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tionThe 
entral a
tivity of performan
e evaluation is building formal de-s
riptions of the system under study, an a
tivity refered to as modelling.These models in
lude workload models (e.g. pa
ket traÆ
 models), sys-tem resour
e models (e.g. swit
h models, link models) and resour
e
ontrol me
hanism models (e.g. MAC proto
ol models). They are usedto gain insight in the performan
e of the system under 
ertain load 
on-ditions. To obtain the performan
e measures of interest, two te
hni
sexist: simulate the system (i.e. built a program that simulates the modelbehavior) or solve the model mathemati
ally (i.e. 
ompute the perfor-man
e measures analyti
ally). In this paper, we 
on
entrate on thelatter, making disti
tion between analyti
al methods that lead to 
losedformulas (as des
ribed in the part on generating fun
tions) and algo-rithms that allow to 
ompute the measures numeri
ally (as in dealingwith matrix analyti
 methods).An area where performan
e modeling is an essential tool for systemdesigners and developers today is the Internet. The Internet is evolvingfrom a best-e�ort network towards a system that 
ombines Quality of1



2Servi
e (QoS) support with eÆ
ient resour
e usage. The extremely rapidpa
e of 
hange that 
an be observed in the Internet resear
h 
ommunity(e.g. in the IETF), often does not allow rigorous performan
e evalua-tion of the di�erent proposals. Therefore, the performan
e evaluation
ommunity (e.g. IFIP WG 6.3) should make an e�ort to provide thene
essary methods, te
hniques and tools to allow a better insight intothe system behavior.The �rst part is devoted to the modeling of tele
ommuni
ations sytemsusing generating fun
tions, the se
ond part to modeling using matrixanalyti
al methods and �naly, the third part to the use of asymptoti
approximations. The �rst part 
onsiders dis
rete-time queueing mod-els as representatin of tele
ommuni
ation systems. These models areparti
ularly appli
able when the time 
an be segmented in intervals of�xed lenght (
alled slots) and information pa
kets are transmitted atslot boundaries. A typi
al example is an ATM transmission system. Themethod to 
ompute the performan
e measures of interest is based on theuse of generating fun
tions. The aim is to obtain a 
losed form formulafor the generating fun
tion of the system 
ontent (i.e. how many pa
ketsare present in the system), from whi
h the most important performan
emeasures 
an be derived. The main 
hara
teristi
 of this approa
h isthat it is almost entirely analyti
al.A se
ond approa
h to 
ompute performan
e measures is found in Se
-tion 3. Here two re
ent and promising developments within the frame-work of matrix analyti
al methods are dis
ussed. Both models, have im-portant appli
ations in the performan
e analysis of tele
ommuni
ationsystems. The �rst model is 
on
erned with a markovian arrival pro
esswith marked arrivals, of parti
ular interest in systems where the pa
ketsare originating from di�erent possiblly 
orrelated traÆ
 streams. A se
-ond model deals with Tree stru
tured Markov 
hains. Their parti
ularstru
ture 
an be exploited to obtian eÆ
ient 
omputational methods toobtain the measures of interest. Random a

ess algorithms known assta
k algorithms, or tree algorithms with free a

ess, are examples ofsystems that 
an be modeled by means of tree stu
tured Markov 
hain,leading to expressions for the maximum stable throughput and meandelay in su
h systems.A third part is devoted to asymptoti
 approximations. These methodshave be
ome extremely relevant due to the high transmission rates andthe stringent quality of servi
e guarantees of modern systems, whi
hmake very rate events (e.g. bu�er over
ow) signi�
ant. Hen
e, per-forman
e measures are based on distribution tails, rather than on �rstmoments. This paper studies both asymptoti
s for multiplexers withsmall bu�ers and for multiplexers with large bu�ers. In both 
ases, the



Performan
e ofTele
ommuni
ation Systems:Sele
ted Topi
s 3aim is to link the traÆ
 load and resour
e 
apa
ity to the probabilityof loss due to bu�er over
ow. Also the 
ase where the bu�er spa
e isneither negligible nor dominant is dis
ussed.2. Performan
e Modeling of Communi
ationSystems Using Generating Fun
tions2.1. Dis
rete-time queueing modelsIn various subsystems of tele
ommuni
ation networks, bu�ers are usedfor the temporary storage of digital information units whi
h 
annot betransmitted to their destination immediately. The performan
e of a 
om-muni
ation network may be very 
losely related to the behavior of thesebu�ers. For instan
e, information units may get lost whenever a bu�eris fully o

upied at the time of their arrival to this bu�er, they may ex-perien
e undesirable delays or delay variations in bu�ers, ... Queueingtheory thus plays an important role in the performan
e modeling andevaluation of tele
ommuni
ation systems and networks. In parti
ular,queueing models in dis
rete time are very appropriate to des
ribe traf-�
 and 
ongestion phenomena in digital 
ommuni
ation systems, sin
ethese models re
e
t in a natural way the syn
hronous nature of moderntransmission systems, whereby time is segmented into intervals (\slots")of �xed length and information pa
kets are transmitted at slot bound-aries only, i.e., at a dis
rete sequen
e of time points.In a dis
rete-time queueing model, the arrival stream of digital infor-mation into a bu�er (the input or arrival pro
ess) is 
ommonly 
hara
ter-ized by spe
ifying the numbers of arriving pa
kets during the 
onse
utiveslots. In basi
 models, these numbers of arrivals are assumed to be in-dependent and identi
ally distributed (i.i.d.) dis
rete random variables,and the 
orresponding arrival pro
ess is referred to as an independentor un
orrelated arrival pro
ess. More advan
ed models allow the num-bers of arrivals during 
onse
utive slots to be nonindependent, and arereferred to as 
orrelated arrival pro
esses. The storage 
apa
ity of abu�er is usually modeled as unlimited. This is an a

eptable assump-tion sin
e in most 
ommuni
ation systems the 
apa
ity is 
hosen in su
ha way that the loss probabilities are very small, and furthermore, thisfa
ilitates the use of analyti
al analysis te
hniques. The transmission ofinformation units from the bu�er (the output pro
ess) is 
hara
terizedby the distribution of the transmission times of the information units,the number of output 
hannels of the bu�er, the availability of the out-put 
hannels, and the order of transmission (the queueing dis
ipline).In basi
 models, all information units are assumed to be of �xed length,whi
h implies they have 
onstant transmission times, the output 
han-



4nels are permanently available, and the queueing dis
ipline is assumedto be �rst-
ome-�rst-served (FCFS). In some appli
ations, however, itis ne
essary to 
onsider non-deterministi
 transmission times, interrup-tions of the output 
hannels, and non-FCFS queueing dis
iplines su
has e.g. priority queueing.In the next se
tion, we present an overview of a number of fundamen-tal te
hniques for the analysis - in the steady state - of a wide rangeof dis
rete-time queueing models. The main 
hara
teristi
s of the te
h-niques are that they are almost entirely analyti
al (ex
ept for a fewminor numeri
al 
al
ulations) and that an extensive use of probabilitygenerating fun
tions is being made. Note that a steady state only existsif the mean number of pa
ket arrivals per slot is stri
tly less than themean number of pa
kets that 
an be transmitted per slot.2.2. Steady-state queueing analysis usinggenerating fun
tionsThe behavior of a queueing system is 
ommonly analyzed in terms ofthe probability distributions of the bu�er 
ontents, i.e., the total numberof pa
kets present in the bu�er system, and the pa
ket delay, i.e., theamount of slots a pa
ket spends in the system.Bu�er 
ontents. The �rst step in the analysis of the bu�er 
ontentsis to establish a so-
alled \system equation" that des
ribes the evolutionin time of the bu�er 
ontents. If we de�ne sk as the bu�er 
ontents at thebeginning of slot k, it is easily seen that the following basi
 relationshipholds : sk+1 = sk � tk + ek ; (1)where ek represents the total number of pa
ket arrivals during slot k andtk denotes the number of pa
kets that leave the bu�er system at the endof slot k. Here the 
hara
teristi
s of ek depend on the spe
i�
 nature ofthe arrival pro
ess. The random variable tk on the other hand dependson the 
hara
teristi
s of the output pro
ess, and 
annot be larger thansk in view of the syn
hronous transmission mode, whi
h implies thatonly those pa
kets present in the bu�er at the beginning of a slot areeligible for transmission during the slot.In the simplest models, un
orrelated arrivals from slot to slot, 
onstanttransmission times of one slot ea
h, and permanently available output
hannels are assumed. In this 
ase, the system equation (1) redu
es tosk+1 = (sk � 
)+ + ek : (2)



