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also the asymptotic decay rate of the cell loss ratio as a function of the bu�er size. This has led tointeresting applications to call acceptance control, estimation of e�ective bandwidth, etc. Theseapplications are based on the assumption that the coe�cient in front of the asymptotic expansionis close to 1: However, it has been shown [5] that in many interesting cases of practical interestthis coe�cient can be orders of magnitude above or below 1; leading to severe overestimation orunderestimation of the cell loss ratio. This in turn leads to large errors in the call admissionspolicy, which can compromise the economic viability or the reliability of the network operations.Matrix geometric analysis -using the regular block structure of the transition matrices of theMarkov process- has been proposed [2] as a possible tool for calculating the equilibrium distri-bution of the bu�er occupation. A particular, but interesting example of this approach is usedin a model consisting of a superposition of Markov modulated Bernoulli processes [9, 1] enteringan in�nite bu�er serviced by a constant time server. In [11] this model has been extended to the�nite bu�er case. This method gives accurate results, provided one can solve the iterative equa-tions for the rate matrix in the matrix geometric method, together with the set of linear equationsrepresenting the boundary conditions at the empty and full bu�er boundaries, where the regularblock structure of the transition matrices is modi�ed. The severe limitation of this method is thegrowth in the size of the state of the modulating Markov process. This dimension is the productof the sizes of the state spaces of each of the individual arrival streams. The complexity of theproblem inevitably grows exponentially with the number of arrival streams under consideration.To alleviate this problem [12, 10] proposed a spectral decomposition method which has beenshown very e�ective in reducing the complexity of the calculation of the rate matrix. The ratematrix is constructed via Kronecker products of blocks of smaller matrices. The calculation ofeach of the components of these Kronecker products can be decomposed in simpler calculationsdealing with one block, referring to one arrival stream, at a time. Once per iteration, a singlealgebraic equation has to be solved which expresses the interaction between the di�erent arrivalstreams.Moreover there are arrival streams which in themselves have a very large modulating state space,such as for example ON-OFF tra�c with a periodic cell stream during an ON-period. Suchperiodic streams occur very often as a result of the higher layer protocol(TCP/IP, video, : : :)generating the tra�c to be carried by ATM. Shapers also introduce periodicity into the cellstreams arriving at an ATM bu�er. Using a Markov modulated Bernoulli process as model forthese streams with periodicity inevitably leads to a state space of the order of the period of thearrival stream, since the system state has to remember in what phase of the period it is. Theselarge state spaces (for large periods) can be avoided by considering the number of arriving cellsper time interval of length one period of the arrival stream.Take as an example an ON-OFF source, with one arrival every T1 slots during an ON-period. Acell based Markov modulated model has a state space of size T1+1, with a cell being generated instate 1, no cell in all the other states. The modulating Markov process has a very special structuresince the T ON-states simply occur in a �xed order, with occasional transitions between stateT and the OFF-state. Unfortunately this special structure does not automatically reduce thecomplexity of the calculation of the rate matrix. The Markov modulated model becomes muchsimpler if one only tries to calculate the number of cells generated per frame of size T1 slots.Assume that the duration of ON and OFF periods are independent, each of the form K:T1, withK a geometrically distributed random variable (with parameter pON for ON-periods, pOFF forOFF-periods). If one counts the number of arrivals during successive intervals of length T1, thenthe Markov modulated model is a simple two state model, with 1 arrival per period in state ON ,and 0 arrivals in the state OFF . If the length of the ON and OFF periods were of the form K:Twith T a multiple of T1, then a similar model can be built with T=T1 arrivals per ON-period. Ofcourse in practice the length of ON- and OFF-periods will not be nicely distributed as geometric2



