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Randomized work stealing is used in distributed systems to increase performance and improve resource

utilization. In this paper, we consider randomized work stealing in a large system of homogeneous processors

where parent jobs spawn child jobs that can feasibly be executed in parallel with the parent job. We analyse the

performance of two work stealing strategies: one where only child jobs can be transferred across servers; the

other where parent jobs are transferred. We define a mean field model to derive the response time distribution

in a large scale system with Poisson arrivals and exponential parent and child job durations. We prove that the

model has a unique fixed point that corresponds to the steady state of a structured Markov chain, allowing us

to use matrix analytic methods to compute the unique fixed point. The accuracy of the mean field model is

validated using simulation. Using numerical examples we illustrate the effect of different probe rates, load, and

different child job size distributions on performance with respect to the two stealing strategies, individually,

and compared to each other.

CCS Concepts: • Networks→ Network performance modeling.

Additional Key Words and Phrases: mean field model, matrix analytic methods, performance analysis, dis-

tributed computing

ACM Reference Format:
Nikki Sonenberg, Grzegorz Kielanski, and Benny Van Houdt. 2020. Performance analysis of work stealing in

large scale multithreaded computing. 1, 1 (June 2020), 28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Modern computer systems involve large amounts of parallelism, and the ways in which jobs and

servers can interact have grown in complexity [11, 21]. One form of parallelism is multithreaded

computation which involves a set of threads, each of which is a sequential ordering of tasks.

Computation starts by executing a main thread (parent job), and a thread can create or spawn other

threads (child jobs) that are initially stored locally but then can be migrated and executed on other

servers [4, 26].

A longstanding approach to redistribute work among a set of processors is the concept of

randomized work stealing [27], one that has been implemented in various systems such as Cilk [3],

Intel TBB [20] and KAAPI [9]. The main idea is that processors that become idle attempt to steal
work from another processor selected uniformly at random [4, 6]. An alternate approach where

processors with pending tasks attempt to locate idle processors is known as load sharing.
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2 Sonenberg, Kielanski and Van Houdt

In this paper, we consider a system of homogeneous processors operating with randomized work

stealing and study the problem of balancing processor workloads. We consider two work stealing

protocols: one where only child jobs are able to be migrated across servers; and one where parent

jobs can be migrated across servers. We define mean field models for both stealing strategies and

validate the models using simulation. We prove the existence of a unique fixed point for each model

and use this to study the performance of these strategies. While we do not present convergence

proofs for the stationary measures, such proofs for convergence over finite time scales can be

constructed using existing mean field theory [7, 13], see Section 9 for more comments.

In this paper we make the following contributions:

• We present two mean field models for work stealing in multithreaded computations.

• We prove these models have a unique fixed point that can be computed efficiently using

matrix analytic methods (by solving a single Quasi-Birth-Death Markov chain). This is the

main technical contribution of the paper.

• We indicate how to compute the response time distribution of a job for both strategies.

• For both strategies we illustrate the effect on mean response time of varying probe rate, load

and child job size distributions. In selected scenarios, we show that with high probe rate

and low loads, child stealing achieves a lower mean response time; but the parent stealing

strategy performs better under low probe rate and high loads. Somewhat surprisingly, we

show that under high probe rates, the variability of the child job size distribution may improve

performance.

• The developed model and methods provide a foundation for the performance analysis of

more general systems with similar features.

The rest of this paper is organised as follows. Related work is discussed in Section 2, while in

Section 3 we describe the system and the work stealing strategies considered. The mean field model

is introduced in Section 4. The model of a single server is introduced in Section 5 and its associated

response time distribution is derived in Section 6. The stationary distribution of the single server

queue is shown to be the unique fixed point of the mean field model in Section 7. In Section 8 we

present explicit results when the probe rate tends to infinity. We validate the mean field model

using simulation in Section 9. The performance of the stealing strategies with numerical examples

is presented in Section 10. Finally, Section 11 contains some concluding remarks and discusses

some model generalizations.

2 RELATEDWORK
Some initial analytical models developed to study the performance of work stealing and sharing

strategies can be found in [6, 17, 23]. In [6] the authors consider a homogeneous system with

exponential job sizes and compare the performance of work stealing and work sharing strategies.

To generate numerical results the authors rely on a decoupling assumption combined with an

iterative approach. As indicated in [15], this approach is equivalent to computing a fixed point

of the drift equations of a mean field model. This work was further extended to heterogeneous

systems in [17] using a similar approach. These studies demonstrate that work stealing is far more

effective than work sharing when the system load is high, which explains why most practical

systems rely on load stealing techniques. [23] focused on work stealing only and motivated by

shared-memory systems assumes that migrated jobs have a higher service demand and migrating

jobs requires some time. The analysis is based on a decomposition assumption and can therefore

also be reformulated as a mean field approximation.

More recent work based onmean fieldmodels for work stealing and sharing includes [8, 15, 22, 25].

A model for stealing in a network composed of a number of homogeneous clusters and exponential
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job sizes is presented in [8], where an important difference with prior work lies in the fact that

half of the jobs are stolen instead of just one job at a time. The main motivation for the work

presented in [15, 22, 25] was to provide a more fair comparison between load stealing and sharing

strategies. For the more traditional strategies considered in [6, 17] the communication overhead of

the stealing and sharing strategies is not the same, which made the comparison somewhat biased.

Exponential job sizes were considered in [15, 22] for homogeneous and heterogeneous networks

and homogeneous networks with non-exponential job sizes were considered in [25].

A common feature in all these prior works is that a job is always migrated between servers

as a whole. The key novel feature in this paper is to allow part of a job to be transferred. More

specifically, motivated by multi-threaded computing, our main interest lies in the analysis of a

system in which parent jobs spawn child jobs when their service starts. These child jobs are initially

stored locally and can subsequently be stolen by idle servers. An important contribution lies in the

fact that our results indicate that we can approximate the performance of such a large-scale system

closely using the steady state vector of a single structured Markov chain and thus without the need

for an iterative procedure. Most of the paper is devoted to the analysis of the system with child job

stealing.

We also compare the performance of this system with a system in which only parent jobs can be

stolen. Note that in such case jobs are again transferred as a whole and therefore we can make use

of the results in [25] by considering the parent job together with its spawned child jobs as a single

non-exponential job. The analysis relies on the same overall approach for the parent and child

job stealing systems: we define a mean field model and a structured Markov chain and show that

the unique fixed point of the mean field model is the steady state of the structured Markov chain.

However defining the structured Markov chain and proving the above result is much harder for

the child job stealing system. In addition, the results obtained for the child job stealing system are

more elegant as we managed to obtain an explicit expression for the rate at which idle servers steal

jobs, which does not appear to be feasible for the system with parent job stealing (which involves

solving a non-linear matrix equation numerically). Finally we also provide a means to compute the

response time distribution, while prior work focused on the mean response time.

3 SYSTEM DESCRIPTION AND STRATEGIES
We consider a system with the following characteristics:

i. N homogeneous servers each with an infinite buffer to store jobs.

ii. Each server is subject to its own local Poisson arrival process with rate λ. Arriving jobs are
referred to as parent jobs.

iii. Upon a parent entering service, the parent job spawns i ∈ {0, 1, . . . ,m},m ≥ 1, child jobs at

that server, the number of which follows a general distribution with finite support, p̌ = {pi }.
We refer to a job as a parent job and its spawned child jobs.

iv. Child jobs spawned at a server are served before any waiting parent jobs are served, but can
only start service at the local server after their parent job completes service.

v. It is assumed that parent and child jobs have exponentially distributed service requirements

with rates µ1 and µ2, respectively.

In this paper we study the performance of rate based work stealing strategies [16, 25] in our

model of multithreaded computations. More specifically we consider the following two randomized

work stealing protocols:

• Parent job stealing. When a server is idle, it generates probe messages at rate r . As long as the
server remains idle, probes are sent according to Poisson process with rate r . This process is
interrupted whenever the server becomes busy. The probed server is selected at random and
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4 Sonenberg, Kielanski and Van Houdt

a probe is successful if there are parent jobs waiting to be served. We assume the policy is

to always steal the oldest parent job, that is, the head-of-the-line parent job in the waiting

room. Note that such a parent job did yet not spawn child jobs.

• Child job stealing. Idle servers again probe at rate r , but a probe is only successful if there is

at least one child job waiting to be served. In this case a single child job is transferred to the

idle probing server. Extending the model such that multiple child jobs can be stolen at once

is non-trivial and subject to future work.

We compare the performance of these two strategies, noting that when a parent job is transferred

to an idle server, its service immediately starts and its child jobs are spawned at this server. Probes

and job transfers are assumed to be instantaneous. Another interpretation of the rate based probing

is that it takes an exponentially distributed amount of time with mean 1/r to probe another server

(and to transfer the job if the probe is successful) and steal attempts are executed sequentially.

We discuss a number of relaxations such as phase-type service times, batch steal events and

heterogeneous servers in Section 11.

4 MEAN FIELD MODEL
We use a mean field model to describe the system with N → ∞ servers. The infinite system is

defined by a set of ODEs and we use the superscript (c) when referring to the system where child

job stealing is allowed and superscript (p) where parent job stealing is allowed.

For i ∈ {(c), (p)}, denote by f i
ℓ, j ,k (t) the fraction of servers with ℓ parent jobs waiting in the

queue, j ∈ {0, 1, . . . ,m} child jobs in the queue and k ∈ {0, 1} describing whether a parent is in

service (k = 1) or not (k = 0) at time t . Note that ℓ does not count parent jobs in service, whereas j
counts child jobs waiting and in service. Let f i∗ (t) be the fraction of idle queues at time t , that is
when ℓ, j,k = 0. Let 1[A] be equal to one if A is true and zero otherwise.