Performan
e ofTele
ommuni
ation Systems:Sele
ted Topi
s 5Here (:::)+ = max(0; :::), 
 denotes the number of output 
hannels, andthe random variables sk and ek on the right-hand side are statisti
ally in-dependent of ea
h other, whi
h implies that the set fskg forms a Markov
hain. Let Sk(z) = E[zsk ℄ denote the probability generating fun
tion(pgf) of sk. By means of standard z-transform te
hniques [Bruneel andKim, 1993℄, the system equation (2) 
an then be translated into the z-domain. This yields the following relationship between the pgf's Sk+1(z)and Sk(z) :Sk+1(z) = E(z) z�
 f
�1Xj=0(z
 � zj) Prob[sk = j℄ + Sk(z)g ; (3)where E(z) denotes the pgf of the number of pa
ket arrivals in a slot.In the steady state, both Sk+1(z) and Sk(z) will 
onverge to a 
ommonlimiting fun
tion S(z), the pgf of the bu�er 
ontents s as the beginningof an arbitrary slot in the steady state. Taking limits for k ! 1 andsolving the resulting equation for S(z), we then obtainS(z) = E(z) 
�1Pj=0(z
 � zj) Prob[s = j℄z
 �E(z) : (4)The 
 unknown 
onstants Prob[s = j℄, 0 � j � 
 � 1, in (4) 
an bedetermined by invoking the analyti
ity of the pgf S(z) inside the unitdisk fz : jzj � 1g of the 
omplex z-plane, whi
h implies that any zero ofthe denominator of (4) in this area must ne
essarily also be a zero of thenumerator, together with the normalization 
ondition S(1) = 1 of thebu�er-
ontents distribution. This results in a set of 
 linear equationsin the 
 unknown probabilities and allows to obtain S(z) expli
itly.During the last few years resear
h has largely fo
used on the introdu
-tion of more 
ompli
ated 
hara
terizations of the arrival pro
ess, in or-der to obtain more realisti
, useful and tra
table sto
hasti
 des
riptionsof the sometimes bursty and heterogeneous traÆ
 streams o

urring inmodern integrated 
ommuni
ation networks. When the arrival pro
essis 
orrelated, the random variables sk and ek on the right-hand side ofthe system equation (2) are no longer statisti
ally independent, and theabove analysis te
hnique needs to be modi�ed. Spe
i�
ally, sin
e theknowledge of the value of sk no longer suÆ
es to determine the proba-bility distribution of sk+1, the set fskg does no longer form a Markov
hain, and a more-dimensional state des
ription of the system has to beused, 
ontaining extra information about the state of the arrival pro
ess.As an example, let us 
onsider a dis
rete-time queueing model withone output 
hannel, that is permanently available, and a simple 
orre-



6lated arrival pro
ess. Pa
kets are generated by N independent and iden-ti
al on/o�-sour
es. Ea
h sour
e alternates between on-periods, duringwhi
h it generates one pa
ket per slot, and o�-periods, during whi
hno pa
kets are generated. The su

essive on-periods and o�-periods ofa sour
e are assumed to be independent and geometri
ally distributedwith parameters � and � respe
tively. Clearly, we then have the sys-tem equation (2), where 
 = 1, whereas ek 
an be derived from ek�1 asfollows [Bruneel, 1988℄ :ek = ek�1Xi=1 
i + N�ek�1Xi=1 di : (5)Here the 
i's and the di's are two independent sets of i.i.d. Bernoullirandom variables with pgf's
(z) = 1� �+ �z (6)and d(z) = � + (1� �) z : (7)From (2) and (5)-(7), the pair (ek�1; sk) is easily seen to 
onstitutea (two-dimensional) Markovian state des
ription of the system at thebeginning of slot k. We then de�ne Pk(x; z) as the joint pgf of the stateve
tor (ek�1; sk), i.e., Pk(x; z) = E[xek�1 zsk ℄ : (8)The next step is then similar to the un
orrelated-arrivals 
ase, namelyto derive a relationship between the pgf's Pk+1(x; z) and Pk(x; z) 
orre-sponding to 
onse
utive slots, by means of the state equations :Pk+1(x; z) = Eh(xz)ek z(sk�1)+i= [d(xz)℄N E�� 
(xz)d(xz)�ek�1 z(sk�1)+�= [d(xz)℄Nz fPk� 
(xz)d(xz) ; z�+ (z � 1)Prob[sk = 0℄g : (9)Again taking limits for k ! 1, we now obtain a \fun
tional equation"for the limiting fun
tion P (x; z), whi
h typi
ally 
ontains the P -fun
tionon both sides, but with di�erent arguments. Although the fun
tionP (x; z) 
annot be derived expli
itly from the fun
tional equation, severalperforman
e measures related to the bu�er 
ontents 
an be derived fromit, as will be explained later.
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e ofTele
ommuni
ation Systems:Sele
ted Topi
s 7A similar analysis is possible for a variety of 
orrelated arrival pro-
esses, su
h as train arrivals [Xiong and Bruneel, 1993℄, [Wittevrongeland Bruneel, 1998℄, Markov modulated arrivals [Xiong and Bruneel,1995℄, [B. Steyaert and Bruneel, 1997℄, general on/o� sour
es [Wit-tevrongel and Bruneel, 1997℄, 
orrelated train arrivals [S. De Vuyst andBruneel, 2001℄, and so on. For some arrival pro
esses, the resultingfun
tional equation may 
ontain a number of unknown boundary prob-abilities, whi
h in general are diÆ
ult to obtain exa
tly. An approxima-tion te
hnique 
an then used, whi
h is based on the observation that abu�er 
ontents equal to n at the beginning of a slot implies that no morethan n pa
kets have entered the bu�er during the previous slot (see e.g.[B. Steyaert and Bruneel, 1997℄, [Wittevrongel and Bruneel, 1997℄).Also in 
ase more 
ompli
ated models for the output pro
ess are used,similar problems o

ur and a more-dimensional state des
ription needsto be used. For instan
e, when general transmission times are 
onsid-ered, additional information is needed in the state des
ription about theamount of servi
e already re
eived by the pa
ket(s) in transmission, ifany [Bruneel, 1993℄. In 
ase interruptions of the output 
hannels mayo

ur, we need to keep tra
k of the state of ea
h of the output 
han-nels (available or blo
ked) and the remaining sojourn time in this state[D. Fiems and Bruneel, ℄.Pa
ket delay. The delay of a pa
ket is de�ned as the number ofslots between the end of the slot of arrival of the pa
ket, and the end ofthe slot when this pa
ket leaves the bu�er. In 
ase of a FCFS queueingdis
ipline, the analysis of the pa
ket delay typi
ally involves the deriva-tion of a relationship between the delay of a tagged pa
ket and the totalnumber of pa
kets present in the bu�er just after the arrival slot of thetagged pa
ket and to be transmitted before the tagged pa
ket. How-ever, for dis
rete-time queueing systems with one permanently availableoutput 
hannel, 
onstant transmission times of one slot, a FCFS queue-ing dis
ipline and an arbitrary (possibly 
orrelated) arrival pro
ess, thefollowing relationship exists between the pgf S(z) of the bu�er 
ontentsand the pgf D(z) of the pa
ket delay [Vin
k and Bruneel, 1995℄:D(z) = S(z)� S(0)1� S(0) : (10)The above relationship makes a full delay analysis super
uous, on
e thebu�er 
ontents has been analyzed. Similar relationships also exist in 
aseof multiple servers [Vin
k and Bruneel, 1996b℄ and non-deterministi
servi
e times [Vin
k and Bruneel, 1996a℄.



82.3. Performan
e measuresThe results of the analysis 
an be used to derive simple and a

u-rate (exa
t or approximate) formulas for a wide variety of performan
emeasures of pra
ti
al importan
e, su
h as mean and varian
e of bu�ero

upan
ies and delays, pa
ket loss probabilities, ... The mean system
ontents and the mean pa
ket delay in the steady state 
an be found byevaluating the �rst derivative of S(z) and D(z) at z = 1. Higher-ordermoments of the system 
ontents and the pa
ket delay 
an be derivedanalogously, by 
al
ulating higher-order derivatives of S(z) and D(z) atz = 1. The tail distribution of the bu�er 
ontents is, for reasons of 
om-putational 
omplexity, often approximated by a geometri
 form based onthe dominant pole z0 of the pgf of the bu�er 
ontents. That is, for largevalues of n, the tail distribution of the bu�er 
ontents is approximatedby [H. Bruneel and Petit, 1994℄Prob[s = n℄ � � �z0 z�n0 ; (11)where � is the residue of S(z) for z = z0. A quantity of 
onsiderablepra
ti
al interest is the probability that the bu�er 
ontents (in the in�-nite bu�er) ex
eeds a given threshold S. This probability 
an be usedto derive an approximation for the pa
ket loss ratio (i.e., the fra
tionof pa
kets that arrive at the bu�er but 
annot be a