multiples of the periods T of the arrival stream. However in those cases where the average lengthsof the ON- and especially of the OFF-period are large compared to the period T , the above modelmay represent a very good approximation, especially since it is intuitively clear that short ON-and OFF-periods will not have an important contribution to cell losses.Based on the above considerations this paper proposes a contribution to the calculation of the ratematrices which appear in the equilibrium distribution as evaluated at times which are multiplesof the frame length T1: The proposed method reduces signi�cantly the computational complexityof the calculation of these rate matrices, allowing the matrix geometric evaluation of performancemeasures for larger, more realistic models with periodic arrival streams of the type describedabove. After presenting these models, we show that they lead to a computationally tractable ma-trix geometric method for performance evaluation for ATM bu�ers with several periodic sources.Rather than studying the bu�er occupation at the end of each slot, we only try to calculate thedistribution of the bu�er occupation Qt just prior to the end of a �xed length frame. Again weobtain a transition matrix with a block structure. But now, because of the frame structure, wehave up to U arrivals and up to L departures per frame, there are U blocks above the diago-nal, and L blocks below the diagonal. Again, except at the empty and full bu�er boundaries,the blocks at the same distance from the diagonal are identical. This matrix geometric blockstructure in the Kolmogorov equations can be exploited as shown later to e�ciently obtain theequilibrium distribution at times which are a multiple of the frame length T1:This paper illustrates the proposed method through its application in some examples of calculationof cell loss ratios (CLR) for systems which combine a few periodic ON-OFF tra�c sources withmany Markov modulated Bernoulli background sources. As a particular example, we will studyhow the cell loss ratio depends on the number of cells per frame which a multiplexer removesfrom a bu�er for a particular priority class (e.g. in ow control for ABR tra�c this number couldbe a slowly varying ow control variable). This scheme can also be used to evaluate the ERcongestion control mechanism used to control the behaviour of the ABR tra�c streams, wherethis computation scheme lead to some useful reductions in the computation time. The resultson this application can be found in [3, 4]. Finally the method can also be applied - providedthe boundary equations are solved e�ciently - to many interesting ow control strategies withthresholds, such a packet discard strategies in UBR (or, to provide a totally di�erent example,for evaluating delays of cars in front of tra�c lights in an urban tra�c model).The structure of the paper is as follows. Sections 2 and 3 describe the model class for which ourapproach is applicable. In sections 4 and 5 we describe the proposed analysis tool for the in�niteand the �nite bu�er case. An easy and computationally e�cient implementation of the methodis presented so that it can be applied easily by all users. Finally in section 6 some numericalexamples are given which illustrate our method. The probabilistic interpretations which justifythe proposed method are discussed in the appendix.2 System Description and ModelConsider a bu�er in an ATM system, with N arrival streams (or input sources). The arrivalprocess for each source is modeled as follows. Source 1 � n � N can be in either one of Mndi�erent states, denoted as zm;n;m = 1; : : : ;Mn: We de�ne the following variables� Zt;n is the state of the n-th source during the t-th frame� Kk;n is the number of cells generated by the n-th source during an interval of length Tk;nwhile this source is in state k 2 f1; : : : ;Mng.Note that we only require that the cells are generated in a periodic fashion during the frame, butthat we do not use the exact arrival times of the cells in the frame. This is su�cient for calculating3



