
PERFORMANCE OFTELECOMMUNICATION SYSTEMS:SELECTED TOPICSKimon KontovasilisInstitute for Informatis and Teleommuniations,N.C.S.R., "Demokritos", 15310 Aghia Paraskevi, Attiki, GreeeS. Wittevrongel, H. BruneelGhent University, Dept. Teleommuniations and Information ProessingSMACS Researh Group, St. Petersnieuwstraat 41, B-9000 Gent, BelgiumB. Van Houdt, C. BlondiaUniversity of Antwerp, Dept. Mathematis and Computer SienePATS Researh Group, Universiteitsplein 1, B-2610 Antwerpen, Belgium1. IntrodutionThe entral ativity of performane evaluation is building formal de-sriptions of the system under study, an ativity refered to as modelling.These models inlude workload models (e.g. paket traÆ models), sys-tem resoure models (e.g. swith models, link models) and resoureontrol mehanism models (e.g. MAC protool models). They are usedto gain insight in the performane of the system under ertain load on-ditions. To obtain the performane measures of interest, two tehnisexist: simulate the system (i.e. built a program that simulates the modelbehavior) or solve the model mathematially (i.e. ompute the perfor-mane measures analytially). In this paper, we onentrate on thelatter, making distition between analytial methods that lead to losedformulas (as desribed in the part on generating funtions) and algo-rithms that allow to ompute the measures numerially (as in dealingwith matrix analyti methods).An area where performane modeling is an essential tool for systemdesigners and developers today is the Internet. The Internet is evolvingfrom a best-e�ort network towards a system that ombines Quality of1



2Servie (QoS) support with eÆient resoure usage. The extremely rapidpae of hange that an be observed in the Internet researh ommunity(e.g. in the IETF), often does not allow rigorous performane evalua-tion of the di�erent proposals. Therefore, the performane evaluationommunity (e.g. IFIP WG 6.3) should make an e�ort to provide theneessary methods, tehniques and tools to allow a better insight intothe system behavior.The �rst part is devoted to the modeling of teleommuniations sytemsusing generating funtions, the seond part to modeling using matrixanalytial methods and �naly, the third part to the use of asymptotiapproximations. The �rst part onsiders disrete-time queueing mod-els as representatin of teleommuniation systems. These models arepartiularly appliable when the time an be segmented in intervals of�xed lenght (alled slots) and information pakets are transmitted atslot boundaries. A typial example is an ATM transmission system. Themethod to ompute the performane measures of interest is based on theuse of generating funtions. The aim is to obtain a losed form formulafor the generating funtion of the system ontent (i.e. how many paketsare present in the system), from whih the most important performanemeasures an be derived. The main harateristi of this approah isthat it is almost entirely analytial.A seond approah to ompute performane measures is found in Se-tion 3. Here two reent and promising developments within the frame-work of matrix analytial methods are disussed. Both models, have im-portant appliations in the performane analysis of teleommuniationsystems. The �rst model is onerned with a markovian arrival proesswith marked arrivals, of partiular interest in systems where the paketsare originating from di�erent possiblly orrelated traÆ streams. A se-ond model deals with Tree strutured Markov hains. Their partiularstruture an be exploited to obtian eÆient omputational methods toobtain the measures of interest. Random aess algorithms known asstak algorithms, or tree algorithms with free aess, are examples ofsystems that an be modeled by means of tree stutured Markov hain,leading to expressions for the maximum stable throughput and meandelay in suh systems.A third part is devoted to asymptoti approximations. These methodshave beome extremely relevant due to the high transmission rates andthe stringent quality of servie guarantees of modern systems, whihmake very rate events (e.g. bu�er overow) signi�ant. Hene, per-formane measures are based on distribution tails, rather than on �rstmoments. This paper studies both asymptotis for multiplexers withsmall bu�ers and for multiplexers with large bu�ers. In both ases, the



