The impact of dampening demand variability in
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Abstract We study a supply chain consisting of a single manufacturer and two re-
tailers. The manufacturer produces goods on a make-to-order basis, while both re-
tailers maintain an inventory and use a periodic replenishment rule. As opposed to
the traditional (r,S) policy, where a retailer at the end of each period orders the de-
mand seen during the previous period, we assume that the retailers dampen their
demand variability by smoothing the order size. More specifically, the order placed
at the end of a period is equal to B times the demand seen during the last period
plus (1 — ) times the previous order size, with 8 € (0, 1] the smoothing parameter.
We develop a GI/M/1-type Markov chain with only two nonzero blocks Ag and A,
to analyze this supply chain. The dimension of these blocks prohibits us from com-
puting its rate matrix R in order to obtain the steady state probabilities. Instead we
rely on fast numerical methods that exploit the structure of the matrices Ag and Ay,
i.e., the power method, the Gauss-Seidel iteration and GMRES, to approximate the
steady state probabilities. Finally, we provide various numerical examples that indi-
cate that the smoothing parameters can be set in such a manner that all the involved
parties benefit from smoothing. We consider both homogeneous and heterogeneous
settings for the smoothing parameters.
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1 Introduction

Consider a two-echelon supply chain consisting of a single retailer and a single
manufacturer, where the retailer places an order for a batch of items with the man-
ufacturer at regular time instants, i.e., the time between two orders is fixed and
denoted as r. The manufacturer may be regarded as a single server queue that pro-
duces these items and delivers them to the retailer as soon as a complete order is
finished. The retailer sells these items and maintains an inventory on hand to meet
customer demands. When the customer demand exceeds the current inventory on
hand, only part of the demand is immediately fulfilled and the remaining items are
delivered as soon as new items become available at the retailer. Hence, items are
backlogged instead of being lost (i.e., there are no lost sales). We assume that the
manufacturer does not maintain an inventory, but simply produces items whenever
an order arrives, i.e., it operates on a make-to-order basis.

A key performance measure in such a system is the fill-rate, which is a measure
for the proportion of customer demands that can be met without any delay. In or-
der to guarantee a certain fill-rate it is important to determine the size of the orders
placed at the regular time instants. This size will depend on the current inventory po-
sition, defined as the inventory on hand plus the number of items on order minus the
number of backlogged items. The rule that determines the order size is termed the
replenishment rule. A well-studied replenishment rule exists in ordering an amount
such that the inventory position is raised after each order to some fixed position S,
called the base-stock level. This basically means that at the regular time instants,
you simply order the amount of items sold since the last order instant. As a result,
the order policy of the retailer is called an (r,S) policy.

A common approach in the analysis of such a policy is to assume an exogenous
lead time, which means that the time required to deliver an order is independent of
the size of the current order and independent of the lead time of previous orders.
In [3] the (R,S) policy was studied with endogenous lead times, meaning the lead
times depend on the order size and consecutive lead times are correlated. The results
in [3] indicate that exogenous lead times result in a severe underestimation of the
required inventory on hand, as expected.

When the lead times are endogenous, it is clear that a high variability in the
order sizes comes at a cost, as this increases the variability of the arrival process at
the manufacturer and therefore increases the lead times. As a result, replenishment
rules that smooth the order pattern at the retailer were studied in [4] and it was
shown that the retailer can reduce the upstream demand variability without having
to increase his safety stock (much) to maintain customer service at the same target
level. Moreover, on many occasions the retailer can even decrease his safety stock
somewhat when he smooths his orders. This is clearly advantageous for both the
retailer and the manufacturer. The manufacturer receives a less variable order pattern
and the retailer can decrease his safety stock while maintaining the same fill rate, so
that a cooperative surplus is realized.

In this paper we analyze the same set of replenishment rules as in [4], but now we
look at a two-echelon supply chain consisting of one manufacturer and two retailers,



Dampening demand variability in a production/inventory system with multiple retailers 3

where either both, one or neither of the retailers uses a smoothing rule. The main
question that we wish to address therefore exists in studying whether all parties can
still benefit when the orders are smoothed and moreover who benefits most.

As in [4], one of the key steps in the analysis of this supply chain system will
exist in setting up a GI/M/1-type Markov chain [8], that has only two non-zero
blocks, denoted as Ag and A,;. However, as opposed to [4], the size of these blocks
often prohibits us from storing them into main (or secondary) memory. This implies
that iteratively computing the dense R matrix, used to express the matrix geomet-
ric steady state vector of the GI/M/1-type Markov chain, by one of the existing
methods such as functional iterations or cyclic reduction [1], is no longer possi-
ble/efficient. Instead, we will rely on the specific structure of the matrices Ag and Ay
and will make use of numerical methods typically used to solve large finite Markov
chains, such as the shuffling algorithm [5], Kronecker products, the power method,
the Gauss-Seidel iteration and GMRES [10].

2 Model Description

We consider a two-echelon supply chain with two retailers and a single manufac-
turer, where both retailers maintain their own inventory. Every period, both retailers
observe their customer demand. If there is enough on-hand inventory available at a
retailer, the demand is immediately satisfied. If not, the shortage is backlogged. To
maintain an appropriate amount of inventory on hand, both retailers place a replen-
ishment order with the manufacturer at the end of every period. The manufacturer
does not hold a finished goods inventory but produces the orders on a make-to-
order basis. The manufacturers production system is characterized by a single server
queueing model that sequentially processes the orders, which require stochastic pro-
cessing times. Once the complete replenishment order of both retailers is produced,
the manufacturer replenishes both inventories. Hence, the order in which the two or-
ders are produced is irrelevant, as shipping only occurs when both orders are ready.