the rate matrices, since the detailed structure of the arrival times in a frame only become relevantwhen the bu�er is almost empty or almost full, i.e. when evaluating the boundary conditions ofthe Kolmogorov equations. For calculating the rate matrices one only needs the values of Tk;n andKk;n: Note that the proposed solution is also valid if Kk;n is a random number with a distributionwhich only depends on the state k the source is in during the t-th frame. We now de�ne theframe length T such that T is a multiple of all periods Tk;n involved in the description of alltra�c streams. Notice that when a source n is in state k during a frame, then it will generateKk;n:T=Tk;n cells during this frame. Classical Markov modulated Bernoulli sources are includedin this model by taking Tk;n = 1 for some states k, with the corresponding Kk;n a Bernoullirandom number with parameter pk;n, taking only the values 0 and 1:As mentioned before for ON-OFF processes with periodic tra�c during ON-periods, the assump-tion that sources remain in the same state for a length of time which is a multiple of the framelength T represents an approximation to realistic source models, which will lead to errors inthe calculated cell loss ratios which one expects to be small on intuitive grounds. Moreover thediscussion on computational e�ciency in section 4 indicates that one should not consider toolarge a period. Together these observations indicate that it will often be necessary to make acompromise by choosing a value T for the frame size which is not a multiple of all the periodsappearing in all the tra�c streams. Rather one should approximate periods that are too long byassigning a distribution on the number of cells generated during a fraction of a period. Consideras an example the case where a frame size T is chosen, and there is a source of low intensitywhich generates cells periodically every 2:T slots. Then one can approximate this behaviour byassigning the number of arrivals 0 and 1 during a frame of size T the probabilities 0:5 each. It iseasy to see how this can be generalized for more complicated periodicities. In the same way onecan approximate the fact that durations of ON- and OFF-periods are not exact multiples of theframe length T by including the probability of a few cells more or less arriving in a frame for eachmodulating state. Of course one could also model this at the price of a small increase in size ofthe state space (small in comparison with the size of the state space which would be needed fora slot-based model), by introducing additional transition states expressing the possibility of twodi�erent modulating states occurring in the same frame.For the server we assume the following. During the t-th frame (of length T slots) a randomnumber St � Ks cells will be transmitted by the server connected to the bu�er. If all states areperiodic, source n can generate at most Un = maxkKk;n:T=Tk;n cells per frame of length T: Atmost U =Pn Un cells can arrive per frame of length T slots, while at most L = Ks�Pn Umin(n)cells will leave the bu�er during the same interval, where the minimum number of cells Umin(n)which source n generates per frame may be strictly positive for some periodic sources. Clearlythe above modeling assumptions specify completely the transition matrix of the discrete timeMarkov process (Qk:T ; Zk;1; : : : ; Zk;N ): Here Qt represents the bu�er length at time/slot t.3 The ModelIn this section some extensions of the matrix geometric algorithm, presented in [11], are intro-duced. Our aim is to �nd the equilibrium distribution of the Markov process represented by the
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following transition matrix in the in�nite bu�er case:
P (1) = 0BBBBBBBBB@

P0i=�LCi C1 � � � CU 0 � � � 0 0 � � �P�1i=�LCi C0 � � � CU�1 CU � � � 0 0 � � �... ... . . . ... ... . . . ... ... . . .C�L C�L+1 � � � C�L+U C�L+U+1 � � � CU 0 � � �0 C�L � � � C�L+U�1 C�L+U � � � CU�1 CU � � �... ... . . . ... ... . . . ... ... . . .
1CCCCCCCCCA (1)