Performane ofTeleommuniation Systems:Seleted Topis 3aim is to link the traÆ load and resoure apaity to the probabilityof loss due to bu�er overow. Also the ase where the bu�er spae isneither negligible nor dominant is disussed.2. Performane Modeling of CommuniationSystems Using Generating Funtions2.1. Disrete-time queueing modelsIn various subsystems of teleommuniation networks, bu�ers are usedfor the temporary storage of digital information units whih annot betransmitted to their destination immediately. The performane of a om-muniation network may be very losely related to the behavior of thesebu�ers. For instane, information units may get lost whenever a bu�eris fully oupied at the time of their arrival to this bu�er, they may ex-periene undesirable delays or delay variations in bu�ers, ... Queueingtheory thus plays an important role in the performane modeling andevaluation of teleommuniation systems and networks. In partiular,queueing models in disrete time are very appropriate to desribe traf-� and ongestion phenomena in digital ommuniation systems, sinethese models reet in a natural way the synhronous nature of moderntransmission systems, whereby time is segmented into intervals (\slots")of �xed length and information pakets are transmitted at slot bound-aries only, i.e., at a disrete sequene of time points.In a disrete-time queueing model, the arrival stream of digital infor-mation into a bu�er (the input or arrival proess) is ommonly harater-ized by speifying the numbers of arriving pakets during the onseutiveslots. In basi models, these numbers of arrivals are assumed to be in-dependent and identially distributed (i.i.d.) disrete random variables,and the orresponding arrival proess is referred to as an independentor unorrelated arrival proess. More advaned models allow the num-bers of arrivals during onseutive slots to be nonindependent, and arereferred to as orrelated arrival proesses. The storage apaity of abu�er is usually modeled as unlimited. This is an aeptable assump-tion sine in most ommuniation systems the apaity is hosen in suha way that the loss probabilities are very small, and furthermore, thisfailitates the use of analytial analysis tehniques. The transmission ofinformation units from the bu�er (the output proess) is haraterizedby the distribution of the transmission times of the information units,the number of output hannels of the bu�er, the availability of the out-put hannels, and the order of transmission (the queueing disipline).In basi models, all information units are assumed to be of �xed length,whih implies they have onstant transmission times, the output han-



4nels are permanently available, and the queueing disipline is assumedto be �rst-ome-�rst-served (FCFS). In some appliations, however, itis neessary to onsider non-deterministi transmission times, interrup-tions of the output hannels, and non-FCFS queueing disiplines suhas e.g. priority queueing.In the next setion, we present an overview of a number of fundamen-tal tehniques for the analysis - in the steady state - of a wide rangeof disrete-time queueing models. The main harateristis of the teh-niques are that they are almost entirely analytial (exept for a fewminor numerial alulations) and that an extensive use of probabilitygenerating funtions is being made. Note that a steady state only existsif the mean number of paket arrivals per slot is stritly less than themean number of pakets that an be transmitted per slot.2.2. Steady-state queueing analysis usinggenerating funtionsThe behavior of a queueing system is ommonly analyzed in terms ofthe probability distributions of the bu�er ontents, i.e., the total numberof pakets present in the bu�er system, and the paket delay, i.e., theamount of slots a paket spends in the system.Bu�er ontents. The �rst step in the analysis of the bu�er ontentsis to establish a so-alled \system equation" that desribes the evolutionin time of the bu�er ontents. If we de�ne sk as the bu�er ontents at thebeginning of slot k, it is easily seen that the following basi relationshipholds : sk+1 = sk � tk + ek ; (1)where ek represents the total number of paket arrivals during slot k andtk denotes the number of pakets that leave the bu�er system at the endof slot k. Here the harateristis of ek depend on the spei� nature ofthe arrival proess. The random variable tk on the other hand dependson the harateristis of the output proess, and annot be larger thansk in view of the synhronous transmission mode, whih implies thatonly those pakets present in the bu�er at the beginning of a slot areeligible for transmission during the slot.In the simplest models, unorrelated arrivals from slot to slot, onstanttransmission times of one slot eah, and permanently available outputhannels are assumed. In this ase, the system equation (1) redues tosk+1 = (sk � )+ + ek : (2)



