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ABSTRACT
Garbage collection (GC) algorithms play a key role in reduc-
ing the write amplification in flash-based solid state drives,
where the write amplification affects the lifespan and speed
of the drive. This paper introduces a mean field model to
assess the write amplification and the distribution of the
number of valid pages per block for a class C of GC algo-
rithms. Apart from the Random GC algorithm, class C
includes two novel GC algorithms: the d-Choices GC algo-
rithm, that selects d blocks uniformly at random and erases
the block containing the least number of valid pages among
the d selected blocks, and the Random++ GC algorithm,
that repeatedly selects another block uniformly at random
until it finds a block with a lower than average number of
valid blocks.

Using simulation experiments we show that the proposed
mean field model is highly accurate in predicting the write
amplification (for drives with N = 50000 blocks). We fur-
ther show that the d-Choices GC algorithm has a write am-
plification close to that of the Greedy GC algorithm even
for small d values, e.g., d = 10, and offers a more attractive
trade-off between its simplicity and its performance than the
Windowed GC algorithm introduced and analyzed in ear-
lier studies. The Random++ algorithm is shown to be less
effective as it is even inferior to the FIFO algorithm when
the number of pages b per block is large (e.g., for b ≥ 64).

Categories and Subject Descriptors
D.4.2 [Storage Management]: Garbage collection; D.4.8
[Performance]: Stochastic analysis

General Terms
Performance, Algorithms

Keywords
Write amplification; flash-based solid state drives; garbage
collection; mean field
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1. INTRODUCTION
Data on a NAND flash-based solid state drive (SSD) is or-

ganized in blocks that each contain a fixed number of pages,
where a page is the smallest writable unit. The size of a sin-
gle page is typically 2 to 4 Kbyte and there can be as many
as 128 pages per block. In order to write data on a page,
it must first be in an erase state. Individual pages cannot
be erased, only entire blocks can be erased. As it would be
very time consuming to update pages by completely rewrit-
ing a block, out-of-place writes are performed on an SSD.
Hence, when a page is updated, it is typically stored on a
new location on the drive and the data on the old location
is marked as invalid.

Ideally we only wish to perform erase operations on blocks
that contain invalid pages only. However, the garbage col-
lection (GC) algorithm, responsible for selecting the block
to be erased, will often select blocks that contain some valid
pages (in fact, depending on the GC algorithm blocks con-
taining invalid pages only may not exist). This implies that
these valid pages need to be rewritten elsewhere first be-
fore the block erase can take place, even though no external
write operation is requested for these pages. These addi-
tional internal write operations give rise to what is known
as the write amplification, it is the ratio of the total number
of writes to the number of externally requested writes.

The write amplification not only slows down the operation
of the SSD, but it also affects its lifespan. More specifically,
flash memory decays and becomes unstable after a certain
number of write-erase cycles (e.g., as few as 10000 in some
consumer SSDs [6]), thus the higher the write amplification
of an SSD the shorter its lifespan. To limit the write amplifi-
cation, the total storage capacity (number of physical pages)
on an SSD exceeds the user-visible capacity (number of log-
ical pages), as this guarantees that a fraction of the pages is
in the erase or invalid state. A commonly used measure for
the amount of over-provisioning is the spare factor, defined
as one minus the ratio of the user-visible to the total storage
capacity.

In this paper we introduce a mean field model to assess
the write amplification and the distribution of the number
of valid pages per block for a class C of GC algorithms under
uniform random writes by relying on the framework intro-
duced in [4]. Examples of GC algorithms in the class C
include the d-Choices GC algorithm, that selects d blocks
uniformly at random and erases the block containing the
least number of valid pages among the d selected blocks,
and the Random++ GC algorithm that repeatedly selects



another block uniformly at random until it finds a block with
a lower than average number of valid blocks.

We show that the mean field model is in perfect agree-
ment with simulation experiments and compare the perfor-
mance of the d-Choices and Random++ GC algorithm
with the Greedy [5,7], FIFO [7,13] and Windowed [8] al-
gorithm. We observe that the d-Choices GC algorithm can
achieve a write amplification close to that of the Greedy
GC algorithm even for small d values, e.g., d = 10, and of-
fers a more attractive trade-off between its simplicity and
its performance than the Windowed GC algorithm. The
Random++ algorithm on the other hand is inferior to the
FIFO algorithm when the number of pages b is large, e.g.,
for b ≥ 64.

The flash translation layer, responsible for mapping the
logical pages to physical page numbers, considered in this
and the above mentioned papers is a page-level map, mean-
ing data can be written on any page and a direct map that
translates the logical to physical page numbers is maintained
in memory. A block-level map reduces the memory con-
sumption, but increases the write amplification as logical
pages can still be mapped to any block, but only to one
page within this block (determined by the logical page num-
ber). Consumer SSDs typically rely on some form of hybrid
mapping [9], where some of the blocks are block-mapped and
others are page-mapped to reduce the write amplification of
random writes. When a hybrid mapping is used, merge op-
erations that create new page-mapped blocks also need to
be performed by the GC algorithm.

The results presented in this paper are to some extent
also applicable to the garbage collection process found in
log-structured file systems (LFS) [14]. In such a system the
storage device is regarded as a single log and all data is writ-
ten to the head of the log (while invalidating a possible ear-
lier version of the data). Further, data blocks are grouped
into LFS segments and the GC algorithm occasionally se-
lects and cleans a new segment (to prevent that the system
becomes full). Write amplification also occurs in this setting
as valid blocks part of the selected segment are written to
the head of the log first.

The d-Choices algorithm has been studied extensively
in a balls-and-bins, hashing and load balancing setting (e.g.,
[2,12,15]) and was also proposed as a GC algorithm for solid-
state drives in [10], a paper that is being published concur-
rently. The latter paper also proposes a mean field model
for uniform workloads, but the system operation seems to
differ significantly from ours, as the write operations do not
appear to rely on a log-structure (while in our system all
writes make use of the so-called write frontier, see Section
2). Further, the spare factor does not appear to be a model
parameter in case of the uniform workload model in [10],
while it plays a key role in our model.

The paper is structured as follows. Section 2 states the
main problem, while Section 3 gives an overview of the re-
lated work. The class of GC algorithms C studied in this pa-
per is introduced in Section 4 and the corresponding mean
field model is presented in Section 5. Analytical and numer-
ical results for the Random, Random++ and d-Choices
GC algorithm are presented in Section 6 and 7, respectively.
Conclusions are drawn and future work is discussed in Sec-
tion 8.

