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Abstract

In this paper we generalize a prior performance analysis [5] of the binary
Identifier Splitting Algorithm (ISA) with polling to the Q-ary case (to resolve a
collision @ slots are provided instead of two). The analysis combines a number
of queueing theoretical techniques with a fair amount of combinatorics. The
ISA algorithm is a contention resolution scheme that operates on the contention
channel of a wireless ATM access network. It has a tree structure and is used to
inform a Base Station about the bandwidth requirements of the Mobile Stations.
We evaluate the influence of the splitting factor @ on the throughput and access
delay of the protocol and its interaction with the other protocol parameters.

1 Introduction

In this paper, the following class of WATM access systems is considered. A wide
variety of Medium Access Control (MAC) protocols for WATM belongs to this class
of MAC protocols, examples are DSA++ [8, 4], EEMAC, D®?MA, [7] and many more.
Consider a cellular network with a centralized architecture, i.e., the area covered by
the wireless ATM network is subdivided into a set of geographically distinct cells each
with a diameter of approximately 100m (slight overlaps are allowed to facilitate the
handovers from one cell to the next). Each cell contains a base station (BS) serving
a finite set of mobile stations (MS). This BS is connected to an ATM switch, which
supports mobility, realizing seamless access to the wired network.

Two logically distinct communication channels (uplink and downlink) are used to
support the information exchange between the BS and the MSs. ATM cells arriving
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Figure 1: Frame Structure

at the BS are broadcasted downlink, while upstream ATM cells must share the radio
medium using a MAC protocol. The BS controls the access to the shared radio chan-
nel (uplink). The access technique used is Time Division Multiple Access (TDMA)
combined with Frequency Division Duplex (FDD) to separate the uplink and downlink
channels.

Traffic on both the uplink and downlink channel is grouped into fixed length frames
(of approximately 1-2 ms length) to reduce the battery consumption. The uplink and
downlink frames are synchronized in time, i.e., the header of a downlink frame is
immediately followed by the start of an uplink frame (after a negligible round trip time
that is captured within the guard times, see Figure 1). Each uplink frame consists
of a (variable length) contentionless and a (variable length) contention period, where
the length of the contentionless period dominates that of the contention period. An
MS is allowed to transmit in the contentionless period after receiving a permit from
the BS. To obtain these permits the MSs must inform the BS about their bandwidth
needs using requests. Whenever an MS forwards an ATM cell to the BS a request is
piggybacked to the ATM cell. When an ATM cell that is generated in an MS finds
the transmission queue empty (in that MS), it uses the contention period to inform
the BS about its presence (i.e., it uses the contention period to sent a request), as
piggybacking is no longer an option.

The contentionless period in an uplink frame contains a number of fixed length slots.
These slots are large enough to carry a single ATM cell, a request and the physical
overhead needed to guarantee a safe guard time, some training sequences and error
detection codes. The slots forming the contention period have the same size but they
can be subdivided into m minislots (as requests tend to be much smaller than ATM
cells). Realistic values for m are 1, 2, 3 and possibly 4. Each downlink frame starts with
a frame header in which the required feedback on the contention period of the previous
uplink frame is given. This informs the MSs participating in the contention period
whether there was a collision or whether the request has been successfully received.
The frame header also contains the permits for the contentionless period in the next
uplink frame. Finally, a unique n-digit MAC address is assigned by the BS to every
MS (we make use of Q-ary digits).

Thus, the main idea is that every MS oscillates between a state in which the band-
width requirements are piggybacked with upstream ATM cells and a state in which the



MS needs to access the contention channel to inform the BS about its needs (especially
those MSs that hold bursty VBR connections). Therefore, the delay experienced on the
contention channel has a major impact on the delay performance of the MAC protocol.
The contention resolution scheme studied in this paper is the Identifier Splitting Algo-
rithm (ISA) combined with polling [2, 3, 5, 7]. In this paper the performance analysis
presented in [5] for the binary case is generalized to the ()-ary case.This generalization
causes some changes in the analysis, still the main lines of reasoning can be retained.
For the throughput analysis however a different approach from [5] was chosen.

