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2 B. VAN HOUDT ET AL.papers, expliit formulas for the Laplae Stieltjes Transform (LST) of the atual waitingtimes of a ustomer of type k were obtained. A lot of researh e�ort has been donefor the analysis of the MMAP[K℄/PH[K℄/1 queue with a last-ome-�rst-serve (LCFS)servie disipline, e.g., [6, 5℄. In [6℄, the authors present an algorithmi proedure toalulate the steady state probabilities of the MMAP[K℄/PH[K℄/1/LCFS-GPR queueusing tree strutured Quasi-Birth-Death (QBD) Markov hains [15℄ (where GPR standsfor generalized preemptive resume).In this paper, we develop a simple algorithmi proedure to alulate the delaydistribution of a type k ustomer for a disrete-time MMAP[K℄/PH[K℄/1 queue usingMarkov hains of the GI=M=1 type [10, 9℄. Markov hains of theM=G=1 and GI=M=1type have been used in the past to study some of the more lassial queues [11, 8℄. Themethod introdued in this paper an also be used as an alternative way to obtain thedelay distribution related to some of the more lassial queues. In Setion 2 we startby restriting ourselves to MMAP[K℄ arrival proesses that do not allow bath arrivalsto our ([6, 2℄ do not allow bathes either). Afterwards, we extend our method tomore general MMAP[K℄ proesses. We end this paper by presenting some numerialexamples that further demonstrate the usefulness of these queueing systems.2. The disrete-time MMAP[K℄/PH[K℄/1 queueThe arrival proess of the queueing system of interest is a disrete time Markovarrival proess with marked transitions (MMAP[K℄) that does not allow bath arrivals.Customers are distinguished into K di�erent types. The MMAP[K℄ is haraterizedby a set of m�m matries fDk j 0 � k � Kg, with m a positive integer. The (j1; j2)thentry of the matrix Dk, for k > 0, represents the probability that a ustomer of type karrives and the underlying Markov hain makes a transition from state j1 to state j2.The matrix D0 overs the ase when there are no arrivals. The matrix D, de�ned asD = KXk=0Dk;represents the stohasti m �m transition matrix of the underlying Markov hain ofthe arrival proess. Let � be the stationary probability vetor of D, that is, �D = �and �e = 1, where e is a olumn vetor with all entries equal to one. The stationary



Delay in a MMAP[K℄/PH[K℄/1 queue 3arrival rate of type k ustomers is given by �k = �Dke.The servie times of type k ustomers have a ommon phase-type distributionfuntion with a matrix representation (mk; �k; Tk), where mk is a positive integer,�k is an 1 � mk nonnegative stohasti vetor and Tk is an mk � mk substohastimatrix. Let T 0k = e � Tke, then the mean servie time of a type k ustomer equals1=�k = �k(I � Tk)�1e. De�ne mser =PKk=1mk, the mser �mser matrix Tser and themser � 1 vetor T 0ser asTser = 26666664 T1 0 : : : 00 T2 : : : 0... ... . . . ...0 0 : : : TK
37777775 ; T 0ser = 26666664 T 01T 02...T 0K

37777775 :Let mtot = mserm. The ustomers are served, by a single server, aording to a�rst-ome-�rst-serve (FCFS) servie disipline.2.1. Construting a GI=M=1 Type Markov hain (MC)In this setion, we indiate how to alulate the delay distribution of a type kustomer by reating a GI=M=1 type Markov hain with a generalized initial ondition.As opposed to the general approah in many queueing systems, we alulate the delaydistribution without obtaining the steady state probabilities of the queue length. Thetrik used in this setion is to keep trak of the \age" of the ustomer in servie, whilekeeping the MMAP[K℄ state onstant until the servie is ompleted.Consider a Markov hain (MC) with an in�nite number of states labeled 1; 2; : : :.The set of states f1; : : : ;mg is referred to as level zero of the MC, whereas the set ofstates f(i�1)mtot+m+1; : : : ; imtot+mg is referred to as level i of the MC. The statesof level i > 0 are labeled as (k; s; j), where 1 � k � K, 1 � s � mk and 1 � j � m.Let state j of level zero of the MC orrespond to the situation in whih the queue andthe server are empty, while the urrent state of the MMAP[K℄ is j. Let state (k; s; j)of level i of the MC orrespond to the situation in whih there is a ustomer of typek in servie, that arrived i time instanes ago, while the servie proess is urrently inphase s and the MMAP[K℄ arrival proess was in state j at time n� i+ 1, where n isthe urrent time instane.