Performane ofTeleommuniation Systems:Seleted Topis 5Here (:::)+ = max(0; :::),  denotes the number of output hannels, andthe random variables sk and ek on the right-hand side are statistially in-dependent of eah other, whih implies that the set fskg forms a Markovhain. Let Sk(z) = E[zsk ℄ denote the probability generating funtion(pgf) of sk. By means of standard z-transform tehniques [Bruneel andKim, 1993℄, the system equation (2) an then be translated into the z-domain. This yields the following relationship between the pgf's Sk+1(z)and Sk(z) :Sk+1(z) = E(z) z� f�1Xj=0(z � zj) Prob[sk = j℄ + Sk(z)g ; (3)where E(z) denotes the pgf of the number of paket arrivals in a slot.In the steady state, both Sk+1(z) and Sk(z) will onverge to a ommonlimiting funtion S(z), the pgf of the bu�er ontents s as the beginningof an arbitrary slot in the steady state. Taking limits for k ! 1 andsolving the resulting equation for S(z), we then obtainS(z) = E(z) �1Pj=0(z � zj) Prob[s = j℄z �E(z) : (4)The  unknown onstants Prob[s = j℄, 0 � j �  � 1, in (4) an bedetermined by invoking the analytiity of the pgf S(z) inside the unitdisk fz : jzj � 1g of the omplex z-plane, whih implies that any zero ofthe denominator of (4) in this area must neessarily also be a zero of thenumerator, together with the normalization ondition S(1) = 1 of thebu�er-ontents distribution. This results in a set of  linear equationsin the  unknown probabilities and allows to obtain S(z) expliitly.During the last few years researh has largely foused on the introdu-tion of more ompliated haraterizations of the arrival proess, in or-der to obtain more realisti, useful and tratable stohasti desriptionsof the sometimes bursty and heterogeneous traÆ streams ourring inmodern integrated ommuniation networks. When the arrival proessis orrelated, the random variables sk and ek on the right-hand side ofthe system equation (2) are no longer statistially independent, and theabove analysis tehnique needs to be modi�ed. Spei�ally, sine theknowledge of the value of sk no longer suÆes to determine the proba-bility distribution of sk+1, the set fskg does no longer form a Markovhain, and a more-dimensional state desription of the system has to beused, ontaining extra information about the state of the arrival proess.As an example, let us onsider a disrete-time queueing model withone output hannel, that is permanently available, and a simple orre-



6lated arrival proess. Pakets are generated by N independent and iden-tial on/o�-soures. Eah soure alternates between on-periods, duringwhih it generates one paket per slot, and o�-periods, during whihno pakets are generated. The suessive on-periods and o�-periods ofa soure are assumed to be independent and geometrially distributedwith parameters � and � respetively. Clearly, we then have the sys-tem equation (2), where  = 1, whereas ek an be derived from ek�1 asfollows [Bruneel, 1988℄ :ek = ek�1Xi=1 i + N�ek�1Xi=1 di : (5)Here the i's and the di's are two independent sets of i.i.d. Bernoullirandom variables with pgf's(z) = 1� �+ �z (6)and d(z) = � + (1� �) z : (7)From (2) and (5)-(7), the pair (ek�1; sk) is easily seen to onstitutea (two-dimensional) Markovian state desription of the system at thebeginning of slot k. We then de�ne Pk(x; z) as the joint pgf of the statevetor (ek�1; sk), i.e., Pk(x; z) = E[xek�1 zsk ℄ : (8)The next step is then similar to the unorrelated-arrivals ase, namelyto derive a relationship between the pgf's Pk+1(x; z) and Pk(x; z) orre-sponding to onseutive slots, by means of the state equations :Pk+1(x; z) = Eh(xz)ek z(sk�1)+i= [d(xz)℄N E�� (xz)d(xz)�ek�1 z(sk�1)+�= [d(xz)℄Nz fPk� (xz)d(xz) ; z�+ (z � 1)Prob[sk = 0℄g : (9)Again taking limits for k ! 1, we now obtain a \funtional equation"for the limiting funtion P (x; z), whih typially ontains the P -funtionon both sides, but with di�erent arguments. Although the funtionP (x; z) annot be derived expliitly from the funtional equation, severalperformane measures related to the bu�er ontents an be derived fromit, as will be explained later.