In the remaining part of the paper a minislot is simply called a contention slot or
slot, except when stated otherwise. The paper is organized as follows. The Identifier
Splitting Algorithm is treated in more detail in Section 2 and its performance is evalu-
ated in Section 3. This analysis is used in Section 4 to investigate the influence of the
system parameters on the performance, in particular on the throughput and the access
delay. The conclusions which follow from this investigation are summarized in Section
5.

2 The Identifier Splitting Algorithm

The Identifier Splitting Algorithm is based on the well known tree algorithm [1] and was
proposed by Petras [2, 3]. A contention cycle (CC) consists of a number of consecutive
upstream frames during which the contention is solved for all requests present in the
MSs at the beginning of the cycle. The system is gated, in the sense that any request
generated by an MS during a CC that wants to use the contention channel is blocked
until the start of the next CC.

In the first frame of a cycle a single contention slot is available. We refer to this
slot as level 0 of the tree. Any MS having a request ready at the start of this CC
makes use of this slot. Next the BS checks whether a successful transmission occurred
in this slot and informs the MS(s) that were involved in the scheme accordingly in
the next downstream frame using a feedback field. Two situations are possible: (i)
An MS sending its request in this slot succeeded. In this case the MS returns to the
piggybacked state. (ii) The transmission was not successful, i.e., a collision occurred.
In this case, the next level (level one) of the CC provides () contention slots. Based
on the first digit of their MAC addresses, as opposed to the classical coin flip, the MSs
that are involved split up into @ distinct sets. An MS belonging to the first set uses
the first slot to attempt a retransmission, the second set uses the second slot and so
on.

The process of generating () slots in the next level for each slot in which a collision
occurred, is repeated level after level, each time using the next digit of the Q-ary MAC
address in case of a collision. Thus during the i-th level of a CC, two MSs can only
collide if their MAC addresses have the same i first digits. Therefore, provided that the
address that uniquely identifies an MS is n digits long, collisions are always resolved at
level n. Also notice that for every level the number of contention slots equals @) times
the number of collisions of the previous level. Figure 2 shows an example of a CC for
@ = 2 with 6 participants. In this figure CO refers to a collision, SU to a success and
EM to an empty slot. The MAC addresses of the successful MSs are added to the
corresponding slot.
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Figure 2: Demonstrating ISA

A level of the tree always corresponds to a single frame, except when the number
of slots at level i is larger than some predefined value L. This parameter L defines
the maximum number of contention slots that we allow in a single frame. Thus, if a
certain level of the tree requires x = mL + j slots with 1 < j < L, slots then m + 1
frames are required for this level.

2.1 The Identifier Splitting Algorithm Combined with Polling

One of the attractive features of the Identifier Splitting Algorithm, apart from its
dynamic nature, is that as the scheme is being resolved, the BS obtains more and more
knowledge about the MSs that are still competing. For example, if the BS notices
that the tree at level i (see Figure 2) contains k collisions and the MAC-addresses
are n digits long, then the BS concludes that the remaining competing MSs can only
have kQ"~? possible addresses. This follows from the fact that each slot at level i
corresponds to Q™% addresses. This information can be used by the BS in an attempt
to improve the performance characteristics. The basic idea here is that when the size
of the remaining MAC address space Y becomes smaller than some predefined value,
say NN, the protocol switches to polling. Polling, in this context, means that one slot is
provided for each address in the remaining address space. In this paper IV, is assumed
to be smaller than or equal to L. Moreover, in [6] we have shown that the binary ISA
protocol results in a smaller throughput and worse delays if N, is chosen bigger than
L (we did not investigate ¢ > 2 in [6]).

2.2 Skipping the First Few Levels

In the previous sections the contention period of the first frame of a CC consisted of a
single contention slot (level zero of the tree). Now we drop this condition: instead of
starting with just one contention slot in the first frame, we provide more than one slot
during the first frame of a CC. The starting level is said to be S;, with 0 < S; < n, if the
first frame of the CC contains Q' contention slots. As with N,, Q' is assumed to be



smaller than L. During the first frame, an MS taking part in the contention cycle selects
one of the Q! slots based on the first S; digits of its n-digit MAC address. Although
it is possible to evaluate the Q-ary splitting algorithm with a dynamic starting level
(see [5]), we do not consider a dynamic starting level S; in this paper.