2. PROBLEM STATEMENT
Consider a flash-based SSD consisting of N (physical)

blocks that are each able to store b valid/invalid pages. At
any point in time there is a special block called the write
frontier. Pages will be written sequentially to the write fron-
tier, until it is full. Assume that the write frontier contains
f < b pages at some point and a write operation takes place
on a logical page that is physically stored on page k of block
number n1. This operation first writes the new content to
page f + 1 of the write frontier and afterwards invalidates
page k on block number n1. When the write frontier is full,
the GC algorithm creates a new write frontier as follows:
it first selects a new block, say block number n2, copies all
the valid pages of block n2 to the random-access memory
(RAM), erases block number n2 and copies the valid pages
back from RAM to block n2. Note, in practice one avoids
the need to copy the valid pages to RAM by making use of
a single free block [7].

If the GC algorithm copies j < b valid pages, b − j ad-
ditional writes can be performed before the next erase op-
eration is executed. This implies that b internal write op-
erations took place in between two executions of the GC
algorithm, while only b − j external write operations were
performed. In this case the write amplification is defined as
b/(b− j). In general, the write amplification is defined as

A =
b

b−
∑b
j=1 jpj

,

where pj is the probability that the GC algorithm selects a
block with j valid pages.

Denote the user-visible storage capacity as U blocks, i.e.,
bU pages, meaning the device utilization ρ = U/N and the
spare factor Sf = 1 − U/N = 1 − ρ. The objective of this
paper is to analyze the write amplification and the distribu-
tion of the number of valid pages in a block for a class of
GC algorithms under uniform random writes. Under uni-
form random writes there is no spacial or temporal locality
and we further assume that exactly bU pages are marked as
valid at all times1. This implies that the probability that an
external write operation “updates” a page stored on a block
with exactly i valid pages is proportional to i/bU times the
number of blocks containing exactly i pages. Read and se-
quential writes operations result in a far lower write ampli-
fication, hence the performance of the GC algorithm under
random writes is the most significant.

It is possible to extend the analysis presented in this paper
to the hot/cold data model of Rosenblum [14]. In this model
a fraction f of the complete address space corresponds to hot
data and the remaining fraction to cold data. The fraction
of write operations to the hot data is denoted as r. Typical
case studies assume that f ≤ 0.2 and r ≥ 0.8, meaning more
than 80% of the writes are to less than 20% of the data [7].

We do not consider the issue of wear leveling in our prob-
lem setting. Wear leveling mechanisms try to prolongate the
lifetime of the SSD by making sure that the number of write-
erase cycles on a block does not vary too much. Some static
wear leveling algorithms simply swap entire blocks (basically
to move cold data to more worn out blocks), for instance by

1This is true if either the operating system or SSD does
not support the ATA TRIM command (used to mark blocks
as invalid when a file is deleted) and the system has been
operational for a while.



swapping the least and most worn out block or by swapping
the free block with a randomly selected block as in Ban’s
algorithm [3]. When this type of swapping is used, the dis-
tribution of the number of valid pages is not affected by the
wear leveling algorithm. In fact, the results in this paper
could be used to determine the additional amount of write
amplification induced by Ban’s wear leveling algorithm.

3. RELATED WORK
Most of the analytic studies on GC algorithms have fo-

cused on the following three algorithms:

1. The Greedy GC algorithm selects a block that con-
tains the least number of valid pages among all the
blocks.

2. The FIFO GC algorithm selects the least-recently-
written block, that is, the blocks are selected in a cir-
cular manner.

3. The Windowed GC algorithm makes use of a window
of size w ∈ {1, . . . , N}. It selects the block with the
least number of valid pages among the set of the w
least-recently-written blocks.

A highly accurate approximation for the write amplification
of the Greedy algorithm under uniform random writes in a
system where the number of blocks N and pages per block
b is large, was introduced in [11,13] and can be expressed as

A =
1

1 + ρW (−e−1/ρ/ρ)
,

where W (·) is LambertW function (i.e., the inverse of f(x) =
xex). This formula was also rediscovered in [16] and a less
accurate approximation was also proposed in [1]. The above
expression for A is also highly accurate for the write ampli-
fication of the FIFO algorithm [7] for large N , meaning the
write amplification of the FIFO algorithm is independent of
the block size b and coincides with the Greedy algorithm
if b is large. The distribution of the number of valid pages
per block and the write amplification of the Greedy al-
gorithm for arbitrary b values (and large N) was analyzed
in [5] and [7]. An analytic model for the write amplification
of the Windowed GC algorithm was introduced in [8], but
tends to result in an optimistic estimate of the write am-
plification [5, 7]. The write amplification of the FIFO and
Greedy GC algorithm with hot/cold data was also analyzed
in [7].

4. A CLASS OF GC ALGORITHMS
In this paper we introduce a mean field model to assess

the write amplification and distribution of the number of
valid pages in a block for a class C of GC algorithms defined
as follows. A GC algorithm belongs to class C if and only if
the following two conditions hold:

C1: Let mi be the fraction of blocks containing exactly i
valid pages and denote ~m = (m0, . . . ,mb), then there
should exist a set of probabilities pj(~m) where pj(~m)
reflects the probability that a block containing exactly
j valid pages is selected by the GC algorithm. In other
words, whether block n, for any n, is selected by the
GC algorithm should only depend on the number of
valid pages j on block n and the fraction of blocks mi

containing exactly i valid blocks, for i = 0, . . . , b.

C2: For j = 0, . . . , b, the probabilities pj(~m) should be
smooth in ~m with ~m ∈ ∆ = {~m ∈ Rb+1|0 ≤ mi ≤
1,
∑b
i=0mi = 1,

∑b
i=1 imi = bρ}.

The following algorithms belong to class C, where to the
best of our knowledge the Random++ and d-Choices GC
algorithm have not been proposed before as a GC algorithm:

1. The Random GC algorithm simply selects a block uni-
formly at random, hence pj(~m) = mj . The Random+
algorithm operates in the same manner, except that it
repeatedly selects another block as long as the selected
block contains b valid pages (as it is useless to erase a
full block). We therefore have pj(~m) = mj/(1 −mb),
which is well defined in ∆ for ρ < 1.

2. The Random++ GC algorithm repeatedly selects an-
other block uniformly at random until it finds a block
with at most bbρc valid pages, hence

pj(~m) =
mj1[j ≤ bbρc]∑bbρc

`=0 m`

, (1)

where 1[A] = 1 if A is true and 0 otherwise, which is
also well-defined in ∆.