Performane ofTeleommuniation Systems:Seleted Topis 7A similar analysis is possible for a variety of orrelated arrival pro-esses, suh as train arrivals [Xiong and Bruneel, 1993℄, [Wittevrongeland Bruneel, 1998℄, Markov modulated arrivals [Xiong and Bruneel,1995℄, [B. Steyaert and Bruneel, 1997℄, general on/o� soures [Wit-tevrongel and Bruneel, 1997℄, orrelated train arrivals [S. De Vuyst andBruneel, 2001℄, and so on. For some arrival proesses, the resultingfuntional equation may ontain a number of unknown boundary prob-abilities, whih in general are diÆult to obtain exatly. An approxima-tion tehnique an then used, whih is based on the observation that abu�er ontents equal to n at the beginning of a slot implies that no morethan n pakets have entered the bu�er during the previous slot (see e.g.[B. Steyaert and Bruneel, 1997℄, [Wittevrongel and Bruneel, 1997℄).Also in ase more ompliated models for the output proess are used,similar problems our and a more-dimensional state desription needsto be used. For instane, when general transmission times are onsid-ered, additional information is needed in the state desription about theamount of servie already reeived by the paket(s) in transmission, ifany [Bruneel, 1993℄. In ase interruptions of the output hannels mayour, we need to keep trak of the state of eah of the output han-nels (available or bloked) and the remaining sojourn time in this state[D. Fiems and Bruneel, ℄.Paket delay. The delay of a paket is de�ned as the number ofslots between the end of the slot of arrival of the paket, and the end ofthe slot when this paket leaves the bu�er. In ase of a FCFS queueingdisipline, the analysis of the paket delay typially involves the deriva-tion of a relationship between the delay of a tagged paket and the totalnumber of pakets present in the bu�er just after the arrival slot of thetagged paket and to be transmitted before the tagged paket. How-ever, for disrete-time queueing systems with one permanently availableoutput hannel, onstant transmission times of one slot, a FCFS queue-ing disipline and an arbitrary (possibly orrelated) arrival proess, thefollowing relationship exists between the pgf S(z) of the bu�er ontentsand the pgf D(z) of the paket delay [Vink and Bruneel, 1995℄:D(z) = S(z)� S(0)1� S(0) : (10)The above relationship makes a full delay analysis superuous, one thebu�er ontents has been analyzed. Similar relationships also exist in aseof multiple servers [Vink and Bruneel, 1996b℄ and non-deterministiservie times [Vink and Bruneel, 1996a℄.



82.3. Performane measuresThe results of the analysis an be used to derive simple and au-rate (exat or approximate) formulas for a wide variety of performanemeasures of pratial importane, suh as mean and variane of bu�eroupanies and delays, paket loss probabilities, ... The mean systemontents and the mean paket delay in the steady state an be found byevaluating the �rst derivative of S(z) and D(z) at z = 1. Higher-ordermoments of the system ontents and the paket delay an be derivedanalogously, by alulating higher-order derivatives of S(z) and D(z) atz = 1. The tail distribution of the bu�er ontents is, for reasons of om-putational omplexity, often approximated by a geometri form based onthe dominant pole z0 of the pgf of the bu�er ontents. That is, for largevalues of n, the tail distribution of the bu�er ontents is approximatedby [H. Bruneel and Petit, 1994℄Prob[s = n℄ � � �z0 z�n0 ; (11)where � is the residue of S(z) for z = z0. A quantity of onsiderablepratial interest is the probability that the bu�er ontents (in the in�-nite bu�er) exeeds a given threshold S. This probability an be usedto derive an approximation for the paket loss ratio (i.e., the frationof pakets that arrive at the bu�er but annot be aepted) of a bu�erwith �nite waiting spae S and the same arrival statistis [Steyaert andBruneel, 1995℄.As mentioned before, it is not