4.1 Child job stealing
We start by presenting the drift equations for the system where child jobs are stolen followed by a

detailed discussion. For ℓ ≥ 0 and j + k ≥ 1,

d

dt
f (c)
ℓ, j ,k (t) = λf (c)

ℓ−1, j ,k (t)1[ℓ ≥ 1] + λpj f
(c)
∗ (t)1[ℓ = 0,k = 1] − λf (c)

ℓ, j ,k (t) + µ1 f
(c)
ℓ, j ,k+1

(t)1[k = 0]

+ µ1pj f
(c)
ℓ+1,0,k (t)1[k = 1] − µ1 f

(c)
ℓ, j ,k (t)1[k = 1] + µ2 f

(c)
ℓ, j+1,k (t)1[j ≤ m − 1,k = 0]

+ µ2pj f
(c)
ℓ+1,1,k−1

(t)1[k = 1] − µ2 f
(c)
ℓ, j ,k (t)1[k = 0] + r f (c)∗ (t)f (c)

ℓ, j+1,k (t)1[j ≤ m − 1]

− r f (c)∗ (t)f (c)
ℓ, j ,k (t)1[j + k > 1] + r f (c)∗ (t)

∑
ℓ′≥0,
j′+k ′>1

f (c)
ℓ′, j′,k ′(t)1[ℓ = 0, j = 1,k = 0],

and for ℓ, j,k = 0,

d

dt
f (c)∗ (t) = −λf (c)∗ (t) + µ1 f

(c)
0,0,1(t) + µ2 f

(c)
0,1,0(t) − r f (c)∗ (t)

∑
ℓ≥0,
j+k>1

f (c)
ℓ, j ,k (t).

The first three terms of the drift of f (c)
ℓ, j ,k (t) correspond to arrivals of parent jobs, in which we

distinguish between arrivals to a non-idle server and to an idle server. The following three terms

correspond to service completions of a parent job, distinguishing when the head of the queue is

either a child or a parent job. The following three terms correspond to service completions of a

child job, distinguishing when the head of the queue is either a child or a parent job. The remaining

three terms correspond to child job transfers, with the last term capturing the successful transfer
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to an idle server. The condition 1[j + k > 1] guarantees that we have at least one child job waiting

(as a child job in service is never stolen). Note that∑
ℓ≥0, j+k>1

f (c)
ℓ, j ,k (t) = 1 − f (c)∗ (t) −

∑
ℓ≥0

(f (c)
ℓ,1,0

(t) + f (c)
ℓ,0,1

(t)),

which equals the probability that a probe transmitted at time t succeeds in stealing a child job. For

the drift of f (c)∗ (t), the first term is due to arrivals of parent jobs, the second and third due to parent

and child job completions, respectively and the last term is due to child job transfers.

We now rewrite these equations in matrix form, using the vectors below, where 0i is a column

vector of zeroes of length i , ei is the i-th row of the unit matrix and e a column vector of ones:

f (c)
ℓ

(t) =
(
f (c)
ℓ,1,0

(t), . . . , f (c)
ℓ,m,0

(t), f (c)
ℓ,0,1

(t), . . . , f (c)
ℓ,m,1

(t)
)
, (1)

α =
[
0
′
m p0 p1 . . . pm

]
,

µ =
[
µ2 0

′
m−1

µ1 0
′
m
] ′
,

v0 =
[
1 0

′
m−1

1 0
′
m
] ′
,

where f (c)
ℓ

(t) and α are row vectors of size 2m + 1, while µ and v0 are column vectors of size 2m + 1.

Note that v0 marks the states where j + k = 1, which are the states where there are no child jobs

waiting for service. We then have for ℓ ≥ 0,

d

dt
f (c)
ℓ

(t) = λf (c)
ℓ−1

(t)1[ℓ ≥ 1] − λf (c)
ℓ

(t) + λf (c)∗ (t)α1[ℓ = 0] + f (c)
ℓ

(t)S (c)(r , t) + f (c)
ℓ+1

(t)µα

+ r f (c)∗ (t)
∑
ℓ′≥0

f (c)
ℓ′

(t)(e −v0)e11[ℓ = 0], (2)

and

d

dt
f (c)∗ (t) = −λf (c)∗ (t) + f (c)

0
(t)µ − r f (c)∗ (t)

∑
ℓ≥0

f (c)
ℓ

(t)(e −v0). (3)

The (2m + 1) × (2m + 1) matrix S (c)(r , t) is defined as

S (c)(r , t) =

[
S (c)

00
(r , t) 0

S10 S (c)
11
(r , t)

]
, (4)

with

S (c)
00
(r , t) =


−µ2

µ2 + r f∗(t) −(µ2 + r f∗(t))
µ2 + r f∗(t) −(µ2 + r f∗(t))

. . .


, S10 =



0 . . .
µ1

µ1

µ1

. . .


,

S (c)
11
(r , t) =


−µ1

r f∗(t) −(µ1 + r f∗(t))
r f∗(t) −(µ1 + r f∗(t))

. . .


.

The (off diagonal) entries of the matrix S (c)(r , t) corresponds to events that do not lead to a change

in the value of ℓ ≥ 1. The matrix is partitioned according to the type of job in service following

an event: S (c)
00
(r , t) captures state changes where a child job remains in service (either a child is
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6 Sonenberg, Kielanski and Van Houdt

stolen from the queue, or the child job in service completes and a waiting child job enters service);

S10 captures the event where a parent job completes and a child job starts service; and S (c)
11
(r , t)

captures state changes where the parent job remains in service and a child job is stolen.

4.2 Parent job stealing
This mean field model is a special case of the one described in [25] by considering the parent and

its child jobs as a single non-exponential job. There are two minor differences with [25]: f
(p)
∗ (t)

and f
(p)
ℓ

(t) are there denoted as f0(t) and fℓ+1(t) and the mean service time of a job is assumed to

be 1. Note that the latter assumption can be made without loss of generality by rescaling time.

Hence, due to [25], we have for ℓ ≥ 0,

d

dt
f
(p)
ℓ

(t) = λf
(p)
ℓ−1

(t)1[ℓ ≥ 1] − λf
(p)
ℓ

(t) + λf
(p)
∗ (t)α1[ℓ = 0] + f

(p)
ℓ

(t)S (p) + f
(p)
ℓ+1

(t)µα

+ r f
(p)
∗ (t)f

(p)
ℓ+1

(t) − r f
(p)
∗ (t)f

(p)
ℓ

(t)1[ℓ ≥ 1] + r f
(p)
∗ (t)

(
1 − f

(p)
∗ (t) − f

(p)
0

(t)e
)
α1[ℓ = 0],

(5)

and

d

dt
f
(p)
∗ (t) = −λf

(p)
∗ (t) + f

(p)
0

(t)µ − r f
(p)
∗ (t)

(
1 − f

(p)
∗ (t) − f

(p)
0

(t)e
)
, (6)

with

S (p) =

[
S
(p)
00

0

S10 S
(p)
11

]
, S

(p)
00
=


−µ2

µ2 −µ2

µ2 −µ2

. . .


, S

(p)
11
= −µ1I . (7)

As with the definition of S (c)(r , t), the matrix S (p) corresponds to events that do not lead to a change
in the value of ℓ ≥ 1. In contrast to the child job stealing strategy, where S (c)(r , t) depended on r
and t , S (p) is independent of r and t as any steal event changes the value of ℓ.

Note that in case of parent stealing∑
ℓ′≥1

f
(p)
ℓ′

(t)e = 1 − f
(p)
∗ (t) − f

(p)
0

(t)e,

equals the probability that a probe transmitted at time t succeeds in stealing a parent job (as a

parent job in service is not stolen).

5 QBD DESCRIPTION
The sets of ODEs given by (2)-(3) and (5)-(6) describe the transient evolution of the infinite system

for the child and parent stealing models, respectively. We now introduce two Quasi-Birth-Death

(QBD) Markov chains and show further on that their unique stationary distribution corresponds to

the unique fixed points of these two mean field models. Proving this is non-trivial and is the main

technical contribution of the paper.

For i ∈ {(c), (p)}, we define the QBD process {X i
t (r ),Y

i
t (r ) Z

i
t (r ) : t ≥ 0}, where the level is given

by X i
and the phase is given by (Y i ,Z i ) with generator Q i (r ). Denote by X i ≥ 0 the number of

parent jobs waiting, Y i ∈ {0, 1, . . . ,m} the number of child jobs in the queue and Z i = {0, 1} where
Z i = 1 if a parent is currently in service and Z i = 0 if not. Define

π i
∗(r ) = lim

t→∞
P[X i

t (r ) = 0,Y i
t (r ) = 0,Z i

t (r ) = 0], (8)
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and for ℓ ≥ 0,

π i
ℓ(r ) =

(
π i
ℓ,1,0(r ), ..., π

i
ℓ,m,0(r ), π

i
ℓ,0,1(r ), ..., π

i
ℓ,m,1(r )

)
, (9)

where

π i
ℓ, j ,k (r ) = lim

t→∞
P[X i

t (r ) = ℓ,Y
i
t (r ) = j,Z i

t (r ) = k]. (10)

5.1 Child job stealing
The QBD for the child stealing model is very similar to a simple M/PH/1 queue with arrival rate

λ and phase-type service time characterized by (α, S (c)(r )), except that we also have additional

job arrivals at some rate λc (r ) (defined later) when the server is idle and these additional arrivals

have an exponential service time with parameter µ2. The subgenerator matrix S (c)(r ) is identical to
S (c)(r , t) defined by (4), if we replace f∗(t) by q = 1 − ρ with

ρ = λ

(
1

µ1

+

∑m
n=1

npn

µ2

)
. (11)

Proposition 5.1. The meanmPH = α(−S (c)(r ))−1e of the phase-type distribution characterized by
(α, S (c)(r )) can be written as

mPH =
ρ

λ
−

1

µ2

[
m∑
j=1

p̃j

(
rq

rq + µ1

) j
+

rq

rq + µ2

m∑
j=2

p̃j

(
1 −

(
rq

rq + µ1

) j−1

)]
, (12)

where p̃j =
∑

n≥j pn .