The time from the moment an order is placed to the moment that it replenishes
the retailers inventory, is the replenishment lead time T,.. The queueing process at the
manufacturer clearly implies that the retailers replenishment lead times are stochas-
tic and correlated with the order quantity. The sequence of events in a period is as
follows. The retailer first receives goods from the manufacturer, then he observes
and satisfies customer demand and finally, he places a replenishment order with the
manufacturer. The following additional assumptions are made:

1. Customer demand during a period for retailer i is independently and identically
distributed (i.i.d.) over time according to an arbitrary, finite, discrete distribution
DU with a maximum of mg), for i = 1 and 2. The demand at the retailers is
also assumed to be independent of each other. For further use, denote mp =

mg) —I—mg).
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2. The order quantity O,(') of retailer i during period ¢ is determined by the retail-
ers replenishment rule and influences the variability in the orders placed on the
manufacturer. Possible replenishment rules are discussed in the next section.

3. The replenishment orders are processed by a single FIFO server. This excludes
the possibility of order crossovers. When the server is busy, new orders join a
queue of unprocessed orders.

4. The orders placed during period ¢ are delivered when both orders have been pro-
duced.

5. Orders consist of multiple items and the production time of a single item is
i.i.d. according to a discrete-time phase type (PH) distribution with represen-
tation (o, U). For further use, we define u* = e — Ue, with e a column vector of
ones.

The PH distribution is determined using the matching procedure presented in [4],
that matches the first two moments of the production time using an order 2 repre-
sentation, meaning the matrix U is a 2 X 2 matrix and & a size 2 row vector, even if
the squared coefficient of variation is small by exploiting the scaling factor as in [2].
This implies that the length of a time slot is chosen as half of the mean production
time of an item. In other words, the mean production time of an item is two time
slots, while the length of a period is denoted as d time slots, where d is assumed to
be an integer.

The time from the moment the order arrives at the production queue to the point
that the production of the entire batch is finished, is the production lead time or re-
sponse time, denoted by 7,,. Note that the production lead time is not necessarily an
integer number of periods. Since in our inventory model events occur on a discrete
time basis with a time unit equal to one period, the replenishment lead time 7 is
expressed in terms of an integer number of periods. For instance, suppose that the
retailer places an order at the end of period ¢, and it turns out that the production
lead time is 1.4 periods. This order quantity will be added to the inventory in period
t +2, and due to our sequence of events, can be used to satisfy demand in period
¢+ 2. As such, we state that the replenishment lead time 7; is |7, ,,J periods, i.e., 1
period in our example.

3 Replenishment Rules

The retailers considered in this paper apply an (r,S) policy with or without smooth-
ing, meaning amongst others they place an order at the end of each period. With-
out smoothing, the order size is such that the inventory position /P, defined as the
on-hand inventory plus the number of items on order minus the backlogged items,
equals some fixed S after the order is placed. In other words, the size of the order O,
at the end of period 7 simply equals the demand D, observed during period ¢.

If smoothing is applied with parameter 0 < 8 < 1, we do not order the difference
between S and IP, but instead only order B times S — IP. As will become clear
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below, this does not imply that fewer items are ordered in the long run, it simply
means that some items will be ordered at a later time. As shown in [4], this rule is
equivalent to stating that the size of the order at the end of period ¢, denoted Oy, is
given by

O, =(1-PB)0i-1+BDy,

where D, is the demand observed by a retailer in period z. Hence, setting § = 1
implies that we do not smooth. This equation also shows that the mean order size is
still equal to the mean demand size E[D]. It is also easy to show [4] that the variance
of the order size Var|O] equals

B
2-B)

meaning the variance decreases to zero as 8 approaches zero, where Var|[D] is the
variance in the demand. It is also possible to consider 8 values between 1 and 2, but
this would amplify the variability instead of dampening it.

The key question that our analytical model will answer is how to select the base-
stock level S such that the fill-rate, a measure for the proportion of demands that can
be immediately delivered from the inventory on hand, defined as

Var|D],

1— expected number of backlogged items
expected demand '

is sufficiently high. The level S is typically expressed using the safety stock SS,
defined as the average net stock just before a replenishment arrives (where the net
stock equals the inventory on hand minus the number of backlogged items). For a
retailer that smooths with parameter 3, S and SS are related as follows [4]
1-B
S=SS+ (E[T;]+1)E[D]+ TE[D],
where E|[T;] is the mean replenishment lead time. Thus, a good policy will result in
a smaller safety stock SS, which implies a lower average storage cost for the retailer.

4 The Markov chain

Both Markov chains developed in this section are a generalization of the Markov
chain introduced in [4], for the system with a single retailer. The numerical method
to attain their stationary probability vector, discussed in Section 5, is however very
different.

From now on we will express all our variables in time slots, where the length of a
single slot equals half of the mean production time, i.e., (I — U)'e/2, and orders

are placed by both retailers every d time slots. Hence, the order size of retailer i at

the end of period 7 is now written as 01(2) and
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Oz(zlz) =(1- /31'>0§Z)4>d + BiD(i)’

where f; is the smoothing parameter of retailer i, for i = 1, 2. As the order size must

be an integer, the integer amount ordered OE;*) will equal [0521 with probability

OI(;) - LOS}J and LOI(;)J with probability [0521 - OI(;) in case OI(;) is not an integer.
This guarantees that E [05;*)] =E [OSJ] = E[DY),

The joint order O}, of both retailers placed at time td equals OS*) + Olg*). Recall,
both these orders are only delivered by the manufacturer when the joint order has

been produced. Next, define the following random variables:

e 1,: the time of the n-th observation point, which we define as the n-th time slot
during which the server is busy,

e a(n): the arrival time of the joint order in service at time ,,,

e B,: the age of the joint order in service at time t,, expressed in time slots, i.e.,
B, =t,—a(n),

e (C,: the number of items part of the joint order in service that still need to start or
complete service at time ¢,

e S,: the service phase at time ,,.