4 B. VAN HOUDT ET AL.The level of the Markov hain an never inrease by more than one during atransition between time instane n and n + 1. Moreover, the probability of making atransition between state (k1; s1; j1) of level i1 > 0 and state (k2; s2; j2) of level i2 > 0does not depend upon i1 and i2, but only upon the di�erene between i1 and i2.Therefore, the system an be desribed by a transition matrix P with the followingstruture: P = 26666666664
B1 B0 0 0 0 : : :B2 A1 A0 0 0 : : :B3 A2 A1 A0 0 : : :B4 A3 A2 A1 A0 : : :... ... ... . . . . . . . . .

37777777775 ; (1)where Al are mtot �mtot matries, Bl; l > 1; are mtot �m matries, B1 is an m�mmatrix and B0 is an m � mtot matrix. The matries B0, resp. B1, represent theprobabilities of making a transition from level zero to level zero, resp. level one. Thematries Al represent the transition probabilities between level i � l and level i� l+1,whereas Bl holds the probabilities of making a transition from level l� 1 to level zeroof the MC.In order to express the matries Al and Bl, for l � 0, we de�ne the followingm�mtotmatrix L: L = [(�1 
D1) (�2 
D2) : : : (�K 
DK)℄ :The entries of the matrix L hold the probabilities that the MMAP[K℄ arrival proessmakes a transition from state j1 to state j2, with 1 � j1; j2 � m, while a type k,1 � k � K, ustomer arrives and the ustomer will start its servie in phase s, with1 � s � mk. Let Ll = (D0)l�1L for l � 1. Based on the probabilisti interpretation ofthe matries Al and Bl we �nd:A0 = Tser 
 Im;Al = T 0ser 
 Ll;B0 = L;B1 = D0;Bl = T 0ser 
 (D0)l�1;



Delay in a MMAP[K℄/PH[K℄/1 queue 5where 
 denotes the Kroneker produt between matries and Im the m � m unitymatrix. Notie that the matries Al and Bl derease to zero aording to (D0)l.Looking at the probabilisti interpretation of D0, it should be lear that, in general,the smaller the arrival rate � =PKk=1 �k the slower Al and Bl derease to zero.The GI=M=1 type MC de�ned above observes the system at eah time instane,even during the time instanes when the server is empty, in whih ase the Markovhain is at level zero. It is also possible to reate a GI=M=1 type MC that observes thesystem only at time instanes when the server is busy. Moreover, the matries Al, forl � 0, would be idential to those de�ned above. However, the matries Bl, for l � 0,would have a di�erent dimension and di�erent equations for Bl would apply. Bothapproahes lead to the same results and have a similar time and spae omplexity.2.2. Calulating the Steady-State ProbabilitiesFor some MMAP[K℄ arrival proesses, the MC de�ned in the previous setionontains some obvious transient states. Indeed, the states (k; s; j), for 1 � s � mkat level i > 0 are all transient, whenever the j-th omponent of the vetor �Dk iszero (whih indiates that the MMAP[K℄ annot be in state j after generating a typek ustomer). We ould easily eliminate the rows and olumns of Al and Bl thatorrespond to these states, however, this is not neessary beause the algorithm thatomputes the steady state probabilities will automatially produe a zero for thesetransient states. However, if a high perentage of the states is transient, it is worth toeliminate them as this will redue the omputation time.Whenever we state that P is ergodi, we mean to say that P is ergodi after removingthe obvious transient states mentioned above. A proof that the MC de�ned by equation(1) is ergodi if and only if � < 1, where � =PKk=1 �k=�k, is provided in the appendix.In [3℄, it was also shown that the MMAP[K℄/PH[K℄/1 queue is stable if and only if� < 1; therefore, the waiting times have a limiting distribution.De�ne �ni (k; s; j); i > 0; resp. �n0 (j), as the probability that the system is in state(k; s; j) of level i, resp. state j of level zero, at time instane n. Let�0(j) = limn!1 �n0 (j);�i(k; s; j) = limn!1 �ni (k; s; j):