Proof. Using blockwise inversion, (−S (c)(r ))−1
equals[

(−S (c)
00
(r ))−1

0

(−S (c)
11
(r ))−1S10(−S

(c)
00
(r ))−1 (−S (c)

11
(r ))−1

]
, (13)

where

S (c)
00
(r ) =


−µ2

µ2 + rq −µ2 − rq
. . .

. . .

 , S (c)
11
(r ) =


−µ1

rq −µ1 − rq
. . .

. . .

 . (14)

For i ∈ N, define di =
(rq)i

(µ1+rq)i+1
. We then have

(−S (c)
00
(r ))−1 =



1

µ2

... 1

µ2+rq
...

...
. . .

1

µ2

1

µ2+rq
. . . 1

µ2+rq


, (−S (c)

11
(r ))−1 =



µ1+rq
µ1

d0

µ1+rq
µ1

d1 d0

µ1+rq
µ1

d2 d1 d0

...
...
. . .

. . .


, (15)

and thus

(−S (c)
11
(r ))−1S10(−S

(c)
00
(r ))−1 = µ1



0 0 . . . 0

1

µ2

d0 0

...

1

µ2

(d0 + d1)
1

µ2+rq
d0

. . .
...

...
...

. . . 0

1

µ2

∑m−1

k=0
dk

1

µ2+rq
∑m−2

k=0
dk . . . 1

µ2+rq
d0


. (16)
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8 Sonenberg, Kielanski and Van Houdt

Table 1. Transitions for the QBDs in Section 5

i ∈ {(c), (p)} From Rate For

1. (c), (p) (X i , Y i , Z i ) → (X i , Y i + j , Z i + 1) λpj X i = 0, Y i = 0, Z i = 0, j = 0, 1, . . .m,

2. (c), (p) (X i , Y i , Z i ) → (X i + 1, Y i , Z i ) λ X i ≥ 0, Y i ≥ 1, Z i = 0 or X i ≥ 0, Y i ≥ 0, Z i = 1,

3. (c), (p) (X i , Y i , Z i ) → (X i , Y i , Z i − 1) µ1 X i ≥ 0, Y i ≥ 1, Z i = 1, or X i = 0, Y i = 0, Z i = 1,

4. (c), (p) (X i , Y i , Z i ) → (X i , Y i − 1, Z i ) µ2 X i ≥ 0, Y i ≥ 2, Z i = 0, or X i = 0, Y i = 1, Z i = 0,

5. (c), (p) (X i , Y i , Z i ) → (X i − 1, Y i − 1 + j , Z i + 1) µ2pj X i ≥ 1, Y i = 1, Z i = 0, j = 0, 1, . . .m,

6. (c), (p) (X i , Y i , Z i ) → (X i − 1, Y i + j , Z i ) µ1pj X i ≥ 1, Y i = 0, Z i = 1, j = 0, 1, . . .m,
7. (c) (X i , Y i , Z i ) → (X i , Y i + 1, Z i ) λc (r ) X i = 0, Y i = 0, Z i = 0,

8. (c) (X i , Y i , Z i ) → (X i , Y i − 1, Z i ) rq X (c ) ≥ 0, Y i ≥ 2, Z i = 0, or X i ≥ 0, Y i ≥ 1, Z i = 1.

9. (p) (X i , Y i , Z i ) → (X i , Y i + j , Z i + 1) λp (r )pj X i = 0, Y i = 0, Z i = 0, j = 0, 1, . . .m,

10. (p) (X i , Y i , Z i ) → (X i − 1, Y i , Z i ) rq X (c ) ≥ 1

Using the identity that µ1

∑s
k=0

dk = 1 −

(
rq

rq+µ1

)s+1

, we find that (−S (c)
11
(r ))−1e = e/µ1 and

(−S (c)
11
(r ))−1S10(−S

(c)
00
(r ))−1e =



0

1

µ2

(
1 −

rq
rq+µ1

)
1

µ2

(
1 −

(
rq

rq+µ1

)
2

)
+ 1

µ2+rq

(
1 −

rq
rq+µ1

)
1

µ2

(
1 −

(
rq

rq+µ1

)
3

)
+ 1

µ2+rq
∑

2

j=1

(
1 −

(
rq

rq+µ1

) j )
...

1

µ2

(
1 −

(
rq

rq+µ1

)m )
+ 1

µ2+rq
∑m−1

j=1

(
1 −

(
rq

rq+µ1

) j )



.

As 1/(rq + µ2) =
1

µ2

(
1 −

rq
rq+µ2

)
, the (n + 1)-st entry of the vector (−S (c)

11
(r ))−1S10(−S

(c)
00
(r ))−1e can

be written as

1

µ2

(
n −

(
rq

rq + µ1

)n
− (n − 1)

rq

µ2 + rq
−

(
1 −

rq

µ2 + rq

) n−1∑
j=1

(
rq

rq + µ1

) j )
=

1

µ2

(
n −

n∑
j=1

(
rq

rq + µ1

) j
−

rq

µ2 + rq

n−1∑
j=1

(
1 −

(
rq

rq + µ1

) j ))
.

We may therefore conclude that the mean α(−S (c)(r ))−1e equals

1

µ1

+
1

µ2

m∑
n=1

npn −
1

µ2

m∑
n=1

pn

n∑
j=1

(
rq

rq + µ1

) j
−

1

µ2

rq

µ2 + rq

m∑
n=2

pn

n∑
j=2

(
1 −

(
rq

rq + µ1

) j−1

)
,

from which we obtain the result in (12). □

Note that the mean of the phase-type distribution (α, S (c)(r )) is upper bounded by ρ/λ (and only

equal for r = 0). This implies that the load of the queue (when ignoring the additional arrivals

when the server is idle) is upper bounded by ρ. As such it is clear that this queueing system is

stable for all r ≥ 0 if ρ < 1. For completeness we provide a formal proof in Proposition 5.2.

The possible transitions for this QBD for i = (c) are listed in Table 1: 1. a parent job arriving at an

idle queue and proceeding directly into service, where any child jobs generated join the queue, 2. a

parent arriving to a non-idle queue, 3. completion of a parent in service, not succeeded by another

parent job, 4. child service completion, succeeded by either another child job or no job, 5. child

service completion, succeeded by a parent job that enters service and any child jobs generated join

, Vol. 1, No. 1, Article . Publication date: June 2020.



Work stealing in large scale multithreaded computing 9

the queue, 6. parent service completion, succeeded by a parent job that enters service and any child

jobs generated join the queue, 7. arrival of a child job due to work stealing and 8. negative arrivals

due to work stealing elsewhere.

The generator of the QBD Markov chain has the following form:

Q (c)(r ) =


−λ(c)

0
(r ) λc (r )e1 + λα

µ A(c)
0
(r ) A1

A(c)
−1

A(c)
0
(r ) A1

. . .
. . .


, (17)

with λ(c)
0
(r ) = λc (r ) + λ. The size 2m + 1 matrix A(c)

0
(r ) contains the transitions between states

belonging to the same level and is given by

A(c)
0
(r ) = S (c)(r ) − λI , (18)

The matrices A(c)
−1
(r ) and A1 record the transitions for which the level is decreased and increased by

one, respectively. We have

A(c)
−1
= µα, (19)

and

A1 = λI . (20)

Denote by A(c)(r ) = A(c)
−1
+A(c)

0
(r ) +A1, the generator of the phase process, then

A(c)(r ) = S (c)(r ) + µα . (21)

The phase captures the mixture of the number of child jobs present in the queue and the type of

job in service, thus the physical interpretation of this generator describes the changes due to the

completion of the current job in service or when a child job is stolen which can only occur when

j + k > 1.

Due to the QBD structure [18], we have

π (c)
0
(r ) = π (c)

∗ (r )R(c)
0
(r ) (22)

and for ℓ ≥ 1,

π (c)
ℓ
(r ) = π (c)

0
(r )R(c)(r )ℓ, (23)

where R(c)(r ) is a (2m + 1) × (2m + 1)matrix and by [14, Proposition 6.4.2] the smallest nonnegative

solution to

A1 + R
(c)(r )A(c)

0
(r ) + R(c)(r )2A(c)

−1
= 0. (24)

Also,

λc (r )e1 + λα + R
(c)
0
(r )A(c)

0
(r ) + R(c)

0
(r )R(c)(r )A(c)

−1
= 0 (25)

and

A1G
(c)(r ) = R(c)(r )A(c)

−1
, (26)

where G(c)(r ) is the smallest nonnegative solution to

A(c)
−1
+A(c)

0
(r )G(c)(r ) +A1G

(c)(r )2 = 0. (27)
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Then

R(c)
0
(r ) = − (λc (r )e1 + λα)

(
A(c)

0
(r ) + λG(c)(r )

)−1

, (28)

where

(
A0(r ) + λG

(c)(r )
)
is a subgenerator

1
matrix and is therefore invertible. We note that R(c)(r )

and G(c)(r ) are independent of λc (r ).
The physical interpretation of matrix G(c)(r ) is that the (i, j)th entry of the matrix G(c)(r ) is the

probability that the QBD will first enter level ℓ − 1 in phase j , given that it starts in phase i of level
ℓ. Due to this interpretation we have

G(c)(r ) = G(c) = eα . (29)

This result also follows from the structure of A−1(r ) [14, Theorem 8.5.1] and yields an explicit

formula for π (c)
0
(r ).