3. The d-Choices GC algorithm selects d ≥ 2 blocks
uniformly at random and erases a block containing
the least number of valid pages among the d selected
blocks. As all the selected pages must contain at least
j valid pages, but not j + 1, we have

pj(~m) =

 b∑
`=j

m`

d

−

 b∑
`=j+1

m`

d

. (2)

The write amplification of the Random GC algorithm is
clearly equal to 1/(1−ρ) as a block contains bρ valid pages on
average. In this paper we will provide an explicit expression
for the distribution of the number of valid pages in a block
under the Random algorithm as N , the number of blocks,
tends to infinity. The write amplification of the Random+
algorithm is less obvious to analyze and we will prove that
it converges to A = b

b−ρ(b−1)
as N tends to infinity. We will

also provide closed form expressions for the write amplifica-
tion and distribution of the number of valid pages in a block
for the Random++ algorithm, while for the d-Choices al-
gorithm we propose a fast numerical method to determine
these performance measures using a set of ODEs.

Similar to the Random+(+) algorithm we can also define
a d-Choices+(+) algorithm, however as soon as d exceeds
10 it is not very likely that the block with the least number of
valid pages contains more than bbρc valid pages; hence, the
difference with the performance of the d-Choices algorithm
is rather limited.

5. MEAN FIELD MODEL

5.1 Model definition
We define a discrete-time system by observing the system

state at the time epochs just prior to the operation of the GC
algorithm. Hence, in between two observations the following
steps take place:



S1: The GC algorithm selects a block as the new write
frontier, say block number i, and copies the j valid
pages of block number i to RAM.

S2: Block number i is erased and the j valid pages are
copied back from RAM to the first j pages of the new
write frontier, leaving the remaining b− j pages in the
erase state.

S3: The pages of the next b − j random writes are invali-
dated and written to the remaining b− j pages of the
write frontier.

To analyze the performance of a GC algorithm belonging to
class C, we rely on the interacting objects framework intro-
duced in [4]. Assume the device consists of N blocks, labeled
1 to N , that can each store b (valid and invalid) pages.

Let XN
n (t) ∈ S = {0, 1, . . . , b}, for n = 1, . . . , N , be the

number of valid pages on block number n at time t (i.e.,
when the GC algorithm runs for the t-th time). Let MN (t)
be the occupancy measure of XN

n (t), that is, MN (t) =
(MN

0 (t),MN
1 (t), . . . ,MN

b (t)) and

MN
i (t) =

1

N

N∑
n=1

1[XN
n (t) = i],

for i = 0, . . . , b. Define

PNi,i′(~m) = P[XN
n (t+ 1) = i′|XN

n (t) = i,MN (t) = ~m],

for i 6= i′ ∈ S, that is, it contains the probability that the
number of valid pages on block number n changes from i to
i′ during a single transition given the occupancy measure.

Define the set ∆N = {~m ∈ Rb+1|miN ∈ {0, 1, . . . , N}, i ∈
S,
∑
i∈Smi = 1,

∑
i∈S imi = bρ} and let pj(~m), for j ∈

S, be the probability that the GC selects a block with j
valid pages at time t provided that MN (t) = ~m with ~m ∈
∆N . To simplify the notation we also define the binomial
probabilities Bj(n, p) =

(
n
j

)
pj(1− p)n−j .

To determine PNi,i′(~m), we note that the number of valid
pages of block number n only changes if the block is selected
during step S1 or if at least one of the random write oper-
ations in during step S3 involves block number n. Hence,
the number of valid pages of at most b + 1 blocks changes
during a single transition. As explained below, this results
in

PNi,i′(~m) =
pi(~m)

miN
B0(b− i, i/bρN)1[i′ = b]+

1[i′ = i− 1]

 b∑
j=1,j 6=b−i

pb−j(~m)B1(j, i/bρN)+

pi(~m)

(
1− 1

miN

)
B1(b− i, i/bρN)

]
+ o(1/N), (3)

for i 6= i′ ∈ S and mi > 0. Note, pi(~m)/(miN) is the prob-
ability that the GC algorithm selects block n provided that
it contains i valid pages, while i/(bρN) is the probability
that block number n is involved in a random write opera-
tion provided that it contains i valid pages. In other words,
the first term corresponds to the case where block n is se-
lected by the GC algorithm, while none of the b − i writes
involve block n, which implies that block n contains b valid
pages at time t+ 1. The second and third term corresponds
to the case where the GC algorithm does not select block

number n, while exactly one of the random write operations
in step S3 invalidates one of the i pages of block number
n and therefore decreases its number of valid pages by one.
Finally, all the other cases, where either (a) block n is in-
volved in two or more write operations or (b) where block
number n is selected by the GC algorithm and is involved
in at least one random write operation, are covered by the
o(1/N) term as they are of the form 1/Nk with k ≥ 2.

When mi = 0 we can define PNi,i′(~m) as in (3) except that

the terms pi(~m)
mi

need to be replaced by the partial derivative

∂pi(~m)/∂mi, which is properly defined as pj(~m) is smooth
in ∆.

Define the drift ~fN (~m) for ~m ∈ ∆N as the expected
change to MN in one transition, that is,

~fN (~m) = E[MN (t+ 1)−MN (t)|MN (t) = ~m]

=
∑

i 6=i′∈S

miPNi,i′(~m)(ei′ − ei), (4)

where ei is the (i + 1)-th row of the identity matrix of size

b + 1. Let ~fN (~m) = (fN0 (~m), . . . , fNb (~m)), then combining
(3) and (4) yields

fNb (~m) =

b−1∑
i=0

pi(~m)

N
B0(b− i, i/bρN)

−mb

b∑
j=1

pb−j(~m)B1(j, 1/ρN) + o(1/N), (5)

which is also valid for mi = 0. The first term corresponds
to the case where i < b and i′ = b, while for the second term
i = b and i′ = b− 1. For i < b, (3) and (4) result in

fNi (~m) = −pi(~m)

N
B0(b− i, i/bρN)

+mi+1

b∑
j=1,j 6=b−(i+1)

pb−j(~m)B1(j, (i+ 1)/bρN)

+ pi+1(~m)

(
mi+1 −

1

N

)
B1(b− (i+ 1), (i+ 1)/bρN)

−mi

b∑
j=1,j 6=b−i

pb−j(~m)B1(j, i/bρN)

− pi(~m)

(
mi −

1

N

)
B1(b− i, i/bρN) + o(1/N), (6)

which is also valid for mi = 0.
Next, define the intensity function ε(N) = 1/N and let

Pi,i′(~m) = lim
N→∞

PNi,i′(~m)

ε(N)

=
pi(~m)

mi
1[i′ = b] +

(
b∑
j=1

pb−j(~m)j

)
i

bρ
1[i′ = i− 1],

(7)

for mi > 0 due to (3). For mi = 0 it is again sufficient to

replace pi(~m)
mi

by ∂pi(~m)/∂mi.

