
RAMSEY THEORY

1 Ramsey Numbers

Party Problem: Find the minimum number R(k, l) of guests that must be
invited so that at least k will know each other or at least l will not know
each other (we assume that if A knows B, then B knows A as well).

Let us rephrase this problem in graph theoretical terms:

Definition 1.1: A complete graph G is a graph in which each pair of vertices
is connected by one edge (no loops). We denote the complete graph with n
vertices as Kn.

Definition 1.2: The Ramsey Number R(k, l) is defined as the minimum
number N such that for any coloring c of the set of edges of KN , denoted as
E(KN), KN contains a red Kk or a blue Kl as a subgraph. A coloring c is a
function from {(i, j)|i 6= j and i, j ∈ {1, . . . , N}} to {red, blue}.

Some obvious properties are: R(s, t) = R(t, s) and R(s, 2) = s.

Theorem 1.1 (Ramsey 1930): R(s, t) is finite for all s, t ≥ 2 and for s, t > 2
we have R(s, t) ≤ R(s − 1, t) + R(s, t − 1).

Proof: Select an arbitrary vertex v of the graph KN , where N = R(s −
1, t) + R(s, t − 1). Let c be an arbitrary coloring of KN . Then, R(s −
1, t) + R(s, t − 1) − 1 edges arrive in v. Either R(s − 1, t) of them are red or
R(s, t − 1) are blue. Without loss of generality, assume we have R(s − 1, t)
vertices incident to v by means of red edges. These vertices form a KR(s−1,t)

graph. Thus, for each coloring, including coloring c, we either have a blue
Kt or a red Ks−1 in this KR(s−1,t) graph. This completes the proof, as in the
latter case a red Ks is formed by adding v to the red Ks−1. Q.E.D.

Theorem 1.2: For all s, t ≥ 2 we have R(s, t) ≤
(

s+t−2
s−1

)

.
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Proof: Trivial for s or t equal to 2. For s, t > 2 (with induction on s + t),
we use Ramsey’s theorem and the fact that

(
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l

)

+
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l−1

)

= (k−l+1
l

+ 1)
(

k

l−1

)
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l

(
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)

=
(

k+1
l

)

(with k = s + t − 3 and l = s − 1).
Q.E.D.

Exercises 1.1: Prove the following identities:

1. R(3, 3) = 6.

2. R(3, 4) > 8.

3. R(3, 4) <= 9; hence, R(3, 4) = 9. [HINT: Consider the following three
scenarios (i) at least 4 red edges arrive in some vertex v, (ii) at least
6 blue edges arrive in some vertex v and (iii) exactly 3 red and 5 blue
edges arrive in all vertices v.]

4. R(s, t) ≤ R(s− 1, t) + R(s, t− 1)− 1 if both R(s, t− 1) and R(s− 1, t)
are even.

5. R(s, s) ≤ 22s−3 [HINT: Let c be an arbitrary coloring of K22s−3 . Select
an arbitrary vertex v1, then there exists a set V1 with at least 22s−4

vertices such that c(v1v) = c(v1w) for all v, w ∈ V1. Let vi be any
vertex in Vi−1, let Vi ⊂ Vi−1 be a set with at least 22s−3−i vertices
for which c(viv) = c(viw) for all v, w ∈ Vi. Repeat this argument for
i = 2, . . . , 2s − 3.]

6. R(3, 5) = 14.

Ramsey numbers are very hard to compute, so far only the following are
known: R(2, t) = t, R(3, 3) = 6, R(3, 4) = 9, R(3, 5) = 14, R(3, 6) = 18,
R(3, 7) = 23, R(3, 8) = 28, R(3, 9) = 36, R(4, 4) = 18 and R(4, 5) = 25. No
other Ramsey numbers are currently known (upper and lower bounds exist).

In order to make a link with other mathematical disciplines we need to in-
troduce the following numbers:

Definition 1.3: The generalized Ramsey numbers R(q)(a1, a2, . . . , ak) are
defined as the minimum number N such that no matter how each q-element
subset of an N -element set is colored with k colors, there exists an i ∈
{1, . . . , k} such that there is a subset of size ai, all of whose q-element subsets
have color i. [Remark: R(k, l) = R(2)(k, l)]
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Theorem 1.3 (Ramsey 1930): All generalized Ramsey numbers are finite.