epted) of a bu�erwith �nite waiting spa
e S and the same arrival statisti
s [Steyaert andBruneel, 1995℄.As mentioned before, it is not always possible to 
al
ulate the pgfS(z) of the bu�er 
ontents expli
itly. Nevertheless, a te
hnique hasbeen developed to derive results 
on
erning the moments and the taildistribution of the bu�er 
ontents from the asso
iated fun
tional equa-tion. The te
hnique involves 
onsidering those values for whi
h the �rstargument(s) of the P (:; z) fun
tions in both sides of the fun
tional equa-tion be
ome equal (see e.g. [Bruneel, 1988℄, [Xiong and Bruneel, 1995℄,[Wittevrongel and Bruneel, 1997℄, [Wittevrongel and Bruneel, 2000℄).2.4. Numeri
al exampleAs an illustration, we 
onsider a statisti
al multiplexer to whi
h mes-sages 
onsisting of a variable number of �xed-length pa
kets arrive atthe rate of one pa
ket per slot (\ train arrivals"), whi
h results in aprimary 
orrelation in the pa
ket arrival pro
ess. The arrival pro
ess
ontains an additional se
ondary 
orrelation, whi
h results from the fa
tthat the distribution of the number of leading pa
ket arrivals (of newmessages) in a slot depends on some environment variable. This envi-
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ommuni
ation Systems:Sele
ted Topi
s 9ronment has two possible states `A' and `B', ea
h with geometri
allydistributed sojourn times [S. De Vuyst and Bruneel, 2001℄. We 
omparethe results obtained for this 
orrelated train arrivals model with the re-sults that would be found if a model without se
ondary 
orrelation or anun
orrelated model for the pa
ket arrival pro
ess were used. In Figure1, the mean bu�er 
ontents for the three 
onsidered arrival models, i.e.,E[s℄ (
orrelated train arrivals), E[sprim℄ (un
orrelated train arrivals) andE[sun℄ (un
orrelated pa
ket arrivals) are plotted versus the total load �,for di�erent values of the environment 
orrelation fa
tor K, whi
h 
anbe seen as a measure for the absolute lengths of the sojourn times, whentheir relative lengths are given [S. De Vuyst and Bruneel, 2001℄. Themessage-length distribution is a mixture of two geometri
s a

ording tothe pgf L(z) = 0:5(1��)z1��z + 0:5(1��)z1��z with mean 5 and a varian
e of 50.In an `A'-slot, the number of new messages has a geometri
 distribu-tion with mean 2, while no new messages are generated during `B'-slots.The �gure 
learly shows the severe underestimation of the bu�er 
on-tents when the di�erent levels of 
orrelation in the arrival pro
ess arenegle
ted. Note that all the 
urves for E[sprim℄ 
oin
ide with the onerepresenting E[s℄ for K = 1 (un
orrelated environment). In the 
ase ofun
orrelated pa
ket arrivals, E[sun℄ slightly in
reases with higher valuesof K, although not in the same drasti
 way as E[s℄ in 
ase of 
orrelatedtrain arrivals.3. Performan
e Modeling using Matrix Analyti
MethodsTwo re
ent, and promising, developments within the area of matrixanalyti
 methods are dis
ussed in this se
tion. It 
on
erns the Markovianarrival pro
ess with marked arrivals, i.e., the MMAP[K℄ arrival pro
ess,and tree stru
tured Markov 
hains of the M=G=1, GI=M=1 and Quasi-Birth-Death (QBD) type. While presenting these new developments, wemainly fo
us on their appli
ability towards tele
ommuni
ation systems.Matrix analyti
 methods, for queueing theory, found their origin inthe 1960s in the work of Cinlar and Neuts [Dshalalow, 1995℄. Dur-ing the 1970s, Neuts made a number of 
ru
ial 
ontributions to theM=G=1 and GI=M=1 stru
tures and wrote a book, the use of whi
h isstill widespread nowadays, on this subje
t [Neuts, 1981℄. During the1980s, Neuts pursued his work at the University of Delawaire togetherwith his asso
iates and students Chakravarthy, Kumar, Latou
he, Lu-
antoni and Ramaswami. In 1989, a se
ond, perhaps somewhat lessa

essible to 
omputer s
ientists, book [Neuts, 1989℄ appeared on theM=G=1 stru
ture that summarizes their a
hievements, it re
e
ts the
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Figure 1. Mean bu�er 
ontents versus the total load � for various values of K.fa
t that the area of matrix analyti
 methods was growing vigorously.The theory and its appli
ations have grown unabated ever sin
e. Thiswas 
learly demonstrated in 1996, when the �rst 
onferen
e on matrixanalyti
 methods, and its appli
ations, was organized. At the time ofthis writing a fourth 
onferen
e will be held in July 2002 in Adelaide,Australia.3.1. Markovian Arrival Pro
ess with MarkedArrivalsThe usefulness of queueing theory as a means of analyzing the perfor-man
e of tele
ommuni
ation systems has been demonstrated extensively.However, until re
ently, most of the work done in this area applied toqueueing systems that do not distinguish between 
ustomers, that is, all
ustomers are of the same type and require the same type of servi
e.There are plenty of appli
ations were it would be suitable to distinguish
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e ofTele
ommuni
ation Systems:Sele
ted Topi
s 11between multiple 
ustomer types. For example, suppose that pa
ketsoriginating from K di�erent, possibly 
orrelated, traÆ
 streams formthe input to a bu�er, then it is often useful if we 
ould obtain statisti
s,e.g., the delay distribution, for ea
h individual sour
e. The Markovianarrival pro
ess with marked arrivals, i.e., the MMAP[K℄ pro
ess, is animportant building blo
k that allows us to obtain su
h information.Both a 
ontinues and a dis
rete time version of the MMAP[K℄ ar-rival pro
ess has been introdu
ed [He and Neuts, 1998; He, 1996℄, butwe restri
t ourselves to the dis
rete time variant. We shall distinguishbetween two types of MMAP[K℄ pro
esses: those that allow for bat
harrivals to o

ur, and those that do not.MMAP[K℄ Pro
ess without Bat
h Arrivals. A dis
rete timeMMAP[K℄ arrival pro
ess that does not allow for bat
hes to o

ur is anatural extension of the D-MAP arrival pro
ess [Blondia, 1993℄. Cus-tomers are distinguished into K di�erent types. The MMAP[K℄ is 
har-a
terized by a set ofm�mmatri
es fDk j 0 � k � Kg, withm a positiveinteger. The (j1; j2)th entry of the matrix Dk, for k > 0, represents theprobability that a type k 
ustomer arrives and the underlying Markov
hain (MC) makes a transition from state j1 to state j2. The matrix D0
overs the 
ase when there are no arrivals. The matrix D, de�ned asD = KXk=0Dk;represents the sto
hasti
 m�m transition matrix of the underlying MCof the arrival pro
ess. Let � be the stationary probability ve
tor of D,that is, �D = � and �e = 1, where e is a 
olumn ve
tor with all entriesequal to one. The stationary arrival rate of type k 
ustomers is givenby �k = �Dke. Queues with MMAP[K℄ arrival pro
esses are dis
ussedin Se
tion 3.1Example 3.1. Consider a D-MAP arrival pro
ess 
hara
terized by them �m matri
es ~C and ~D. Suppose that we wish to mark the arrivalsby the state of the underlying MC at its generation time. This resultsin a MMAP[K℄ arrival pro
ess with D0 = ~C and with the matri
es Dk,for 1 � k � K = m, equal to zero, ex
ept for their k-th row, whi
h isidenti
al to the k-th row of ~D. Noti
e, the number of 
ustomer typesmight be smaller than m, be
ause some rows of ~D might be equal tozero.MMAP[K℄ Pro
ess with Bat
h Arrivals. A dis
rete timeMMAP[K℄ arrival pro
ess that allows for bat
hes to o

ur |a natural



12extension of the D-BMAP arrival pro
ess [Blondia, 1993℄|is 
hara
ter-ized by a set of m � m matri
es DC where C is a string of integersbetween 1 and K, that is, C = 
1 : : : 
b with 1 � 
l � K and 1 � l � b.Let bmax be the maximum bat
h size of the MMAP[K℄ arrival pro
ess.Let ; denote the empty string and jCj the length of the string C. The(j1; j2)th entry of the matrix DC , with C 6= ;, represents the probabilitythat a bat
h of jCj arrivals o

urs, while the underlying MC makes atransition from state j1 to state j2. The type of the l-th 
ustomer of thebat
h is 
l, for 1 � l � jCj, if C = 
1 : : : 
jCj. As before, D = PC DCrepresent the transition matrix of the underlying MC and � its station-ary probability ve
tor. The stationary arrival rate of type k 
ustomersis given by �k = �PC N(C; k)DCe, where N(C; k) 
ounts the numberof o

