q2 + q − 1)

x3 =
8q8 + 4q7 − 8q6 − 9q5 − 9q4 − 12q2 − 5q − 5

12q2(2q6 + q5 − q3 − q2 − 1)

x4 =
24q6 + 14q5 + 26q4 + 5q3 + 17q2 + 5q + 5

12q2(2q4 + q3 + 2q2 + 1),

with q = e1/2 and S turns out to be awell-defined ratematrix. Using the expression for the exponential of T we can compute
the phase-type representation (κ, K) in explicit form, as well as its corresponding Hankel matrix, allowing us to conclude
that the order 4 representation is indeed minimal.

4.3. Computation of the queue length distribution

4.3.1. General case
The main step in computing the representation (κ, K , ν) via (14) to (16) is to determine the matrix Q = ∆(θ)−1T T∆(θ),

where T T is the transposed matrix of T . As indicated in [5], the matrix T can be computed by setting T0 = S and letting

Tn+1 = S +


∞

0
exp(Tnu)dA(u), (18)
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for n ≥ 0 until |Tn+1 − Tn| is below some predefined parameter ϵ (e.g., ϵ = 10−10). One could also compute Q directly by
defining a dual process. Indeed, if we extend the Ramaswami dual [14] to M/G/1- and GI/M/1-type Markov chains with a
continuous level, the dual of our age process becomes anM/G/1-typeMarkov chain with a continuous level as introduced by
Takine [21]. As opposed to the discrete-time case, there is however no gain in doing so, as the iterative algorithm to compute
Q is such that Qn, the matrix obtained after n steps, can be written as ∆(θ)−1T T

n ∆(θ). Before we move on to the Markovian
inter-arrival times, we briefly discuss two other special cases in which numerical integration can be avoided.
Discrete inter-arrival times. Assume P(u) is a step-function with steps occurring at t1, t2, . . . and define Q (t1) = P(t1) and
Q (ti) = P(ti) − P(ti−1) for i > 1, then (18) reduces to

Tn+1 = S +

∞
i=1

exp(Tnti)Q (ti),

as in the example in Section 4.2.
Some well-known functions Pi,j(u). As explained in [1,5] the integration in (18) can be avoided if

∞

0
exp(Tnu)dPi,j(u)

can be expressed in terms of Tn for all i, j ∈ {1, . . . ,m}with Pi,j(u) the (i, j)-th entry of P(u). Sengupta lists various examples
for Pi,j(u) such as the uniform distribution on [a, b], the gamma distribution with parameters (n, α), etc. The numerical
integration in (16) can be avoided in a similar manner.

4.3.2. Markovian inter-arrival times

Avoiding numerical integration Assume dP(u) can be written as dP(u) = exp(D̄0u)D̄1du for somem × mmatrices D̄0 and D̄1,
such that (D̄0, D̄1) characterizes a MAP process. Notice, the actual arrival process of the semi-Markovian queue is not the
MAP characterized by (D̄0, D̄1) as the service process affects the arrival process as well. In this case, we can express Tn+1 as

Tn+1 = S +


∞

0
exp(Tnu)S∗ exp(D̄0u)duD̄1,

and by applying integration by parts we find that Tn+1 can be written as S + XnD̄1, where Xn is the solution to the linear
system

XnD̄0 + TnXn = −S∗.

The equation for Xn is a Sylvester matrix equation that can be solved in O(m3) time [22]. This approach is a generalization
of the method used in [10] to compute T for the MMAP[K]/PH[K]/1 queue if we define D̄0 = (I ⊗ D0) and

D̄1 =

α1 ⊗ D1 · · · αK ⊗ DK


,

where (D0,D1, . . . ,DK ) characterizes theMMAP[K] arrival process and the service of a type k customer is phase-type (αk, Sk)
(see also Section 2(c)). Due to exp(A) ⊗ exp(B) = exp(A ⊕ B), we can also simplify (16) to

K(ζ ) = −((−S)−1∆(eζ )S∗
⊗ Im)(D̄0 ⊕ Q )−1(D̄1 ⊗ Im).