Exercises 1.2: On generalized Ramsey numbers:

1. Simplify R(r)(r, a2, . . . , ak).

2. Express the Pigeon Hole Principle by means of a Ramsey number [Re-
call: Distributing (n− 1)t + 1 balls in t urns results in at least one urn
with n balls].

3. Prove the Erdos-Szekeres Theorem (1935) using the R(1)(., . . . , .) num-
bers [Theorem: any row of ab + 1 distinct real numbers contains either
an increasing subrow for size a+1 or a decreasing subrow of size b+1].

4. Prove the Schur Theorem (1916) using the R(2)(., . . . , .) numbers [The-
orem: for any natural number t, there exists an N sufficiently large
such that for any partitioning A1, . . . , At of {1, . . . , N} there exists an
i ∈ {1, . . . , t} and and x, y and z in Ai such that x + y = z].

5. Prove the Erdos-Szekeres Theorem (1935) using the R(4)(., .) numbers
[Theorem: for any n there exists an N finite such that from any N
points in the plane (no 3 are collinear) some n are in a convex position.
A set of n points in the plane is convex if any triangle formed by 3 of
these n points does not contain another of the n − 3 points].

6. R(2)(3, 3, 3) ≤ 17.

7. Prove the following identity: R(r)(a1, . . . , ak) ≤ R(r−1)(R(r)(a1 − 1, a2,
. . . , ak), R

(r)(a1, a2−1, . . . , ak), . . . , R(r)(a1, a2, . . . , ak−1))+1 for a1, a2,
. . . , ak > r.

Theorem 1.4 (Ramsey 1930): Let r and k be natural numbers, let A be an
infinite set and let c be a k-coloring of A(r), then A contains a monochromatic
infinite set1.

1
X

(r)
denotes the set of all r-subsets in X .
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Proof (*): The theorem is trivial for r = 1. Hence, we prove the theorem
by induction on r. Let c be an arbitrary k-coloring of A. We start by defining
an infinite subset {x1, x2, . . .} of A and a nested sequence B0 ⊃ B1 ⊃ . . . of
infinite subsets of A. Let B0 = A, then Bl and xl are constructed as follows.
Pick xl ∈ Bl−1 arbitrary and set Cl−1 = Bl−1 − {xl}. Next, define c̃ as a

coloring on C
(r−1)
l−1 by putting c̃(σ) = c(σ ∪ {xl}), where σ is an r − 1-subset

of Cl−1. By induction, Cl−1 contains an infinite monochromatic set, say with
color ci, which we define Bl. Notice, for any r − 1-subset σ in Bl we have
c(σ ∪ xl) = ci. Finally, define c′(xl) = ci.
Having constructed the infinite set X, it is clear that an infinite subset Xj

of X exists, such that for some color ci, we have c′(x) = ci for all x ∈ Xj .
Then, each r-subset {xi1 , . . . , xir} of Xj has c({xi1, . . . , xir}) = ci. Indeed, let
imin = minr

n=1 in, then c({xi1 , . . . , xir}) = c′(ximin
) = ci. (because xin ∈ Bimin

for in > imin)
Q.E.D.

Exercises 1.3: Prove the following statement:

1. An infinite row of real numbers contains either an infinite decreasing
subrow or an infinite increasing subrow.

2 Hales-Jewett Numbers

Definition 2.1: A (combinatorial) hypercube (or grid) of dimension n and
width l is defined as the set of all strings of length n using the letters of
an alphabet L = {a, b, . . .} with l letters. We denote this set of strings as
Wn(L).

A 1-parameter word M is defined as a string where 1 or more letters are
replaced by a parameter X, e.g., cabbXcXaaXb. Such a 1-parameter word
represents all the strings that can be obtained by replacing X by a letter
in L, e.g., {cabbacaaaab, cabbbcbaabb, cabbcccaacb}. A 1-parameter word is
sometimes referred to as a combinatorial line (in a hypercube). Similarly, we
define a d-parameter word as a string where at least d letters are replaced by
the parameters X1, . . . , Xd and each parameter has to appear in the string,
e.g., caX2ccX1bbX1X1a is a 2-parameter word. A d-parameter word is often
referred to as a d-dimensional subspace (of a hypercube) and reflects the ld

strings that can be obtained by replacing each parameter by a letter in L.
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Fig. 1: Hypercube with dimension n = 4 and width l = 2

Definition 2.2: The Hales-Jewett number HJ(l, d, k) is defined as the small-
est natural number such that for every k-coloring of an HJ(l, d, k)-dimensional
hypercube with width l, there exists a monochromatic subspace of dimension
d.