The submatrices Ci have dimension dC. In the �nite bu�er case the transition matrix is denotedby P (B) with dimension (B + 1)dC. The �rst B columns of submatrices of P (B) equal the �rstB columns of P (1) and its last column is given by [0 ::: 0 CU PUi=U�1Ci ::: PUi=0 Ci]T .4 The in�nite bu�er systemBy grouping blocks of U � U matrices Ci if U > L, or blocks of L � L matrices Ci if L > U aQuasi-Birth-and-Death (QBD) process is obtained, which can be solved by a classical algorithme.g. folding algorithm ([13]), the logarithmic reduction algorithm ([7]) and many others ([6, 2]).Many of these algorithms use a well known rate matrix R (or the related G matrix). For thespeci�c model described in the preceding section(s) the computational complexity of the ratematrix can be reduced considerably by using the internal structure of P (1). We consider thesystem for U � L, without loss of generality. When U � L then the rate matrix R, correspondingto the QBD, is also a block of U � U matrices Rij (1 � i; j � U) with dimension dC.In [8] it is shown that in the case of a positive recurrent chain the matrices Rij are �nite andhave a useful probabilistic interpretation:� for any integer number n, (Rij)kl is the expected number of visits to the state (n+U�i+j; l)until the �rst return to the level n+ U � i or below, under the condition that the processstarts in state (n; k).Let us now de�ne Ri = RU+1�i;1. Thus for any integer number n, (Ri)kl gives the expectednumber of visits to the state (n + U; l) until the �rst return to state n+ U � 1 or below, underthe condition that we started in state (n + U � i; k). Using the probabilistic interpretation, wecan easily prove that R can be written as:
R = 0BBBBBBBB@ 0 0 0 � � � 0 RUI 0 0 � � � 0 RU�10 I 0 � � � 0 RU�20 0 I � � � 0 RU�3... ... ... . . . ...0 0 0 � � � I R1

1CCCCCCCCA
U (2)

If � = (�n)n�0 is the steady state vector of P (1) (with the dimension dC of Ci equal to the one of�n), it follows from the substitution of (2) in the matrix geometric method of [8] that the steadystate vector must satisfy:�n = �n�1R1 + : : :+ �n�URU ;8n � U: (3)
5



Substituting (2) in the equation which computes R in [8] proves that the rate matrices Ri mustsatisfy:Ri = Ci +RiC0 + LXl=1 l+1Xk=10BB@ Xi1+:::+ik=l+ii�i1�min(U;L+i) ; i1;:::;ik�1 kYj=1Rij1CCAC�l ; 1 � i � U: (4)One way of solving this set of matrix equations is to use an iterative scheme, starting with thevalues of the rate matrices Ri set to zero. To obtain the new values R(n+1)1 ; : : : ; R(n+1)U , we usethe method below:R(n+1)i = Ci +R(n)i C0 + LXl=1 l+1Xk=10BB@ Xi1+:::+ik=l+ii�i1�min(U;L+i) ; i1;:::;ik�1 kYj=1R(n)ij 1CCAC�l ; 1 � i � U: (5)The validity of this iterative scheme is proven in a probabilistic manner in proposition 2 ofAppendix A. In the following subsection we describe an e�cient implementation of this iterativescheme and compare its complexity with that of some other, well known algorithms for QBDwhich do not use the internal structure of P in the same way as we do.4.1 Implementation and Complexity of the Repetitive SchemeIn this section we present a fast method for obtaining the matrices R(n+1)i having found R(n)i , theidea is the following. We start by creating a set of matrices Xi as followsX1 = R(n)1Xi = R(n)i +Pi�1j=1R(n)i�jXj 2 � i � L (6)This step takes about (dC)3 � L2 ops. Next we de�ne the matrices Y Ui asY Ui = R(n)U �Xi (7)with 1 � i � L and the number of ops is negligible compared with the previous step. Havingdone this we �nd the matrix R(n+1)U as followsR(n+1)U = LXi=1 Y Ui � C�i + CU +R(n)U C0 (8)keeping the matrices Xi as before, we now show how to obtain R(n+1)i�1 having found R(n+1)i(Y i�11 ; Y i�12 ; : : : ; Y i�1L ) = (R(n)i ; Y i1 ; : : : ; Y iL�1) + (R(n)i�1 �X1; : : : ; R(n)i�1 �XL) (9)and we �nd R(n+1)i�1 asR(n+1)i�1 = LXj=1Y i�1j � C�j + Ci�1 +R(n)i�1C0 (10)which indeed results in a scheme of order (dC)3UL times the number of iterations. Comparingthis with the complexity of some well-known general purpose QBD algorithms we �nd that theextra structure in P allows us to reduce the computational complexity as follows6