urren
es of the integer k in the string C. Queues with MMAP[K℄arrival pro
esses are dis
ussed in Se
tion 3.1Example 3.2. It is well known that a superposition of two, or more,D-BMAPs is again a D-BMAP. However, when superposing D-BMAPs
ustomers generally loose their identity, meaning that we no longer knowwhether the arrival 
ame from the �rst or the se
ond D-BMAP. AMMAP[K℄ arrival pro
ess that eliminates this drawba
k 
an be 
on-stru
ted in the following way. Suppose that the �rst, resp. se
ond, D-BMAP is 
hara
terized by the m1 � m1 matri
es ~D1n, resp. m2 � m2matri
es ~D2n, for n � 0. Let DC , with C a string of b1 � 0 ones followedby b2 � 0 twos1, be m1m2 � m1m2 matri
es. Instead of labeling them1m2 states j of the underlying MC as 1 to m1m1, we denote them as(j; j0), with 1 � j � m1 and 1 � j0 � m2. The (j1; j2)th entry, withj1 = (j1; j01) and j2 = (j2; j02), of the matrix DC , with C a string ofb1 ones followed by b2 twos, equals ( ~D1b1)j1;j2 ( ~D2b2)j01;j02 . A variety ofexamples is presented in [He and Neuts, 1998; He, 2001℄.The MMAP[K℄/PH[K℄/1 Queue. In this se
tion we dis
uss theMMAP[K℄/PH[K℄/1 queue with a �rst-
ome-�rst-serve (FCFS) and alast-
ome-�rst-serve (LCFS) servi
e dis
ipline. The servi
e times of typek 
ustomers, in a MMAP[K℄/PH[K℄/1 queue, have a 
ommon phase-typedistribution fun
tion with a matrix representation (mk; �k; Tk), wheremk is a positive integer, �k is an 1 �mk nonnegative sto
hasti
 ve
torand Tk is an mk �mk substo
hasti
 matrix. Let T 0k = e� Tke, then themean servi
e time of a type k 
ustomer equals 1=�k = �k(I � Tk)�1e.The i-th entry of �k represents the probability that a type k 
ustomerstarts its servi
e in phase i. The i-th entry of T 0k , on the other hand,represents the probability that a type k 
ustomer 
ompletes its servi
eprovided that the servi
e pro
ess is in phase i, while the (i; j)-th entry
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omplete its servi
e and thephase at the next time instan
e is j.The positive re
urren
e, i.e., stability, of these queues was studied byHe in [He, 2000℄. Expli
it formulas for the Lapla
e-Stieltjes transformsof the waiting times of a type k 
ustomer have been obtained for a serverwith a FCFS servi
e dis
ipline [He, 2001℄. An algorithm to obtain thesteady state probabilities of a MMAP[K℄/PH[K℄/1 queue, where theMMAP[K℄ arrival pro
ess does not allow for bat
hes to o

ur and theserver follows a LCFS servi
e dis
ipline, is found in [He and Alfa, 2000℄.Finally, a simple algorithm, based on the GI=M=1 stru
ture, has beendeveloped to 
al
ulate the delay distribution of a type k 
ustomer ina FCFS MMAP[K℄/PH[K℄/1 queue [Van Houdt and Blondia, 2002a℄.This algorithm is highly eÆ
ient if the MMAP[K℄ arrival pro
ess doesnot allow for large bat
h arrivals to o

ur.Example 3.3. Let us 
ontinue with the MMAP[2℄ arrival pro
ess in-trodu
ed in Example 3.2. Now, assume that ea
h of the two D-BMAPsmodel a traÆ
 sour
e and that the traÆ
 generated by both sour
esshare a bu�er. Moreover, assume that the pa
kets generated by sour
ek, for k = 1; 2, have a �xed length of Lk bytes. Then, this bu�er 
anbe modeled by a dis
rete time MMAP[2℄/PH[2℄/1 queue, be
ause �xedlength servi
e times have a phase type distribution. As a result, we 
ould
al
ulate the delay distribution of a sour
e k arrival using [Van Houdtand Blondia, 2002a℄.Example 3.4. Many random a

ess algorithms (RAAs) that usegrouped a

ess as their 
hannel a

ess proto
ol (CAP) 
an be modeledin a natural way by means of a MMAP[K℄/PH[K℄/1 queue ([Van Houdt,2001; Van Houdt and Blondia, 2002b; Van Houdt and Blondia, 2002
℄).When modeling su
h a RAA, a type k 
ustomer 
orresponds to a groupof k 
ontenders and its servi
e time distribution is the time ne
essary forea
h of the k 
ontenders to su

essfully transmit their pa
ket, startingfrom the 
ompletion time of the previous group.3.2. Tree Stru
tured Markov ChainsAnother promising development in the theory of matrix analyti
 meth-ods are tree stru
tured Markov 
hains (MCs). Consider a dis
rete timebivariate MC f(Xt; Nt); t � 0g in whi
h the values of Xt are representedby nodes of a d-ary tree, and where Nt takes integer values between 1and m. Xt is referred to as the node and Nt as the auxiliary variableof the MC at time t. A d-ary tree is a tree for whi
h ea
h node hasd 
hildren. The root node is denoted as ;. The remaining nodes aredenoted as strings of integers, with ea
h integer between 1 and d. For



14instan
e, the k-th 
hild of the root node is represented by k, the l-th
hild of the node k is represented by kl, and so on. Throughout this pa-per we use lower 
ase letters to represent integers and upper 
ase lettersto represent strings of integers when referring to nodes of the tree. Weuse '+' to denote 
on
atenation on the right, e.g., if J = j1 j2 j3; k = jthen J + k = j1 j2 j3 j. If J 
an be written as K1+K2 for some stringsK1 and K2, K1 is 
alled an an
estor of J .Algorithms that allow for the 
al
ulation of the steady state probabil-ities, have been identi�ed for three subsets of the tree stru
tured MCs,ea
h subset allows for a 
ertain type of transitions to o

ur:The skip-free to the left, i.e., M/G/1 Type, MCs: It is impossible tomove from node J to ;, without visiting all an
estors of J [Takineet al., 1995℄.The skip-free to the right, i.e., GI/M/1 Type, MCs: Transitionsfrom a node J are allowed to the root node ;, the 
hildren of Jand the 
hildren of all an
estors of J [Yeung and Sengupta, 1994℄.The Quasi-Birth-Death (QBD) MCs: The 
hain 
an only maketransitions to its parent, 
hildren of its parent, or to its 
hildren[Yeung and Alfa, 1999℄.So far, the last subset has proven to be the most fruitful. Therefore,they are dis
ussed in more detail in this se
tion. If a tree stru
turedQBD MC is in state (J + k; i) at time t then the state at time t+ 1 isdetermined as follows:1 (J; j) with probability di;jk ; k = 1; : : : ; d;2 (J + s; j) with probability ai;jk;s; k; s = 1; : : : ; d,3 (J + ks; j) with probability ui;js ; s = 1; : : : ; d.De�ne m�m matri
es Dk; Ak;s and Us with respe
tive (i; j)th elementsgiven by di;jk ; ai;jk;s and ui;js . Noti
e that transitions from state (J+k; i) donot dependent upon J , moreover, transitions to state (J+ks; j) are alsoindependent of k. When the Markov 
hain is in the root state (J = ;)at time t then the state at time t+ 1 is determined as follows:1 (;; j) with probability f i;j,2 (k; j) with probability ui;jk ; k = 1; : : : ; d.De�ne the m�m matrix F with 
orresponding (i; j)th element given byf i;j. Algorithms that 
al
ulate the steady state probabilities using the
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es Dk, Ak;s, Us and F as input parameters are available in [Yeungand Alfa, 1999; Bini et al., 2002℄.Example 3.5. MMAP[K℄/PH[K℄/1 queue, where the MMAP[K℄ arrivalpro
ess does not allow for bat
hes to o

ur, with a last-
ome-�rst-serve(LCFS) servi
e dis
ipline 
an be modeled using a tree stu
tured QBDMC [He and Alfa, 2000℄. Indeed, the line of 
ustomers waiting in aMMAP[K℄/PH[K℄/1 queue 
an be represented by a string of integersbetween 1 and K, thus as nodes of a K-ary tree. The auxiliary variableis used to represent the phase of the server, the type of 
ustomer in theserver and the state of the MMAP[K℄ arrival pro
ess. The root node ;
orresponds to a queue with a busy server and an empty waiting room.Therefore, one needs a generalized boundary 
ondition to represent thesituation where the waiting room is empty and the server is not busy.Information on generalized boundary 
onditions and other extension,i.e., MCs with a forrest stru
ture, 
an be found in [Yeung and Sengupta,1994℄.Example 3.6. Random a

ess algorithms (RAAs) known as sta
k al-gorithms, or tree algorithms with free a

ess, 
an be modeled using atree stru
tured QBD MC [Van Houdt and Blondia, 2001; Van Houdtand Blondia, 2002d℄. As a result, it is possible to study the maximumstable throughput, as well as the mean delay, for various D-BMAP (andBMAP) arrival pro
esses.4. Asymptoti
 approximations for theperforman
e evaluation of large broadbandnetworks4.1. The need for asymptoti
 methodsAfter a period of intensive development, multiservi
e broadband net-works are now a reality. Current implementations already serve as high-speed ba
kbone infrastru
tures and more extensive usage, a