All events, such as arrivals, transfers from the waiting line to the server, and service
completions are assumed to occur at instants immediately after the discrete time
epochs. This implies that the age of an order in service at some time epoch ¢, is at
least 1. We start by introducing the Markov chain for the case where both retailers
smooth.

4.1 Both retailers smooth

It is clear that the stochastic process (B,,,C,,,021(31),022(’)1),5,,),,20 forms a discrete
time Markov process on the state space No x {(¢,x1,x2)[c € {1,...,mp},1 <x; <
mg),i € {1,2}} x {1,2}, as the PH service requires only two phases. Note that
the process makes use of the order quantities OS()n) instead of the integer val-
%B)' Given that these order quantities are real numbers, the Markov process
(B,,,C,,,021(31),022(’)1),5,,),,20 has a continuous state space which makes it very hard

to find its steady state vector.

ues O

(@)

a(n)
it in a probabilistic way to the nearest multiple of 1/g, where g > 1 is an inte-
ger termed the granularity of the system. Clearly, the larger g, the better the ap-

proximation. Hence, we approximate the Markov process above by the Markov

chain (Bn,Cn,05’((,11)),05’((,12)),Sn)n20 on the discrete state space Ny x {(c,x1,x2)|c €

(1,....mp}txies ie{1,2}} x {1,2}, where S = {1,1+1/g,1+2/g,...,m\}

Therefore, instead of keeping track of O’/ | in an exact manner, we will round
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and the quantity 0;,:1(1‘) evolves as follows. Let

x=(1-)0f", + D",

then Otgf’j(i) = x if x € SU, otherwise it equals [x], with probability g(x — [x],),
or x|, with probability g([x], — x), where [x], (|x]g) rounds up (down) to the
nearest element in S Notice, by induction, we have E [Ofl‘l(i)] = E[DY]. Us-
ing this probabilistic rounding, we can easily compute the conditional probabili-
ties P[Oft'i(i) = q’|0ft'(j)1) 4 = 4], which we denote as pg)(q,q’ ), from DU (see [4,
Eqn. (12)] for details).

The transition matrix P, of the Markov chain (B,l,C,l,O%l)
GI/M/1-type Markov chain [8] with the following structure,

0%

a(n)’ Sn)nZO is a

Ag Ag

as By, either increases by one if the same joint order remains in service, or decreases
by d — 1 if a joint order is completed. Hence, there are d occurrences of A; on
the first block column. The size m of the square matrices Ag and Ay is 2mpmy,
with m, = ,-Zzl(m%)g — g+ 1), which is typically such that we cannot store the
matrices Ag and A, in memory. Although we can eliminate close to 50% of the states

by removing the transient states with C, > [Oil(zl)] + [022(21)] the size m remains
problematic and this would slow down the numerical solution method presented

in Section 5. A more detailed discussion of the structure of Ay and A, is given in
Section 5.1.

4.2 One retailer smooths

Assume without loss of generality that retailer one smooths, while retailer two does
not, i.e., B; < 1 and B, = 1. In this case we can also rely on the Markov chain de-

fined above, but now there is no longer a need to keep track of OZ ,(’12)), as the orders of

retailer two are distributed according to D@, This not only simplifies the transition
probabilities, but also considerably reduces the time and memory requirements of
the numerical solution method introduced in Section 5. Although storing the matri-
ces Ag and A, in memory may no longer be problematic, a numerical approach as
presented in the next section outperforms the more traditional approach that relies
on computing the rate matrix R [8] by a considerable margin.
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5 Numerical solution

The objective of this section is to introduce a numerical method to compute the
steady state distribution of the Markov chain introduced in Section 4.1 by avoiding
the need to store the matrices Ag and A,.

5.1 Fast multiplication

In order to multiply the vector x = (xo,x1,...) with P,, where x; is a length m =
2mpmy vector, without storing the matrices Ag or A4, we will write P, as the sum of
0 d
P P =
Ao Ad

Ao Ay :

and compute xP, as xP +xP£d). To express the time complexity of these mul-

tiplications, assume x; = 0 for i > n for some n (as will be the case in the next
subsection).

The matrix Ag corresponds to the case where the same joint order remains in
service, meaning C,, either remains the same or decreases by one. Due to the order
of the random variables, the matrix Ay is a bi-diagonal block Toeplitz matrix, with
blocks of size 2mg. The block appearing on the main diagonal equals / ® U, as
the production of the same item continues in this case. The block below the main
diagonal is I ® u*t, as the item is finished, but at least one item of the joint order
still needs to be produced. Hence,

11U

IQua IQU
Ag =

IQua IQU

where [ is the size mg unity matrix and we have mp blocks / ® U on the main
diagonal. As the PH representation is of order 2 (even in case of low variability), we
can multiply x with Pg(o) in O(mn) time.