6 B. VAN HOUDT ET AL.De�ne the 1�m vetor �0 = (�0(1); : : : ; �0(m)) and the 1�mtot vetors �i = (�i(1; 1; 1);�(1; 1; 2); : : : ; �i(1; 1;m); �i(1; 2; 1); : : : ; �i(1; 2;m); �i(1; 3; 1); : : : ; �i(K;mK ;m)), fori > 0. From the transition matrix P , de�ned in equation (1), we see that the Markovhain is a generalized Markov hain of the GI=M=1 Type [9℄. For suh a positivereurrent Markov hain, we have �i = �i�1R; i > 1; where R is an mtot �mtot matrixthat is the smallest nonnegative solution to the following equation:R =Xl�0 RlAl:This equation is solved by means of an iterative sheme [9, 12℄. In order to obtain �0and �1 we solve the following equation(�0; �1) = (�0; �1)24 B1 B0Pl�2Rl�2Bl Pl�1 Rl�1Al 35 :The vetor (�0; �1) is normalized as �0em+�1(I �R)�1emtot = 1, where I is the unitymatrix of size mtot and el is an l � 1 vetor whose elements equal one.2.3. Calulating the Delay Density FuntionLet dk be the random variable that denotes the delay su�ered by a type k ustomer.Notie, the delay is de�ned as the sum of the time that the ustomer spends in thequeue and the time spent in the server. The probability that a type k ustomer has adelay of i time units, an be alulated as the expeted number of type k ustomerswith an \age" of i time units that omplete their servie at an arbitrary time instane,divided by the expeted number of type k ustomers that omplete their servie duringan arbitrary time instane (that is, �k for a stable queue). Using the steady stateprobabilities we easily �nd, by notiing that the MC de�ned in Setion 2.1 observesthe system at eah time instane,P [dk = i℄ = mkXs=1 (T 0k )s�k mXj=1 �i(k; s; j);for i � 1, with �k the arrival rate of the type k ustomers. (T 0k )s represents the s-thomponent of the olumn vetor T 0k . Notie, P [dk = 0℄ = 0, beause a ustomer spendsat least one time unit in the server. Thus, using this proedure, we are able to alulatethe delay distribution without any knowledge of the queue length.



Delay in a MMAP[K℄/PH[K℄/1 queue 73. A MMAP[2℄/PH[2℄/1 queue with Bath ArrivalsWe start by onsidering a simple example of a MMAP[K℄ queue with bath arrivalsand K = 2 ustomer types, and develop a proedure to alulate the delay distributionfor a type k = 1; 2 ustomer. In the next setion, we generalize this idea to an arbitraryMMAP[K℄ arrival proess with bath arrivals.Consider a single server queue with two orrelated input soures A and B. Bothsoures generate zero or one ustomer during a time instane. Therefore, we anmodel the input traÆ as a MMAP[2℄ arrival proess haraterized by the m � mmatries D0, D1, D2, D12 and D21, where the (j1; j2)th element of the matrix DC ,with C = 1; : : : ; b a string of b = 1; 2 integers between 1 and K = 2, represents theprobability of having a bath of b = 1; 2 arrivals, while the underlying Markov hainmakes a transition from state j1 to j2. The �rst ustomer of the bath is of type 1, thepossible seond of type 2. We assume that the servie time of a type k = 1; 2 ustomerfollows a phase-type distribution funtion with matrix haraterization (mk ; �k; Tk).In order to study this MMAP[2℄/PH[2℄/1 queue, we de�ne a new MMAP[2℄ arrivalproess haraterized by the following 3m� 3m matries:~D0 = 26664 D0 0 00 0 00 0 0 37775 ; ~D1 = 26664 D1 0 D12Im 0 00 0 0 37775 ; ~D2 = 26664 D2 D21 00 0 0Im 0 0 37775 :This MMAP[2℄ proess is idential to the �rst, exept that time instanes duringwhih a bath of size two ours, are replaed by two time instanes eah holdinga single ustomer. In order to obtain the delay distribution of the original system, weannot simply alulate the delay distribution related to the new MMAP[2℄, beausethe splitting of the size two bathes would result in an error of one time unit to the ageof the seond ustomer of the bath. Moreover, looking at the MC of Setion 2.1, weknow that the age of a ustomer is determined using the age of the previous (unless itarrives when the queue is empty); therefore, the error would propagate and result inan inorret age for all future ustomers.Nevertheless, the method of the previous setion still works if we somehow manageto orret the age of eah ustomer that is generated while the new MMAP[2℄ proessis in a state m < j � 3m, by one time unit when it enters the server. Indeed, by