Reduction to fluid queues. The iterative solution above that relies on solving a Sylvester matrix equation during each step
has linear convergence only and might require many iterations. To obtain a solution method with quadratic convergence,
we can construct a fluid queue [23], by replacing the immediate downward jumps by intervals of the appropriate length
duringwhich the level decreases linearly. In other words, we obtain a fluid queuewithm phases in which the fluid increases
(our original m states) and m phases in which the fluid decreases (the m artificial states that are added) such that F++ = S,
F+− = S∗, F−+ = D̄1 and F−− = D̄0, where F++, F+−, F−+ and F−− holds the rates at which the phase changes while going
up, from an up to a down phase, from a down to an up phase and while going down, respectively. Notice, F defined as

F =


F++ F+−

F−+ F−−


,

is the rate matrix of a continuous-time Markov chain. If we take the expression for the steady state of a fluid queue [23]
and observe the queue only when the level increases, one finds that its steady state π(x) has a matrix exponential form
π(x) = π(0) exp(Tx), with T = F++ + Ψ F−+ where Ψ is the minimal non-negative solution to an algebraic Riccati
equation [23]. Thus, to compute T , it suffices to determineΨ and this can be done by constructing the following discrete-time
Quasi–Birth–Death Markov chain [24] (where Â0 captures the upward and Â2 the downward transitions):

Â0 =

1
2
I 0

0 0

 , Â1 =

1
2
P++ 0

P−+ 0

 , Â2 =

0
1
2
P+−

0 P−−

 ,
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where P is the transition matrix of a discrete-time Markov chain obtained from F by means of a uniformization and is
partitioned in the same manner as F (i.e., P = I + F/µ with µ = maxi |Fii|). Let the 2m × 2m matrix Ĝ be the smallest
non-negative solution to

Ĝ = Â2 + Â1Ĝ + Â0Ĝ2,

then Ψ is found as the upper right corner of Ĝ [24] as

Ĝ =


0 Ψ

0 P−− + P−+Ψ


.

In conclusion, T can be computed via Ψ for which we can use any algorithm with quadratic convergence such as cyclic
or logarithmic reduction [19], the runtime of which can even be further improved by exploiting the internal structure of
the matrices Â0, Â1 and Â2 (e.g., see [25]). Alternatively, the algebraic Riccati equation can also be solved with quadratic
convergence using the Newton iteration [26], which requires the solution of a Sylvester matrix equation [22] of the form
AX+XB = C during each iteration and therefore has a similar time complexity as the Quasi–Birth–Death approach discussed
above.

4.4. Special case: overall queue length of the MAP/MAP/1 queue

For the special case of the continuous-time MAP/MAP/1 queue with (D0,D1) characterizing the arrival process and
(S0, S1) the service process we have S = I ⊗ S0 and dA(u) = exp(D0u)D1 ⊗ S1. Hence,

dĀT (u) = (D1 ⊗ (−S0)−1S1)T (exp(DT
0u) ⊗ I).

and

M = −((D1 ⊗ (−S0)−1S1)T ⊗ I)((DT
0 ⊗ I) ⊕ T )−1.

By remarking that P0(x) =


∞

u=x dĀ(u) = (exp(D0x) ⊗ I)((−D0)
−1D1 ⊗ (−S0)−1S1), we have

α = −(eT ⊗ π(0))((DT
0 ⊗ I) ⊕ T )−1.

Recall, π(0) equals −θT and θ is the unique stationary vector of ((−D0)
−1D1 ⊗ S1) + (I ⊗ S0) for the MAP/MAP/1 queue.

This order m2 representation is clearly redundant as an order m representation can be obtained directly from the R matrix
of the Quasi–Birth–Death Markov chain where the level represents the number of customers in the queue, that is, R is the
smallest non-negative solution to

0 = (D1 ⊗ I) + R(D0 ⊕ S0) + R2(I ⊗ S1),

which can be computed using an algorithm with quadratic convergence (e.g., by cyclic or logarithmic reduction [19]). This
also raises the question whether T could be computed from R.

