RAMSEY THEORY

1 Ramsey Numbers

Party Problem: Find the minimum number $R(k, l)$ of guests that must be invited so that at least k will know each other or at least l will not know each other (we assume that if A knows B, then B knows A as well).

Let us rephrase this problem in graph theoretical terms:
Definition 1.1: A complete graph G is a graph in which each pair of vertices is connected by one edge (no loops). We denote the complete graph with n vertices as K_{n}.

Definition 1.2: The Ramsey Number $R(k, l)$ is defined as the minimum number N such that for any coloring c of the set of edges of K_{N}, denoted as $E\left(K_{N}\right), K_{N}$ contains a red K_{k} or a blue K_{l} as a subgraph. A coloring c is a function from $\{(i, j) \mid i \neq j$ and $i, j \in\{1, \ldots, N\}\}$ to $\{r e d, b l u e\}$.

Some obvious properties are: $R(s, t)=R(t, s)$ and $R(s, 2)=s$.
Theorem 1.1 (Ramsey 1930): $R(s, t)$ is finite for all $s, t \geq 2$ and for $s, t>2$ we have $R(s, t) \leq R(s-1, t)+R(s, t-1)$.

Proof: Select an arbitrary vertex v of the graph K_{N}, where $N=R(s-$ $1, t)+R(s, t-1)$. Let c be an arbitrary coloring of K_{N}. Then, $R(s-$ $1, t)+R(s, t-1)-1$ edges arrive in v. Either $R(s-1, t)$ of them are red or $R(s, t-1)$ are blue. Without loss of generality, assume we have $R(s-1, t)$ vertices incident to v by means of red edges. These vertices form a $K_{R(s-1, t)}$ graph. Thus, for each coloring, including coloring c, we either have a blue K_{t} or a red K_{s-1} in this $K_{R(s-1, t)}$ graph. This completes the proof, as in the latter case a red K_{s} is formed by adding v to the red K_{s-1}.
Q.E.D.

Theorem 1.2: For all $s, t \geq 2$ we have $R(s, t) \leq\binom{ s+t-2}{s-1}$.

Proof: Trivial for s or t equal to 2 . For $s, t>2$ (with induction on $s+t$), we use Ramsey's theorem and the fact that $\binom{k}{l}+\binom{k}{l-1}=\left(\frac{k-l+1}{l}+1\right)\binom{k}{l-1}=$ $\frac{k+1}{l}\binom{k}{l-1}=\binom{k+1}{l}($ with $k=s+t-3$ and $l=s-1)$.
Q.E.D.

Exercises 1.1: Prove the following identities:

1. $R(3,3)=6$.
2. $R(3,4)>8$.
3. $R(3,4)<=9$; hence, $R(3,4)=9$. [HINT: Consider the following three scenarios (i) at least 4 red edges arrive in some vertex v, (ii) at least 6 blue edges arrive in some vertex v and (iii) exactly 3 red and 5 blue edges arrive in all vertices v.]
4. $R(s, t) \leq R(s-1, t)+R(s, t-1)-1$ if both $R(s, t-1)$ and $R(s-1, t)$ are even.
5. $R(s, s) \leq 2^{2 s-3}$ [HINT: Let c be an arbitrary coloring of $K_{2^{2 s-3}}$. Select an arbitrary vertex v_{1}, then there exists a set V_{1} with at least $2^{2 s-4}$ vertices such that $c\left(v_{1} v\right)=c\left(v_{1} w\right)$ for all $v, w \in V_{1}$. Let v_{i} be any vertex in V_{i-1}, let $V_{i} \subset V_{i-1}$ be a set with at least $2^{2 s-3-i}$ vertices for which $c\left(v_{i} v\right)=c\left(v_{i} w\right)$ for all $v, w \in V_{i}$. Repeat this argument for $i=2, \ldots, 2 s-3$.]
6. $R(3,5)=14$.