8 B. VAN HOUDT ET AL.de�nition, suh a ustomer enters the server as soon as the previous ustomer leavesthe server; therefore, its age is based upon the age of the previous ustomer. Thisorretion of one time unit an be realized by hanging the transition matries A1 andA0 aordingly. Let us explain this proedure in more detail. If a ustomer, with age i,ompletes its servie at time instane n and the next ustomer was generated one timeunit after the one that ompleted its servie, the MC would, aording to the previoussetion, still be at level i at time instane n+ 1. If we add one time unit to the age ofsuh a ustomer, provided that it was generated while the state of the new MMAP[2℄was j > m, in order to get the orret age, the MC would have to be at level i+ 1 attime instane n+1. Finally, a small modi�ation to level zero of the MC is also madebeause the MMAP[2℄ proess an never be in a state j > m if the server is empty.The remainder of this setion applies to all MMAP[K℄ arrival proesses and notmerely the MMAP[2℄ arrival proess desribed above. Suppose that we wish to al-ulate the delay distribution of a type k ustomer in a MMAP[K℄/PH[K℄/1 queue,where the MMAP[K℄ allows for bath arrivals to our. Moreover, suppose that theMMAP[K℄ is haraterized by a set ofm�mmatriesDC , where C is a string of integersbetween 1 and K. Then, we start by onstruting a new MMAP[K℄ haraterized bythe am� am matries ~D0; ~D1; : : : ; ~DK , with a � 2 an integer. A general proedure toonstrut the new MMAP[K℄ is presented in the next setion. Afterwards, we followthe proedure outlined below.Construt a GI=M=1 type MC haraterized by the following transition matrix:~P = 26666666664
~B1 ~B0 0 0 0 : : :~B2 ~A1 ~A0 0 0 : : :~B3 ~A2 ~A1 ~A0 0 : : :~B4 ~A3 ~A2 ~A1 ~A0 : : :... ... ... . . . . . . . . .

37777777775 ; (2)
where ~Al are amtot�amtot matries, ~Bl; l > 1; are amtot�m matries, ~B1 is an m�mmatrix and ~B0 is an m� amtot matrix. Let ~Dfk be the �rst m rows of the matrix ~Dkand ~Drk the remaining am � m rows, for 1 � k � K. Next, de�ne the am � amtotmatrix ~L as ~L = h(�1 
 ~D1) (�2 
 ~D2) : : : (�K 
 ~DK)i : (3)



Delay in a MMAP[K℄/PH[K℄/1 queue 9Let ~Ll = ( ~D0)l�1 ~L, for l � 2. Then, as a result of our prior disussion, we �nd~B1 = D0; (4)~B0 = h(�1 
 ~Df1 ) (�2 
 ~Df2 ) : : : (�K 
 ~DfK)i ; (5)~Bl = T 0ser 
 24 (D0)l�1O(a�1)m;m 35 ; (6)~Al = T 0ser 
 ~Ll; (7)for l � 2 and where Ox;y is a zero matrix with x rows and y olumns. Notie, only mrows of eah am rows of ~Bl and ~Al, for l � 2, di�er from zero, due to the struture of~D0 (see Setion 4). It remains to alulate ~A0 and ~A1. In order to make the one timeunit orretion as disussed before, we need to shift the probabilities of A1 related tothe MMAP[K℄ states j > m to A0. Hene,~A0 = Tser 
 Iam + T 0ser 
 24 Om;m1am Om;m2am : : : Om;mKam(�1 
 ~Dr1) (�2 
 ~Dr2) : : : (�K 
 ~DrK) 35 ; (8)~A1 = T 0ser 
 24 (�1 
 ~Df1 ) (�2 
 ~Df2 ) : : : (�K 
 ~DfK)O(a�1)m;m1am O(a�1)m;m2am : : : O(a�1)m;mKam 35 ; (9)where Il is the unity matrix of dimension l. The remainder of the proedure is identialto Setion 2, that is, we simply replae Al and Bl by ~Al and ~Bl in all the formulas inSetion 2.2 and 2.3 (and in some ases m by am and mtot by amtot).4. The MMAP[K℄/PH[K℄/1 queue with Bath ArrivalsConsider a MMAP[K℄ arrival proess haraterized by a set of m � m matriesDC where C is a string of integers between 1 and K, that is, C = 1 : : : b with1 � l � K and 1 � l � b. Let bmax be the maximum bath size of the MMAP[K℄arrival proess. We state that a string C1 extends a string C2 = 21 : : : 2b if C1 is ofthe form C1 = 11 : : : 1l 21 : : : 2b for some integer l � 1. Let C = fC j 9C1for whihC1extends C and DC1 6= 0g and let jCj be the number of strings in the set C. The emptystring ; not onsidered as a member of C. Notie, jCj �Pbmax�1b=1 Kb = Kbmax�1K�1 � 1.Finally, de�ne a as jCj+ 1.Next, we onstrut a new MMAP[K℄ arrival proess that is idential to the �rst,exept that eah time instane in whih a bath of b � bmax ustomers ours, is