To express T via R for the MAP/MAP/1 queue, we first note that for the more general SM/MAP/1 queue Sengupta
[1, Theorem 6 and Eq. (15)] showed that

T = (I ⊗ S0) + R̃(I ⊗ S1),

where R̃ is the R-matrix of the discrete-time GI/M/1-type Markov chain obtained by observing the queue length at arrival
times only. Using Theorem 1 of Ozawa [12], we find that

R̃ = (−U)−1(D1 ⊗ I),

with U = (D0 ⊕ S0) + R(I ⊗ S1) = (D0 ⊕ S0) + (D1 ⊗ I)G. This allows us to conclude

T = (I ⊗ S0) + (−U)−1(D1 ⊗ S1),

where U can be expressed via R as indicated above. Using either this new relation or the fluid queue reduction presented in
the previous section, we can significantly outperform existingmethods [27] to compute the orderm phase-type distribution
for the waiting time in a MAP/MAP/1 queue.

5. Numerical examples

We conclude by presenting a number of numerical examples. We restrict ourselves to two continuous-time examples as
these are slightly more challenging. Discrete-time examples can be generated as well and can be solved even faster as we
can rely on algorithms with quadratic convergence even in the general case.

We start with an example of an MMAP[K]/PH[K]/1 queue with three types of customers to validate our results with the
more involvedmethod in [10]. The first type of customers require an Erlang-2 amount of service with rate parameter λ = 1,
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Fig. 1. Overall (left) and per type (right) queue length distribution for an MMAP[K]/PH[K]/1 queue with and without correlation between the service and
inter-arrival time.

the second follow a size 3 Coxian distribution with (λ1, λ2, λ3) = (1/2, 1/3, 1/2) and the service time of the third class is
exponential with rate λ = 1/5. The MMAP[K] arrival process is characterized by

D0 =


−104/500 4/500

6/700 −106/700


, D1 =


1/10 0
0 0


,

D2 =


1/10 0
0 1/14


, D3 =


0 0
0 1/14


.

Hence, this queue has periods with arrivals of type-1 and type-2 followed by periods with arrivals of type-2 and type-3 with
a lower arrival rate. Furthermore, 30% of the customers are type-1, 50% type-2 and 20% type-3. Asm = 12 in this particular
example, K is a size 144 matrix. The queue length distribution Nb is depicted on the left in Fig. 1 and is labeled Multi-type
queue. These results are in perfect agreement with themethod presented in [10] and implemented in [27]. The computation
time requiredwas less than 0.25 seconds using the Sylvester equation approach discussed in Section 4.3.2. On this particular
example, the fluid queue approach of Section 4.3.2 further reduced the computation time of the matrix T by a factor 3.

When we ignore the correlation between the customer types, the queue is reduced to an MAP/PH/1 queue where the
arrival process is the two-state MAP characterized by (D0,D1 + D2 + D3) and the phase-type service is of order 6. In Fig. 1
we show the impact of neglecting the correlation in the customer types, where we labeled the results as Single-type queue.
We clearly see that the queue length distribution is highly affected by the correlation between the service and inter-arrival
times, even the mean queue length increases by more than 20%. The queue length increases because the MAP state with
the highest arrival rate produces type-1 and type-2 customers (with equal probability), while the state with the lower rate
created type-2 and type-3 customers. The mean service time of the type-3 customers is however 2.5 times as high as the
type-1 customers, meaning during the periods where the arrival rate is higher, the average amount of work per customer is
less. Neglecting this results in longer queue lengths.

The per type queue length distribution is shown on the right in Fig. 1 and the results are in perfect agreement with
the more elaborate method presented in [10] and implemented in [27]. As indicated in Section 2, the type k queue length
distribution, for k = 1, 2 and 3, is obtained by properly defining τ (i.e., for type 1 we have τ = {1, . . . , 4}, for type 2 we set
τ = {5, . . . , 10} and for type 3 we have τ = {11, 12}).

In the second example we consider a queue that does not belong to the SM[K]/PH[K]/1 class withm = 2. The matrices S
and P(∞) =


dP(u) are given by

S =


−1/14 − 1/(40r) 1/(40r)

1/(20r) −1/27 − 1/(20r)


,

and

P(∞) =


1 − 1/(5r) 1/(5r)
1/(6r) 1 − 1/(6r)


,

with r = 100 or 1000. Moreover, when the service of a customer ends in phase 1 (2), the inter-arrival time is uniform
between 10 and 25 (between 20 and 35) and the phase after the arrival changes according to P(∞). Notice, this queue tends
to have fairly long periods with uniform inter-arrival times between 10 and 25 and exponential services with mean length
14, typically followed by periods of uniform inter-arrival times between 20 and 35 and exponential service timeswithmean
27. Thus, it has periods with a load close to one and periods with a substantially lower load, such that the overall load is
86.6%.
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Fig. 2. Overall (left) and per type (right) queue length distribution for a semi-Markovian queue and its corresponding GI/PH/1 queue.