3 Performance Analysis

Let n be the size of the MAC-addresses (in digits). The number of MSs located within
the reach of the BS is assumed to be Q™, i.e., all MAC addresses are utilized.
Furthermore, the aggregate traffic generated by all MSs on the uplink contention chan-
nel is assumed to have a Poisson distribution with a mean of A requests per frame. As
the number of MSs is finite and equals ", the number of requests generated during
a CC should never exceed Q™. Therefore we drop at random some of the arrivals if
this value is exceeded (for z > Q™ arrivals, we drop & — Q™ arrivals). Notice that
the fact that we drop these arrivals at random (instead of dropping the last z — Q"
arrivals) should hardly have any influence on the numerical examples presented, as
the probability of having more than @™ arrivals during a CC is negligible. Random
dropping assures that the requests arrive in a uniform way during a CC. Hence, define
the random variable I; as the number of requests generated during a CC consisting of
i frames, then P[I; = k] = %e’”’ for k < Q" and P[; = Q"] = > 15 0n %e’”.
Notice that we do not need to consider bursty input traffic since we are observing the
access channel used by an MS that wants to transmit a first request after a period
of silence. In real-life systems the following holds with respect to the number of MSs
participating, and their addresses.

e MSs that were successful during the last frame of a CC, will never participate in
the next CC.

e Participating MSs, regardless of the frame in which they were successful, are less
likely to take part in the next CC as opposed to those that did not participate
at all.

To keep the model analytically tractable, both these remarks are ignored. Thus the
addresses of the MSs taking part in the scheme at the beginning of a CC are uniformly
distributed over the complete address space and their number is distributed according
to a Poission distribution, where the mean depends on the length of the previous CC.
Finally, we assume that each level of the CC corresponds with a single frame. Therefore,
we cannot use the model to study a system in which the contention channel is highly
loaded.

The following random variables will be used in the sequel of this section: X, resp.
X,, denotes the number of contenders or participants in a CC for the ISA protocol
without resp. with polling. R, resp. R,, denotes the level at which the CC is resolved
(i.e. the number of frames needed minus one) and this again for the ISA scheme

without resp. with polling. C’fc) and Ci(a), denotes the number of collisions at level 4
for both protocols. These variables range from 0 to Q*. P, denotes the level at which
we poll for the ISA scheme with polling. If the scheme is solved without polling we let
P, be equal to n + 1. Furthermore, we use the symbol C]' to denote the number of



different possible combinations of r from n different items. In the next two subsections
we demonstrate how the delay and throughput can be calculated if S; = 0. The results
for S; > 0 can be obtained from those with S; = 0. The procedure required to obtain
the results for a higher starting level S; is very similar for both the binary and the
(Q-ary case and therefore all details on this procedure are omitted.

3.1 The Delay Analysis

(A) We start by studying P[R, < i | X, = k]. Two cases can be considered: first,
the CC might be solved before level i or at level ¢ due to polling, secondly, it might
be solved at level ¢ without a switch to polling. Thus we get PR, < i | X, = k] =
PR, <i—1UP,<i|X,=k+P[R,=iNP, >i|X,=k|] The first probability is
discussed in (A1), the second in (A2).

(A1) We calculate the complementary probability mass. Let u; = |N,/Q""T!].
By definition of the polling mechanism we have P[R, > iN P, > i | X, = k] =

P[C-(f)] > u; | X, = k]. The right-hand side is found using the following relationship

1
PIC =ui+a| X, =k =P[C”, =u; + 2 | X, = k] (1)

for > 1, but not necessarily for z < 0. This observation motivates us to study
Ci(c) conditioned on X, in more detail. We propose the following variation on the
Inclusion-Exclusion Principle (where the first equality is easily proven by induction on