10 B. VAN HOUDT ET AL.replaed by b time instanes eah holding one ustomer (in the same order as in thebath). The new MMAP[K℄ is haraterized by the am�am matries ~D0; ~D1; : : : ; ~DK .The matrix ~D0 is equal to zero exept for the m � m blok in the upper left ornerwhih equals D0. In order to desribe the matries ~Dk, with 1 � k � K, we start bylabeling the am states of the arrival proess as follows. The �rst m states are labeledas the empty string ;. The remaining mjCj states are grouped into jCj sets of m statesand eah set is labeled by a string C 2 C suh that eah set of m states has a uniquelabel.Let ( ~Dk)C1;C2 be the m�m submatrix of ~Dk that holds the probabilities of makinga transition from the m states labeled C1 to the m states with label C2, while a type kustomer is generated. Then, we de�ne ( ~Dk)C1;C2 = Im provided that C1 = k21 : : : 2b ,where C2 = 21 : : : 2b . Notie, C = k is onsidered idential to C = k;. The otherm�m submatries ( ~Dk)C1;C2 , for C1 6= ;, are equal to zero. The submatries ( ~Dk);;C2are equal to DC , with C = kC2.In onlusion, to obtain the delay distribution of a type k ustomer in a MMAP[K℄/PH[K℄/1 queue, where the MMAP[K℄ allows for bath arrivals to our, we simplyonstrut the MMAP[K℄ arrival proess haraterized by the matries ~D0; ~D1; : : : ; ~DKand apply the proedure desribed by equations (2) to (9). Obviously, the dimension ofthe matries ~Al and ~Bl should not exeed a few hundred, otherwise the proedure is tootime and memory onsuming. It is important to note that the new MC haraterized by~P might ontain a very high number of obvious transient states due to the onstrutionof the new MMAP[K℄. Indeed, the states (k; s; j), for 1 � s � mk, at level i > 0 aretransient if the j-th omponent of ~� ~Dk equals zero, where ~� is the stohasti stationaryvetor of ( ~D0 + : : :+ ~DK). Thus, these states are easy to identify and an be removedwithout any diÆulties, thereby reduing the omputation time signi�antly.5. Numerial ExamplesThe idea used in this paper originated while analyzing the performane of FS-ALOHA(++), a random aess algorithm used in teleommuniation systems [16, 1℄.Demonstrating how FS-ALOHA an be evaluated using a MMAP[K℄/PH[K℄/1 queuewould lead us too far. Therefore, we present a rather arbitrary example that illustrates