To fully characterize the QBD in terms of λ, µ1, µ2 and the probabilities pi , we still need to specify
λc (r ). The steal rate λc (r ) is defined as

λc (r ) =
λ

q

[
m∑
j=1

p̃j

(
rq

rq + µ1

) j
+

rq

rq + µ2

m∑
j=2

p̃j

(
1 −

(
rq

rq + µ1

) j−1

)]
, (30)

where p̃j =
∑

i≥j pi is the probability that there are j jobs to be stolen. Note that the expression

between brackets is identical to the expression appearing in (12). Using probabilistic arguments

one finds that the first sum in this expression corresponds to the mean number of child jobs stolen

during the service of a parent job, while the second term is the mean number of child jobs that

is stolen while a child is in service. The second expression relies on the fact that the number of

child jobs stolen after the parent finishes its service has a binomial distribution with parameters

(k − 1, rq/(rq + µ2)) if there were k child jobs left when the service of the parent ended.

Proposition 5.2. The QBD process {X (c)
t (r ),Y (c)

t (r ),Z (c)
t (r ) : t ≥ 0} has a unique stationary

distribution for any r ≥ 0 if ρ < 1.

Proof. If suffices to check the drift condition for QBD processes [18], which states that the

process is positive recurrent if θ (r )A(c)
−1
(r )e > θ (r )A1e , where θ

(r )
is the such that θ (r )A(c)(r ) = 0,

where A(c)(r ) is defined in (21). Denote

θ (r ) = (θ (r )
(0,1)
, . . . , θ (r )

(0,m)
, θ (r )

(1,0)
, θ (r )

(1,1)
, . . . , θ (r )

(1,m)
), (31)

then

θ (r )
(0,1)
=

1

µ2

m∑
j=1

pj

(
1 −

(
rq

rq + µ1

) j )
, (32)

θ (r )
(0,i) =

1

rq + µ2

m∑
j=i

pj

(
1 −

(
rq

rq + µ1

) j−i+1

)
, (33)

for i = 2, . . . ,m and

θ (r )
(1,0)
=

1

µ1

m∑
j=0

pj

(
rq

rq + µ1

) j
, (34)

1
A matrix is a subgenerator if its diagonal entries are negative, its off-diagonal entries are non-negative and its row sums

are negative.
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θ (r )
(1,i′) =

1

rq + µ1

m∑
j=i′

pj

(
rq

rq + µ1

) j−i′
, (35)

for i ′ = 1, . . . ,m. It can be readily verified that θ (r )A(c)(r ) = 0. Using these expressions one finds

that

θ (r )A(c)
−1
e = θ (r )µ = 1.

By (34) and (35) we find

∑m
i=0

θ (r )
(1,i) =

1

µ1

, while combining (32) and (33) yields

m∑
i=1

θ (r )
(0,i) =

1

rq + µ2

m∑
j=2

jpj +
1

µ2

p1

(
1 −

rq

rq + µ1

)
−

1

µ1

(
rq + µ1

rq + µ2

−
µ1

µ2

)
︸             ︷︷             ︸

≥0

m∑
j=2

pj

(
1 −

(
rq

rq + µ1

) j )

≤
1

µ2

(
m∑
j=2

jpj

)
+

1

µ2

p1.

As A1 = λI , this shows that the upward drift θ (r )A1e is at most ρ. □

Proposition 5.3. We have π (c)
∗ (r ) = q.

Proof. Due to (22) and (23) we have

π (c)
∗ (r ) =

1

1 +
∑

ℓ≥0
R(c)

0
(r )(R(c)(r ))ℓe

. (36)

By Proposition 5.2 and [14, Proposition 6.4.2], we have the spectral radius of R(c)(r ) less than one

and R(c)(r ) = A1(−U (r ))−1
withU (r ) = A(c)

0
(r ) +A1G

(c)
. Therefore∑

ℓ≥0

R(c)
0
(r )(R(c)(r ))ℓ = (λc (r )e1 + λα)(−U (r ))−1

∑
ℓ≥0

λℓ(−U (r ))−ℓ,

=
λc (r )e1 + λα

λ

∑
ℓ≥0

λℓ(−U (r ))−ℓ −
λc (r )e1 + λα

λ
,

=
λc (r )e1 + λα

λ
(I + λU (r )−1)−1 −

λc (r )e1 + λα

λ
, (37)

whereU (r ) = A(c)
0
(r ) + λeα . Using the Woodbury matrix identity [10] we get:

(I + λU (r )−1)−1 = I − λ(U (r ) + λI )−1, (38)

and thus: ∑
ℓ≥0

R(c)
0
(r )(R(c)(r ))ℓ = −(λc (r )e1 + λα)(U (r ) + λI )−1. (39)

Employing the Sherman–Woodbury formula [10] and the fact that U (r ) + λI = S (c)(r ) + λeα , we
further have

−(U (r )+λI )−1 = (−S (c)(r ))−1 +
λ(−S (c)(r ))−1eα(−S (c)(r ))−1

1 − λα(−S (c)(r ))−1e
.

LettingmPH = α(S (c)(r ))−1e , this implies

−α(U (r )+λI )−1e =mPH +
λm2

PH

1 − λmPH
=

mPH

1 − λmPH
, (40)
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−e1(U (r )+λI )−1e =
1

µ2

+
1

µ2

λmPH

1 − λmPH
, (41)

as e1(−S
(c)(r ))−1e = 1/µ2. Combining (39), (40) and (41) yields∑

ℓ≥0

R(c)
0
(r )(R(c)(r ))ℓe =

λc (r )

µ2

(
1 +

λmPH

1 − λmPH

)
+

λmPH

1 − λmPH
,

=
λ

q

( ρ
λ
−mPH

) (
1 +

λmPH

1 − λmPH

)
+

λmPH

1 − λmPH
,

=
1 − q

q
,

where the second equality follows from (30) and (12). The result now follows from (36). □

5.2 Parent job stealing
The QBD process for the system with parent job stealing is a special case of the one used in [25].

Compared to the QBD for the system with child job stealing, this queue is not similar to an M/PH/1

queue. Instead it corresponds to an M/PH/1 queue subject to negative arrivals (when the queue has

pending jobs) and these correspond to parent jobs that are stolen. The possible transitions for this

QBD for i = (p) are listed in Table 1.

The generator of the process {X
(p)
t (r ),Y

(p)
t (r ),Z

(p)
t (r )} is

Q (p)(r ) =


−λ

(p)
0
(r ) (λ + λp (r ))α

µ B
(p)
0

A1

A
(p)
−1
(r ) A

(p)
0
(r ) A1

. . .
. . .


, (42)

with λ
(p)
0
(r ) = λ + λp (r ),

A
(p)
−1
(r ) = A(c)

−1
+ rqI , (43)

where A(c)
−1

is given in Equation (19) and

A
(p)
0
(r ) = S (p) − λI − rqI , (44)

where S (p) is given by (7) and

B
(p)
0
= S (p) − λI . (45)

We have

π
(p)
0

(r ) = π
(p)
∗ (r )R

(p)
0
(r ), (46)

and for ℓ ≥ 1,

π
(p)
ℓ

(r ) = π
(p)
0

(r )R(p)(r )ℓ, (47)

where

R
(p)
0
(r ) = −(λ + λp (r ))α

(
B
(p)
0
+A1G

(p)(r )
)−1

, (48)

and R(p)(r ) is the smallest nonnegative solution to

A1 + R
(p)(r )A

(p)
0
(r ) + R(p)(r )2A

(p)
−1
= 0. (49)
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The value of λp (r ) is determined by demanding that π
(p)
∗ (r ) = q = 1− ρ. This is in contrast to the

child stealing scenario in which we gave an explicit expression for λc and showed in Proposition

5.3 that π (c)
∗ (r ) = q. As indicated in [25], this yields

λ
(p)
0
(r ) =

ρ

qα(λ(I −G(p)(r )) − S (p))−1(I − R(p)(r ))−1e
− λ, (50)

while the steady state probabilities of this system are given by

π
(p)
∗ (r ) = q, (51)

π
(p)
ℓ

(r ) = ρ
α(λ(I −G(p)(r )) − S (p))−1R(p)(r )ℓ

α(λ(I −G(p)(r )) − S (p))−1(I − R(p)(r ))−1e
, (52)

for ℓ ≥ 0. Contrary to the case with child job stealing, the matrices R(p)(r ) and G(p)(r ) must be

determined numerically by solving a non-linear matrix equation, which can be computed using the

cyclic or logarithmic reduction algorithms with quadratic convergence [1].

6 RESPONSE TIME DISTRIBUTION OF THE QBD
DefineT i (r ) as the response time for a jobwith probe rate r , in a systemwhere only type i ∈ {(p), (c)}
jobs can be transferred. The response time is the interval of time between the arrival epoch of a

parent job and the instant at which the parent and all of its child jobs have completed service. This

can be expressed as

T i (r ) =W i (r ) + J i (r ), (53)

whereW i (r ) is waiting time defined as the interval between the arrival epoch of a parent job and

instant at which it moves into service. In the case that parent jobs are stolen, we assume that the

oldest waiting parent job is stolen (as this should be best to reduce the variability of the waiting

time). The service time J i (r ) is defined as the time between the start of service of the parent job

and the first point in time in which both the parent and all of its child jobs have completed service.

ClearlyW i (r ) and J i (r ) are independent. Note thatW i (r ) is harder to compute in case parent jobs

are stolen, while J i (r ) is more demanding when child jobs can be transferred.

6.1 Waiting time distribution
We present a unified analysis for both models. Due to the PASTA property we have P[W i (r ) =
0] = q. To compute P[W i (r ) > t] we employ the approach taken in Ozawa [19] and Horvath et
al. [12]. Ozawa [19] studied FIFO queues defined by a QBD Markov chain where transitions that

increase/decrease the level are regarded as arrivals/departures. Ozawa showed that the sojourn

time distribution (the time between an arrival and its departure) of a queue defined by a QBD has a

matrix exponential form (of order n2
if we have n phases per level). A similar result is presented

below for the waiting timeW i (r ).