When multiplying with A,, we first argue that A; can be written as

Ag=(e1@Iu")(W W) (Y ®a),

where e is a size mp column vector which equals one in its first entry and zero

elsewhere, W; is a square matrix of size m%)g —g+1landY is a mg X mgmp matrix.
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To understand this decomposition we split the transition in four steps. First, a service
completion of an order must occur, meaning C, must equal one and the item in
service must be completed. Thus, the matrix (e; ® (I @ u*) describes this step. Next,
in step 2, we determine the new order size for each retailer based on the previous
order size (using the granularity g). Let the (g,¢’)-th entry of W; equal p,g')(q,q’ )
(as defined in Section 4.1), for i = 1,2. As each retailer determines its next order
size independently, W; ® W, captures step 2. To complete the transition we need to
determine the joint integer order size given the individual granularity g order sizes
of both retailers (in step 3) and the initial service phase of the first item part of the
joint order (in step 4). Step 4 is clearly determined by ¢, while step 3 corresponds
to the matrix Y. A row of the matrix Y contains either 1, 2 or 4 non-zero entries
(depending on whether the row corresponds to a case where both, one or none of
the granularity g orders are integers).

Thus, when multiplying x = (xg,x;,...) with Pgd), each of the vectors x; is first
reduced to a length m, vector in O(nmy) time, because of (¢; ® (I @ u*)). A multi-
plication with W) ® W, is done in two steps. First we multiply with (I ® W,), which
can be trivially done in O((mg)z)g)2m§)l)g) = O(mgmg)z)g) for each vector, followed
by the multiplication with (W; ® I). This latter multiplication can be rewritten as

a multiplication with (I ® W;) using the shuffle algorithm[5]. Hence, it can also

be done in O(mgmg) g)- Due to its sparse structure, a multiplication with ¥ can be
implemented in O(my) time. In conclusion, the overall time required to multiply x
with P,gd) can be written as O(nmg(mg) + mg))g) = O(nmg) and the time needed

to multiply x with P, is therefore also O(nmg). In practice, for g small, the multi-

plication with P,go) is more time demanding than the multiplication with P,gd) and a
considerable percentage of the time is also spent on allocating memory.

5.2 The power method, the Gauss-Seidel iteration and GMRES

To determine the steady state probability vector of the transition matrix P, we rely
on the fast matrix multiplication between a vector x and P, introduced above.

When combined with the power method, we basically start with some initial
vector x(0) and define x(k + 1) = x(k) P, until the infinity norm of x(k + 1) — x(k) is
smaller than some predefined €; (e.g., & = 10~%). If we start from an empty system,
x(0) has only one nonzero component xo(0) of length m and x(k) has k + 1 nonzero
components xo (k) to x (k). Whenever some of the last components are smaller than
some predefined &, we reduce the length of x(k) (by adding these components to the
last component larger than &). Notice, introducing & is not exactly equivalent to a
truncation of the Markov chain at some predefined level NV. Instead we dynamically
truncate the vector x during the computation and its length may still vary over time.
The impact of both € used by the stopping criteria and & used by the dynamic
truncation will be examined in Section 7.1. Both these parameters will be used in a
similar manner for the other iterative schemes as well.
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When applying the forward Gauss-Seidel iteration [9], we compute x(k+ 1) from
x(k) by solving the linear system

x(k+1)(1 = P = x(k) P,

which can be done efficiently using forward substitution as (I — P,go)) is upper tri-
angular. If x is an arbitrary stochastic vector, we initialize x(0) such that it solves

x(0)(1 — P,go)) = x. As indicated in [9], this Gauss-Seidel iteration is equivalent to

a preconditioned power method if we use (I — P;,SO)) as the preconditioning matrix
M. Notice, we can benefit from the fast multiplications discussed in the previous
section when computing x(k)P,gd) as well as during the forward substitution phase.

The GMRES method [10] computes an approximate solution of the linear sys-
tem (I — P,)x = 0, by finding a vector x(1) that minimizes ||(/ — P;:,)x”2 over the
set x(0) + (I — Pg,ro,n). Here rg is the residual of an initial solution x(0):
ro = —(I — Py)x(0); £ (I — Pg,ro,n) is the Krylov subspace, i.e., the subspace
spanned by the vectors {ro,(I — P})ro,...,(I —P})" 'ro}; and n is the dimension
of the Krylov subspace [6]. To do this GMRES relies on the Arnoldi iteration to
find an orthonormal basis Vj, for the Krylov subspace, such that V,, (I — P/:,)V,Z =H,,
where H, is an upper Hessenberg matrix of size n. Once V,, and H, have been ob-
tained, a vector y, is found such that J(y) = ||Be; — Hyy||, is minimized. Here § is
the 2-norm of ry, ey is the first column of the identity matrix, and A, is an (n+1) X n
matrix whose first n rows are identical to H,,, and its last row has one nonzero ele-
ment that also results from the Arnoldi iteration. A new approximate solution x(1)
is computed as x(1) = x(0) + V,,y,. The process is then repeated with x(1) as x(0)
until the difference between two consecutive solutions is less than some predefined
€. Although this algorithm is defined to solve linear systems of the type Ax = b, with
A nonsingular, it can also be used to solve homogeneous systems with A singular, as
is the case with Markov chains [11].

The GMRES algorithm also benefits from the fast multiplication discussed in
the previous section. To find the residual ry at each iteration we need to compute
the product (7 — P;)x(0) = x(0) — P;x(0). Also, for the Arnoldi process we need to
determine the vectors v; = (I — Pé)j ~!rg, which are computed iteratively, and require
n— 1 products of the type (I — Py)v; 1 =v;_1 — Ppv;_1. As with the power method,
when analyzing several scenarios we can use the final approximate solution of one
scenario as the starting solution for the next one to speed up convergence.