Delay in a MMAP[K℄/PH[K℄/1 queue 11the strength of the algorithmi proedure presented.Consider a single server queue with three orrelated input soures A;B and C; theirustomers are referred to as type one, two and three. Eah soures generates zeroor one ustomer during a time instane. The superposition of these three orrelatedsoures is assumed to be a 3 state MMAP[3℄. The three states are traversed one by oneand the sojourn time in eah state is geometrially distributed with a mean of 1000time units. While in state one, soure A generates a ustomer with probability 1=5,soure C with probability 1=100, while soure B is silent. In state two, soure A andC generate a ustomer with probability 1=100, while soure B generates a ustomerwith probability 1=28. Finally, in state three, soure B generates a ustomer withprobability 1=100, soure C with probability 1=20, while soure A is silent. Giventhat we are in state 1 � j � 3, the three soures A;B and C are independent (e.g.,the probability that a type one and type three ustomer are generated while in statetwo is 9:643 10�5). In this example, the majority of the arriving ustomers while instate j, are ustomers of type j. We further assume that the bathes are ordered,that is, whenever a bath arrival ours, the type one ustomer is �rst, followed by thetype two ustomer and �nally the type three ustomer. Ordering the bathes reduesa = 1 + jCj by a fator 2:5. As a result, the MMAP[K℄ is haraterized by the 3 � 3non zero matries D0; D1; D2; D3; D12; D13; D23 and D123. For instane,
D1 = 26664 1:978 10�1 1:98 10�4 00 9:537 10�3 9:546 10�60 0 0 37775 :Clearly, C = f23; 2; 3g. Using the proedure in the previous setion, we onstrut anew MMAP[3℄ that is haraterized by the 12� 12 matries ~D0, ~D1, : : : ; ~D3.The servie times are assumed to be as follows. Type one ustomers have a deter-ministi servie time of two time units. The servie time distribution of a type twoustomers on the other hand, is phase-type with three phases, being three geometriphases with a mean of two, three and two time units. Finally, type three ustomers
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Figure 1: Delay distribution of type one, two and three ustomersrequire a geometri servie time with a mean of 5 time units. Hene,
T1 = 24 0 10 0 35 ; T2 = 26664 1=2 1=2 00 2=3 1=30 0 1=2 37775 ; T3 = [4=5℄ ;

and �1 = [1 0℄; �2 = [1 0 0℄, and �3 = [1℄. As a result, the matries ~Al are72 � 72 matries. Figure 1 represents the delay distribution of type one, two andthree ustomers, as alulated by equations (2) to (9) and Setions 2.2 and 2.3.The omputation time was approximately one minute and thirty seonds on a SunEnterprise 2170 with two 167 Mhz proessors and 3x128 Mbyte RAM. We ould furtherredue the omputation time, if we took the e�ort to remove the 28 transient states ofeah level i > 0, thereby reduing the dimension of the ~Al matries to 44�44 matries,instead of 72� 72 matries. These 28 states are easily identi�ed by looking at the zeroentries of the vetors ~� ~Dk, for k � 1.



Delay in a MMAP[K℄/PH[K℄/1 queue 136. ConlusionThis paper presented an algorithmi proedure to alulate the delay distribution ofa type k ustomer in a �rst-ome-�rst-serve (FCFS) disrete-time MMAP[K℄/PH[K℄/1queueing system. We started by developing a proedure, using matrix analytialmethods, for arrival proesses that do not allow bath arrivals to our. Afterwards, weshowed that this tehnique an be generalized to arrival proesses that do allow batharrivals to our. A numerial example to demonstrate the strength of the proedurewas presented within Setion 5.AknowledgementsB. Van Houdt is a postdotoral fellow of the FWO Flanders. We would like to thankthe reviewers for their valuable omments and suggestions.AppendixIn this setion we present an algebrai proof that the MC de�ned in Setion 2.1 isergodi if and only if � = PKk=1 �k=�k < 1. Reall that we mean to say that P isergodi after removing the obvious transient states mentioned at the start of Setion2.2. We start by de�ning the following 1�mk stohasti vetors for 1 � k � K:�k = �k �Tk + T 0k�k� : (10)We start by proving the following two equations:�kT 0k = �k; (11)� = � KXk=1Dk! (I �D0)�1; (12)where � was de�ned as the stohasti stationary vetor of D = PKk=0Dk. The �rstequation is obtained from equation (10) by subtrating �kTk from both sides of theequation, followed by multiplying both sides by (I�Tk)�1e and applying the de�nitionof �k. The seond equation is easily obtained from � = �D by subtrating D0 andmultiplying by (I �D0)�1.