Theorem 6.1. For i ∈ {(p), (c)}, the distribution of the waiting time is given by

P[W i (r ) > t] = (e ′ ⊗ π i
0
(I − Ri (r ))−1)eW

i tvec ⟨I ⟩, (54)

withWi = ((Ai
0
(r )+A1)

′ ⊗ I )+ ((Ai
−1
(r ))′ ⊗ Ri (r )), where ⊗ denotes the Kronecker product and where

vec ⟨·⟩ is the column stacking operator, i.e., vec ⟨I ⟩ is the vector obtained by stacking the columns of I .
The mean waiting time is

E
[
W i (r )

]
=

∫ ∞

0

P
[
W i (r ) > t

]
dt = (e ′ ⊗ π i

0
(I − Ri (r ))−1)(−Wi )−1vec ⟨I ⟩. (55)
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Table 2. Non-zero entries of the rate matrix S̃(c)(r )

From Rate For

1. (Y (c),Z (c), Ỹ (c)) → (Y (c) − 1,Z (c), Ỹ (c)) µ2 Y (c) ≥ 1,Z (c) = 0

2. (Y (c),Z (c), Ỹ (c)) → (Y (c),Z (c) − 1, Ỹ (c)) µ1 Z (c) = 1

3. (Y (c),Z (c), Ỹ (c)) → (Y (c),Z (c), Ỹ (c) − 1) µ2Ỹ
(c) Ỹ (c) ≥ 1

4. (Y (c),Z (c), Ỹ (c)) → (Y (c) − 1,Z (c), Ỹ (c) + 1) rq(c) Y (c) + Z (c) ≥ 2

Proof. Let (N i (k, t))j , j′ be the probability that we have exactly k transitions that decrease the

level by one in (0, t) and the phase at time t equals j ′ for the QBD Q i
given that the level never

decreased below 1 and the phase was j at time 0. Due to the PASTA property we have

P[W i (r ) > t] =
∞∑
n=1

π i
n−1

n−1∑
k=0

N i (k, t)e,

as (π i
n−1

)j is the probability that a tagged parent job is the nth parent job waiting in the queue

immediately after it arrived and the service phase equals j. In such case there can be at most n − 1

events that decrease the level otherwiseW i (r ) < t . Thus,

P[W i (r ) > t] =
∞∑
k=0

π i
0

∞∑
n=k+1

(Ri (r ))n−1N i (k, t)e = π i
0
(I − Ri (r ))−1

∞∑
k=0

(Ri (r ))kN i (k, t)e .

Using the same arguments as in [19] or [12] one finds that

vec

〈
∞∑
k=0

(Ri (r ))kN i (k, t)

〉
= eW

i tvec ⟨I ⟩ .

The proof is completed by noting that vec ⟨ABC⟩ = (C ′ ⊗ A)vec ⟨B⟩.
□

6.2 Service distribution
When parent jobs are stolen, a parent job and all its child jobs are executed on the same server.

Hence, the service time J (p) has a phase type distribution with parameters (α, S (p)):

P[J (p) < t] = 1 − αe−S
(p)te, (56)

and E[J (p)] = α
(
−S (p)

)−1

e . We have from (54) that the waiting time distributionW i (r ) follows a
matrix exponential distribution with parameters (e ′ ⊗ π i

0
(I − Ri (r ))−1,Wi , (−Wi )vec ⟨I ⟩). Therefore

due to [2, Theorem 4.4.2] the convolution of the waiting time and service time can be expressed as

P[T (p)(r ) > t] = [(e ′ ⊗ π
(p)
0

(I − R(p)(r ))−1) qα]eT
p t (−Tp )−1

(
02m+1

µ

)
, (57)

where

Tc =

[
Wc (−Wc )vec ⟨I ⟩α̃

0 S̃ (c)

]
,

and

E[T (p)(r ) > t] = [(e ′ ⊗ π
(p)
0

(I − R(p)(r ))−1)](Tp )−2

(
02m+1

µ

)
. (58)

, Vol. 1, No. 1, Article . Publication date: June 2020.



Work stealing in large scale multithreaded computing 15

When child jobs are stolen, we need to keep track of the number of transferred child jobs as

such a child job may be the last to complete service. To this end, we define the phase process

{Y (c)
t (r ),Z (c)

t (r ), Ỹ (c)
t (r )}t ≥0 where Y

(c)
t (r ),Z (c)

t (r ) are defined as before and Ỹ (c)
t ∈ {0, 1, . . . ,m} is

the number of transferred child jobs still in service.

The service time J (c)(r ) of a parent job with n child jobs therefore equals the time needed for the

phase process to go from phase (n, 1, 0) to (0, 0, 0). In other words J (c)(r ) can be represented as a

phase-type distribution with parameters (α̃ (c), S̃ (c)(r )). As Z (c)
t (r ) ∈ {0, 1}, 0 ≤ Ỹ (c)

t (r )+Y (c)
t (r ) ≤ m

and (0, 0, 0) is the absorbing state S̃ (c)(r ) is a size d = 2

∑m+1

k=1
k − 1 = m2 + 3m + 1 matrix. Its

non-zero entries are listed in Table 2. The vector α̃ (c)
equals pn in the position corresponding to

phase (n, 1, 0) and equals zero for any other phase. Then

P[J (c)(r ) < t] = 1 − α̃ (c)e−S̃
(c )(r )te, (59)

and E[J (c)(r )] = α̃ (c)(−S̃ (c)(r ))−1e . The convolution ofW c (r ) and J c (r ) can be computed in a similar

manner as in the parent job stealing case.

7 STATIONARY BEHAVIOUR
In this section we show that the stationary distribution of the child stealing QBD in Section 5

corresponds to the unique fixed point ζ i of the set of ODEs. For the case of parent job stealing, we
illustrate how the results by [25] can be modified to obtain the desired result. Define for i ∈ {(c), (p)},
ζ i = (ζ i∗ , ζ

i
0
, ζ i

1
, . . . ) with ζ i∗ +

∑
ℓ≥0

ζ i
ℓ
e = 1.

7.1 Child job stealing

Lemma 7.1. For any fixed point ζ (c) = (ζ (c)∗ , ζ
(c)
0
, ζ (c)

1
, . . . ) with ζ (c)∗ +

∑
ℓ≥0

ζ (c)
ℓ
e = 1 of the set of

ODEs in Equations (2)-(3) we have

λ = λζ (c)∗ +
∑
ℓ≥1

ζ (c)
ℓ

µ . (60)

Proof. As
d
dt f

(c)
ℓ

(t) = 0 in a fixed point we can show that∑
ℓ≥0

ζ (c)
ℓ

©­«
0m
µ1

0m

ª®¬ +
∑
ℓ≥0

ζ (c)
ℓ

©­«
µ2

0m
0m

ª®¬ = λ + rζ (c)∗

∑
ℓ≥0

ζ (c)
ℓ

(e −v0), (61)

by using the equality

∑
ℓ≥0

(ℓ + 1) ddt f
(c)
ℓ

(t)e = 0. (60) now follows by combining this equality with

d
dt f

(c)
∗ (t) = 0. □

Lemma 7.2. For any fixed point ζ (c) = (ζ (c)∗ , ζ
(c)
0
, ζ (c)

1
, . . . ) with ζ (c)∗ +

∑
ℓ≥0

ζ (c)
ℓ
e = 1 of the set of

ODEs in Equations (2)-(3) we have for 1 ≤ k ≤ m

rζ (c)∗

∑
ℓ≥0

ζ (c)
ℓ

(
0m+k

1m−k+1

)
= λ

m∑
j=k

p̃j

(
rζ (c)∗

rζ (c)∗ + µ1

) j−k+1

, (62)

where 1i denotes a column vector of i ones.

Proof. We use backward induction on k to prove this result. By demanding that∑
ℓ≥0

d

dt
f (c)
ℓ

(t)[0′m+k 1
′
m−k+1

]′ = 0,
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for any k ∈ {1, . . . ,m}, we find due to Lemma 7.1 that

λp̃k = rζ
(c)
∗

∑
ℓ≥0

ζ (c)
ℓ

©­«
0m+k

1

0m−k

ª®¬ + µ1

∑
ℓ≥0

ζ (c)
ℓ

(
0m+k

1m−k+1

)
, (63)

which is equivalent to (62) when k =m. For k < m we can rewrite the above as

λp̃k = (rζ (c)∗ + µ1)
∑
ℓ≥0

ζ (c)
ℓ

(
0m+k

1m−k+1

)
− rζ (c)∗

∑
ℓ≥0

ζ (c)
ℓ

(
0m+k+1

1m−k

)
, (64)

and use induction on the second term. This yields

λp̃k = (rζ (c)∗ + µ1)
∑
ℓ≥0

ζ (c)
ℓ

(
0m+k

1m−k+1

)
− λ

m∑
j=k+1

p̃j

(
rζ (c)∗

rζ (c)∗ + µ1

) j−k
, (65)

from which we obtain the result in (62). □

Proposition 7.3. For any fixed point ζ (c) = (ζ (c)∗ , ζ
(c)
0
, ζ (c)

1
, . . . ) with ζ (c)∗ +

∑
ℓ≥0

ζ (c)
ℓ
e = 1 of the

set of ODEs in Equations (2)-(3) we have

ζ (c)∗ = q, (66)

rζ (c)∗

∑
ℓ≥0

ζ (c)
ℓ

(e −v0) = ζ (c)∗ λc (r ), (67)

where λc (r ) was defined in (30).

Proof. We denote 1:i for the column vector of length i with the jth entry equal to j , with 1 ≤ j ≤ i .