1. the logarithmic reduction scheme of Latouche and Ramaswami has a complexity of 253 �(dC)3 � U3 � I1 with I1 the number of iterations for obtaining the matrix R,2. the U-algorithm uses 73 � (dC)3 � U3 � I2 ops where I2 is the number of iterations andI1 = log(I2),3. the new algorithm computes R in 3 � (dC)3 � U � L � I3 ops with again I3 the number ofiterations,clearly both schemes are outperformed by the new one in case the tra�c has no bursty characteri.e. the number of iterations is small. For more bursty tra�c the performance will depend onthe number of iterations I3 which can be shown smaller than or equal to I2 (we get an equality ifU = L = 1) but is expected to be (much) larger than I1. Thus in case of bursty tra�c the choicebetween the di�erent schemes depends on the exact values of U and L.Perhaps it's good to explain why I2 and I3 are di�erent from each other although they arebased on the same formula. When the U-algorithm is used all the entries of the matrix R (ofdimension dC � U) are calculated using the classical formula (see [7]). In our case we computethe �rst dC rows using this formula and then calculate the rest as a function of the �rst row. Asa consequence we get a di�erent result for the other components of R(n). Let us demonstrate thisby means of an example.Example Suppose that L = U = 2. Then R(0)c and R(0)n are both equal to zero, where thesubscripts refer to the classic and the new scheme. Using the formula of [7]R = A0 +RA1 +R2A2: (11)Where A0; A1 and A2 are the matrices corresponding to the QBD process that is found bygrouping the matrices Ci. We �nd thatR(1)c =  C2 0C1 C2 ! : (12)If we now look at R(1)n we �nd the same �rst column but a di�erent second oneR(1)n =  0 C2I C1 !2 =  C2 C2C1C1 C2 + (C1)2 ! : (13)And thus as R(1)c and R(1)n are used to �nd R(2)c and R(2)n we get di�erent results after n stepsand thus a di�erent rate of convergence. This is why a new probabilistic proof was necessary.When looking at our application, the computation of the e�ciency above does not yet takeinto account the advantage of computing the equilibrium distribution for periodic sources onframe level instead of on slot level.Example Let us look at the complexity of the computation of matrix R for 2 on/o�-sources.If source i is \on", this means that the source behaves as a periodic source, sending 1 cell perTi slots. Source i being \o�" means that the source sends no cells. Let us consider a \periodic"server, taking 1 cell from the bu�er per Ts slots.For performance analysis on slot level, source i has thus Ti states describing its on behaviourand 1 state for the o� behaviour, resulting in a total of Ti+1 states. The server has Ts states. Since7



we have to take into account in which state every source and the server remain, the dimension ofde matrices Ci equals dC = (T1 + 1)(T2 + 1)Ts. L is the maximum number the bu�er occupancycan decrease (per slot): this happens if both source 1 and 2 are in the o�-state (no arrivals) and ifthe server takes 1 cell from the bu�er, so L = 1. U is the maximum number the bu�er occupancycan increase (per slot): this happens if source 1 and 2 transmit a cell during the same slot and ifthe server takes no cells from the bu�er, so U = 2. As shown above, the complexity for computingR equals 3 � (dC)3 � U � L � I3, which gives after substitution 6 � (T1 + 1)3 � (T2 + 1)3 � T 3s � Is,where Is denotes the number of iterations on slot level.For performance analysis on frame level, let us consider the worst case where the least commonmultiple of T1, T2 and Ts is their product. Thus the frame must be T1T2Ts slots long in orderto contain an integer number of the periods T1, T2 and Ts. The server is now described by 1state and it takes T1T2 cells from the bu�er per frame. Source i is described by 2 states: anon-state and an o�-state. If source 1 remains in the on-state it transmits TsT2 cells per frameand if it remains in the o�-state it transmits no cells at all (per frame). If source 2 remains inthe on-state it transmits TsT1 cells per frame and if it remains in the o�-state it transmits nocells at all (per frame). Again the dimension of the matrices Ci is given by the product of thedimensions of the transition matrices of the sources and the server, which equal respectively 2, 2and 1, so dC = 4. For the computation of L, we have to consider the case where both sourcesare in the o�-state and since the server always removes T1T2 cells from the bu�er L = T1T2.The bu�er can only increase a maximum number of cells U (per frame) if both source are inthe on-state (arrival of TsT1 + TsT2 cells) and since the