ompaniedby a further exploitation of these networks' advan
ed 
apabilities, is ex-pe
ted when the need for providing 
omplex information servi
es withstri
t quality guarantees will grow.There are two primary performan
e-related 
hara
teristi
s that distin-guish multiservi
e broadband networks from their \
onventional" 
oun-terparts. The �rst is that, due to both the high transmission speedand the need for providing individualized|and stringent|quality ofservi
e (QoS) guarantees, very rare events (e.g., bu�er over
ows o
-
urring with probability as low as 10�6, or smaller) be
ome signi�
ant.Consequently, most relevant performan
e metri
s must be based on dis-
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Figure 2. The e�e
t of burstiness: over
ow probability vs bu�er size (at a log-linears
ale).tribution tails rather than mean values. The se
ond 
hara
teristi
 isthat most bandwidth-demanding traÆ
 types appearing on broadbandnetworks are bursty, i.e., they feature signi�
ant rate ex
itations and
orrelated pa
ket interarrival times. These are properties that leave amark on the queueing phenomena governing the network's performan
e.The typi
al queueing e�e
ts of burstiness are demonstrated by themain graph of Fig. 2, depi
ting the bu�er over
ow probability (a stan-dard performan
e metri
) at a network multiplexer or swit
h loaded bya superposition of bursty traÆ
 streams, as a fun
tion of the bu�er size.Two distin
t regions are 
learly identi�ed: In the �rst region (smallbu�er sizes) the rate 
orrelations do not be
ome apparent, the traÆ
is primarily 
hara
terized (at the, so 
alled, `pa
ket level') by proper-ties of the individual interarrival times between su

essive pa
kets, andthe over
ow probability de
ays rapidly with in
reasing bu�er size (atan exponentially fast rate, sin
e the graph uses a log-linear s
ale). Inthe se
ond region (larger bu�er sizes) the rate 
orrelation details (usu-ally 
olle
tively 
alled `burst level traÆ
 properties') be
ome noti
eable,resulting in a quite smaller rate of de
ay for the over
ow probability.Clearly, a

urate predi
tion of tail probabilities|like those in theexample|requires the usage of sophisti
ated traÆ
 models, able of pro-viding a suÆ
iently pre
ise 
hara
terization of traÆ
 at both the pa
ketand burst levels. Su
h detailed models, and asso
iated analysis meth-ods, do exist and are invaluable whenever thorough queueing analysisis 
alled for. In due a

ount, the paper reviews two important 
lassesof models/solution methods (see the se
tions on matrix analyti
 te
h-niques, and on generating fun
tions based te
hniques). Unfortunately,detailed des
riptions su�er from the `state spa
e explosion' problem. In-deed, the state spa
es of models for all but the simplest traÆ
 patternshave to be rather large, if both the pa
ket- and burst-level behavior is
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aptured. The situation be
omes worse when it is realized that, invirtually all 
ongestion phenomena of interest, the aggregate traÆ
 load
onsists of a (frequently heterogeneous) superposition of a large numberof individual streams and that the state spa
e of the model for the ag-gregate traÆ
 depends fa
torially on the|already large|spa
es of the
onstituents.In an attempt to partially alleviate this diÆ
ulty, `
uid-
ow' mod-els of traÆ
 have been proposed. These models disregard the dis
retenature of the pa
ket level details, representing traÆ
 as the 
ow of a
ontinuous 
uid (hen
e their name). The instantaneous rate of this 
owis taken equal to the average rate of the real traÆ
 over an appropriatetime window, large enough to \hide" the pa
ket details, but also smallenough to preserve the burst-level rate 
u
tuations. This approa
h hasbeen quite su

essfully employed towards the a

urate representation ofburst-level traÆ
 dynami
s with a redu
ed set of model parameters. Anexample is provided by the dashed graph in Fig. 2, whi
h representsthe over
ow probability 
urve 
orresponding to the 
uid-
ow 
ounter-part of the original traÆ
 and whi
h mat
hes quite satisfa
torily withthe exa
t result over the burst level region. For further information on(primarily Markovian) 
uid-
ow models see: [Ani
k et al., 1982; Kosten,1984; Mitra, 1988; Stern and Elwalid, 1991℄ for the basi
 theoreti
al foun-dation and analysis te
hniques, [Baio

hi et al., 1992; Kontovasilis andMitrou, 1994; M
Donald and Qian, 1998℄ for embelishments of the theoryand eÆ
ient 
omputational algorithms, and [Kontovasilis and Mitrou,1995; Mitrou et al., 1995℄ for multiple-s
ale phenomena o

urring whenthe traÆ
 possesses burst-level dynami
s with a �ner stru
ture.However, although the 
uid-
ow 
on
ept works for redu
ing the 
om-plexity of models for individual traÆ
 streams, it 
annot alleviate thestate spa
e explosion due to superposition. For this reason, many impor-tant performan
e-related network me
hanisms, parti
ularly those thatmust operate within a short time-frame (su
h as on-line traÆ
 
on-trol) or over a 
ombinatorially large domain (e.g., network-wide resour
e(re)allo
ation), 
annot rely on \
lassi
al" queueing te
hniques, even the
uid-
ow ones.Fortunately, there's still a viable way of addressing the problem,grounded on the fa
t that modern broadband networks are, in some re-spe
ts, \large" systems, featuring high link 
apa
ities and large swit
hes,and requiring that probabilities of hazardous events (like over
ows lead-ing to data losses) be very small (so as to provide reliable QoS guaran-tees). This setting suits well to the `Theory of Large Deviations' (TLD),a body of theoreti
al results and te
hniques that address systems \s
aledup" by a large parameter and examine the 
ir
umstan
es under whi
h



18asso
iated (s
aled) random variables may attain values in a designatedset with an exponentially small probability, asymptoti
ally as the s
al-ing parameter approa
hes in�nity. TLD may be used to 
ompute therate of exponential de
ay in the probabilities of interest and, moreover,determine the way in whi
h these `rare events' o

ur. A 
omprehensivegeneral treatment of TLD 
an be found in, e.g., [Dembo and Zeitouni,1998℄, while [Bu
klew, 1990℄ provides a less formal exposition, expli
itlygeared towards appli
ations. Referen
e [Weiss, 1995℄ may be 
onsultedfor a brief overview of topi
s and further referen
es.Building on the TLD foundations, the very same 
hara
teristi
s thatlead to state-spa
e explosion in \
onventional" models have been ex-ploited towards the development of asymptoti
 theories that quantify
ongestion in broadband networks under bursty load. The purpose ofthis se
tion is to give an outline of the relevant results. Before embarkingon the review, however, it is important to note that, besides analyti
altra
tability, a prime advantage of the asymptoti
 methods is their poten-tial for 
on
eptual 
larity, something 
ru
ial for highlighting the e�e
tof fundamental phenomena in expli
it terms.Generi
ally, two su
h 
ongestion-related phenomena may be identi-�ed: The �rst, frequently 
alled `multiplexing gain', relates to the fa
tthat (as a 
onsequen
e of the law of large numbers) aggregation of manyindependent traÆ
 streams results in smoother 
ompound traÆ
, redu
-ing the probability with whi
h the aggregate data rate raises above itsmean value. As more streams are multiplexed, the amount of bandwidthper stream required to 
ompensate for the rate ex
itations is redu
ed (fora given QoS requirement), justifying the name of the phenomenon. Inthe absen
e of signi�
ant bu�ering, multiplexing gain is the only me
h-anism through whi
h QoS may be attained while using less bandwidththan peak-rate. In Fig. 2 this is re
e
ted at the non-negligible proba-bility of over
ow even with a zero bu�er size. The relevant asymptoti
theory is reviewed in Subse
tion 4.2.The se
ond fundamental phenomenon relates to another me
hanism of
ontrolling rate ex
itations so as to avoid data losses, that of temporarilystoring ex
essive data into a bu�er. The larger the bu�ering resour
e, thesmaller the 
apa
ity requirement for the output port be
omes, for a givenloss probability. In analogy with multiplexing gain, this bandwidth-savings e�e
t will be 
alled `bu�ering gain'. In Fig. 2 it is re
e
ted atthe de
ay of the over
ow probability with in
reasing bu�er size, evenat the \slow" burst-level region. The asymptoti
 theory relevant tobu�ering gain is reviewed in Subse
tion 4.3.The two regimes just outlined relate to either no bu�er, or a largebu�er, so that either the multiplexing gain, or the bu�ering gain domi-
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tively. In many 
ases the available bu�er is neither negligiblenor dominant and both phenomena are noti
eable. For this more gen-eral setting there is an improved asymptoti
 theory that 
an quantify the
ombined e�e
t of both gain fa
tors, by 
onsidering systems where theload and resour
es (bu�er and bandwidth) are proportionally s
aled by alarge parameter. Elements of this theory are provided in Subse
tion 4.4.4.2. Asymptoti
s for multiplexers with smallbu�ersConsider a multiplexer (or an output port unit of a swit
h) featur-ing a negligibly small bu�er and serving traÆ
 through an output linkof 
apa
ity equal to C. The aggregate traÆ
 loading this system 
anbe des
ribed as a sto
hasti
 instantaneous-rate2 pro
ess f r(t); t 2 IR g,whi
h it is assumed throughout stationary. Tra
king just instantaneousrates is adequate, as there is no bu�er to \re
ord the past history" ofthe traÆ
. In the following, the properties of the instantaneous rate willbe des
ribed through the respe
tive log-moment generator (also 
alledthe `
umulant generator') �(s) b= log IE esr(t). As an impli
ation of sta-tionarity, �(s) is independent of time.At this point it is reminded that the log-moment generator of a ran-dom variable (r.v.) is a 
onvex fun
tion (a
tually stri
tly 
onvex, unlessthe r.v. is a.s. 
onstant). The set f s 2 IR j �(s) < 1g is 
alled thegenerator's `e�e
tive domain'. If s = 0 is in the interior of this domain(a mild 
ondition, assumed throughout and satis�ed in all 
ases of pra
-ti
al interest, in parti
ular when the r.v. is bounded|translated to theexisten
e of a �nite peak rate in our 
ase), then the generator is ananalyti
 fun
tion on the whole interior of its e�e
tive domain. By 
on-vexity, the derivative �0(s) is in
reasing (stri
tly in
reasing if the r.v. isnot a.s. 
onstant) and the same may be shown for �(s)=s. Furthermore,the limits of these fun
tions are related to the extremal values3 of the
orresponding r.v. X as follows:ess infX = lims!�1�0(s) = lims!�1 �(s)s < lims!0 �(s)s = IE X = lims!0�0(s)< lims!+1 �(s)s = lims!+1�0(s) = ess supX: (12)Sin
e there is no bu�er, over
ows (and data losses) o

ur whenever theinstantaneous data rate ex
eeds the system's 
apa
ity. We now derivean upper bound to the probability of over
ow. Indeed, by a Cheby
he�-