Similarly define ~f(~m) = (f0(~m), . . . , fb(~m)) such that for

i ∈ S, fi(~m) = limN→∞
fNi (~m)

ε(N)
, then due to (5) and by



noting that
∑b−1
i=0 pi(~m) = 1− pb(~m), we find

fb(~m) = (1− pb(~m))−

(
b∑
j=1

pb−j(~m)j

)
bmb

bρ
, (8)

while for i < b, (6) yields

fi(~m) =
(i+ 1)mi+1 − imi

bρ

(
b∑
j=1

pb−j(~m)j

)
− pi(~m). (9)

Finally, as in [4] define M̄N (τ) as the re-scaled process
such that M̄N (t) = MN (btNc), for t ≥ 0. Similarly, define
X̄N
n (t) as the re-scaled version of XN

n (t). Further, define the
deterministic process ~µ(t) = (µ0(t), . . . , µb(t)), the evolution
of which is given by the following ODE:

d~µ(t)

dt
= ~f(~µ(t)), (10)

where ~f(~m) = (f0(~m), . . . , fb(~m)) is defined by (8) and (9).

5.2 Convergence result
From the previous section, {(XN

1 (t), . . . , XN
N (t)), t ∈ N}

is clearly a Markov chain on the state space ∆N . A key
feature of this Markov chain is that the state changes of XN

n ,
for n = 1, . . . , N , are given by the probabilities PNi,i′(~m),

meaning the evolution of XN
n depends on XN

k , with k 6= n,
only through the occupancy measure MN (t).

The mean field interaction model in [4] considers a more
general class of Markov chains {(XN

1 (t), . . . , XN
N (t), RN (t)),

t ∈ N} with state space ∆N × {1, . . . , J}. RN (t) is the
state of the so-called resource at time t and the evolution
of XN

n depends on the occupancy measure MN (t) and the
state RN (t). Further, the model is said to use no resource
if J = 1, meaning RN (t) is a single state Markov chain.

The convergence results presented in [4] hold if five condi-
tions, called Conditions H1 to H5, are satisfied. Conditions
H1 and H4 are related to the resource and hold trivially
for J = 1. Condition H2 demands that there exists a func-
tion ε(N), with limN→∞ ε(N) = 0, and the limits ~f(~m) =

limN→∞ ~fN (~m)/ε(N), given by (8) and (9) in our model,
are properly defined. In fact the stronger condition H2a,
which demands that Pi,i′(~m) = limN→∞ P

N
i,i′(~m)/ε(N) is

well defined, holds in our case as it is given by (7).
Given that H2a holds, condition H3 demands that the

coefficient of variation of the number of objects that change
their state in a single transition is bounded for large N .
As at most b + 1 objects can change their state in a single
transition condition H3 is satisfied. Finally, condition H5

demands that ~fN (~m), given by (5) and (6) in our model, is
a smooth function of ~m and 1/N . This condition is met as
~fN (~m) is a polynomial function of 1/N (this is also true for
the o(1/N) term) and pj(~m) is smooth in ∆. The following
theorem therefore follows from Corollary 1 in [4].

Theorem 1. If MN (0) → ~m in probability as N tends
to infinity, then sup0≤τ≤T ||M̄N (t)− ~µ(t)|| → 0 in probabil-
ity, where ~µ(t) is the unique solution of the ODE (10) with
~µ(0) = ~m.

In other words, for N large and finite t, we can approxi-
mate MN (t) by ~µ(t/N), which is the unique solution of the
ODE (10) with ~µ(0) = MN (0). As we are interested in the
stationary regime of MN (t), the question remains whether

the convergence extends to the stationary regime. Corollary
2 in [4] shows that it suffices to show that the ODE given by
(10) has a unique fixed point that is also a global attractor.

For the Random(+) GC algorithm, we provide an explicit
expression for the unique fixed point of the ODE given by
(10) and prove global attraction. For the Random++ al-
gorithm we have an explicit expression for the unique fixed
point (but no proof of global attraction), while for the d-
Choices algorithm, we have no closed form results for the
fixed point and only a proof of a unique global attractor for
b = 2. Instead we numerically determine a fixed point of
(10) and show by means of simulation that it is highly accu-
rate in predicting the write amplification of the d-Choices
GC algorithm.

6. ANALYTIC RESULTS
In this section we study the set of ODEs given by (10) in

more detail for some GC algorithms belonging to class C.

6.1 The Random(+) GC algorithm
In this subsection we consider the Random GC algorithm.

In this particular case pj(~m) = mj and

b∑
j=1

mb−jj = b−
b∑
j=0

mb−j(b− j) = (1− ρ)b,

for ~m ∈ ∆. As a result (8) reduces to

fb(~m) = (1−mb)−
1− ρ
ρ

bmb, (11)

while for i < b, (9) yields

fi(~m) =
1− ρ
ρ

[(i+ 1)mi+1 − imi]−mi, (12)

From (11) it follows that µb = ρ/(ρ + (1 − ρ)b) for any
fixed point ~µ = (µ0, . . . , µb), while (12) implies that µi =
µi+1(1− ρ)(i+ 1)/(ρ+ (1− ρ)i) holds, for i = 0, . . . , b− 1.
Hence, we may conclude that (10) has a unique fixed point
given by

µi =
ρ

ρ+ (1− ρ)i

b∏
j=i+1

(1− ρ)j

ρ+ (1− ρ)j
, (13)

for i = 0, . . . , b. To prove global attraction of the unique
fixed point ~µ, we note that (10) can be written as

d~µ(t)

dt
= eb+

~µ(t)


−1
1−ρ
ρ

−(1 + 1−ρ
ρ

)

. . .
. . .

(1−ρ)b
ρ

−(1 + (1−ρ)b
ρ

)


︸ ︷︷ ︸

matrix Q

.

(14)

Hence, the unique solution ~µ(t) is given by

~µ(t) = eb(−Q)−1(I − etQ) + ~µ(0)etQ,

and limt→∞ ~µ(t) = eb(−Q)−1 = ~µ, for any ~µ(0) ∈ ∆, as the
diagonal entries of the bidiagonal matrix Q are negative and
therefore limt→∞ e

tQ = 0.