6 The safety stock

The required safety stock SS; for each retailer to guarantee a certain fill rate is one of
the main performance measures of this supply chain problem. The derivation for the
case where both retailers smooth is nearly identical to the one presented in [4] and is
mainly included for reasons of completeness. As indicated in Section 3, computing
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SS; is equivalent to determining the base-stock S; provided that we know the mean
replenishment lead time E[7,] (which equals the floor of the production lead time
T},). The production lead time distribution 7}, is easy to obtain from the steady state
probability vector 7 of P, as follows. First define the length 2m, vectors m,(c) as
the steady state probabilities of being in a state with B, = b and C,, = c. Then, the
probability of having a production lead time of b slots equals

PT, =b] = pmp(1)(e®u*)/(1/d)

for b > 0, where p = 2(E[DV]+ E[D®)]) /d is the load at the manufacturer and 1/d
is the arrival rate of the joint orders.

The fill rate is defined as 1 — E[(—NS)*]/E[D], where NS is the net stock (i.e.,
inventory on hand minus backlog) and x™ = max{0,x}. Hence, E[(—NS)"] is the
expected number of backlogged items. Similar to [4, Section 5.1], we can show that

k ‘
NS =S+ Y. D+ 0l /B, (1)
=

where k is the age, expressed in periods, of the joint order in production at the
manufacturer at the end of a period and this joint order contains 0,(;) items for retailer
i, for i = 1,2. If k = 0, meaning the last order left the queue before the end of the
period, 0,(;) is the number of items ordered by retailer i in the next joint order. Thus,

the key step in determining the required base-stock value S;, exists in computing
the joint probabilities p,({l; of having an order of age kd in service when a period
ends and the order in service contains ¢ items for retailer i, for i = 1,2, £ > 0 and
qe {1,...,mg)}.
These joint probabilities can be readily obtained from the steady state of the
Markov chain introduced in Section 4.1 as
(i) )

Prg= Pdﬂ/g; (@)e,

for k > 0, where n,ﬁi)(q) is the steady state vector for the states with B, = b and

05’((,3 = g. For k =0, we note that an order finds the queue empty upon arrival if the
previous order had a lead time of at most d — 1, yielding

. a1
pé’.l,=pd2 Y, m(1,q1,92,5)u; pe(iq).
b=141.92.5

where 7,(c,q1,q2,5) is the steady state probability of state (b,c,q1,42,5).

If we wish to compute the joint probabilities p,((2(3 from the Markov chain

(B,,,C,,,OZ‘(E;)),S,,)QO in case only the first retailer smooths, things are somewhat

more involved when k& > 0. For k = 0, we clearly have
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Table 1 Accuracy and computation times of the power and Gauss-Seidel method for & = 1079

Power Gauss-Seidel
€ 10° 107 10®%|10° 107 1078
res. error |1.76E-5 1.68E-6 1.85E-7|2.14E-6 2.38E-7 2.56E-8
SS 0.64% 0.03% 0.01% | 1.10% 0.17% 0.02%
E[T,] |0.11% 0.02% 0.00% | 0.63% 0.09% 0.01%
time (sec)| 31 54 79 1.7 3.0 4.4
iter 804 1207 1636 21 34 49

Py = PIT, <d]PID®) =g].

For k > 0, we start by computing p,,(¢1,x), the probability that an order consisting
of ¢ items for retailer 1 has a waiting time of x > 0 slots. As the waiting time x of
an order with x > 0 equals the lead time of the previous order minus the inter-arrival
time d, we find

pd
pw(qlvx) = mznx+d(1acI7S)ujpg(qvql)a
q,s

where 7,(c,q,s) is the steady state probability of state (b,c,q,s) and 7(g) is the
probability that an arbitrary order contains ¢ items for retailer 1.

Next, we determine the probabilities p,(q1,42,y) that an arbitrary joint order
consists of g; items for retailer i and its production time equals y time slots. These
probabilities are readily obtained from p,(q,q’) and (¢, U). Then,

p()(q] an,Y)
P (QIacIva) = 3
¢ )g; 2(E[DW] + E[D@)])

is the probability that we find a joint order consisting of g; items for retailer i in
service at an arbitrary moment when the server is busy, while the service of this
joint order started x time slots ago. Taking the convolution over x between p,,(q1,x)
and p,(q1,92,x) and summing over g;, gives us the probability that the order in
service has an age of x time slots and consists of g, items for retailer 2, given that

we observe the system when the server is busy. From these probabilities the joint

(2

probabilities p;’ p

are readily found.

We can also compute the probabilities p,(f; from the Markov chain in Section 4.1

by setting B, = 1, but this approach requires more time and considerably more mem-
ory. As required, the numerical experiments indicated a perfect agreement between
both approaches.
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Table 2 Accuracy and computation times of GMRES for &, = 10~
GMRES - n=1 GMRES - n=3 GMRES - n=5
€ 10° 107 10%|10° 107 10%|10° 107 108
res. error |4.18E-5 5.31E-6 1.16E-7|2.79E-6 2.47E-7 2.48E-8|1.42E-6 1.33E-7 1.46E-8
SS 15.40% 8.01% 0.92% [9.70% 1.95% 0.29% | 6.80% 1.23% 0.19%
E[T,] |10.63% 4.70% 0.48% |6.86% 1.07% 0.14% |4.44% 0.64% 0.09%
time (sec)| 15 34 105 21 64 290 38 170 446
iter 186 261 797 89 341 301 61 120 190

7 Numerical examples

In this section we illustrate the effect of smoothing on the performance of the pro-
duction/inventory system. We focus on the safety stock as the main measures of
performance, and consider various scenarios for the demand distribution, the load
and the smoothing parameters 3; and 8,. The required safety stock in all the numer-
ical examples guarantees a fill rate of 0.98.