Ramsey numbers are very hard to compute, so far only the following are known: $R(2, t)=t, R(3,3)=6, R(3,4)=9, R(3,5)=14, R(3,6)=18$, $R(3,7)=23, R(3,8)=28, R(3,9)=36, R(4,4)=18$ and $R(4,5)=25$. No other Ramsey numbers are currently known (upper and lower bounds exist).

In order to make a link with other mathematical disciplines we need to introduce the following numbers:

Definition 1.3: The generalized Ramsey numbers $R^{(q)}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ are defined as the minimum number N such that no matter how each q-element subset of an N-element set is colored with k colors, there exists an $i \in$ $\{1, \ldots, k\}$ such that there is a subset of size a_{i}, all of whose q-element subsets have color i. [Remark: $R(k, l)=R^{(2)}(k, l)$]

Theorem 1.3 (Ramsey 1930): All generalized Ramsey numbers are finite.
Exercises 1.2: On generalized Ramsey numbers:

1. Simplify $R^{(r)}\left(r, a_{2}, \ldots, a_{k}\right)$.
2. Express the Pigeon Hole Principle by means of a Ramsey number [Recall: Distributing $(n-1) t+1$ balls in t urns results in at least one urn with n balls].
3. Prove the Erdos-Szekeres Theorem (1935) using the $R^{(1)}(., \ldots,$.$) num-$ bers [Theorem: any row of $a b+1$ distinct real numbers contains either an increasing subrow for size $a+1$ or a decreasing subrow of size $b+1$].
4. Prove the Schur Theorem (1916) using the $R^{(2)}(., \ldots,$.$) numbers [The-$ orem: for any natural number t, there exists an N sufficiently large such that for any partitioning A_{1}, \ldots, A_{t} of $\{1, \ldots, N\}$ there exists an $i \in\{1, \ldots, t\}$ and and x, y and z in A_{i} such that $\left.x+y=z\right]$.
5. Prove the Erdos-Szekeres Theorem (1935) using the $R^{(4)}(.,$.$) numbers$ [Theorem: for any n there exists an N finite such that from any N points in the plane (no 3 are collinear) some n are in a convex position. A set of n points in the plane is convex if any triangle formed by 3 of these n points does not contain another of the $n-3$ points].
6. $R^{(2)}(3,3,3) \leq 17$.
7. Prove the following identity: $R^{(r)}\left(a_{1}, \ldots, a_{k}\right) \leq R^{(r-1)}\left(R^{(r)}\left(a_{1}-1, a_{2}\right.\right.$, $\left.\left.\ldots, a_{k}\right), R^{(r)}\left(a_{1}, a_{2}-1, \ldots, a_{k}\right), \ldots, R^{(r)}\left(a_{1}, a_{2}, \ldots, a_{k}-1\right)\right)+1$ for a_{1}, a_{2}, $\ldots, a_{k}>r$.

Theorem 1.4 (Ramsey 1930): Let r and k be natural numbers, let A be an infinite set and let c be a k-coloring of $A^{(r)}$, then A contains a monochromatic infinite set ${ }^{1}$.