The queue length distribution can be computed in a fraction of a second and the results for the overall queue length are
shown on the left in Fig. 2 for r = 100 and r = 1000 (labeled Semi-Markovian queue). To compute T we made use of the
method presented in Section 4.3 (Well-known functions). If we were to neglect all the types of correlation we end up with
a GI/PH/1 queue (for which the value of r is irrelevant) that does not exhibit the behavior above and is therefore far too
optimistic with respect to the queue length distribution (see Fig. 2, labeled GI/PH/1 queue). On the right Fig. 2 shows the per
type queue length distribution for r = 100 and r = 1000. Recall, the type 1 customers arrive in low load periods, while
the type 2 customers arrive in high load periods, where the mean length of these periods increases with r . As expected the
mean queue length of the type 1 customers decreases with r , while the mean type 2 queue length increases. Somewhat less
expected, the tail of the type 1 customers decays slower than the tail of the type 2 customers. This can be understood by
remarking that the first type 1 customers that arrive during a low load period still have to face the queue created during
the high load period, while the arrival rate in the low load period is higher than in the high load period. Indeed, the point of
intersection between the type 1 and 2 queue length distributions decreases rapidly as r increases.

References

[1] B. Sengupta, The semi-Markovian queue: theory and applications, Stochastic Models 6 (3) (1990) 383–413.
[2] J. Lambert, B. Van Houdt, C. Blondia, Queues with correlated service and inter-arrival times and their application to optical buffers, Stochastic Models

22 (2) (2006) 233–251.
[3] J. Lambert, B. Van Houdt, C. Blondia, Queues in DOCSIS cable modem networks, Computers & Operations Research 35 (8) (2008) 2482–2496.
[4] J.H.A. Smit de, The single server semi-Markov queue, Stochastic Processes and Their Applications 22 (1) (1986) 37–50.
[5] B. Sengupta, Markov processes whose steady state distribution is matrix exponential with an application to the GI/PH/1 queue, Advances in Applied

Probability 21 (1989) 159–180.
[6] M. Neuts, Matrix-Geometric Solutions in Stochastic Models, An Algorithmic Approach, John Hopkins University Press, 1981.
[7] B. VanHoudt, C. Blondia, The delay distribution of a type k customer in a first come first servedMMAP[K]/PH[K]/1 queue, Journal of Applied Probability

39 (1) (2002) 213–222.
[8] B. Van Houdt, C. Blondia, The waiting time distribution of a type k customer in a MMAP[K]/PH[K]/c (c = 1, 2) queue using QBDs, Stochastic Models

20 (1) (2004) 55–69.
[9] Q. HE, Age process, workload process, sojourn times, and waiting times in a discrete-time SM[K]/PH[K]/1/FCFS queue, Queueing Systems 49 (2005)

363–403.
[10] Q. HE, Analysis of a continuous time SM[K]/PH[K]/1/FCFS queue: age process, sojourn times, and queue lengths, Working paper 04-01, Department of

Industrial Engineering, Dalhousie University (2004).
[11] I. Adan, V. Kulkarni, Single-server queue with Markov-dependent inter-arrival and service times, Queueing Systems and its Applications 45 (2003)

113–134.
[12] T. Ozawa, Sojourn time distributions in the queue defined by a general QBD process, Queueing Systems and its Applications 53 (4) (2006) 203–211.
[13] A. Horváth, G. Horváth, M. Telek, A joint moments based analysis of networks of MAP/MAP/1 queues, in: QEST ’08: Proceedings of the 2008 Fifth