Theorem 2. Let µNi be the steady state probability that
an arbitrary block contains i valid pages when the Random
GC algorithm is used in a system composed of N blocks of
size b and spare factor Sf then

lim
N→∞

µNi = µi =
ρ

ρ+ (1− ρ)i

b∏
j=i+1

(1− ρ)j

ρ+ (1− ρ)j
, (15)

for i = 0, . . . , b, where ρ = 1 − Sf . Further, let wi =∑b
k=i µk, then w0 = 1 and

wi = 1−
b∏
j=i

(1− ρ)j

ρ+ (1− ρ)j
, (16)

for i = 1, . . . , b. Finally,
∑b
i=1 wi = bρ.

Proof. As noted in Section 5.2, the limit in (15) now
follows from Corollary 2 of [4]. To establish the relationship
for wi, for i = 1, . . . , b, we first note that µi can also be
written as

µi =

(∏i−1
j=1(ρ+ (1− ρ)j)

)
ρ1[i>0]

(∏b
j=i+1(1− ρ)j

)
∏b
j=1(ρ+ (1− ρ)j)

,

which also confirms that
∑b
i=0 µi = 1. Hence, for i =

1, . . . , b,

wi =

∏b
j=i(ρ+ (1− ρ)j)−

∏b
j=i(1− ρ)j∏b

j=i(ρ+ (1− ρ)j)
.

Finally, using (16), we note that
∑b
i=1 wi = bρ if and only if

b∑
i=1

(
i−1∏
j=1

(ρ+ (1− ρ)j)

)(
b∏
j=i

(1− ρ)j

)
=

(1− ρ)b

b∏
j=1

(ρ+ (1− ρ)j),

which can be proven easily by induction on b (starting with
b = 1).

Theorem 2 confirms that the write amplification A =
b/(b −

∑b
i=1 wi) = 1/(1 − ρ), as noted in Section 4. The

write amplification is thus independent of the block size b
and the number of blocks N when the Random GC algo-
rithm is used. The distribution of the number of valid pages
within a block does however depend on both b and N . Theo-
rem 2 provides a closed form expression for this distribution
as N tends to infinity. To the best of our knowledge this
concerns a new result that also enables us to determine the
write amplification of the Random+ algorithm.

Figure 1 depicts the distribution of the number of valid
pages within a block for b = 16 and ρ = 0.86 compared to
the Binomial distribution with parameters (b, ρ). The figure
shows that the distribution of the number of valid pages is
not close to Binomial as is sometimes assumed when ana-
lyzing GC algorithms. Thus, pages belonging to different
blocks become independent for large N (due to the decou-
pling), but this is not the case for pages part of the same
block as this would result in a Binomial distribution.

We end this section by considering the write amplification
A of the Random+ algorithm, which operates similar to the
Random GC algorithm, except that it repeatedly selects
another block at random if the selected block contains b
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Figure 1: Distribution of the number of valid pages
within a block for Sf = (1−ρ) = 0.14 and b = 16, com-
pared to the binomial distribution with parameters
(b, ρ).

valid pages. The distribution of the number of valid pages
per block is clearly identical for the Random and Random+
algorithm (this can also be seen from (8) and (9)). The
expression for the write amplification however changes from
A = b/(b−

∑b
i=0 iµi) = 1/(1−ρ) for the Random algorithm

to

A =
b

b−
∑b−1
i=0 i

µi
1−µb

=
b

b− bρ−bµb
1−µb

,

for the Random+ algorithm, which results in the following
Corollary.

Corollary 1. Let AN be the write amplification of the
Random+ algorithm in a system composed of N blocks of
size b and spare factor Sf = 1− ρ then

lim
N→∞

AN =
b

b− ρ(b− 1)
.

It shows that A is no longer independent of the block size b
and that as b tends to infinity the Random and Random+
algorithm perform alike (as expected). We also note that the
write amplification of the Random+ algorithm is bounded
above by b irrespective of the spare factor Sf . Figure 2 de-
picts the write amplification A of the Random+ algorithm
as a function of b for different values of ρ = 1− Sf .

6.2 The d-Choices GC algorithm
In this subsection we consider the d-Choices GC algo-

rithm with d > 1. Using (2) we can write

b∑
j=1

pb−j(~m)j = b−
b∑
j=1

 b∑
k=j

mk

d

. (17)

Let µ(t) = (µ0(t), . . . , µb(t)) be the unique solution of (10)

with initial condition µ(0). Define wi(t) =
∑b
k=i µk(t), for

i = 0, . . . , b, and wb+1(t) = 0. Then, by means of (8) and
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GC algorithm as a function of the block size b for
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(9), we find w0(t) = 1 and

dwi(t)

dt
= 1− wi(t)d −

(
b−

b∑
j=1

wj(t)
d

)
i(wi(t)− wi+1(t))

bρ
,

(18)

for i = 1, . . . , b.
Unless d = 1 (see Section 6.1), the set of equations given

by (18) does not appear to have a simple closed form solu-
tion for its fixed point (for d = b = 2 we managed to obtain
a closed form expression that already looks very involved).
It is also unclear whether (10) has a global attractor in ∆,
meaning we have no formal proof that the convergence to the
mean field over finite time scales extends to the stationary
regime for d > 1. When b = 2 the space ∆ is one dimen-
sional as w1(t) +w2(t) = 2ρ and we can prove that a global
attractor exists in ∆ for any d (see Appendix A). Numerical
experiments seem to suggest that a unique global attractor
also exists for b > 2 and that the L1-distance to the fixed
point decreases along all the trajectories, as illustrated in
Figure 3 for b = 3, d = 4 and ρ = 0.75.