20type argument, for any s � 0,Prf r(t) > C g = Z 1x=C+ dFr(x) � Z 1x=C+ es(x�C) dFr(x)� Z 1x=0 es(x�C) dFr(x) = expf�(s)� sCg:By taking logarithms and optimizing over the permissible range of pa-rameters, we obtainlog Prf r(t) > C g � � sups�0�Cs� �(s)	: (13)This bound is known in the literature as `Cherno�'s bound'. Assuminga stable system (i.e., C > IE r(t)), the maximum over nonnegative reals
oin
ides with the maximum over the entire real line, i.e.,8C > IE r(t) b= �r; sups�0�Cs��(s)	 = sups2IR�Cs��(s)	 b= I(C); (14)the value of the Fen
hel-Legendre transform of �(�) at C. Furthermore,it may be shown that, for C > �r, the Fen
hel-Legendre transform I(�) isan in
reasing fun
tion (a
tually stri
tly in
reasing, unless r(t) is a.s. 
on-stant), expressing the intuitively appealing fa
t that the over
ow prob-ability be
omes smaller as the system's 
apa
ity in
reases.Assume now that the aggregate traÆ
 
onsists of a large number nof independent and identi
ally distributed streams, while the system's
apa
ity is proportionally s
aled, maintaining a �xed amount of band-width per sour
e, i.e., C = n
. Sin
e log-moment generators are ad-ditive for independent r.vs, the aggregate generator is �n(s) = n�(s)(where now �(�) signi�es the generator of a single stream) and from equa-tions (13) and (14) it follows that the over
ow probability is boundedby e�nI(
), de
aying exponentially with large n at a rate equal to I(
).This re
e
ts the fa
t that, as more sour
es are multiplexed and thebandwidth per sour
e 
 remains �xed, over
ows be
ome less probable,be
ause the 
ompound traÆ
 \smoothens". In other words, and due tothe monotoni
ity of I(�), a smaller value of 
 is required as n in
reases,for a given target over
ow probability. This is exa
tly the multiplexinggain phenomenon, dis
ussed in the previous subse
tion.The Cherno� bound of eq. (13) is 
onservative, allowing for safeperforman
e-related de
isions. Not only that, but the bound is asymp-toti
ally tight, as the number of sour
es n ! 1. Spe
i�
ally, byCram�er's Theorem (see, e.g., [Dembo and Zeitouni, 1998, Theorem 2.2.3℄),it holds limn!1 1n log Prf rn(t) > n
 g = �I(
); (15)
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s 21where, as with the generator, rn(t) denotes the aggregate rate. Thisresult suggests that, when n is large enough, the probability of over
owis e��, where � = nI(
) + o(n). (The quantity � expresses the a
hievableQoS at a logarithmi
 s
ale and will be 
alled the `quality level' in thesequel.) There is also a more detailed result, 
alled the `Bahadur-Rao'
orre
tion, that strengthens the asymptoti
 equivalen
e of (15) to linear,rather than logarithmi
 order. (In this result, I(
) still remains thedominant fa
tor determining the probability of over
ow.) For details,see, e.g., [Dembo and Zeitouni, 1998, Theorem 3.7.4℄.When the traÆ
 is a heterogeneous mix of independent traÆ
 streams,the previous theory still applies. Indeed, 
onsider k traÆ
 
lasses, ea
h
ontaining ni, i = 1; : : : ; k independent and identi
al streams. Thenthe total number of sour
es is n = Pki=1 ni and the aggregate gen-erator is 
onstru
ted by the individual 
ounterparts through �n(s) =Pki=1 ni�i(s). In this setting (15) still holds, i.e., for large n the prob-ability of over
ow is approximately e��, with quality level � = nI(
) =sups�Cs�Pki=1 ni�i(s)	.We now dis
uss the 
omputation of the de
ay rate in the asymp-toti
 (15). Due to the 
onvexity of log-moment generators, the fun
tionto be maximized in (14) is 
on
ave and attains a unique maximum.Moreover, by di�erentiability (again borrowed from the generator) thederivative of the fun
tion in (14) is zero at the maximizing argument.From these observations and from eq. (12) it follows that when the 
a-pa
ity C is between the aggregate mean and peak rates, the quality levelis 
omputed as� = nI(C=n) = sups�0�Cs� kXi=1 ni�i(s)	 = Cs� � kXi=1 ni�i(s�); (16)where s� is the unique4 argument satisfyingkXi=1 ni�0i(s�) = C; (17)and where the equations have been expressed in a form suitable for ageneral heterogeneous traÆ
 mix.Usually, (16) and (17) must be solved numeri
ally. However, the
anoni
al example of a homogeneous on/o� traÆ
 mix admits a 
losedform solution. Indeed, for any on and o� sojourn distributions (just as-suming �nite means, respe
tively IE Ton and IE To�) ea
h 
onstituent ratepro
ess is stationary and ergodi
. By letting p = IE Ton=(IE Ton+IE To�)stand for the probability of visiting the on-state, the instantaneous



22rate of a single stream is Bernoulli distributed, with generator �(s) =log[pesr + (1� p)℄, where r is the stream's peak rate. Then, appli
ationof (17) and (16), yields� = n�� log �p + (1� �) log 1� �1� p�; where p < � b= Cnr < 1:Up to this point, the fo
us of the dis
ussion was on estimating thesystem's performan
e under given resour
es and traÆ
 load. However,network traÆ
 engineering usually deals with problems of an \inverse"nature. One parti
ularly important one is the so 
alled, traÆ
 admis-sion 
ontrol (also named 
onne
tion admission 
ontrol|CAC), wherethe network resour
es (in our 
ase the multiplexer's 
apa
ity C) and thedesired quality level � are given and the task 
onsists of de
iding whethera 
andidate traÆ
 mix may be admitted by the network while still sat-isfying the QoS requirement. Formally, assume that the traÆ
 load ata multiplexer may 
onsist of a superposition of streams from k di�erenttraÆ
 
lasses, ea
h with known 
hara
teristi
s (quanti�ed through therespe
tive generators �i(�), i = 1; : : : ; k) and let a potential traÆ
 mix berepresented by the ve
tor n = �n1; : : : ; nk�, with elements the numbersof streams from ea
h 
lass parti
ipating in the mix. In this notation, atraÆ
 mix may be admitted without violating the QoS, i� it belongs tothe so 
alled admission domain fn j f(n) � � g, where f(n) stands forthe right hand side of (16).Given this framework, traÆ
 admission 
ontrol 
ould in prin
iple pro-
eed by 
omputing f(n) through (17) and (16) and 
omparing the resultto the target quality level �. However, the relevant 
omputations involveall traÆ
 
lasses in the mix, making it diÆ
ult to take in
remental de-
isions (useful in the 
ommon 
ase when a single new 
onne
tion asksto join an already a

epted|potentially large|mix). For this reason,alternative algorithms are required, whi
h usually rely on determiningthe boundary of the admission domain (i.e., mixes satisfying f(n) = �).If that boundary was linear, then a parti
ularly simple algorithm wouldbe possible, be
ause there would be 
onstants ai, i = 1; : : : ; k and b(possibly dependent on C and � but not on the traÆ
 mix), su
h thatthe admission domain would 
ontain exa
tly those n satisfyingkXi=1 aini � b: (18)Thus, for the purposes of admission 
ontrol, ea
h traÆ
 stream wouldbe 
ompletely 
hara
terized by the quantity ai 
orresponding to its 
lassand in
remental admission 
ontrol would pro
eed by merely adding this
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Figure 3. Admission domain for two traÆ
 
lasses and linear approximation of theboundary around n�quantity to a register (maintaining the sum for the already present traf-�
) and 
omparing to b.Unfortunately, the boundary of the admission domain, as de�nedby (16) and (17) is not linear5; the typi
al form of its shape is dis-played on Fig. 3 for two traÆ
 