always possible to alulate the pgfS(z) of the bu�er ontents expliitly. Nevertheless, a tehnique hasbeen developed to derive results onerning the moments and the taildistribution of the bu�er ontents from the assoiated funtional equa-tion. The tehnique involves onsidering those values for whih the �rstargument(s) of the P (:; z) funtions in both sides of the funtional equa-tion beome equal (see e.g. [Bruneel, 1988℄, [Xiong and Bruneel, 1995℄,[Wittevrongel and Bruneel, 1997℄, [Wittevrongel and Bruneel, 2000℄).2.4. Numerial exampleAs an illustration, we onsider a statistial multiplexer to whih mes-sages onsisting of a variable number of �xed-length pakets arrive atthe rate of one paket per slot (\ train arrivals"), whih results in aprimary orrelation in the paket arrival proess. The arrival proessontains an additional seondary orrelation, whih results from the fatthat the distribution of the number of leading paket arrivals (of newmessages) in a slot depends on some environment variable. This envi-



Performane ofTeleommuniation Systems:Seleted Topis 9ronment has two possible states `A' and `B', eah with geometriallydistributed sojourn times [S. De Vuyst and Bruneel, 2001℄. We omparethe results obtained for this orrelated train arrivals model with the re-sults that would be found if a model without seondary orrelation or anunorrelated model for the paket arrival proess were used. In Figure1, the mean bu�er ontents for the three onsidered arrival models, i.e.,E[s℄ (orrelated train arrivals), E[sprim℄ (unorrelated train arrivals) andE[sun℄ (unorrelated paket arrivals) are plotted versus the total load �,for di�erent values of the environment orrelation fator K, whih anbe seen as a measure for the absolute lengths of the sojourn times, whentheir relative lengths are given [S. De Vuyst and Bruneel, 2001℄. Themessage-length distribution is a mixture of two geometris aording tothe pgf L(z) = 0:5(1��)z1��z + 0:5(1��)z1��z with mean 5 and a variane of 50.In an `A'-slot, the number of new messages has a geometri distribu-tion with mean 2, while no new messages are generated during `B'-slots.The �gure learly shows the severe underestimation of the bu�er on-tents when the di�erent levels of orrelation in the arrival proess arenegleted. Note that all the urves for E[sprim℄ oinide with the onerepresenting E[s℄ for K = 1 (unorrelated environment). In the ase ofunorrelated paket arrivals, E[sun℄ slightly inreases with higher valuesof K, although not in the same drasti way as E[s℄ in ase of orrelatedtrain arrivals.3. Performane Modeling using Matrix AnalytiMethodsTwo reent, and promising, developments within the area of matrixanalyti methods are disussed in this setion. It onerns the Markovianarrival proess with marked arrivals, i.e., the MMAP[K℄ arrival proess,and tree strutured Markov hains of the M=G=1, GI=M=1 and Quasi-Birth-Death (QBD) type. While presenting these new developments, wemainly fous on their appliability towards teleommuniation systems.Matrix analyti methods, for queueing theory, found their origin inthe 1960s in the work of Cinlar and Neuts [Dshalalow, 1995℄. Dur-ing the 1970s, Neuts made a number of ruial ontributions to theM=G=1 and GI=M=1 strutures and wrote a book, the use of whih isstill widespread nowadays, on this subjet [Neuts, 1981℄. During the1980s, Neuts pursued his work at the University of Delawaire togetherwith his assoiates and students Chakravarthy, Kumar, Latouhe, Lu-antoni and Ramaswami. In 1989, a seond, perhaps somewhat lessaessible to omputer sientists, book [Neuts, 1989℄ appeared on theM=G=1 struture that summarizes their ahievements, it reets the