To generate numerical results for the write amplification
A and distribution of the number of valid pages for arbitrary
b and ρ, we numerically solve the ODE given by (18) with
µi(0) =

(
b
i

)
ρi(1 − ρ)b−i using Euler’s method with a step

size h = 0.001 until ||w(t+ h)−w(t)||1 < 10−13. For all the
numerical experiments reported in this paper convergence
occurred in a fraction of a second. Tables 1 and 2 show a
perfect agreement between the simulation results and the
ODE-based prediction for a system consisting of N = 50000
blocks2 containing b = 64 and b = 16 pages, respectively.
Depending on whether the page size is 4 or 8 Kilobyte, this
results in a 12.8 or 25.6 Gigabyte system for b = 64. The
simulation results in Tables 1 and 2 were based on 10 (for
Sf = 0.21 and 0.14) and 50 (for Sf = 0.07) runs each with a
length of 3tN , where t is the smallest multiple of h such that
||w(t + h) − w(t)||1 < 10−13. Initially the bρN valid pages

2Similar results were obtained for a system consisting of
N = 5000 blocks.
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Figure 3: For b = 3 and d = 4 there is a unique global
attractor in ∆ for ρ = 0.75.

d Sf ODE (18) simul. (95% conf.)
2 0.07 9.6354 9.6355 ±0.0016
4 0.07 7.7182 7.7181 ±0.0007
8 0.07 7.0044 7.0044 ±0.0004
2 0.14 4.9645 4.9651 ±0.0011
4 0.14 4.0672 4.0673 ±0.0008
8 0.14 3.7366 3.7366 ±0.0005
2 0.21 3.3732 3.3730 ±0.0006
4 0.21 2.8024 2.8026 ±0.0004
8 0.21 2.5936 2.5935 ±0.0002

Table 1: Comparison of ODE-based results and sim-
ulation experiments for a system with N = 50000
blocks and b = 64 pages per block.

were distributed randomly over the Nb available pages and
the length of the warm-up period was tN . As indicated in
Tables 1 and 2 in each of the experiments the width of the
95% confidence intervals was smaller than 0.1%.

Remark.
The set of ODEs given by (18) has a simple intuitive ex-

planation. As 1 − wi(t)
d is the probability that the GC

algorithm selects a block with less than i valid pages, it rep-
resents the rate at which blocks with i or more pages are
created. Similarly, the rate at which blocks with i pages
disappear is equal to i(wi(t) − wi+1(t))/bρ, the probability
that one of the write operations in step S3 involves a block
with exactly i valid pages, times b−

∑b
j=1 wj(t)

d, the mean
number of writes between two executions of the GC algo-
rithm. If we let d tend to infinity in (18) we end up with the
following set of ODEs:

dwi(t)

dt
= 1[wi(t) < 1]−(

b∑
j=1

1[wj(t) < 1]

)
i(wi(t)− wi+1(t))

bρ
. (19)

Simulating this set of ODEs produces numerical results that
are in perfect agreement with the closed form results in [5]
for the distribution of the number of valid pages in an ar-



d Sf ODE (18) simul. (95% conf.)
2 0.07 8.9083 8.9078 ±0.0014
4 0.07 6.6296 6.6292 ±0.0010
8 0.07 5.7766 5.7766 ±0.0009
2 0.14 4.7339 4.7345 ±0.0020
4 0.14 3.7388 3.7383 ±0.0008
8 0.14 3.3612 3.3612 ±0.0007
2 0.21 3.2639 3.2636 ±0.0009
4 0.21 2.6480 2.6482 ±0.0004
8 0.21 2.4148 2.4149 ±0.0004

Table 2: Comparison of ODE-based results and sim-
ulation experiments for a system with N = 50000
blocks and b = 16 pages per block.

bitrary block when the Greedy GC algorithm is used. We
should note that we cannot rely on the framework in [4] to
verify that the above ODE is the proper limit process for
the Greedy algorithm as the right-hand side of the ODE is
not smooth.

6.3 The Random++ GC algorithm
An expression for the probabilities pj(~m) for the Ran-

dom++ algorithm is given in (1), when combined with (8)
and (9), this implies that any fixed point ~µ = (µ0, . . . , µb)
must fulfill the following set of equations

1 =

(
b∑
j=1

pb−j(~µ)j

)
µb
ρ
, (20)

iµi = (i+ 1)µi+1, (21)

for i = bbρc+ 1, . . . , b− 1 and

pi(~µ) =
(i+ 1)µi+1 − iµi

bρ

(
b∑
j=1

pb−j(~µ)j

)
, (22)

for i = 0, . . . , bbρc. The following theorem shows that this
set of equations has a unique solution in ∆.

Theorem 3. The set of ODEs given by (8) and (9) for
the Random++ GC algorithm, i.e., with pj(~m) given by
(1), has a unique fixed point in ∆ given by

µi =
(i+ 1)µi+1

i+ ρ/(1− ρ− µb(bSρ,b − b+ bbρc)) , (23)

for i = 0, . . . , bbρc, with Sρ,b =
∑b
j=bbρc+1 1/j,

µi = bµb/i, (24)

for i = bbρc+ 1, . . . , b− 1, while

µb =
−bρ +

√
b2ρ − 4aρcρ

2aρ
,

with aρ = b−bbρc− bSρ,b, bρ = ρSρ,b + 1−ρ and cρ = −ρ/b
for ρ < 1 − 1/b and µb = ρ/(ρ + (1 − ρ)b) for ρ ≥ 1 − 1/b.
Further,

A =
b∑b

j=1 pb−j(~µ)j
=

1

1− ρ−µb(b−bbρc)
1−µbbSρ,b

. (25)

Sf Theorem 3 simul. (95% conf.)
0.20 2.9614 2.9611 ±0.0005
0.17 3.4209 3.4209 ±0.0004
0.14 4.0663 4.0663 ±0.0005
0.11 5.0371 5.0377 ±0.0007
0.08 6.6599 6.6601 ±0.0006
0.05 9.9172 9.9166 ±0.0010

Table 3: Comparison of closed form results and sim-
ulation experiments for a system with N = 50000
blocks and b = 32 pages per block.

Proof. We start by noting that for ~µ ∈ ∆

b∑
j=1

pb−j(~µ)j = b−
b∑
j=1

pj(~µ)j =

b−
∑bbρc
j=1 jµj

1−
∑
j>bbρc µj

= b−
bρ−

∑
j>bbρc jµj

1−
∑
j>bbρc µj

.

Due to (21), we have∑
j>bbρc

jµj = bµb(b− bbρc),

∑
j>bbρc

µj = bµbSρ,b. (26)

This implies

b∑
j=1

pb−j(~µ)j = b

(
1− ρ− µb(b− bbρc)

1− µbbSρ,b

)
,

which establishes (25), while (23) can now be derived from
(22) and (24) is immediate from (21). The quadratic equa-
tion f(y) = aρy

2 +bρy+cρ = 0 for µb now follows from (20).
Provided that the function f(y) has real roots, they are both
positive as aρ, cρ ≤ 0 and bρ > 0, while µb ≤ 1/(ρSρ,b) as∑
j>bbρc µj ≤ 1. Further,

f(0) < 0, and f(1/(ρSρ,b)) =
b− bbρc − bρSρ,b

(bSρ,b)2
.