[^0]Proof (*): The theorem is trivial for $r=1$. Hence, we prove the theorem by induction on r. Let c be an arbitrary k-coloring of A. We start by defining an infinite subset $\left\{x_{1}, x_{2}, \ldots\right\}$ of A and a nested sequence $B_{0} \supset B_{1} \supset \ldots$ of infinite subsets of A. Let $B_{0}=A$, then B_{l} and x_{l} are constructed as follows. Pick $x_{l} \in B_{l-1}$ arbitrary and set $C_{l-1}=B_{l-1}-\left\{x_{l}\right\}$. Next, define \tilde{c} as a coloring on $C_{l-1}^{(r-1)}$ by putting $\tilde{c}(\sigma)=c\left(\sigma \cup\left\{x_{l}\right\}\right)$, where σ is an $r-1$-subset of C_{l-1}. By induction, C_{l-1} contains an infinite monochromatic set, say with color c_{i}, which we define B_{l}. Notice, for any $r-1$-subset σ in B_{l} we have $c\left(\sigma \cup x_{l}\right)=c_{i}$. Finally, define $c^{\prime}\left(x_{l}\right)=c_{i}$.
Having constructed the infinite set X, it is clear that an infinite subset X_{j} of X exists, such that for some color c_{i}, we have $c^{\prime}(x)=c_{i}$ for all $x \in X_{j}$. Then, each r-subset $\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\}$ of X_{j} has $c\left(\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\}\right)=c_{i}$. Indeed, let $i_{\text {min }}=\min _{n=1}^{r} i_{n}$, then $c\left(\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\}\right)=c^{\prime}\left(x_{i_{\text {min }}}\right)=c_{i}$. (because $x_{i_{n}} \in B_{i_{\text {min }}}$ for $i_{n}>i_{\min }$)
Q.E.D.

Exercises 1.3: Prove the following statement:

1. An infinite row of real numbers contains either an infinite decreasing subrow or an infinite increasing subrow.

2 Hales-Jewett Numbers

Definition 2.1: A (combinatorial) hypercube (or grid) of dimension n and width l is defined as the set of all strings of length n using the letters of an alphabet $L=\{a, b, \ldots\}$ with l letters. We denote this set of strings as $W_{n}(L)$.

A 1-parameter word M is defined as a string where 1 or more letters are replaced by a parameter X, e.g., cabbXcXaaXb. Such a 1-parameter word represents all the strings that can be obtained by replacing X by a letter in L, e.g., $\{c a b b a c a a a a b, c a b b b c b a a b b, c a b b c c c a a c b\}$. A 1-parameter word is sometimes referred to as a combinatorial line (in a hypercube). Similarly, we define a d-parameter word as a string where at least d letters are replaced by the parameters X_{1}, \ldots, X_{d} and each parameter has to appear in the string, e.g., $c a X_{2} c c X_{1} b b X_{1} X_{1} a$ is a 2-parameter word. A d-parameter word is often referred to as a d-dimensional subspace (of a hypercube) and reflects the l^{d} strings that can be obtained by replacing each parameter by a letter in L.

Fig. 1: Hypercube with dimension $n=4$ and width $l=2$

Definition 2.2: The Hales-Jewett number $H J(l, d, k)$ is defined as the smallest natural number such that for every k-coloring of an $H J(l, d, k)$-dimensional hypercube with width l, there exists a monochromatic subspace of dimension d.

Clearly, $H J(l, d, 1)=d$ and $H J(1, d, k)=d$. In order to prove the finiteness of the Hales-Jewett numbers we start with the following two lemmas:

Lemma 2.1: $H J(l, d+1, k) \leq H J(l, 1, k)+H J\left(l, d, k^{\left.l^{H J(l, 1, k)}\right)}\right.$
Proof (*): Define n_{1} and n_{2} as the first and second term of the right-hand side of the equation, respectively. Let $n=n_{1}+n_{2}, C=\left\{c_{1}, \ldots, c_{k}\right\}$ and let $c: W_{n}(L) \rightarrow C$ be an arbitrary k-coloring of $W_{n}(L)$. Next, define the functions c_{v}, for $v \in W_{n_{2}}(L)$, and \tilde{c} as

$$
\begin{aligned}
c_{v}: & W_{n_{1}}(L) \rightarrow C: w \rightarrow c(w v), \\
\tilde{c}: & W_{n_{2}}(L) \rightarrow C^{W_{n_{1}}(L)}: v \rightarrow c_{v},
\end{aligned}
$$

where $C^{W_{n_{1}}(L)}$ represents all the functions from $W_{n_{1}}(L)$ to C. $W_{n_{1}}(L)$ contains $l^{n_{1}}$ strings; therefore, there are $k^{l^{n_{1}}}$ such functions. Meaning, that \tilde{c} can be seen as a coloring of a n_{2}-dimensional hypercube with $k^{l^{n_{1}}}$ colors. Thus, there exists a monochromatic d-parameter word V (of length n_{2}), that is,
all the strings represented by V are mapped onto the same function, say c_{v}^{\prime}. This function c_{v}^{\prime} is a coloring of a n_{1}-dimensional hypercube with k colors; therefore, there exist a monochromatic 1-parameter word W (of length n_{1}). As a result, WV is monochromatic $d+1$-parameter word (or subspace) under the function c.
Q.E.D.