International Conference on Quantitative Evaluation of Systems, IEEE Computer Society, 2008, pp. 125–134. http://dx.doi.org/10.1109/QEST.2008.26.
[14] V. Ramaswami, A duality theorem for the matrix paradigms in queueing theory, Stochastic Models 6 (1) (1990) 151–161.
[15] M. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker, Inc., New York and Basel, 1989.
[16] Q. HE, H. Zhang, On matrix exponential distributions, Advances in Applied Probability 39 (1) (2007) 271–292.
[17] W.B. Gragg, A. Lindquist, On the partial realization problem, Linear Algebra and its Applications 50 (1983) 277–319.
[18] A. van de Liefvoort, The moment problem for continuous distributions, Tech. Rep., University of Missouri (1990).
[19] D. A. Bini, B. Meini, S. Steffé, B. Van Houdt, Structured Markov chains solver: algorithms, in: SMCtools Workshop, ACM Press, Pisa, Italy, 2006.
[20] P. Fernandes, B. Plateau, W.J. Stewart, Efficient descriptor-vector multiplications in stochastic automata networks, Journal of the ACM 45 (3) (1998)

381–414. http://doi.acm.org/10.1145/278298.278303.
[21] T. Takine, A continuous version of matrix-analytic methods with skip-free to the left property, Stochastic Models 12 (4) (1996) 673–682.
[22] G.H. Golub, S. Nash, C. Van Loan, A Hessenberg–Schur method for the problem AX + XB = C, IEEE Transactions on Automatic Control 24 (1979)

909–913.
[23] G. Latouche, Structured Markov chains in applied probability and numerical analysis, in: Markov Anniversary Meeting, 2006, pp. 69–78.
[24] V. Ramaswami, Matrix analytic methods for stochastic fluid flows, in: Teletraffic Engineering in a CompetitiveWorld — Proc. of the 16th International

Teletraffic Congress (ITC 16), Elsevier Science B.V., 1999, pp. 1019–1030.

http://dx.doi.org/10.1109/QEST.2008.26
http://doi.acm.org/10.1145/278298.278303


16 B. Van Houdt / Performance Evaluation ( ) –

[25] C.-H. Guo, Efficient methods for solving a nonsymmetric algebraic Riccati equation arising in stochastic fluid models, Journal of Computational and
Applied Mathematics 192 (2006) 353–373.

[26] C.-H. Guo, Nonsymmetric algebraic Riccati equations andWiener–Hopf factorization forM-matrices, SIAM Journal onMatrix Analysis andApplications
23 (2001) 225–242.

[27] J. F. Pérez, J. Van Velthoven, B. Van Houdt, Q-MAM: a tool for solving infinite queues using matrix-analytic methods, in: ValueTools ’08: Proceedings
of the 3rd International Conference on Performance Evaluation Methodologies and Tools, 2008, pp. 1–9.
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4368.

Benny Van Houdt received his M.Sc. degree in mathematics and computer science, and a Ph.D. in science from the University
of Antwerp (Belgium) in July 1997, and May 2001, respectively. From August 1997 until September 2001 he held an Assistant
position at the University of Antwerp, while from October 2001 until September 2007 he has been a postdoctoral fellow of
the FWO-Flanders. In 2007, he became a professor at the Mathematics and Computer Science Department of the University
of Antwerp, where he is a leading member of the PATS research group. His main research interest goes to the performance
evaluation and stochastic modelling of communication networks. Other areas of interest include manufacturing, operating
systems, tool development, etc. He has published various papers, containing both theoretical and practical contributions, in
a variety of international journals (e.g., IEEE JSAC, Performance Evaluation, Journal of Applied Probability, Stochastic Models,
Queueing Systems, etc.) and in conference proceedings (e.g., ACM Sigmetrics, Networking, Globecom, Opticomm, ITC, etc.).

http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4368

	A matrix geometric representation for the queue length distribution of multitype semi-Markovian queues
	Introduction
	Definitions and examples
	Semi-Markovian queue in discrete time
	Order  m2  representation
	Redundancy of the representation
	Computation of the queue length distribution
	General case
	Markovian inter-arrival times


	Semi-Markovian queue in continuous time
	An order  m2  representation
	Redundancy of the representation
	Computation of the queue length distribution
	General case
	Markovian inter-arrival times

	Special case: overall queue length of the MAP/MAP/1 queue

	Numerical examples
	References