lasses (ignore for the moment the linearsegment). Despite this diÆ
ulty, it is still possible to obtain a lo
allyoptimal linearization, by observing that, due to (16), f(n) is 
onvex andthe same holds for the 
omplement of the admission domain. Thus, it isassured that the tangent hyperplane at a point n� on the boundary willrest inside the admission domain (see Fig. 3), while also 
oin
iding withthe true boundary at n�. By observing that f(n�) = � and by using (16)and (17), it follows that �f=�nijn=n� = ��i�s�(n�)� and, further, thatthe subset of the domain bounded by the tangent hyperplane 
ontainsthose traÆ
 mixes n satisfyingkXi=1 ni�i(s�(n�))s(n�) � C � �s�(n�) : (19)In order to use (19), one must determine a traÆ
 mix n� at the bound-ary of the true admission domain and then 
ompute the 
orrespondingvalue of the maximizing s-parameter, namely s�(n�). Although theseinitialization steps require rather heavy 
omputations, the a
tual admis-sion 
ontrol through (19) is simple, be
ause the latter is of the simpleform (18). However, note that, sin
e the linearization is optimal onlywith respe
t to the 
hosen n�, su

essive 
onne
tion admissions (andterminations) may move the 
urrent traÆ
 mix away from the initial
hoi
e n�, at a vi
inity of the domain for whi
h the linearization isoverly 
onservative (see the �gure), thus resulting in a waste of networkresour
es. In su
h a 
ase, a new boundary point 
lose to the 
urrent



24traÆ
 mix should be 
hosen and the linearization pro
edure around itshould be applied afresh.We 
lose this subse
tion by noting that, while the basi
 asymptoti
performan
e estimate is a standard result in the Theory of Large Devi-ations (and thus known for many years), its appli
ation in the study ofbroadband networks and, in parti
ular, the results on admission domainsand the linearization of their boundaries were originally 
ontributed by[Hui, 1988; Hui, 1990℄.4.3. Asymptoti
s for large bu�ers: e�e
tivebandwidth theoryWe now turn into the study of multiplexers that feature large bu�er-ing 
apabilities. Like previously, we seek to present a theory linking thetraÆ
 load and the network resour
es (viz., the amount of bu�er mem-ory and the output link's 
apa
ity) to the probability of data loss due tobu�er over
ow, the latter serving as the performan
e metri
. While inthe bu�erless setting it was adequate to represent the traÆ
 
hara
ter-isti
s through instantaneous rate properties, this subse
tion deals withlarge bu�ers that expose the properties of rate 
orrelations over largetime intervals. Therefore, it is ne
essary to study random variables ofthe form V (�; � + t), denoting the amount of data generated over theinterval (�; � + t℄. It will be assumed throughout that the data pro
esshas stationary in
rements6, i.e., V (�; � + t) depends only on the length tof the time-interval, not its origin, and 
an be denoted simply as V (t).By virtue of stationarity, IE V (t) = �rt for all time-lengths t, �r being themean traÆ
 rate. Further sto
hasti
 properties of V (t) will be des
ribedthrough the 
orresponding log-moment generator�(�; t) b= log IE e�V (t); (20)for whi
h two relevant 
onditions are introdu
ed:C1 For ea
h �, the limit �1(�) = limt!1 �(�;t)t exists and is �nite.C2 �1(�) is stri
tly 
onvex and di�erentiable.Condition C1 ensures that the traÆ
 is not long-range dependent (a 
asefor whi
h the theory, in the form presented here, does not hold), whileCondition C2 is a guarantee that the stri
t 
onvexity and di�erentiabilityof the generator �(�; t) will also be inherited by the limit.Under Condition C1, the `e�e
tive bandwidth fun
tion' (EBF) of thetraÆ
 is de�ned as a(�) = �1(�)=�; � � 0: (21)
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s 25As a log-moment generator, �(�; t) is 
onvex in �, a property also trans-ferred to the limit �1(�) as well. Thus, a

ording to the dis
ussion earlyin Subse
tion 4.2, the EBF a(�) is an in
reasing fun
tion. Furthermore, ifCondition C2 also holds, then a(�) is stri
tly in
reasing. Lastly, observethat, by virtue of (12),�r = limt!1 IE V (t)t = �01(0) = a(0) � a(�) � lim�!1a(�) =lim�!1 �1(�)� = limt!1 ess supV (t)t b= r̂;establishing that the EBF is bounded between mean and peak rate. (Thepeak rate r̂ is with respe
t to an asymptoti
ally large time-window andmay, in some 
ases, be smaller than the instantaneous peak rate.)The importan
e of the EBF is due to the following properties: Assumethat traÆ
 of EBF a(�) loads a multiplexer featuring in�nite bu�er spa
eand an output link of 
apa
ity C. Further, assume there is some � > 0,su
h that a(�) < C. Then, it may be proved that the distribution tailof the queue 
ontent Q(t) has at all times an exponential upper boundof rate �. In other words, there exists a 
onstant d(�), su
h thatPrfQ(t) > B g � d(�)e��B ; 8t � 0; 8B � 0:There is also a \re
ipro
al" result: If a(�) > C the 
apa
ity is not largeenough and it may be shown that the distribution tail of the queue
ontent 
annot be bounded exponentially using rate �.These two statements taken together suggest that, in order to a
hievean exponential de
ay of at least rate � for the over
ow probability underin
reasing bu�er size, the system's 
apa
ity must be greater than a(�).In this 
ase, the a
hievable de
ay rate is �� = supf � j a(�) < Cg.Obviously, when the EBF is stri
tly in
reasing (as when Condition C2holds), �� = a�1(C). In fa
t, for this 
ase the following stronger assertion
an be made: If, besides Condition C1, C2 also holds, the bu�er 
ontentQ(t) has a stationary distribution with tail satisfyinglimB!1 � log PrfQ > B gB = �; where � = a�1(C): (22)This result not only establishes asymptoti
 exponentiality for queue tails,but may also be used to determine the bandwidth requirements, as afun
tion of the bu�er size and the QoS level.Indeed, assume that the multiplexer has a large (but �nite) bu�ersize B and set the requirement that the system over
ows with prob-ability at most e��. (This spe
i�es a quality level equal to � in the



26terminology of the previous subse
tion.) Then, by (22), one must en-sure that � � �=B or, equivalently, C � a(�=B), whi
h is the desiredresult. Although this last relation is in a form suitable for admission
ontrol, it must be remembered that a(�) is the EBF for the whole traf-�
 load, thus it depends on the properties of all multiplexed streams.Fortunately, the de�nition of the EBF by (21) and the additivity of log-moment generators over independent r.vs, ensure that, for a traÆ
 mixn = �n1; : : : ; nk�, 
ontaining ni streams of 
lass i, for i = 1; : : : ; k, theaggregate EBF is simply a(�) = Pi niai(�). In parti
ular, the relationfor the bandwidth requirements be
omesa(�=B) = kXi=1 niai(�=B) � C; (23)spe
ifying a linear boundary of the form (18) for the admission domainand enabling the parti
ularly simple algorithm for in
remental admission
ontrol dis
ussed in Subse
tion 4.2.As a matter of fa
t, the name `e�e
tive bandwidth' is exa
tly due tothe linearity in (23), as the quantity ai(�=B) determines, independentlyof the rest of the traÆ
 environment the amount of bandwidth that mustbe granted to a sour
e of 
lass i, in order to satisfy the QoS requirementswith the given amount of bu�ering. Due to this independen
e, ea
htraÆ
 stream behaves, in a sense, like a 
onstant-rate 
ounterpart; forthis reason e�e
tive bandwidths are sometimes 
alled `e�e
tive rates' or`equivalent bandwidths'. It is mentioned that originally the term wasintrodu
ed by [Hui, 1988℄, in 
onne
tion with (19). However, sin
e thelinearization in (19) is only lo
ally signi�
ant, the term is now mostlyused in the sense (23), for the large-bu�er regime.Note that the linearity pre
ludes any potential for bandwidth savingsdue to multiplexing gain. Indeed n traÆ
 streams require bandwidthC = na(�=B), thus maintaining a 
onstant bandwidth per sour
e C=n,no matter how large n be
omes. This is not surprising, as the theoryholds asymptoti
ally as the bu�er size B ! 1 when the multiplexinggain is negligible, 
ompared to the bu�ering gain e�e
t.At this point it is remarked that the e�e
tive bandwidth theory wasdeveloped through a series of 
ontributions. The asymptoti
 exponen-tiality of distribution tails for the stationary queue 
ontent and the impli-
ations for this on a linear admission domain were originally establishedfor iid, Markovian on/o�, and other simple traÆ
 models [Gibbens andHunt, 1991; Gu�erin et al., 1991; Kelly, 1991℄ and were later generalizedfor the 
lass of arbitrary Markovian 
uids [Elwalid and Mitra, 1993℄.An extended theory that 
overs more general stationary rate pro
esses
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s 27followed [Kesidis et al., 1993; Chang, 1994; Glynn and Whitt, 1994℄,making expli
it use of results from Large Deviations Theory. Further-more, a modi�
ation [DuÆeld and O'Connell, 1996℄ of the limiting gen-erator �1(�), using a time s
aling more general than linear, allowedthe treatment of traÆ
 with long range dependen
e. See [Chang andThomas, 1995℄ for a review of the e�e
tive bandwidth theory along thestatisti
al me
hani
s viewpoint and [Ve
iana et al., 1995℄ for a dis
ussionof resour
e management te
hniques based on the e�e
tive bandwidth
on
ept. Further referen
es may be found in [Kelly, 1996℄.Apart from the general properties dis
ussed earlier, the parti
ularform of the EBF a(�) depends on sto
hasti
 details spe
i�
 to the 
orre-sponding traÆ
 stream. To review some examples, 
onsider Markovianon/o� 
uid models, featuring a peak rate r and exponentially distributedon and o� sojourns with mean durations � and �, respe
tively. In this
ase the EBF takes the forma(�) = 12�r � ( 1� + 1� )1� +r�r � ( 1� + 1� )1��2 + 4r���;a result that originally appeared in [Gibbens and Hunt, 1991℄ and wasfurther exploited in [Gu�erin et al., 1991℄. In the more general 
ase ofarbitrary Markovian 
uids, traÆ
 is des
ribed through a `rates-matrix'R = diagfr1; : : : ; rng and the in�nitesimal generator M of a 
ontinuous-time Markov Chain, whi
h governs the transitions between rate values.For this 
lass of models it has been shown [Elwalid and Mitra, 1993℄that the EBF is a(�) = �max�R + 1�M�, i.e., the largest eigenvalue ofthe essentially nonnegative matrix R + 1�M . A further generalization[Kontovasilis and Mitrou, 1997℄ allows the expli
it 
al
ulation of e�e
tivebandwidths 
orresponding to semi-Markovian 
uids, i.e., models wheretransitions between rates are still Markovian, but the periods duringwhi
h rate values are sustained may be arbitrarily distributed (but notheavy-tailed). In this 
ase, the EBF is determined through an impli
itfun
tion problem, derived from the requirement that the spe
tral radiusof an appropriate nonnegative matrix be equal to unity. For generalon/o� traÆ
 streams, of peak rate r, this result simpli�es as follows:Let �+(s) and ��(s) stand for the log-moment generators 
orrespondingto the distributions of the on and o� sojourns, respe
tively. Then, forany � > 0, the EBF is a(�) = u(�)=�, where u(�) is the unique positivesolution of �+(r� � u) + ��(�u) = 0:We 
lose this subse
tion by mentioning that, instead of adopting atraÆ
 model and trying to determine the EBF through it (something