To establish that ζ (c)∗ = q it suffices to establish the following two identities:∑
ℓ≥0

ζ (c)
ℓ

(
0m

1m+1

)
=

λ

µ1

, (68)

∑
ℓ≥0

ζ (c)
ℓ

(
1m

0m+1

)
=

λ

µ2

(
m∑
i=1

ipi

)
. (69)

As

∑
ℓ≥0

d
dt f

(c)
ℓ

(t)

(
1m

0m+1

)
= 0, we find

∑
ℓ≥0

ζ (c)
ℓ

©­«
µ2

0m
0m

ª®¬ = rζ (c)∗

∑
ℓ≥0

ζ (c)
ℓ

(e −v0) +
∑
ℓ≥0

ζ (c)
ℓ

(
0m+1

µ11m

)
. (70)

Combining (61) and (70) yields (68). From

∑
ℓ≥0

d
dt f

(c)
ℓ

(t)[(1:m)′ 0 (1:m)′]′ = 0 and Lemma 7.1, one

can show that ∑
ℓ≥0

ζ (c)
ℓ

(
µ21m
0m+1

)
= λ

(
m∑
i=1

ipi

)
, (71)

which is equivalent to (69).

Proving (67) requires more work. We prove the following two equalities that together provide us

with the required result:

rζ (c)∗

∑
ℓ≥0

ζ (c)
ℓ

(
0m+1

1m

)
= λ

m∑
j=1

p̃j

(
rζ (c)∗

rζ (c)∗ + µ1

) j
, (72)
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(rζ (c)∗ + µ2)
∑
ℓ≥0

ζ (c)
ℓ

©­«
0

1m−1

0m+1

ª®¬ = λ
m∑
j=2

p̃j
©­«1 −

(
rζ (c)∗

rζ (c)∗ + µ1

) j−1ª®¬ . (73)

The first is immediate from Lemma 7.2 if we set k = 1. To establish the second equality, we first

note that

∑
ℓ≥0

d
dt f

(c)
ℓ

(t)[0 (1:(m − 1))′ 0
′
m+1

]′ = 0 allows us to show that

(rζ (c)∗ + µ2)
∑
ℓ≥0

ζ (c)
ℓ

©­«
0

1m−1

0m+1

ª®¬ = µ1

∑
ℓ≥0

ζ (c)
ℓ

(
0m+2

1:(m − 1)

)
. (74)

We have (
0m+2

1:(m − 1)

)
=

m∑
k=2

(
0m+k

1m−k+1

)
,

and combining this with (74) and Lemma 7.2 for k = 2 tom we find

(rζ (c)∗ + µ2)
∑
ℓ≥0

ζ (c)
ℓ

©­«
0

1m−1

0m+1

ª®¬ = λµ1

rζ (c)∗

m∑
k=2

m∑
j=k

p̃j

(
rζ (c)∗

rζ (c)∗ + µ1

) j−k+1

,

=
λµ1

rζ (c)∗

m∑
j=2

p̃j

j−1∑
s=1

(
rζ (c)∗

rζ (c)∗ + µ1

)s
,

=
λµ1

rζ (c)∗ + µ1

m∑
j=2

p̃j

1 −

(
r ζ (c )

∗

r ζ (c )
∗ +µ1

) j−1

1 −

(
r ζ (c )

∗

r ζ (c )
∗ +µ1

) ,
= λ

m∑
j=2

p̃j
©­«1 −

(
rζ (c)∗

rζ (c)∗ + µ1

) j−1ª®¬ ,
which proves (73). □

Theorem 7.4. The stationary distribution π (c)(r ) of the QBD Markov chain characterized byQ (c)(r )
is the unique fixed point ζ (c) of the set of ODEs in Equations (2)-(3).

Proof. Using Proposition 7.3 we show that the fixed point equations
d
dt f

(c)
ℓ

(t) = 0 are equivalent

to the balance equations of the QBD Markov chain characterized by Q (c)(r ). The uniqueness of the
fixed point the follows from the uniqueness of the stationary distribution of the Markov chain.

For ℓ ≥ 1,
d
dt f

(c)
ℓ

(t) = 0 can be written as

0 = ζ (c)
ℓ−1

(λI ) + ζ (c)
ℓ

(
S (c)(r , t) − λI

)
+ ζ (c)

ℓ+1
µα,

which is exactly the balance equations of Q (c)(r ) for ℓ ≥ 1 as ζ (c)∗ = q due to Proposition 7.3. This

implies that ζ (c)
ℓ
= ζ (c)

0
R(r )ℓ , for all ℓ ≥ 1 for any fixed point.

For ℓ = 0,
d
dt f

(c)
ℓ

(t) = 0 implies

0 = ζ (c)
0

(S(t) − λI ) + ζ1µα + λζ
(c)
∗ α + rζ (c)∗

∑
ℓ′≥0

ζ (c)
ℓ′

(e −v0)e1.

Due to Proposition 7.3 we can rewrite this as

0 = ζ (c)
0
A0(r ) + ζ

(c)
1
A−1 + q (λc (r )e1 + λα) .
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This indicates that
d
dt f

(c)
ℓ

(t) = 0 corresponds to the balance equation for ℓ = 0. Finally one readily

checks that
d
dt f

(c)
∗ (t) = 0 is equivalent to the first balance equation due to (67). □

7.2 Parent job stealing
Theorem 7.5. The stationary distribution π (p)(r ) of the QBDMarkov chain characterized byQ (p)(r )

is the unique fixed point ζ (p) of the set of ODEs in Equations (5)-(6).

Proof. Define θ (p) = (θ
(p)
1
, . . . , θ

(p)
2m+1

) with θ
(p)
j =

1

µ2

p̃j for j = 1, . . . ,m and θ
(p)
j =

1

µ1

pj−m−1 for

j =m + 1, . . . , 2m + 1. We then have θ (p)(S (p) + µα) = 0. Therefore

β (p) =
1∑

2m+1

j=1
θ
(p)
j

θ (p) =

(
1

µ1

+
1

µ2

m∑
j=1

jpj

)−1

θ (p) (75)

is the stationary distribution of the service phase given the server is busy. We also have

β (p)µ =

(
1

µ1

+
1

µ2

m∑
j=1

jpj

)−1

. (76)

One can now make the same calculations as in [25, Proposition 1] to conclude that∑
ℓ≥0

ζ
(p)
ℓ
= λ

(
1

µ1

+
1

µ2

m∑
j=1

jpj

)
β (p) = ρβ (p). (77)

As β (p) is a stochastic vector, we get

ζ
(p)
∗ = 1 − ρβ (p)e = q. (78)

The rest of the proof is identical to the one of [25, Theorem 1], except with q instead of 1 − λ. □

8 PROBE RATE r → ∞

In this section we present some explicit results for the case where the probe rate r tends to infinity.

Child job stealing. Taking r → ∞, we define λc = limr→∞ λc (r ), then by Equation (30),

λc =
λ

q

m∑
j=1

jpj . (79)

The resulting process is given by the QBD {X (c),Z (c)} as defined in Section 5, with X ≥ 0 and

Z ∈ {0, 1}, noting the empty boundary state is distinct from the state (X (c),Z (c)) = (0, 0), in which

a child job is in service. The rate matrix is

Q (c)
∞ =


−λ − λc λce1 + λe2

µ∞ A∞
0

A∞
1

A∞
−1

A∞
0

A∞
1

. . .
. . .


, (80)

where µ∞ = [µ2, µ1]
′
,A∞

−1
= [02, µ∞],A

∞
0
= −diag([µ2+λ, µ1+λ]) andA

∞
1
= λI . Proceeding similarly

to Section 5.1, we find

G(c)
∞ =

[
02 12

]
, (81)

R(c)
0,∞ =

[
λc
µ2+λ

λ
µ1

(
1 +

λc
µ2+λ

)]
. (82)
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Using [14, Proposition 6.4.2], we get

R(c)
∞ = λ

[
1

µ2+λ
λ

µ1(µ2+λ)
0

1

µ1

]
. (83)

Note that (I − R(c)
∞ ) is invertible as λ < µ1 (it can be shown algebraically that (I − R(c)

∞ ) is singular

only when λ = µ1). From (83), we get for k ≥ 1

πk ,0 = π0,0

(
λ

µ2 + λ

)k
. (84)

According to the PASTA property,

E[W (c)] =
1

µ2

∞∑
k=0

πk ,0 +
1

µ1

∞∑
k=0

πk ,1 +
1

µ1

∞∑
k=1

k(πk ,0 + πk ,1),

=

(
1

µ2

−
1

µ1

)
π0,0

∞∑
k=0

(
λ

µ2 + λ

)k
+

1

µ1

∞∑
k=0

(k + 1)[πk ,0 πk ,1]e,

=

(
1

µ2

−
1

µ1

)
π0,0

µ2 + λ

µ2

+
1

µ1

[π0,0 π0,1]

∞∑
k=0

(k + 1)

(
R(c)
∞

)k
e,

=

(
1

µ2

−
1

µ1

)
π0,0

µ2 + λ

µ2

+
1

µ1

[π0,0 π0,1]

(
I − R(c)

∞

)−2

e .

With π0 = π∗R
(c)
0,∞ = qR

(c)
0,∞,

E[W (c)] =

(
1

µ2

−
1

µ1

)
qλc
µ2

+
q

µ1

R(c)
0,∞

(
I − R(c)

∞

)−2

e, (85)

where

R(c)
0,∞

(
I − R(c)

∞

)−2

=
[
λc (µ2+λ)
(µ2)

2

λcλ2

(µ2)
2(µ1−λ)

+
λcλ2µ1+λµ2µ1(µ2+λ+λc )

µ2(µ1−λ)2(µ2+λ)

]
. (86)

By combining (85) and (86), we find

E[W (c)] =
q

µ2

2
(λ − µ1)

2

(λcµ
2

1
+ λλc (µ2 − µ1) + λµ

2

2
).

Using (79) with p̃ =
∑

j jpj and q = 1 − ρ, this yields that the limiting waiting time is given by

E[W (c)] =
λ

(
1

µ1

+ p̃
µ1

µ2

2

)
µ1 − λ

. (87)

It is worth noting that this limit depends only on the distribution (p1, . . . ,pm) of the number of

child jobs via its mean of p̌. In other words, as r becomes large the mean waiting time in the child

job stealing system becomes insensitive with respect to the distribution of the number of child jobs.