server always takes T1T2 cells from thebu�er U = TsT1+ TsT2� T1T2. After substitution in the complexity expression, we �nd that thecomplexity is now given by 192 �T1 �T2 � (TsT1+TsT2�T1T2) � If , where If denotes the numberof iterations on frame level.If one compares the exponents of T1, T2 and Ts in the complexity expressions for the slot levelcase and for the frame level case, one can see that even in this worst case scenario performanceanalysis on frame level is more e�cient than on slot level. Even in a small example such as T1 = 3,T2 = 4 and Ts = 5 the number of ops becomes 52992If for frames, while it takes 6000000 Isops for a slot level calculation.5 The �nite bu�er systemLet us now consider a bu�er with a �nite capacity , say B, and denote the stationary distributionof P as � = [�0 : : : �B ]. Notice that the last column of P now consists of sums, in such a waythat P is stochastic. Without loss of generality we assume that U � L. Throughout this sectionwe'll follow the lines of reasoning maintained in [11]. Let us assume that the steady state vector� can be written as:�n = �n + �n; 0 � n � Bin such a way that�n = �n�1R1 + �n�2R2 + : : : + �n�URU n � U; (14)�n = �n+1S1 + �n+2S2 + : : :+ �n+LSL n � B � L: (15)The dimensions of the vectors �n; �n and �n are all equal to dC, the dimension of the matricesCi, which is also the order of Ri and Si. By de�nition we know that (�n)n obeys the steady-stateequations. And above we assumed that �n = �n + �n. Thus the steady state equations hold ifthey both hold for (�n)n and (�n)n. Thus if�n = �n+LC�L + : : :+ �nC0 + : : : + �n�UCU U � n � B � L; (16)�n = �n+LC�L + : : :+ �nC0 + : : :+ �n�UCU U � n � B � L: (17)8



This allows us to obtain a set of non-linear equations for the matrices Ri and Si by substituting(14) resp. (15) repeatedly in equation (16) resp. (17) until the only �n�u's and �n+l's remainingare those with 1 � u � U and 1 � l � L. This results in a set of U + L non-linear equations bymatching the coe�cients of these �'s and �'s. We have the following expression for SiSi = C�i + SiC0 + UXl=1 l+1Xk=10BB@ Xi1+:::+ik=l+ii�i1�L ; i1;:::;ik�1 kYj=1Sij1CCACl ; 1 � i � U: (18)and the condition on Ri is the same as in (4). We have already shown that there exists a solutionfor (4) and because of symmetry reasons we are able to solve (18) in a similar manner.Thus once we know the values of �0; : : : ; �U�1 and �B�L+1; : : : ; �B , we can compute theequilibrium distribution using (14) and (15). As in [11], the remaining steady state equationsyield a homogeneous set of linear equations but this time for �0; : : : ; �U�1 and �B�L+1; : : : ; �B :[ �0 : : : �U�1 �B�L+1 : : : �B ] T VU W ! = 0: (19)We will describe the structure of the matrices T and U in Appendix B, the other two are analogue.6 Numerical resultsLet us consider a single �nite bu�er in an ATM bu�er system. Several sources (say N) aresending ATM cells to this bu�er and a single server takes cells from the bu�er if the bu�er is notempty at a rate which can be less than or equal to 1 cell/slot. Although the method describedin the previous section can be used to �nd the equilibrium distribution for sources described bygeneral stochastic processes and for any server behaviour (as long as the transition matrix ofthe resulting Markov process for the bu�er occupancy can be written as P (B)), the method isespecially interesting for \periodic" on/o� sources: i.e. source i transmits Ki cells per frame ofTf slots if that source remains in the on-state; if source i remains in the o�-state, the sourcesends no cell during a frame. Only at the end of a frame, source i can change states according totransition matrix Qi:Qi =  pon(i) 1� pon(i)1� poff (i) poff (i) ! (20)We also assume that the server is a deterministic server, taking Ks cells from the bu�er per frame.The transition matrix of the process describing the bu�er occupancy then has indeed the samestructure as P (B), with L = Ks and U =PNi=1Ki �Ks.Figures 1 and 2 show results for N = 5 identical sources, the frame has length Tf = 10slots, Ki = 5, pon = 0:91 and poff = 0:99. The average load is � = 2:5=Ks. Figure 1 shows thecurves for the CLR: decreasing the server rate means actually increasing the average load becauseof a decrease in available bandwidth in