k): s(i, Q' k) =QU—kC O,

. 1 l Cl CQnilQn—i Qifl
s(i, k) =CP > Q(”*%% =N s+ a k), (2)
1,=0 k r=1

where s(i,1, k) = P[C') = Q' — 1| X, = k]. This concludes (A1).
(A2) In the binary splitting algorithm this probability is found easily by noticing
that each collision at level i — 1 involves only two MSs, otherwise it cannot be solved
at level i. Clearly with Q-ary splitting this is no longer the case. Nevertheless, we
still have the following equality: P[C'") = u; + 2N C\" = 0| X, = k] = P[C\"), =
u; +x N C’fc) =0| X, = k], for x > 1. At level i we can subdivide the addess space in
Q' subsets of size Q" based on the first i bits of the addresses. Each of these subsets
is defined as a wvirtual slot at level i. We state that a wvirtual slot or subset at level i is
collision free during a CC when there is at most one contender with an address that is
part of that subset. Next, define p(i,l;, k) as the probability that at level i a specific
set of Iy virtual slots is collision free and that at level i + 1 all virtual slots are collision
free, given that we had k contenders in the CC. Notice that the number of collisions at
level i might be smaller than Q? — I;, so other wvirtual slots that do not belong to the
specific set of size I; might also be collision free. Hence,

I
. 1 i A O (i)t
p(l,lhk):WE Q! ’)jC'_; C,?fj h@on—i—1)(k=j) (3)
E j=0



Next, define ¢(i,l1, k) as the probability that level i contains I; collisions and level
i+ 1 is collision free. Then, we have the following relationship between p(i, 11, k) and

q(i,h,k): q(i, Q" k) = p(i ,QZ, k) and
Q' I
q(i,l, k) = C2p Z CHHoq(i, + o, k). (4)

This completes (A2).

(B) Let us now demonstrate how to obtain X,. Clearly X, is the steady-state vector

of the Markovian process (X,(la))n, where X,(la) denotes the number of contenders during
the n-th CC. Due to (A),

= [Ro=t-1|X, =k, (5

o (A)d
ta(k,j) & PIX), =j | X =k =Y o —P
for 0 < j < Q"™ —1. When j = Q" we assign the remaining probability mass. X, is
then found by solving the eigenvector problem. Applying the definition of the expected
value gives us the mean number of participants E[X,] in a CC.

(C) Observing the system at a random arrival instance O,,, we require the probability
that there are k contenders in the CC that contains O,, and that there are [ contenders
in the next CC. We denote X(guzn and X )t as the number of participants in these two

CCs. Some straightforward reasoning shows the following relationship be‘rween Xr(,F)T,,
X and X,: PIX\, = 1] = P[X, = I/ E[X,] and P[X) = K] = 29" P[X, =

klt.(k,7)j/E[X,], where t,(k,j) was defined in (5).

(D) Define F,(i, k) as the probability that a tagged request is successful at or before
level i given that we had & contenders in the CC (for the ISA scheme with polling).

Next, we define v; = 1 + N,/Q" “*!. Due to (1) the event C\”, > v; coincides
with C’,(f)l > v;, when conditioned on X, resp. X,, which on its turn coincides with
P, >iN R, >i. Therefore we have
Fali.k) = P[R, <i-1UP, <i| X, =k|+ Y P[R, <inC{"\ = s | X. = k],(6)
§>v;
where R; denotes the level at which our tagged request is successful. The first proba-
bility was found in (A1). For the second one, we define t(i, s, k) as P[R; < in Ci(i)l =

Q! — s | X, = k]. Then we get £(i, Q"1 k) = Q~i+DEC2 " /2" and

n—id1
e teniim
Q’ 1 n—i+1)l L~ k—1
t(i, s, k) Z Q' —CQn
I C/? lisQ" Qi Qs
b 1—1 S+T (s
Ok I1—1 =1

With these values it is straightforward to find the second term of expression (6).



(A,B,C,D) Having done this we can calculate the mean delay. The delay can be split
into two parts. The first D, is the time until the start of the next CC and the second
D, is the number of frames needed until our tagged request is successful. Using the
expressions in (C) and knowing that the arrivals are distributed uniformly Within aCC
(see section 3), the expected value for the first part E[D;] equals ZnH > PIX (o) = = k|
i/(14+ E[R, | Xo = k]) P[R, =i —1| X, = k] i/2. By definition of the expected value
the second part E[D,] equals 327 S, o, PIXY, = K](i + 1)(Fali, k) — Fali — 1,k)),
where F, (i, k) was defined in (D). As in [5], it is also possible to calculate the delay
density function D, (x) (with x between 1 and 2 % (n + 1)) as follows

EJ n+1

v Sy AL A2 6,

s=1 j=[z]—s I=1
.7 a*J_l‘Xa*k] ()

E P =k

( 1+E Q‘Xa:k] [(‘U’l" ] (8)

where G;(1),1 <1 < Q™ is a probability distribution that is equal to %e A for
I < Q" (the remaining probability mass is assigned to G;(Q")). In this equation, s
denotes the number of transmissions (including the successful transmission) a tagged
request needs and j refers to the length (in frames) of the CC in which our tagged
request is generated. Finally, I — 1 equals the number of other competitors in the CC
apart from our tagged one.