For the demand we consider three different distributions, let us call the three
associated random variables X, Y and Z, respectively. X is defined as X = 1 +X,
where X is a Binomial distribution with parameters N — 1 and p = 1/2. Thus,
X takes vales on the set {1,...,N}. The expected value and variance of X are
E[X] = (N+1)/2 and Var(X) = (N — 1)/4. The second random variable Y is
uniformly distributed between 1 and N, and its expected value and variance are
E[Y] = (N+1)/2 and Var(Y) = (N*> —1)/12. The last random variable is de-
fined as P(Z=k) = (1+a)P(Y =k)— aP(X =k), for k=1,...,N. As a re-
sult Z has a U-shaped probability mass function, with E[Z] = (N + 1)/2 and
Var(Z) = (N> — 1 + a(N? — 3N +2))/12. Clearly, for Z to be a proper random
variable, the value of & has to be such that P(Z = k) > 0 for all k. In our experi-
ments we set N = 10, for which & can take values up to roughly 0.68. We choose
o = 0.6 to make Z highly variable. With this setup, Var(X) = 2.25, Var(Y) = 8.25
and Var(Z) =8.25+ 6a = 11.85. Also, setting the maximum demand size to N = 10,
the size of the square matrices Ay and Ap ranges from 4000 (for g = 1) to 84640
(for g =5).

As mentioned before, the mean production time is set equal to 2, and for the
experiments in this section the standard deviation is also set to 2. The load is set
by adjusting d, the number of slots between two orders placed by the retailers. In
our setup we choose d from the set {40, 34, 29, 26}, which generate loads of
roughly {0.55, 0.65, 0.76, 0.85}, respectively. We will start by looking at the case
where both retailers use the same value of the smoothing parameters §; and 5.
Afterward we consider the case where these parameters may differ. However, before
we generate any numerical results let us first evaluate the impact of discretizing
the state space (that is, the impact of the granularity g) as well as the parameters
€ and & used in the stopping criteria and dynamic truncation of the state space,
respectively.
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7.1 Computation times and accuracy

We start by looking at the accuracy and computation times required to obtain the
results in the paper with the power, Gauss-Seidel and GMRES methods when g = 1
(even though larger g values are needed for small B values as indicated below). Ta-
ble 1 shows the residual-error of the steady state vector, that is, the norm of xP, — x,
as well as the accuracy of SS and E|T,] for both the power and Gauss-Seidel meth-
ods when compared against a solution obtained with & = & = 10~ !4 (by the power
method). The table also lists the computation times and the required number of it-
erations. Table 2 provides the same data for the GMRES method, where the size of
the Krylov subspace was set equal to 1, 3 and 5. These results correspond to the ex-
ample where the demand follows a Binomial distribution, the load p = 0.85 (which
is the most demanding among the 4 loads considered), and both retailers smooth
with B; = B, = 0.8. All the experiments were run on a PC with 4 cores at 2.93GHz
and 4GB of RAM. We observe that, for the same €;, the Gauss-Seidel method is
far superior to both the power method and GMRES, as it requires substantially less
time and has a similar accuracy than the power method. This can be explained by
the fact that the Markov chain characterized by P, typically makes many consecu-
tive upward transitions according to Ag followed by an occasional downward jump
using Ag.

The accuracy of GMRES is quite poor for larger €; values and is far worse than
the power or Gauss-Seidel method. As €; decreases the difference in accuracy be-
tween GMRES and the other methods becomes smaller (and eventually negligible).
GMRES is faster than the power method for & = 10% and when n is one or three,
but as indicated above, the accuracy of GMRES is poor in these cases. As stated in
Section 5.2 the Gauss-Seidel method may be regarded as a preconditioned power

method where the preconditioning matrix M is equal to (I — Pg(o)). In principle we
can use the same preconditioning for GMRES, which should improve the perfor-
mance of GMRES significantly. However, as GMRES is typically inferior to the
power method, it seems unlikely that we can do better than the Gauss-Seidel method
using (1 — P,go)) as a preconditioning matrix.

Next, let us have a look at the impact of the granularity of g on the results for
the Gauss-Seidel method only, as the other methods are too time consuming for
larger g values. We let g vary from 1 to 5 for a load p = 0.85, while £, = 10~% and
& = 1077, Figure 1 depicts the required safety stock SS as a function of 8 for the
three demand distributions discussed before. These results indicate that for 8 close
to one, letting g = 1 suffices, however, for smaller 3 values setting g = 1 may lead
to a serious overestimation of the required safety stock. Thus, in order to guarantee
an acceptable accuracy for smaller 8 values, we have generated all the subsequent
results with g =5 (and & = 10 8 and &, = 1079).

Finally, we would like to mention that a significant amount of the computation
time is devoted to allocating memory, due to the large sizes of the vectors, e.g.,
the size of the final vector x in Figure 1, for B = 0.8 and the binomial distribution,
is 732000 (for g = 1) and 15065920 (for g = 5). Since GMRES computes n large
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vectors, it is more significantly affected by the memory allocation delay. Also, the
computation times of all the methods are highly influenced by the system parame-
ters, especially by the load p and the variance of the demand and processing times.
Larger values for these parameters imply longer computation times and larger mem-
ory requirements.
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7.2 Homogeneous smoothing

0.7 0.8 0.9 1

We start by looking at a system facing a load of p = 0.85, and we consider values of
B = B1 = B> in the set {0.1,0.2,...,1}, and the three different demands described
above. The results are included in Figure 2, where we observe that the mean re-
plenishment lead time increases as a function of 8, meaning both retailers benefit
from smoothing with respect to the replenishment time. As expected, the lead time
reduction increases with the variability of the demand distribution. This reduction
in the lead time is key in understanding the effect of 8 on the safety stock.
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Figure 3 depicts the corresponding safety stock to guarantee a fill rate of 0.98.
The results indicate that unless 3 is small, the required safety stock does not increase
much as f decreases, meaning both retailers can perform a considerable amount of
smoothing without the need to increase their SS much. Note, as B decreases the
response of the retailer to a sudden increase in the demand tends to become slower,
which intuitively should result in an increased SS. However, the decrease in the lead
time (partially) compensates the slower response. When 8 becomes too small, the
reduction in the lead time is insufficient to avoid a significant increase in the SS.
Actually, when decreasing B, starting in 8 = 1, the SS initially even decreases a
little in case of a more variable demand.