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Figure 1. Mean bu�er ontents versus the total load � for various values of K.fat that the area of matrix analyti methods was growing vigorously.The theory and its appliations have grown unabated ever sine. Thiswas learly demonstrated in 1996, when the �rst onferene on matrixanalyti methods, and its appliations, was organized. At the time ofthis writing a fourth onferene will be held in July 2002 in Adelaide,Australia.3.1. Markovian Arrival Proess with MarkedArrivalsThe usefulness of queueing theory as a means of analyzing the perfor-mane of teleommuniation systems has been demonstrated extensively.However, until reently, most of the work done in this area applied toqueueing systems that do not distinguish between ustomers, that is, allustomers are of the same type and require the same type of servie.There are plenty of appliations were it would be suitable to distinguish



Performane ofTeleommuniation Systems:Seleted Topis 11between multiple ustomer types. For example, suppose that paketsoriginating from K di�erent, possibly orrelated, traÆ streams formthe input to a bu�er, then it is often useful if we ould obtain statistis,e.g., the delay distribution, for eah individual soure. The Markovianarrival proess with marked arrivals, i.e., the MMAP[K℄ proess, is animportant building blok that allows us to obtain suh information.Both a ontinues and a disrete time version of the MMAP[K℄ ar-rival proess has been introdued [He and Neuts, 1998; He, 1996℄, butwe restrit ourselves to the disrete time variant. We shall distinguishbetween two types of MMAP[K℄ proesses: those that allow for batharrivals to our, and those that do not.MMAP[K℄ Proess without Bath Arrivals. A disrete timeMMAP[K℄ arrival proess that does not allow for bathes to our is anatural extension of the D-MAP arrival proess [Blondia, 1993℄. Cus-tomers are distinguished into K di�erent types. The MMAP[K℄ is har-aterized by a set ofm�mmatries fDk j 0 � k � Kg, withm a positiveinteger. The (j1; j2)th entry of the matrix Dk, for k > 0, represents theprobability that a type k ustomer arrives and the underlying Markovhain (MC) makes a transition from state j1 to state j2. The matrix D0overs the ase when there are no arrivals. The matrix D, de�ned asD = KXk=0Dk;represents the stohasti m�m transition matrix of the underlying MCof the arrival proess. Let � be the stationary probability vetor of D,that is, �D = � and �e = 1, where e is a olumn vetor with all entriesequal to one. The stationary arrival rate of type k ustomers is givenby �k = �Dke. Queues with MMAP[K℄ arrival proesses are disussedin Setion 3.1Example 3.1. Consider a D-MAP arrival proess haraterized by them �m matries ~C and ~D. Suppose that we wish to mark the arrivalsby the state of the underlying MC at its generation time. This resultsin a MMAP[K℄ arrival proess with D0 = ~C and with the matries Dk,for 1 � k � K = m, equal to zero, exept for their k-th row, whih isidential to the k-th row of ~D. Notie, the number of ustomer typesmight be smaller than m, beause some rows of ~D might be equal tozero.MMAP[K℄ Proess with Bath Arrivals. A disrete timeMMAP[K℄ arrival proess that allows for bathes to our |a natural



12extension of the D-BMAP arrival proess [Blondia, 1993℄|is harater-ized by a set of m � m matries DC where C is a string of integersbetween 1 and K, that is, C = 1 : : : b with 1 � l � K and 1 � l � b.Let bmax be the maximum bath size of the MMAP[K℄ arrival proess.Let ; denote the empty string and jCj the length of the string C. The(j1; j2)th entry of the matrix DC , with C 6= ;, represents the probabilitythat a bath of jCj arrivals ours, while the underlying MC makes atransition from state j1 to state j2. The type of the l-th ustomer of thebath is l, for 1 � l � jCj, if C = 1 : : : jCj. As before, D = PC DCrepresent the transition matrix of the underlying MC and � its station-ary probability vetor. The stationary arrival rate of type k ustomersis given by �k = �PC N(C; k)DCe, where N(C; k) ounts the numberof ourrenes of the integer k in the string C. Queues with MMAP[K℄arrival proesses are disussed in Setion 3.1Example 