3.2 The Throughput Analysis

First, we define a new set of random variables SZ-(a), where Si(”) is the number of slots
required at level i when using the ISA scheme with polling. By definition of the
throughput 7, we have that

BE[X,]
To = Qr (a)
@ PIX, = k)% B[, 51 | X, = K

(9)

Since we already know the probabilities P[X, = k] from the delay analysis, it is
sufficient to find E[Y", S-(a) | X, = k]. As the expected number of slots used equalq the

sum of the expected number of slots used at each level, we can focus on E[ | X, =
k]. Some preliminary calcula‘rlom are presented in (E) (in (E), N, is equal to Zero)

and in (F) we calculate E[ \ X, = k] using the results of (E).

(E) Define p(i, 11,12, k) to be the probability that at level 4, a specific collection of Iy
virtual slots is collision free and at level ¢ + 1, there are exactly ls collision free virtual
slots, given that we had k contenders in the CC. The definition of a wirtual slot was
presented in (A2). Notice that the number of collisions at level i might be smaller
than Q! —l;, thus other virtual slots that do not belong to the specific collection of size
Iy might also be collision free. A reasoning based on the Inclusion-Exclusion Principle



allows us to state the following:

1 &

. i) i1 _
p(i,li, e, k) = oo ZQ(" '”CéleQ Qht
K j=0
] , QT Qns
YQUTI RO R e Y O (i e + k),
j'=0 z=1

with s = Iy — Qly and with p(i,11,1l2, k) = 0 for lo < Ql;. Next, we define s(i,ly,1ls, k)
as the probability of having exactly /; collision free wirtual slots at level ¢ and ex-
actly Iy collisions free virtual slots at level i + 1, given that we had k contenders
in the CC. We have the following relationship between p(i,l1,l2, k) and s(i, 11,12, k):
S(i7 Qi7 l27 k) :p(l, Q1/ l27 k) and
) Q'—h
S(Z7 l] 3 127 k) = Ol?lp(l, l] 3 127 k) - Z CIIII+TS(Z7 l] + z, 127 k) (10)

z=1

This concludes part (E).

(F) Since the expected number of slots at level 0 and 1 are straightforward to obtain,
we can focus on E[Sl@ | X, = k] for i > 2. We distinguish between the following three
events E](i),Ey) and E?Ei): E](i'): the CC is resolved within the first ¢ — 2 levels (with or
without polling) or polling takes place at level i — 1. Ey): the CC is resolved (without
polling) at level i — 1 or polling takes place at level i. E:gi): the CC is not resolved
within the first ¢ — 1 levels and polling does not occur at level i.

Thus, B[S"] = P(E)ES | BY] +P(ES)ES | B +P(E)EIS" |

Eél)] Provided that the first event E](i) occurs, the expected number of slots Si(a) at
level i equals zero. As for the other two, we can rewrite the previously mentioned

events as: E](i) = 052)2 < w1, Eéi) =Ci_2 > vi1NCi_; < v; and Eéi) =Ci_9 >
vi—1 N Ci_1 > v; (v; was defined in (D)). Moreover,

PESY | X =k)E[S™ | X =knE] =
SN s(i-2,Q7 - 1,Q7 —ly k) QU Iy,

1 2vi 1 l2<v;

and finally P(Ey" | X = k)E[S\” | X = kN EY) = 3, o0 Vs, 56— 2,Q77% —
L, Q" — 12, k) Q Iy, where s(i, 11,12, k) was found in (E).