In addition, if µ1 = µ2 or µ2 tends to infinity, we obtain for the mean waiting time ρ/(µ1 − λ).
In the limit, the service time is the maximum of a set of exponentials and the expected service

time is

E[J (c)] =
m∑
k=0

pk Jk , (88)
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where Jk , k = 0, . . . ,m, as the average time it takes for a parent job that will spawn k child jobs to be

processed, with J0 =
1

µ1

. For Jk , with k ≥ 1, let Jp ∼ exp(µ1), J
1, . . . , Jm ∼ exp(µ2) be independent

random variables. We will provide a recursive formula for Jk using the following facts:

E[min(Jp, J 1, . . . , Jk )] =
1

µ1 + kµ2

, (89)

P[Jp < min(J 1, . . . , Jk )] =
µ1

µ1 + kµ2

. (90)

We now define recursively, for k ≥ 1:

Jk =
1

µ1 + kµ2

+
µ1

µ1 + kµ2

E[max(J 1, . . . , Jk )] +
kµ2

µ1 + kµ2

E[max(Jp, J 1, . . . , Jk−1)],

=
1

µ1 + kµ2

+
µ1

µ1 + kµ2

1

µ2

k∑
j=1

1

j
+

kµ2

µ1 + kµ2

Jk−1. (91)

The limit of the mean response time is E[T (c)] = E[W (c)] + E[J (c)]. The mean E[J (c)] does depend
on the distribution (p1, . . . ,pm) and the next proposition shows that this mean is maximized by the

deterministic distribution. As E[W (c)] only depends on the mean p̃ of this distribution, this implies

that the mean response time is maximized by the deterministic distribution as r tends to infinity,

which is in strong contrast to the setting where r tends to zero (as the mean response time in an

M/G/1 queue increases as job sizes become more variable).

Proposition 8.1. If the mean number of child jobs equals d ∈ {1, 2 . . . }, the service time is
maximized by the deterministic distribution, that is,

Jd ≥

m∑
n=0

pn Jn, (92)

such that
∑m

n=1
npn = d .

Proof. It suffices to argue that

Jn − Jn−1 ≥ Jn+1 − Jn . (93)

Due to (91) with k = n + 1, we have that 2Jn ≥ Jn+1 + Jn−1 can be written as

(2µ1 + (n + 1)µ2)Jn ≥ 1 +
µ1

µ2

n+1∑
j=1

1

j
+ (µ1 + (n + 1)µ2)Jn−1. (94)

By (91) with k = n, we get that this is equivalent to

2µ1 + (n + 1)µ2

µ1 + nµ2

(
1 +

µ1

µ2

n∑
j=1

1

j
+ nµ2 Jn−1

)
≥ 1 +

µ1

µ2

n+1∑
j=1

1

j
+ (µ1 + (n + 1)µ2)Jn−1

that is,

µ1 + µ2

µ1 + nµ2

(
1 +

µ1

µ2

n∑
j=1

1

j
+ nµ2 Jn−1

)
≥

1

n + 1

µ1

µ2

+ (µ1 + µ2)Jn−1. (95)

By multiplying with
µ1+nµ2

µ1+µ2

, we get

1 +
µ1

µ2

n∑
j=1

1

j
+ nµ2 Jn−1 ≥

1

n + 1

µ1 + nµ2

µ1 + µ2

µ1

µ2

+ (µ1 + nµ2)Jn−1. (96)
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Which, after dividing by µ1, is equivalent to

1

µ1

+
1

µ2

(
n∑
j=1

1

j
−

1

n + 1

)
≥

n − 1

n + 1

1

µ1 + µ2

+ Jn−1. (97)

By using the definition of Jn−1 and multiplying by µ1 + (n − 1)µ2, we get

1 + (n − 1)
µ2

µ1

+ (n − 1)

(
n∑
j=1

1

j
−

1

n + 1

)
+
µ1

µ2

(
n∑
j=1

1

j
−

1

n + 1

)
≥

n − 1

n + 1

+
n − 1

n + 1

(n − 2)µ2

µ1 + µ2

+ 1 +
µ1

µ2

n−1∑
j=1

1

j
+ (n − 1)µ2 Jn−2, (98)

which after simplification and division by (n − 1)µ2 is equivalent to

1

µ1

+
1

µ2

(
n∑
j=1

1

j
−

2

n + 1

)
+

1

n − 1

µ1

µ2

2

(
1

n
−

1

n + 1

)
≥

n − 2

n + 1

1

µ1 + µ2

+ Jn−2. (99)

Which holds if

1

µ1

+
1

µ2

(
n∑
j=1

1

j
−

2

n + 1

)
≥

n − 2

n + 1

1

µ1 + µ2

+ Jn−2. (100)

Doing similar steps as between (97) and (99), we get that (100) is equivalent to

1

µ1

+
1

µ2

(
n∑
j=1

1

j
−

3

n + 1

)
+

1

n − 2

µ1

µ2

2

(
1

n − 1

+
1

n
−

2

n + 1

)
≥

n − 3

n + 1

1

µ1 + µ2

+ Jn−3, (101)

which is true if

1

µ1

+
1

µ2

(
n∑
j=1

1

j
−

3

n + 1

)
≥

n − 3

n + 1

1

µ1 + µ2

+ Jn−3, (102)

and so on. In the end we get that Jn − Jn+1 ≥ Jn−1 − Jn holds if

1

µ1

+
1

µ2

(
n∑
j=1

1

j
−

n

n + 1

)
≥ J0, (103)

which is true as J0 =
1

µ1

and
1

j ≥
1

n+1
. The result then follows immediately by concavity. □

Parent job stealing. Taking r → ∞, the effect on the mean response and waiting times in the

limit is shown in Figure 6. The expected waiting time E[W (p)] goes to zero and the mean response

time E[T (p)] goes to the mean service time, E[J (p)], that is,

lim

r→∞
E[T (p)(r )] = E[J (p)], (104)

defined by Equation (56).

, Vol. 1, No. 1, Article . Publication date: June 2020.



22 Sonenberg, Kielanski and Van Houdt

9 MODEL VALIDATION
Mean field models are intended to capture the system behaviour as the number of servers in the

systems tends to infinity. In this section we use simulation experiments to indicate that the system

performance for a large finite system is very close to the fixed point of the mean field models. To

prove that the sequence of the stationary measures of the finite systems weakly converge towards

to the Dirac measure of the fixed point, one could leverage the methodology in [7]. In fact, if we

truncate the queues to some large finite size B, proving the convergence of the sample paths over

finite time scales towards the solution of the set of ODEs should be fairly straightforward using

Kurtz’s theorem [13], by defining a density dependent population process and showing that the

drift is Lipschitz continuous. To show that the convergence can be extended to the stationary

regime one also needs to establish global attraction of the fixed point. Global attraction is often

proven using monotonicity arguments [5, 21, 24], but our multithreading models are not monotone

(as the service time of a complete job does not necessarily have a decreasing hazard rate).

We consider different scenarios for varying probe rates and the two stealing strategies, for N =
500 with µ1 = 1, µ2 = 2 and child job distribution p̌ = [5, 4, 3, 2, 1]/15 ≈ [0.33, 0.27, 0.20, 0.13, 0.07].

Figure 1 shows the calculated waiting and response times for the fixed points of the mean field

model (solid lines) and the simulations (dotted lines) for two different probe rates, r = 1, 10. The

simulation started from an empty system and the system was simulated forT = 10
5
time units with

a warm-up period of 33%. The 95% confidence intervals were computed based on 5 runs.

5 10 15 20 25 30
10-5

10-4

10-3

10-2

10-1

100

t

P [T (c) > t]r=1

P [T (p) > t]r=1

P [W (c) > t]r=1

P [W (p) > t]r=1

P [T (c) > t]r=10

P [W (c) > t]r=10

P [W (p) > t]r=10 P [T (p) > t]r=10

Fig. 1. Waiting and response times from the fixed points of the ODEs and the simulations.

We see that there is an excellent agreement between the ODE fixed point and simulation times

for all settings, and that the ODE plots consistently lie close to the displayed confidence intervals.

As expected, the response times for r = 10 are less than for r = 1, for both strategies.

Table 3 shows the mean field value and the relative errors obtained when comparing the mean

response rate in a finite system with N ∈ {15, 30, 60, 125, 250, 500, 1000} servers, under both stealing

strategies with r ∈ {1, 10}, ρ ∈ {0.75, 0.85} based on 20 runs. Overall the relative error tends to

increase with ρ and r and decreases in N . In almost all of the scenarios considered, the mean field

model is accurate to within 2% for N ≥ 125. We see that for smaller values of N ≤ 30 the error can

be above 5%.
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Table 3. Relative error of simulation results for E[T i (r )] for i ∈ {(c), (p)}, based on 20 runs