Similar results were obtained for lower load scenarios as well, the corresponding
plot for an approximate load of p = 0.65 (i.e., for d =29) is given in Figure 4. These
results and insights are similar in nature to the single retailer case (see [4]).

7.3 Heterogeneous smoothing

We start by considering the scenario where only one retailer smooths, say retailer
one. Thus, we assume that 3, is fixed and equal to one, while §; changes. As ex-
pected, the mean lead time can be shown to decrease as f3; decreases. Figure 5
depicts the safety stock of both retailers as a function of B; for p = 0.85. The re-
sults indicate that the safety stock SS; of retailer one behaves very similar as in the
homogeneous case (it is a fraction larger to be precise). Thus, the retailer can still
smooth his demand considerably without affecting his safety stock too much. The
safety stock of the second retailer SS; on the other hand decreases slightly as S
decreases. This can be understood by noting that the second retailer also benefits
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from the reduced lead time, while he is more reactive to a sudden increase in the
demand than retailer one (as 3, = 1).

In Figure 6 we consider the same example, but with a reduced load p = 0.65.
In this case we observe a more remarkable result: the safety stock SS; of retailer
one first decreases and is even below the safety stock S5 of retailer two for some
B values. This may seem counterintuitive at first as both retailers benefit from the
reduction in lead time, while the second is still more reactive. To understand this,
consider Eqn. (1) for the net stock distribution NS of retailer i. The last term 0,(;) /B

is clearly larger on average for retailer one, but 0,((1) is less variable than 0,((2) as the

orders of retailer one are smoothed. Thus, if S| is chosen larger than S, to compen-



Dampening demand variability in a production/inventory system with multiple retailers 19

Fig. 9 Safety stock SS| and SS; vs. B; and B =1 - p = 0.55, Binomial demand distribution

sate for the larger average of 0,(;) /B, the lower variability of 0,(;) might indeed result
in a less variable net stock (for B sufficiently close to one) and therefore in a smaller
safety stock as well. Figure 7 shows that this is exactly what happens: S; decreases,
while S, increases as a function of ;.

If we consider the selection of §; and B, in a game theoretic setting, where the
objective of retailer i exists in minimizing SS;, it is already clear from Figure 6 that
(B1,B2) = (1,1) is not always a Nash equilibrium', as retailer one can decrease his
safety stock SS| by selecting a B; less than one. Figures 8 and 9 depict the safety

A common strategy is called a Nash equilibrium if neither player can improve his objective by
deviating from the common strategy.
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stock of both retailers for 8,8, € {0.1,0.15,0.2...,1} when the demand follows
a Binomial distribution and the load equals 0.85 and 0.55, respectively. These re-
sults indicate that there exists a unique Nash equilibrium (f;, B2) in these scenar-
ios. More specifically, for p = 0.85 and 0.55 the Nash equilibrium is located in
(B1,B2) = (1,1) and (0.75,0.75), respectively. Numerical experiments not depicted
here indicated that there is also a unique Nash equilibrium (8;,8,) when the load
equals 0.65 and 0.76 (being (B1,5:) = (0.5,0.5) and (0.85,0.85), respectively).

8 Further discussion

The main focus of this paper has been the analysis of a supply chain with a single
manufacturer and two retailers. We model this system as a GI/M/1-type Markov
chain with blocks whose size is large enough to make the computation of the (dense)
matrix R, with traditional algorithms, infeasible. To overcome this issue, we propose
to use numerical methods, such as the power method, Gauss-Seidel and GMRES, to
compute the stationary probability vector of the chain. As these methods rely heavily
on vector-matrix multiplications, we exploit the structure of the transition-matrix
blocks to performs these multiplications efficiently. Clearly, the same approach can
be used to analyze other systems modeled as a structured Markov chain, the blocks
of which are large and possess an inner structure that can be exploited to perform
the vector-matrix multiplications. In this section, we conclude the paper with two
fairly arbitrary examples of other systems that can be analyzed with the approach
used in the paper.

8.1 An edge router

Edge routers provide access to core networks from service providers as well as car-
rier networks. For instance, edge routers are located at the edge of an Internet Ser-
vice Provider (ISP) network, connecting multiple users to the ISP’s core network.
Therefore, the edge router typically has multiple low-speed interfaces (connected
to the users) and one (or a few) high-speed interfaces (connected to the core net-
work). Given the difference in transmission rates, the router may collect multiple,
say b, packets arriving from the low-speed interfaces into a single packet to for-
ward through the high-speed channel. Assuming the router always collects b user-
generated packets into one packet for high-speed transmission, we can model the
number of user-generated packets in the system (buffered and in transmission) as a
(continuous-time) GI/M/1-type Markov chain with only three nonzero blocks.