the network. This model describes how ABR tra�c isinuenced by ow control when the load of other tra�c (with higher priority) increases in thenetwork such that less bandwidth is left for the ABR tra�c. Figure 2 shows the probability thatthere are b cells in the bu�er for a bu�er with size B = 128. Notice that the oscillations arecaused by the periodicity of the sources. An extreme case is Ks = 10, since the number of cellsarriving at or leaving the bu�er is always a multiple of 5. Starting from an empty or full bu�er,there can only be 0, 5, 10, ... or 128, 123, 118, ... cells in the bu�er, i.e. P (1) = 0. Starting froma bu�er which is not empty and not full, after a �nite time the full bu�er or the empty bu�er9



state is reached and thus the equilibrium distribution will still have only non-zero probabilitiesat 0, 3, 5, 8, ... The e�ect of the oscillations can be decreased by adding some Bernoulli tra�c inthe background, although it will not disappear entirely and adding Bernoulli tra�c means thatmore rate matrices have to be computed, because U will increase by Tf .7 ConclusionsThis paper has presented an e�cient algorithm for calculating the rate matrices of a matrixgeometric representation of the equilibrium distribution of the Markov process of a multiplexerwith periodic sources. The reduction in computational complexity is achieved by using the specialstructure, resulting from the periodicity of the arrival streams, of the transition matrix of theMarkov processes. This mehod can make the matrix geometric method attractive for performanceevaluation for more realisitic models of ATM multiplexers with many periodic arrival streams. Itcan thus help in dimensioning of bu�ers and in optimising parameter values for systems involvingshapers and ow controlled ABR and UBR tra�c.A Appendix AProposition 1:If we de�ne the matrices (X(n)i )1�i�U;n�0 as:X(0)i = 0 (21)X(n+1)i = Ci +X(n)i C0 + LXl=1 l+1Xk=10BB@ Xi1+:::+ik=l+ii�i1�min(U;L+i) ; i1;:::;ik�1 kYj=1X(n)ij 1CCAC�l ; 1 � i � U: (22)then they form non-decreasing sequences in n, which converge to Ri.Proof:Since X(0)i = 0 and X(1)i = Ci it is obvious that X(0)i � X(1)i . Through induction it is easyto show that then X(n)i � X(n+1)i . Since Ri � X(0)i = 0. It follows again through induction thatX(n)i � Ri for any n. This proves thatX�i = limn!1X(n)i � Ri (23)It now remains to show that Ri � X�i . Therefore we de�ne the taboo probability mP (n)(i;j)(k;l) as theprobability that, starting in the state (i; j) at time 0, the chain reaches (k; l) at time n withoutreturning to level m (or below) in between. We also de�ne the matrix RU+1�k(N;�) as(RU+1�k(N;�))j;� = NXn=1 l+UP (n)(l+k;j)(l+U+1+�;�) (24)for � � 0; 1 � j � dC; 1 � � � dC; 1 � k � U . It follows from the probabilistic interpretation ofRi thatRi = limN!1Ri(N; 0) (25)10



Based upon their de�nition, a recursive expression for the taboo probabilities can be constructed:l+UP (1)(l+k;j)(l+U+1;�) = (CU+1�k)j;� (26)and for n � 2:l+UP (n)(l+k;j)(l+U+1;�) = dCXh=1 LX�=0 l+UP (n�1)(l+k;j)(l+U+1+�;h)(C��)h;� (27)Adding the equations (26) and (27) for n ranging from 1 to N and substituting U + 1 � k by iyields in matrix-notation:Ri(N; 0) = Ci + LX�=0Ri(N � 1; �)C�� (28)We now derive the an inequality for the matrices Ri(N;�):(RU+1�k(N;�))j;�= NXn=1 l+UP (n)(l+k;j)(l+U+1+�;�)= �+1Xp=1 X0��1<:::<�p=��i��i�1�U;�0=k�U�1 dCXh1;:::;hp�1=1h0=j;hp=� NXn=1 Xr1+:::+rp=n1�ri�N pYj=1 l+U+�jP (rj)(l+U+1+�j�1;hj�1)(l+U+1+�j ;hj)� �+1Xp=1 X0��1<:::<�p=��i��i�1�U;�0=k�U�1 dCXh1;:::;hp�1=1h0=j;hp=� pYj=1 NXrj=1 l+U+�jP (rj)(l+U+1+�j�1;hj�1)(l+U+1+�j ;hj)= �+1Xp=1 X0��1<:::<�p=��i��i�1�U;�0=k�U�1 dCXh1;:::;hp�1=1h0=j;hp=� pYj=1 NXrj=1 l+UP (rj)(l+U+1+�j�1��j ;hj�1)(l+U+1;hj)In matrix-notation this is equivalent with:RU+1�k(N;�) � �+1Xp=1 X0��1<:::<�p=��i��i�1�U;�0=k�U�1 pYj=1R�j��j�1(N; 0) (29)Substitution of (29) in (28) yields:Ri(N; 0) � Ci +Ri(N � 1; 0)C0+ LXl=1 l+1Xk=10BB@ Xi1+:::+ik=l+ii�i1�min(U;L+i) ; i1;:::;ik�1 kYj=1Rij (N � 1; 0)1CCAC�l ; 1 � i � U: (30)We now have that Ri(1; 0) = Ci = X(1)i , such that Ri(2; 0) � X(2)i . By induction (30) yields thatRi(N; 0) � X(N)i for N � 1. The sequence of matrices Ri(N; 0) is non-decreasing and tends toRi, such that the preceding inequality implies that Ri � X�i and therefore Ri = X�i .