ρ = 0.75 ρ = 0.85

N sim. ± conf. rel.err.% sim. ± conf. rel.err.%

r = 1

(c) 15 4.6527 ± 5.62e-03 1.1571 7.5769 ± 1.92e-02 2.8210

30 4.6512 ± 4.73e-03 1.1246 7.4344 ± 7.82e-03 0.8870

60 4.6201 ± 3.72e-03 0.4483 7.4245 ± 1.09e-02 0.7527

125 4.6033 ± 2.38e-03 0.0828 7.3902 ± 1.01e-02 0.2883

250 4.6043 ± 9.84e-04 0.1037 7.3917 ± 3.16e-03 0.3080

500 4.6035 ± 1.05e-03 0.0861 7.3659 ± 3.21e-03 0.0422

1000 4.6002 ± 6.93e-04 0.0139 7.3712 ± 2.79e-03 0.0301

∞ 4.5995 7.3690

(p) 15 3.4416 ± 3.22e-03 4.2954 4.9570 ± 1.04e-02 5.9664

30 3.3620 ± 1.82e-03 1.8849 4.8390 ± 6.50e-03 3.4428

60 3.3293 ± 1.63e-03 0.8935 4.7475 ± 3.38e-03 1.4865

125 3.3195 ± 1.30e-03 0.5952 4.7035 ± 2.89e-03 0.5461

250 3.3090 ± 8.72e-04 0.2765 4.6933 ± 1.97e-03 0.3291

500 3.3045 ± 4.93e-04 0.1423 4.6865 ± 1.21e-03 0.1843

1000 3.3027 ± 3.59e-04 0.0872 4.6830 ± 9.07e-04 0.1092

∞ 3.2998 4.6779

r = 10

(c) 15 2.9239 ± 1.90e-03 6.1114 4.1132 ± 7.19e-03 11.0528

30 2.8372 ± 2.11e-03 2.9651 3.9128 ± 5.01e-03 5.6413

60 2.7975 ± 1.35e-03 1.5253 3.8122 ± 2.49e-03 2.9265

125 2.7729 ± 9.30e-04 0.6312 3.7490 ± 1.96e-03 1.2205

250 2.7648 ± 6.89e-04 0.3400 3.7232 ± 1.29e-03 0.5225

500 2.7587 ± 4.42e-04 0.1185 3.7209 ± 1.10e-03 0.4624

1000 2.7573 ± 3.97e-04 0.0681 3.7085 ± 8.03e-04 0.1271

∞ 2.7555 3.7038

(p) 15 2.1018 ± 1.12e-03 8.0698 2.5452 ± 2.31e-03 16.6288

30 2.0165 ± 7.12e-04 3.6872 2.3586 ± 1.43e-03 8.0776

60 1.9799 ± 4.00e-04 1.8054 2.2682 ± 8.22e-04 3.9376

125 1.9601 ± 2.66e-04 0.7853 2.2223 ± 5.60e-04 1.8344

250 1.9523 ± 1.79e-04 0.3835 2.2047 ± 4.07e-04 1.0259

500 1.9493 ± 1.27e-04 0.2306 2.1931 ± 2.90e-04 0.4921

1000 1.9466 ± 1.09e-04 0.0907 2.1877 ± 1.46e-04 0.2471

∞ 1.9448 2.1823

10 NUMERICAL EXPERIMENTS
In this section we consider the performance, i.e., the mean response time of a job, for each stealing

strategy followed by a comparison of the two.
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10.1 Performance of child job stealing
Example A.1. For the mean waiting time with r → ∞, we consider the effect of three child

job distributions with mean 3, p̌1 ∼ D(3), p̌2 ∼ U (0, 6) and p̌3 defined by p(m = 1) = 5/7 and

p(m = 8) = 2/7, with variances 0, 4, and 16, respectively. With (µ1, µ2) = (1, 2), we illustrate the
mean waiting times in Figure 2 for ρ = 0.75, 0.85. For small probe rates, r < 10

1
, we observe the

increased variability of the child job distribution increases the waiting time, and in the limit see

the system become insensitive to this distribution, as per Equation (87) for ρ = 0.75, 0.85 we have

E[W (c)] = 0.75, 0.90, respectively.

E
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)
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)]

r
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ρ = 0.85
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p̌2

p̌3
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p̌3
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2

4
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8
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12

Fig. 2. Example A.1. E[W (c)(r )] with r → ∞
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Fig. 3. Example A.1. E[J (c)(r )] with r → ∞
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Fig. 4. Example A.1. E[T (c)(r )] with r → ∞
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Fig. 5. Example A.2. Service ratio h = µ1/µ2

In Figure 3 we present the mean service time with r → ∞. As expected for r close to zero the
mean service time is 2.5, then for small r < 10

1
, we observe insensitivity to p̌, whereas in the

limit, we have for p̌1 : E[J (c)] = 1.3742, p̌2 : E[J (c)] = 1.3360, p̌3 : E[J (c)] = 1.3076, as per Equation

(88). Thus in the limit, the child job distributions with positive variance p̌2 and p̌3 perform 2.78%

and 4.85% better, respectively, than the deterministic child job distribution p̌1, due to the result in

Equation (92)

Combining the results in Figures 2 and 3, we obtain the mean response times illustrated in Figure

4 (noting the change in scale), and see that setting a probe rate r ∼ 10
2
would provide performance
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of r = ∞. We also observe the effect of the variability of p̌ changes from reducing the performance

for small r , to improving to the performance for large r .
Example A.2. We consider the effect on performance of changing the parent to child job service

ratio h = µ1/µ2 under a fixed load ρ and arrival rate λ. Given h, we have µ2 =
λ
ρ (

1

h +
∑m

n=1
npn) and

µ1 =
λ
ρ (1 + h

∑m
n=1

npn). As h is increased, the mean job size remains constant, the mean parent

job size decreases and the mean child job size increases, and limh→∞ 1/µ1 = 0, limh→∞ 1/µ2 =

ρ(λ
∑m

n=1
npn)

−1
. Figure 5 illustrates the mean waiting and response times for (λ, ρ, r )= (0.4, 0.95, 10)

for p̌1 ∼ U (2, 4) and p̌2 ∼ U (4, 6). An improvement in performance, due to the reduction in waiting

time, can be seen for h increasing to 1. For h > 1, the mean child job size has approached its limit

and no further performance improvements are obtained. As expected, when the mean number

of child jobs is decreased, from p̌2 to p̌1, i.e., the mean size of a child job is decreased, we see the

performance improve. Not seen in the figure, the mean service times are equal for p̌1 and p̌2 and

constant across h except for a slight increase when h < 0.3.

10.2 Performance of parent job stealing
Example B.1. For the distributions p̌1, p̌2, p̌3 defined in Example A.1., with (µ1, µ2) = (1, 2) and
ρ = 0.85, in Figure 6 we observe that for r → ∞ the waiting time is tends to zero and the mean

response time approaches E[T (p)] = 2.5, as per Equation (104). The impact on the mean response

time reduces with an increased probe rate while as expected, the service time remains constant.

The largest impact of variability on the waiting time occurs when r < 1, the child job distributions

with positive variance p̌2 and p̌3 cause the mean waiting time to increase significantly compared to

the deterministic distribution p̌1. As r increases this effect is reduced, and no longer has an impact

for r > 10.
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p̌2

p̌3

p̌1

p̌2

p̌3

E[T (p)(r)]

E[W (p)(r)]

E[J (p)(r)]

r
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Fig. 6. Example B.1. Probe rate r → ∞

Example B.2. Under parent job stealing, changing the proportion of the workload between parent

and child jobs h = µ1/µ2 does not impact the performance of the system, as the job, the parent and

any child jobs, is stolen together following a successful probe.
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10.3 Child versus parent job stealing
Example C.1. We compare the two stealing strategies by illustrating the proportional difference in

the mean response times for child job stealing compared to parent job stealing in Figure 7 under

varying loads ρ and probe rates r for p̌ ∼ D(2),D(4),D(6),D(8) and (µ1, µ2) = (1, 2). Under high
loads with small probe rates, parent job stealing shows the largest benefit in performance (blue

region), due to the significant increase in mean waiting time under child job stealing. Increasing

the number of child jobs in the system increases the orange region in which child stealing performs

best and the white region shows where two strategies perform within ±6.7% of each other. When

p̌ ∼ D(8), we see that for ρ = 0.5 and r = 20, child job stealing performs approximately 50% better

than parent job stealing, whereas for ρ = 0.95 and r = 1 parent job stealing performs approximately

100% better than child job stealing. We note that we obtain similar insights for other child job

distributions.

p̌ ∼ D(8)p̌ ∼ D(6)

r

ρ

r

ρ

r

ρ

r

ρ

p̌ ∼ D(2) p̌ ∼ D(4)

Fig. 7. Example C.1. Proportional difference in mean response time of (c) compared to (p): (E[T (p)] −

E[T (c)])/E[T (p)]

11 CONCLUSIONS AND MODEL GENERALIZATION
We introduced two mean field models for randomized work stealing in multithreaded computations

in large systems, where parent jobs spawn child jobs. We proved the existence of a unique fixed

point and showed that this fixed point can be computed easily using matrix analytic methods (by

solving a single quasi-birth-death Markov chain). The accuracy of these models was illustrated

using simulation experiments.

The two models correspond to two stealing strategies: one that involves the transfer of child

jobs across servers; the other where parent jobs are transferred together with the child jobs that

they spawn. Having derived expressions for the response time distributions for each strategy, we
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investigated the impact of the probe rates, load, and child job size variability on performance with

respect to the individual stealing strategies. We also studied the effect of changing the ratio of

parent to child service rates and identified scenarios (low probe rate, high load) where parent

stealing significantly outperformed child stealing, and scenarios (high probe rate, low load) where

child stealing achieved a lower mean response time.

The models presented in this paper can be generalized in a number of manners. A first option

is to allow for phase-type distributed service times for parent jobs and individual child jobs. This

relaxation is easy for the parent stealing model (as the sum of several phase-type distributions

is still a phase-type distribution [14]), but more involved for the child job stealing system. For

instance, the steal rate λc (r ) for which we had an explicit formula in (30) now needs to be computed

numerically. Nevertheless it seems likely that it still suffices to study the steady state of a single

QBD Markov chain to assess the performance in a large-scale system.

A second relaxation is to allow for a finite number of server types, as opposed to having

homogeneous servers. This generalization seems more challenging as the probability that a server

is empty now depends on its type (instead of simply being 1 − ρ), which implies that an iterative

approach may be needed to find the fixed point of the mean field model (where a QBD-type Markov

chain is solved during each iteration).

Another generalization exists in allowing that multiple child jobs are transferred after a successful

probe. Initial work in this direction indicates that the approach taken in this paper is still feasible

in such case. A further relaxation would be to consider multigenerational multithreading, that is

where child jobs can generate their own offspring jobs. In such case, using a QBD-type Markov

chain seems problematic due to the required block size.
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