Hence, f(1/(ρSρ,b)) ≥ 0 if and only if b− bbρc − bρSρ,b ≥ 0.
This latter inequality holds as g(ρ) = b−bbρc−bρSρ,b is equal
to 1−ρ for ρ > 1−1/b and g(ρ) increases as ρ decreases.

Provided that the unique fixed point is a global attrac-
tor, Theorem 3 implies that the write amplification AN in a
system consisting of N blocks converges to (25) as N tends
to infinity. By means of (26) we also find that the mean
number of attempts needed to locate a block with at most
bbρc valid blocks can be expressed as 1/(1− µbbSρ,b).

Table 3 compares the closed form expression for A given
by Theorem 3 with simulation experiments on a system con-
sisting of N = 50000 blocks and b = 32 pages per block. The
length of a single simulation run and warm-up period was
determined in a similar manner as in Section 6.2, while 10
runs were performed for Sf > 0.1 and 50 for Sf < 0.1. The
results show a perfect agreement between the closed form
results and simulation.

7. NUMERICAL RESULTS
In this section we present some numerical results for the

d-Choices and Random++ algorithm and compare their
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Figure 4: Write amplification A as a function of
the spare factor Sf for the Random, Greedy and d-
Choices algorithm for d = 2, 4 and 8 and b = 32 pages
per block.

performance with the Greedy, FIFO and Windowed al-
gorithm.

7.1 The d-Choices GC algorithm
We will show that the d-Choices algorithm can approxi-

mate the write amplification of the Greedy algorithm even
for small d values, e.g., d = 10, while maintaining the sim-
plicity of the Random or FIFO algorithm. Further, we will
show that the d-Choices algorithm is far more effective than
the Windowed algorithm, that is, the d-Choices algorithm
with d small, e.g., d = 10, has a lower the write amplifica-
tion A than the Windowed algorithm with a fairly large
window size, e.g., w = 500.

Figure 4 depicts the write amplification A as a function
of the spare factor Sf = 1 − ρ for the Random, Greedy
and d-Choices GC algorithm for d = 2, 4 and 8 and b = 32
pages per block. The results for the write amplification (and
number of valid blocks) under the Greedy GC algorithm
are based on [5]. The results confirm that a small value of
d suffices to approximate the write amplification A of the
Greedy algorithm, especially for larger spare factors Sf .
Although the Greedy algorithm has a lower write amplifi-
cation A, it requires state information (essentially b+ 1 bins
that contain N items in total) that needs to be updated
after each write operation. The d-Choices GC algorithm
maintains no state information and is only activated when
a new block needs to be selected (and cleared).

In Figure 5 we also show the impact of the number of
pages b per block on the write amplification A when the
spare factor Sf = 0.07. It confirms that small d values
suffice for the d-Choices algorithm to approximate the write
amplification of the Greedy algorithm for different block
sizes b. The FIFO algorithm, the write amplification of
which does not depend on b, performs worse, especially for
small b (i.e., older SSD devices) as the write amplification of
the d-Choices and Greedy algorithm decreases with b (as
expected).

When b = 1, meaning Nρ blocks contain one valid page
and N(1 − ρ) one invalid page at all times, the d-Choices
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Figure 5: Write amplification A as a function of the
number of choices d for the d-Choices algorithm with
a spare factor Sf = 0.07.

GC algorithm has a write amplification A = 1/(1 − ρd) as
with probability 1−ρd the selected block contains an invalid
page. In fact for any b ≥ 1, it is not hard to show that
the write amplification of the d-choices algorithm is lower
bounded by 1/(1 − ρd). This can be shown by noting that
the write amplification A(t) at time t is equal to b/(b −∑b
i=1 wi(t)

d) and
∑b
i=1 w

d
i , for d ≥ 1, is minimized in ∆

when wi = ρ for i = 1, . . . , b. We can also upper bound the
write amplification A by

b

b− bbρc − (bρ− bbρc)d ,

by noting that
∑b
i=1 w

d
i , for d ≥ 1, is maximized in ∆ when

wi = 1 for i = 1, . . . , k, wk+1 = bρ − k and wi = 0 for
i = k + 2, . . . , b with k = bbρc. Note, when ρ is a multiple
of 1/b this upper bound simplifies to 1/(1 − ρ), the write
amplification of the Random algorithm, otherwise the upper
bound is below 1/(1− ρ) for d > 1.

The previous results indicated that the write amplification
of the Greedy and d-Choices algorithm becomes similar as
d increases. Figures 6 and 7 indicate that the same holds
for the number of valid pages in a block on an arbitrary
and a block selected by the GC algorithm, respectively, for
a system with b = 16 pages per block and a spare factor
Sf = 0.14. Note, for the Greedy algorithm the probability
that an arbitrary block contains at most 10 valid pages is
zero, while the number of valid pages on a selected block is
bimodal and is always 10 or 11 in our example. Hence, at
times a negligible fraction of the blocks contains exactly 10
pages and these blocks are always selected by the Greedy
GC algorithm [5, 7]. For the d-Choices algorithm we ob-
serve something similar: the probability of having 10 valid
pages in a block tends to zero as d increases, while the prob-
ability of selecting such a block remains significant. This
can be understood by noting that even though such blocks
become rare as d grows, larger d values also increase the
probability that a rare block (containing the least number
of valid pages) is selected by the GC algorithm.

The Windowed GC algorithm was introduced in [8] as a
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Figure 6: Distribution of the number of valid pages
on an arbitrary block for the greedy and d-choices
algorithm with d = 1, 4, 16 and 64, with Sf = 0.14 and
b = 16.

trade-off between the low complexity of the FIFO algorithm
and the good performance of the Greedy algorithm. The
idea is to consider only the w oldest blocks when searching
for the block with the least number of valid pages, where
setting w = 1 and N results in the FIFO and Greedy GC
algorithm, respectively. Larger w values reduce the write
amplification, but increase the time complexity of the GC
algorithm. Figure 8 shows how much the write amplification
increases when the Windowed (with w = 50 and 500) or
d-Choices (with d = 10 or 20) algorithm is used instead of
the Greedy algorithm in a system with b = 64 pages per
block. Note, the curves in this figure are not smooth as the
write amplification of the Greedy algorithm is not smooth
in those Sf values for which the bimodal distribution of the
number of valid pages on a selected block becomes unimodal.