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B Appendix BIn this section we show the construction of the matrices T and U which are part of the linear setof equations in (19). An important remark about this appendix is that if we talk about the j-thcolumn (row) of a matrix, we'll actually mean the columns (rows) (j � 1) � dC + 1 until j � dC,thus we think in terms of matrices of order dC. Let us start with the matrix T :T = I � Swhere I is the unity matrix of dimension dC times U and S has the following form:Si;1 = �P�(i�1)k=�L Ck�+ 1fL=UgRU�(i�1)C�U U � i � 1S1;2 = C1 +RUX1Si;2 = C�i+2 +RU�(i�1)X1 + 1fU=LgRU�(i�2)C�U U � i � 1; i � 2Si;j = RU�(i�1)Xj�1 + Si�1;j�1 U � i � 2; j � 3S1;j = Cj�1 +RUXj�1 j � 3where the values Xj for 1 � j � P � 1 represent the matrices below:Xj = j�(U�L)Xm=0 0BB@0BB@ mXk=1 Xi1+:::+ik=mi1;:::;ik�1 kYl=1Ril1CCAC�U+j�m1CCA :As can be seen from the formula above we need a smaller computational e�ort as the di�erencebetween U and L increases. This concludes the construction of T .Before we can descibe the matrix U we'll introduce two matrices Z and F , this to make thestructure of U more transparent:Z = 0BBBBBBBB@ S1 I 0 0 � � � 0S2 0 I 0 � � � 0S3 0 0 I � � � 0... ... ... ... . . . ...SL�1 0 0 0 � � � ISL 0 0 0 � � � 0
1CCCCCCCCA ; F = 0BBBBBBBB@ I00...00

1CCCCCCCCA ;where I denotes the unity matrix of dimension dC. With this in mind U equals the followingde�nition U = [U1U2 : : : UU ]:U1 = ZB�2L+1 hZLF � ZLF �P0i=�LCi�� ZL�1F �P1i=�LCi�� : : :� FC�Li ;Uj = ZB�2L�(j�2) hZLF � ZL+j�1FCj�1 � ZL+j�2FCj�2 � : : : � FC�Li ; 2 � j:The two remaining matrices V and W are very similar because of the symmetric nature of thesystem.References[1] C. Blondia. A discrete-time batch markovian arrival process as b-isdn tra�c model. BelgianJournal of Oper. Res., Statistics and Computer Science 32 (3,4) 3{23, 1993.[2] C. Blondia and O. Casals. Statistical multiplexing of vbr sources: A matrix-analyticalapproach. Performance Evaluation 16 5 - 20, 1992.12



[3] C. Blondia O. Casals and B. Van Houdt. Bu�er analysis of the ER congestion controlmechanism for the ABR service category in ATM networks. Proc. of PICS '98, Lund, May1998, 1998.[4] O. Casals C. Blondia L. Cerda and B. Van Houdt. Congestion control and charging forthe ABR service category in ATM networks. Proc. of SPIE, Performance and Control ofNetwork Systems II, Boston, 1998.[5] G. Choudhury, D. Lucantoni, and W. Whitt. Squeezing the most out of ATM. AT&T BellLaboratories Report, May, 1993.[6] W. Grassmann and D. Heyman. Computation of steady-state probabilities for in�nite markovchains with repeating rows. Bellcore Technical Memorandum, 1991.[7] G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for quasi-birth-deathprocesses. Journal of Applied Probability 30 (650-674), 1993.[8] M. F. Neuts. Matrix-geometric solutions in stochastic models. The Johns Hopkins UniversityPress, Baltimore, 1981.[9] M. F. Neuts. Algorithmic probability. Chapman and Hall, London, 1995.[10] K. Wuyts and R. Boel. E�cient matrix-geometric methods for b-isdn by using the spectraldecomposition of the rate matrices. Advances in matrix-Analytic Methods for StochasticModels, A. Alfa and S. Chakravarthy, eds., pp.341-359, Notable Publications, 1998.[11] K. Wuyts and R. K. Boel. A matrix geometric algorithm for �nite bu�er systems with B-ISDN applications. Proc. ITC Specialists Seminar on Control in Communications (Lund,Sweden) 265-276, 1996.[12] K. Wuyts and R.K. Boel. E�cient performance analysis of ATM bu�er systems by using thespectral analysis of rate matrices. Proc. ATM '96, Ilkley, 1996.[13] Jingdong Ye and San qi Li. Folding algorithm, a computational method for �nite QDBprocesses with level-dependent transitions. IEEE Trans on Comm. 42(2/3/4) 625{639, 1994.
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Figure 1: CLR as a function of the server rate Ks for several bu�er sizes; there are 5 identicalsources, Tf = 10, Ki = 5, pon = 0:91 and poff = 0:99.
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