Lemma 2.2: $H J(l+1,1, k+1) \leq H J(l, 1+H J(l+1,1, k), k+1)$
Proof (*): Let n be equal to the right-hand side of the equation, let L be an alphabet with l letters and let $c: W_{n}(L \cup\{z\}) \rightarrow\left\{c_{1}, \ldots, c_{k+1}\right\}$ be an arbitrary $k+1$-coloring of an n-dimensional hypercube with width $l+1$. Define

$$
c^{\prime}: W_{n}(L) \rightarrow\left\{c_{1}, \ldots, c_{k+1}\right\}: w \rightarrow c(w) .
$$

Then, by definition of n, there exists a monochromatic $1+H J(l+1,1, k)$ parameter word V (under c^{\prime}), that is, all the strings represented by V (over the alphabet L) are mapped onto the same color, say c_{i}.
Define $C=\left\{c_{1}, \ldots, c_{k+1}\right\}-\left\{c_{i}\right\}$. We distinguish two cases: (i) c assigns color c_{i} to at least 1 string s represented by V (over the alphabet $L \cup\{z\}$) and this string s contains at least 1 letter z. Then, replace z by X in V to find a monochromatic 1-parameter word (under c). (ii) c never assigns color c_{i} to a string s that is represented by V and that contains at least 1 letter z. Then, replace 1 parameter of V by z (arbitrary) to find the $H J(l+1,1, k)$-parameter word V^{\prime}. Now, c maps all the strings represented by V^{\prime} (over $L \cup\{z\}$) onto C (where $|C|=k$). These strings form a $H J(l+1,1, k)$-dimensional hypercube of width $l+1$; therefore, there exists a monochromatic 1-parameter word W (under c of length $H J(l+1,1, k)$). If we now substitute W into the $H J(l+1,1, k)$ parameters of V^{\prime} we obtain the required combinatorial line. Q.E.

Theorem 2.1: All Hales-Jewett numbers $H J(l, d, k)$ are finite.
Proof: Suppose that some set S_{0} of $H J$-numbers are infinite. Then, let S_{1} be the subset of S where l is minimal, let S_{2} be the subset of S_{1} where d is minimal and let S_{3} be the subset of S_{2} where k is minimal. Take an arbitrary number $H J(l, d, k)$ from S_{3}. Clearly, l or k cannot be equal to 1, hence, $H J(l, d, k)$ can be written as the left-hand side of lemma 2.1 or 2.2. Thus, the right-hand side has to be infinite as well. But, by construction of S_{3}, this is impossible.
Q.E.D.

Exercises 2.1: Prove the following two statements:

- Playing Tic-Tac-Toe in an 18-dimensional (or higher) space can never result in a draw.
- Prove the Bartel Van der Waerden Theorem which states that for any $l>0$, there exists an N finite such that for any k-coloring c of $[1, N]$, there exists a monochromatic arithmetic progression of length l, that is, an a, b for which $a, a+b, \ldots, a+(l-1) b$ have the same color [Hint: Choose $N=(l-1) H J(l, 1, k), n=N /(l-1)$ and define $c^{\prime}: W_{n}(L) \rightarrow$ $\left.\{1, \ldots, k\}: w_{1} w_{2} \ldots w_{n} \rightarrow c\left(\sum_{i} w_{i}\right)\right]$.

[^0]: ${ }^{1} X^{(r)}$ denotes the set of all r-subsets in X.