Clearly, HJ(l, d, 1) = d and HJ(1, d, k) = d. In order to prove the finiteness
of the Hales-Jewett numbers we start with the following two lemmas:

Lemma 2.1: HJ(l, d + 1, k) ≤ HJ(l, 1, k) + HJ(l, d, klHJ(l,1,k)
)

Proof (*): Define n1 and n2 as the first and second term of the right-hand
side of the equation, respectively. Let n = n1 + n2, C = {c1, . . . , ck} and
let c : Wn(L) → C be an arbitrary k-coloring of Wn(L). Next, define the
functions cv, for v ∈ Wn2(L), and c̃ as

cv : Wn1(L) → C : w → c(wv),

c̃ : Wn2(L) → CWn1(L) : v → cv,

where CWn1(L) represents all the functions from Wn1(L) to C. Wn1(L) con-
tains ln1 strings; therefore, there are kln1 such functions. Meaning, that c̃ can
be seen as a coloring of a n2-dimensional hypercube with kln1 colors. Thus,
there exists a monochromatic d-parameter word V (of length n2), that is,



2 Hales-Jewett Numbers 6

all the strings represented by V are mapped onto the same function, say c′v.
This function c′v is a coloring of a n1-dimensional hypercube with k colors;
therefore, there exist a monochromatic 1-parameter word W (of length n1).
As a result, WV is monochromatic d+1-parameter word (or subspace) under
the function c. Q.E.D.

Lemma 2.2: HJ(l + 1, 1, k + 1) ≤ HJ(l, 1 + HJ(l + 1, 1, k), k + 1)

Proof (*): Let n be equal to the right-hand side of the equation, let L
be an alphabet with l letters and let c : Wn(L ∪ {z}) → {c1, . . . , ck+1} be
an arbitrary k + 1-coloring of an n-dimensional hypercube with width l + 1.
Define

c′ : Wn(L) → {c1, . . . , ck+1} : w → c(w).

Then, by definition of n, there exists a monochromatic 1 + HJ(l + 1, 1, k)-
parameter word V (under c′), that is, all the strings represented by V (over
the alphabet L) are mapped onto the same color, say ci.
Define C = {c1, . . . , ck+1}−{ci}. We distinguish two cases: (i) c assigns color
ci to at least 1 string s represented by V (over the alphabet L ∪ {z}) and
this string s contains at least 1 letter z. Then, replace z by X in V to find a
monochromatic 1-parameter word (under c). (ii) c never assigns color ci to a
string s that is represented by V and that contains at least 1 letter z. Then,
replace 1 parameter of V by z (arbitrary) to find the HJ(l+1, 1, k)-parameter
word V ′. Now, c maps all the strings represented by V ′ (over L∪{z}) onto C
(where |C| = k). These strings form a HJ(l+1, 1, k)-dimensional hypercube
of width l + 1; therefore, there exists a monochromatic 1-parameter word
W (under c of length HJ(l + 1, 1, k)). If we now substitute W into the
HJ(l + 1, 1, k) parameters of V ′ we obtain the required combinatorial line.

Q.E.D.

Theorem 2.1: All Hales-Jewett numbers HJ(l, d, k) are finite.

Proof: Suppose that some set S0 of HJ-numbers are infinite. Then, let
S1 be the subset of S where l is minimal, let S2 be the subset of S1 where
d is minimal and let S3 be the subset of S2 where k is minimal. Take an
arbitrary number HJ(l, d, k) from S3. Clearly, l or k cannot be equal to 1,
hence, HJ(l, d, k) can be written as the left-hand side of lemma 2.1 or 2.2.
Thus, the right-hand side has to be infinite as well. But, by construction of
S3, this is impossible.
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Q.E.D.

Exercises 2.1: Prove the following two statements:

• Playing Tic-Tac-Toe in an 18-dimensional (or higher) space can never
result in a draw.

• Prove the Bartel Van der Waerden Theorem which states that for any
l > 0, there exists an N finite such that for any k-coloring c of [1, N ],
there exists a monochromatic arithmetic progression of length l, that
is, an a, b for which a, a + b, . . . , a + (l − 1)b have the same color [Hint:
Choose N = (l − 1)HJ(l, 1, k), n = N/(l − 1) and define c′ : Wn(L) →
{1, . . . , k} : w1w2 . . . wn → c(

∑

i wi)].