Let N(t), S(r) and J(r) be the number of packets, the service phase of the packet
in transmission and the phase of the arrival process at time ¢, respectively. The ser-
vice time distribution is a continuous PH distribution with parameters (¢, T') and the
packet arrival process is a markovian arrival process (MAP) with parameters (D,
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D) [7]. The process X (t) = {(N(¢t), S(¢), J(¢)), t > 0} is thus a continuous-time
Markov chain with generator matrix

f B By -
A Ao
Ap Ao
0= Bpii A1 Ao ’
Apii Ap A
Apyi Ay Ag

where Ag =D ®R1,A|=Dy®T,Ap 1 =IRt0a,t =—Te and & stands for Kronecker
sum [7]. Notice that a packet in service is actually a bundle of b user-generated pack-
ets. Assuming the transmission time of the latter packets follows a PH distribution
with parameters (3, S), the parameters & and T are given by

S sp
S sp

S sB
S
where s = —Se. Letting mg and m,, be the size of the matrices S and Dy, respectively,
the block size is m = bmgmn,,.
As mentioned above, the edge router receives packets from many, say n, low-
speed interfaces. If the traffic incoming through interface j is modeled as a MAP

with parameters (C, C), the total incoming traffic is the superposition of these n
MAPs. Thus, Dy and D are given by

Do =®"_,C} and D =&"_,C].

If the size of each of the matrices Cé is my, the block size is m = bmgm,. As a
result, the block size grows linearly with b, the number of user-generated packets per
forwarded packet, and exponentially with n, the number the sources. It is clear then
that the block size can be very large for rather limited values of b and, particularly, n.
For instance, with my = m, =2, b = 10 and n = 16, the block size is over a million.
This model is therefore well-suited to be analyzed with the approach proposed in
this paper since, in addition to a large block size, the number of nonzero blocks is
small and the blocks have a structure that can be exploited to perform the vector-
matrix multiplications efficiently.
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8.2 FS-ALOHA++

The FS-ALOHA-++ algorithm is a contention resolution algorithm used for dynamic
bandwidth allocation [12]. This algorithm operates on a time-division multiple ac-
cess (TDMA) channel that consists of fixed length frames. Each frame contains,
among others, T = S+ N minislots used to support the contention channel. When
a user wants to transmit new data, it will send a request packet on the contention
channel by selecting one of the first S minislots at random. If none of the other users
transmit in the same minislot, the user is successful. All the users that were involved
in a collision (in one of the first S minislots) on the other hand form a transmission
set (TS). Hence, in each frame either one or zero TSs are formed. If a TS is formed
it joins the back of a (distributed) FIFO queue and is called a backlogged TS.

The backlogged TSs are served, in groups of K > 1, using ALOHA on the last
N minislots, that is, all the users part of the first K backlogged TSs select one of the
last N minislots at random. Users that are successful leave the contention channel,
the ones involved in a collision retransmit in the next frame in one of the last N
minislots. This procedure is repeated until the last N minislots are collision free. As
soon as this occurs the next set of K TSs can make use of the last N minislots (if the
queue contains i < K TSs, only i TSs are served simultaneously).

Under the assumption that new requests form a Poisson process, one can an-
alyze the FS-ALOHA++ algorithm (with parameters S,N and K) by means of a
GI/M/1-type Markov chain with a generalized boundary condition. This is achieved
by keeping track of the number of backlogged TSs N(¢) at the start of frame # and
the number of users S(¢) that will make use of the last N minislots in frame 7 (see
[12] for more details). As at most one TS can be added to the back of the queue
during a frame and K TSs may start service, one finds that the number of TSs may
either increase by one, remain fixed, decrease by K — 1 or decrease by K (provided
that at least K TSs are backlogged). Thus, if N(z) represents the level of the Markov
chain and S(¢) the phase, one finds that only the matrices Ag,A,Ax and Ak differ
from zero (we do not discuss the boundary matrices here). Further, as the probability
of having i users in a TS decreases quickly with i (due to the Poisson arrivals), we
can easily truncate the value of S(¢), the number of users that are part of K TSs, by
SOME Spqx-

It is not hard to see that the time needed to serve a group of K TSs can be repre-
sented by a phase-type distribution with an order s,,,; — 1 representation (o, Ty ).
Further, if we denote pyg as the probability that a TS is formed in the first S minislots
of a frame, we find that

Ao = psTy, A1 =(1—ps)Ty, Ax =psTyon Ak = (1—ps)Tyon,

where Ty, = e — Te. For details on how to compute ps, ooy and Ty we refer to [12].
As values for s,,4, equal to 20 typically guarantee a very small truncation error, one
can easily compute the R matrix of this chain using traditional methods.

However, suppose we which to modify FS-ALOHA such that the last N minislots
are partitioned into M subsets of each N’ slots (with N = MN"), such that up to M
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groups of K TSs can be served simultaneously. More specifically, for each of the
M subsets that becomes collision free during a frame, we take a group of K TSs
from the queue and serve this group using ALOHA on the N’ slots of the subset.
In other words, we replace the single server queue with batch service and service
time (ogv,Ty) by M batch servers with service time distribution (o, Ty ), where
the order of the representation (o, Ty ) is also syqyx — 1.

In this case, we can still obtain a GI/M/1-type Markov chain in a similar manner,
but the phase has to maintain the state of each of the M servers, which implies that
the block size grows very quickly with M and exceeds a few thousand even for M =
3 or 4. Further, as several TSs may become collision free in a frame, up to M groups
of K TSs may be removed from the queue. This implies that the block matrices A;x
and A;x will defer from zero, for i =0,...,M. Hence, in this case the traditional
approach of computing R to obtain the steady state is no longer feasible, but the
approach taken in this paper still applies as the block matrices have a Kronecker
product form.
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