28not always feasible), there are alternative approa
hes, whi
h target thedire
t measurement of the EBF, thus bypassing modeling. For workalong this line, see, e.g., [DuÆeld et al., 1995; Cour
oubetis et al., 1995℄.4.4. S
aling the system's sizeThe two previous asymptoti
 regimes were appropriate for either verylarge bu�ers or very small ones. However, there are 
ases where thebu�ering resour
e is neither negligible nor overly dominant and thenboth the multiplexing- and bu�ering-gain e�e
ts are noti
eable and mustbe taken into a

ount. We now brie
y dis
uss results for this more gen-eral setting. The relevant asymptoti
 regime assumes a large number oftraÆ
 streams n and proportionally s
aled (large) bu�er B and band-width C. In other words, B = bn and C = 
n, maintaining a 
onstantamount of resour
es per stream, as n ! 1. This type of s
aling wasoriginally introdu
ed by [Weiss, 1986℄, in 
onne
tion with traÆ
 
onsist-ing of exponential on/o� 
uids.In our setting, ea
h traÆ
 stream is a data generation pro
ess, whi
h,as in Subse
tion 4.3, is assumed to have stationary in
rements. The gen-erator (20) is again used as the traÆ
 des
riptor. (Generalizations, re-laxing the assumption on stationarity or the requirement for iid streamsexist.) Let the stationary queue 
ontent under a load of n traÆ
 streamsbe denoted as Qn; then the probability of over
ow is PrfQn > bn g. Thebasi
 result [Botvi
h and DuÆeld, 1995; Cour
oubetis and Weber, 1996℄(also [Simonian and Guibert, 1995℄, for the parti
ular 
ontext of gen-eral on/o� 
uids) is that, under some regularity 
onditions, notably thevalidity of Condition C1 in Subse
tion 4.3,limn!1 � log PrfQn > bn gn = I(
; b) b= inft>0 sup� �(
t+ b)� � �(�; t)	: (24)There is also a generalization [DuÆeld, 1996℄ whi
h, among other things,relaxes the requirement for Condition C1 (by introdu
ing a di�erenttime-s
aling for the generator) and is appropriate for usage with longrange dependent traÆ
.For a heuristi
 explanation of (24) remember that, by Lindley, Qn =supt>0(Vn(t)�n
t), where Vn(t) is the total amount of data generated bythe n streams over time t. Then (24) is essentially Cram�er's asymptoti
on Vn(t)�n
t (see (15) and (14)), followed by an optimization of the times
ale (using Lapla
e's prin
iple of the `dominating term'). Note that theappropriate time s
ale relevant to the result is neither t = 0 (as wasthe 
ase with bu�erless systems, where only instantaneous rates wereneeded) nor t = 1 (whi
h was appropriate for very large bu�ers), buta
tually the argument extremizing (24), say t�. The value of t� depends
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 and b and expresses the relative importan
e of the multiplexing-and bu�ering-gain. Indeed, by assuming di�erentiability, (24) impliesthat t� = �I(
; b)�
 =�I(
; b)�b = � �b�
 ����I(
;b)=� ; (25)thus t� quanti�es the (lo
al) tradeo� between bandwidth and bu�erfor a given quality level per sour
e. More spe
i�
ally, it is possibleto formally de�ne a `bu�er-bandwidth' 
urve of the form b(
; �), thatdes
ribes the amount of bu�ering required for a
hieving a desired qualitylevel, given the 
apa
ity (all quantities being s
aled by the number ofsour
es). It may be shown that this 
urve is 
onvex [DuÆeld and Low,1998; Kumaran and Mandjes, 2001℄. Sin
e, by (25), d
=db = �1=t�, theinverse 
urve is also 
onvex and de
reasing, implying that t� in
reaseswith b. This is intuitive, as larger bu�ers pronoun
e more the traÆ

orrelations, requiring a larger time-s
ale for their representation.Still in 
onne
tion with this point, it has been shown [Botvi
h andDuÆeld, 1995; Cour
oubetis and Weber, 1996℄ that as b!1 then t� !1 and I(
; b) tends to the asymptoti
 (22). Similarly, when b! 0, thenalso t� ! 0 and I(
; b) tends to the asymptoti
 of (15) and (14), wherein pla
e of the instantaneous rate generator the limit limt!0 �(s=t; t) isimplied7. Thus the theories for small and large bu�ers may be regardedas spe
ial 
ases of the results in this subse
tion. Note however, that ap-pli
ation of (24) is 
onsiderably more diÆ
ult than the other asymptoti
results, not only be
ause the generator �(�; t) must be determined forall time-s
ales instead of at a limiting value, but also be
ause the min-imization with respe
t to time is non-
onvex (unlike the maximizationin �) and thus diÆ
ult to perform numeri
ally.We 
lose by noting that it is possible to de�ne an admission domainfor the more general regime of this subse
tion. This domain is neitherlinear (as in Subse
tion 4.3) nor possessing a 
onvex 
omplement (asin Subse
tion 4.2). However, it is still possible to obtain a lo
al lin-earization, around points on the boundary, thus introdu
ing a (lo
allysigni�
ant) notion of e�e
tive bandwidth for this 
ase too. For moredetails see [Kelly, 1996℄.Notes1. For simpli
ity, we assume that the arrivals of the �rst D-BMAP o

ur before those ofthe se
ond, there is however no need to do so.2. Here we adopt a 
uid approa
h and represent the 
ow of data as a 
ontinuum. However,all results in this se
tion bear obvious analogies with a dis
rete-time setting, in whi
h r(t)stands for the amount of data 
ontributed during the time-slot indexed by (the now integer) t.



303. The upper extremal value of a r.v. X, 
alled `essential supremum' and denoted byess supX, is the largest value that X is not improbable to ex
eed, namely ess supX =sup� x 2 IR j PrfX > xg > 0	. The lower extremum, 
alled `essential in�mum' and denotedby ess infX, is de�ned analogously.4. Ex
ept in the trivial 
ase where all traÆ
 rates are a.s. 
onstant. This 
ase is ex
ludedhere.5. Nonlinearity is unavoidable if the nature of the multiplexing gain phenomenon is to bepreserved. This point will be dis
ussed to a greater extent in Subse
tion 4.3.6. This assumption holds in parti
ular when data are generated a

ording to a stationaryrate pro
ess f r(t); t 2 IR g, sin
e in that 
ase V (�; � + t) = R �+t� r(x) dx.7. This limit 
oin
ides with the de�nition in Subse
tion 4.2 for 
uid traÆ
.
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