Figure 8 indicates that for spare factors Sf ≤ 0.2 setting
d as small as 10 suffices to beat the Windowed algorithm
with a window size of w = 500, where the gain becomes more
pronounced as Sf decreases. Further, setting d = 20 results
in a write amplification that is less than 2% above the write
amplification of the Greedy algorithm, while the write am-
plification of the Windowed algorithm is still much closer
to the FIFO algorithm even with a window size w = 500.
This can be understood by remarking that blocks with a rel-
atively high number of valid pages tend to stay within the
window for a considerable amount of time. Such a drawback
does not occur with the d-Choices algorithm as the set of
d blocks is always reselected at random.

The fact that the Windowed GC algorithm is not very
effective in reducing the write amplification for w small was
also noted in [7]. The results in Figure 8 for the windowed
access algorithm were obtained by simulation on a system
with N = 50000 blocks, using 10 runs of length 106 each.
This resulted in confidence intervals with a width below
0.1%. Note, analytical results for the Windowed GC al-
gorithm were also presented in [8], but these were based on
the assumption that the number of valid pages per block
within the window has a binomial distribution, which tends
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Figure 7: Distribution of the number of valid pages
on a selected block for the greedy and d-choices al-
gorithm with d = 1, 4, 16 and 64, with Sf = 0.14 and
b = 16.
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Figure 8: Relative write amplification Windowed
versus d-Choices algorithm for b = 64 blocks per
page.

to result in an optimistic estimate for the write amplifica-
tion [5, 7].

7.2 The Random++ algorithm
In this section, we compare the write amplification of the

Random++ algorithm with the FIFO and Greedy GC
algorithm. We will show that the Random++ algorithm
performs worse than the FIFO algorithm when the number
of pages in a block is large, e.g., b ≥ 64, while the reverse
is mostly true for small block sizes, e.g., b ≤ 16. We will
also show that the Random++ algorithm typically requires
less than three attempts to locate a block with at most bbρc
valid pages.

Figure 9 depicts the write amplification A of the FIFO,
Greedy and Random++ GC algorithm as a function of
the spare factors Sf = 1 − ρ for b = 64 pages per block.
It shows that the Random++ algorithm is outperformed
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Figure 9: The write amplification A of the FIFO,
Greedy and Random++ GC algorithm as a function
of the spare factors Sf = 1 − ρ for b = 64 pages per
block.

by the FIFO algorithm for Sf ∈ [0.05, 0.2], especially when
the spare factor becomes large. We also note that the curve
of the Random++ algorithm contains jumps whenever the
spare factor Sf = 1 − ρ is a multiple of 1/b. When Sf
becomes a multiple of 1/b when increasing Sf , the maximum
number of allowed valid pages in the block selected by the
Random++ algorithm decreases by one. This causes an
immediate decrease in the write amplification. At the same
time we can also expect a sudden rise in the mean number of
attempts needed by the Random++ GC algorithm to locate
such a block as demonstrated in Figure 10. This figure also
indicates that the mean number of attempts is between 2
and 3 for all Sf ∈ [0.05, 0.2] for b = 64 pages per block.

Similar experiments, not depicted here, indicate that the
Random++ GC algorithm does outperform the FIFO al-
gorithm for Sf ∈ [0.05, 0.2] when there are only b = 8 pages
in a block. Whether the FIFO or Random++ algorithm
achieves the lowest write amplification for b = 16 and 32
pages per block, depends in a complicated manner on the
spare factor Sf (due to the jumps in the Random++ curve).
We end by remarking that the write amplification A of the
Random++ algorithm is well below that of the Random
algorithm, the write amplification of which equals 1/(1−ρ),
even for larger b values, e.g., b = 64.

8. CONCLUSIONS AND FUTURE WORK
In this paper we introduced a mean field model to ana-

lyze the write amplification of a class C of garbage collec-
tion (GC) algorithms in flash-based solid state drives under
uniform random writes. Algorithms belonging to class C
include the Random(+), Random++ and d-Choices GC
algorithms, where the latter two were analyzed for the first
time. Closed form results for the write amplification and
the distribution of the number of valid pages in a block were
obtained for the Random(+) and Random++ algorithm,
while a fast numerical ODE-based method was proposed for
the d-Choices algorithm. The results were shown to be
highly accurate using simulation experiments.
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Figure 10: The write amplification A and mean num-
ber of attempts to find a block with at most bbρc
valid blocks for the Random++ GC algorithm as a
function of the spare factors Sf = 1 − ρ for b = 64
pages per block.

The d-Choices algorithm was shown to be very effective
in reducing the write amplification, while the Random++
algorithm was less effective. More specifically, we showed
that the d-Choices GC algorithm has a write amplification
close to that of the Greedy GC algorithm even for small d
values, e.g., d = 10, and offers a more attractive trade-off
than the Windowed GC algorithm between its simplicity
and its performance.

We are currently extending the mean field model for uni-
form random writes introduced in this paper, to the hot/cold
data model of Rosenblum [14]. Preliminary results (not
shown here) indicate that the write amplification of the d-
Choices GC algorithm gets closer to the write amplification
of the Greedy algorithm as the hot data gets hotter (i.e., as
f decreases or r increases). In other words, even smaller d
values suffice to get close to the performance of the Greedy
GC algorithm.

We are also planning to extend the model to study the
impact of data separation techniques for hot/cold data and
of the TRIM command on the write amplification. The lat-
ter will make the model also more applicable to the setting
of log-structured file systems where data is often deleted.
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APPENDIX
A. UNIQUENESS FOR D > 1 AND B = 2

When b = 2, the space ∆ is one dimensional and the
evolution of w2(t) is given by

dw2(t)

dt
= 1− w2(t)d −

(
2− w2(t)d − (2ρ− w2(t))d

) w2(t)

ρ
,

due to (18) as w1(t) = 2ρ − w2(t). Note, as 1 ≥ w1(t) ≥
w2(t) ≥ 0, w2(t) ∈ [min(0, 2ρ − 1), ρ]. Define g(w) = 1 −

wd − (b − wd − (2ρ − w)d)w/ρ, then g(min(0, 2ρ − 1)) > 0
and g(ρ) = −(1− ρd) < 0. Further,

g′(w) = −dwd−1 −
(

2− wd − (2ρ− w)d
) 1

ρ
+

d
(
wd−1 − (2ρ− w)d−1

) w
ρ
,

meaning g′(w) < 0 for w ∈ [min(0, 2ρ− 1), ρ]. Hence, there
is a unique fixed point in ∆ that is necessarily a global at-
tractor.