4 Numerical Results

In this section, we investigate the influence of the the splitting factor ) and its inter-
action with the arrival rate A, the trigger value N, and to some extend the starting
level S;. The system parameters are set as follows. The splitting factor @) equals 2,3
or 4, we refer to these three cases as the binary, ternary and quaternary scheme. The
number of digits n depends upon the value of (). In the binary case n equals 8, in the
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ternary case n equals 5 and finally in the quaternary case n equals 4. Thus for the
binary and quaternary scheme we are able to support 256 MSs, in the ternary case we
can have at most 243 MSs. This small difference in the size of the address space should
hardly have any effect on the results because on average the number of participating
MSs in a CC is always much smaller than Q".

4.1 The Influence of the Splitting Factor and the Polling Threshold on the
System Performance

In Figures 3 and 4, the influence of ) on the mean delay and the delay density function
is shown for NV, = 0 and N, = 20. First, a larger splitting factor () results in a smaller
delay (mean and quantiles). Also, the delay differs much more when we compare
the binary and ternary scheme as opposed to the ternary and quaternary scheme. In
general, a larger value for () results in a smaller delay. Also, the delay improvement
that we get from increasing () by one decreases as ) grows. Indeed, increasing ) by
one results in 1/@Q times as many slots to resolve a collision.

Secondly, Figures 3 and 4 show that the influence of the polling threshold N,
decreases as the splitting factor @) increases (mean and quantiles), thus the polling
feature is the most attractive for the binary ISA protocol. A general remark on N, is
that different values of V), only result in a different behavior when there is at least one
multiple of Q2 in between.

Figures 5 and 6 demonstrate the influence of () on the throughput results for N, = 0
and N, = 20. For N, = 0, the highest throughput is obtained with the ternary scheme
except for very low load conditions where the binary scheme is slightly superior. For
N, = 20, we also get the best results for the ternary scheme, in this case the binary
scheme no longer dominates the quaternary scheme for A around one. Taking both the
delay and throughput into account, we may conclude that it is better to use a ternary
scheme as opposed to a binary one. The choice between the ternary and the quaternary
is a tradeoff between the delay and throughput. It has to be mentioned that there do
exist some values for N, for which the binary scheme has better throughput results
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than the ternary, e.g., for 27 = 3% < N, < 32 = 2°.

4.2 The Interaction between the Splitting Factor and the Starting Level
We only show results for S; = 0 and S; = 1, although the analytical model imposes
no restraints on the value of the starting level S; (expect that Q! is bounded by L).
Figures 7 and 8 show the influence of the starting level S; and its interaction with
Q for N, = 0. First, the absolute delay improvement that we obtain for §; = 1
is very similar in all three cases (binary, ternary and quaternary). In general, the
absolute delay improvement that we obtain from a higher starting level is independent
of the splitting factor ). As for the throughput, we always get a slight improvement
when we increase the starting level to one, except under low load conditions. Also,
the throughput losses suffered under low load conditions become more severe as )
increases. Therefore, if we want to combine a higher starting level (S; < 1) with a
higher splitting factor ), we suggest that it is best to make the starting

level S; dynamic between S, and Sy, with Sy, = 0 or 1 (see [5] for the details:
in [5] the procedure is given for the binary scheme but it also holds for Q-ary schemes).

5 Conclusions

In this paper we have generalized a prior performance analysis [5] of the binary Identifier
Splitting Algorithm (ISA) with polling to the @-ary case. From the numerical examples
presented the following conclusions with respect to () can be drawn.

First, better delay characteristics can be obtained (both mean and quantiles) by
selecting a higher splitting factor (). The best throughput results are obtained using
the ternary scheme (with the exception of some exotic cases). Also, looking from the
throughput perspective it is hard to predict whether the binary or quaternary scheme
performs best. Taking both the throughput and delay into account, we may conclude
that the ternary scheme outperforms the binary scheme, while the choice between the
ternary and quaternary is a tradeoff between the delay and throughput characteristics.
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Secondly, the introduction of the polling feature is the most effective in reducing
the delay in the binary scheme (the higher @ the less effective).

Finally, a higher starting level results in lower delays but under low load conditions
a high price is paid in terms of the throughput (the higher @) the more severe the
throughput losses). As with the binary scheme, this loss of throughput under low load
conditions can be combated by making the starting level dynamic (this is out of the
scope of this paper).
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