14 B. VAN HOUDT ET AL.Next, we de�ne the (k; s; j)th omponent, with 1 � k � K, 1 � s � mk and1 � j � m, of the 1�mtot vetor �g as1� (�Dk)j (�k)s�k ;where vj , with v a row or olumn vetor, denotes the jth omponent of v.Lemma 1. The vetor �g is an invariant vetor of P1l=0 Al and �g is stohasti.Proof. The sumP1l=0Al an be written as Tser
Im+T 0ser
�(I �D0)�1L�, where Lwas de�ned by equation (3). First, we alulate the (k0; s0; j0)th omponent of �g(Tser
Im). Given the struture of Tser we �nd1� (�Dk0 )j0Pmk0s=1(�k0)s(Tk0)s;s0�k0 :Using equations (10) and (11), we an rewrite this as1� (�Dk0 )j0 ((�k0)s0 � �k0(�k0 )s0)�k0 : (13)Seond, the (k0; s0; j0)th omponent of �g �T 0ser 
 ((I �D0)�1L)� equals1� KXk=1Pmks=1(�k)s(T 0k )s�k mXj=1(�Dk)j((I �D0)�1Dk0)j;j0 (�k0 )s0 :This equation an be simpli�ed using equation (11) to �nd1� (�(D1 + : : :+DK)(I �D0)�1Dk0)j0 (�k0 )s0 :Or by means of equation (12) we have 1� (�Dk0)j0 (�k0 )s0 . Adding this to equation (13)proofs that �g is an invariant vetor ofPlAl. �g is learly a stohasti vetor beause�k is stohasti and �Dke equals �k. Q.E.D.Lemma 2. �g (P1l=1 lAl) e = 1=�.Proof. (P1l=1 lAl) e an be written as T 0ser 
 ((P1l=1 l(D0)l�1)Le). Looking atequation (3), we have Le = (I � D0)e beause the vetors �k are stohasti and�PKk=0Dk� e = e. Moreover, (Pl l(D0)l�1)(I � D0) is equal to (I � D0)�1. Thus,(P1l=1 lAl) e = (T 0ser 
 ((I �D0)�1e)). As a result, �g(P1l=1 lAl)e equals1� KXk=1 �(Dk(I �D0)�1)e mkXs=1 (�k)s(T 0k )s�k :Thus, using equations (11) and (12) results in 1=� � e = 1=�.



Delay in a MMAP[K℄/PH[K℄/1 queue 15Q.E.D.Theorem 1. The MC de�ned by the transition matrix P , de�ned by equation (1), isergodi if and only if � < 1.Proof. Neuts [9℄ has shown, provided that the matrix A = P1l=0Al is irreduible,that a GI=M=1 type MC is ergodi if and only if the produt of the stohasti invariantvetor of Pl Al with the vetor (Pl lAl)e is larger than one. The matrix PlAl isirreduible, after removing the transient states mentioned at the start of Setion 2.2,beause D = D0+ : : :+DK and the matries (Tk +T 0k�k) are irreduible. The entriesof �g that orrespond to the transient states are zero. Moreover, the (i; j)th entry ofthe matries PlAl and Pl lAl equals zero, if state i is not transient, whereas state jis. Therefore, Lemma 1 and 2 suÆe to proof the theorem. Q.E.D.Referenes[1℄ Cortizo, D. V., Gar��a, J., Blondia, C. and Van Houdt, B. (1999). FIFOby sets ALOHA (FS-ALOHA): a ollision resolution algorithm for the ontentionhannel in wireless ATM systems. Performane Evaluation 36-37, 401{427.[2℄ He, Q. (1996). Queues with marked ustomers. Adv. Appl. Prob. 28, 567{587.[3℄ He, Q. (2000). Classi�ation of Markov proesses of matrix M/G/1 type witha tree struture and its appliations to the MMAP[K℄/G[K℄/1 queue. StohastiModels 16, 407{434.[4℄ He, Q. (2001). The versatility of the MMAP[K℄ and the MMAP[K℄/G[K℄/1 queue.Queueing Systems 38, 397{418.[5℄ He, Q. and Alfa, A. (1998). The MMAP[K℄/PH[K℄/1 queues with a last-ome-�rst-serve preemptive servie disipline. Queueing Systems 28, 269{291.[6℄ He, Q. and Alfa, A. (2000). The disrete time MMAP[K℄/PH[K℄/1/LCFS-GPR queue and its variants. In Pro. of the 3rd Int. Conf. on Matrix AnalytiMethods. Leuven (Belgium). pp. 167{190.[7℄ He, Q. and Neuts, M. (1998). Markov hains with marked transitions.Stohasti Proesses and their Appliations 74, 37{52.
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