3.2. It is well known that a superposition of two, or more,D-BMAPs is again a D-BMAP. However, when superposing D-BMAPsustomers generally loose their identity, meaning that we no longer knowwhether the arrival ame from the �rst or the seond D-BMAP. AMMAP[K℄ arrival proess that eliminates this drawbak an be on-struted in the following way. Suppose that the �rst, resp. seond, D-BMAP is haraterized by the m1 � m1 matries ~D1n, resp. m2 � m2matries ~D2n, for n � 0. Let DC , with C a string of b1 � 0 ones followedby b2 � 0 twos1, be m1m2 � m1m2 matries. Instead of labeling them1m2 states j of the underlying MC as 1 to m1m1, we denote them as(j; j0), with 1 � j � m1 and 1 � j0 � m2. The (j1; j2)th entry, withj1 = (j1; j01) and j2 = (j2; j02), of the matrix DC , with C a string ofb1 ones followed by b2 twos, equals ( ~D1b1)j1;j2 ( ~D2b2)j01;j02 . A variety ofexamples is presented in [He and Neuts, 1998; He, 2001℄.The MMAP[K℄/PH[K℄/1 Queue. In this setion we disuss theMMAP[K℄/PH[K℄/1 queue with a �rst-ome-�rst-serve (FCFS) and alast-ome-�rst-serve (LCFS) servie disipline. The servie times of typek ustomers, in a MMAP[K℄/PH[K℄/1 queue, have a ommon phase-typedistribution funtion with a matrix representation (mk; �k; Tk), wheremk is a positive integer, �k is an 1 �mk nonnegative stohasti vetorand Tk is an mk �mk substohasti matrix. Let T 0k = e� Tke, then themean servie time of a type k ustomer equals 1=�k = �k(I � Tk)�1e.The i-th entry of �k represents the probability that a type k ustomerstarts its servie in phase i. The i-th entry of T 0k , on the other hand,represents the probability that a type k ustomer ompletes its servieprovided that the servie proess is in phase i, while the (i; j)-th entry



Performane ofTeleommuniation Systems:Seleted Topis 13of Tk equals the probability that it does not omplete its servie and thephase at the next time instane is j.The positive reurrene, i.e., stability, of these queues was studied byHe in [He, 2000℄. Expliit formulas for the Laplae-Stieltjes transformsof the waiting times of a type k ustomer have been obtained for a serverwith a FCFS servie disipline [He, 2001℄. An algorithm to obtain thesteady state probabilities of a MMAP[K℄/PH[K℄/1 queue, where theMMAP[K℄ arrival proess does not allow for bathes to our and theserver follows a LCFS servie disipline, is found in [He and Alfa, 2000℄.Finally, a simple algorithm, based on the GI=M=1 struture, has beendeveloped to alulate the delay distribution of a type k ustomer ina FCFS MMAP[K℄/PH[K℄/1 queue [Van Houdt and Blondia, 2002a℄.This algorithm is highly eÆient if the MMAP[K℄ arrival proess doesnot allow for large bath arrivals to our.Example 3.3. Let us ontinue with the MMAP[2℄ arrival proess in-trodued in Example 3.2. Now, assume that eah of the two D-BMAPsmodel a traÆ soure and that the traÆ generated by both souresshare a bu�er. Moreover, assume that the pakets generated by sourek, for k = 1; 2, have a �xed length of Lk bytes. Then, this bu�er anbe modeled by a disrete time MMAP[2℄/PH[2℄/1 queue, beause �xedlength servie times have a phase type distribution. As a result, we ouldalulate the delay distribution of a soure k arrival using [Van Houdtand Blondia, 2002a℄.Example 3.4. Many random aess algorithms (RAAs) that usegrouped aess as their hannel aess protool (CAP) an be modeledin a natural way by means of a MMAP[K℄/PH[K℄/1 queue ([Van Houdt,2001; Van Houdt and Blondia, 2002b; Van Houdt and Blondia, 2002℄).When modeling suh a RAA, a type k ustomer orresponds to a groupof k ontenders and its servie time distribution is the time neessary foreah of the k ontenders to suessfully transmit their paket, startingfrom the ompletion time of the previous group.3.2. Tree Strutured Markov ChainsAnother promising development in the theory of matrix analyti meth-ods are tree strutured Markov hains (MCs). Consider a disrete timebivariate MC f(Xt; Nt); t � 0g in whih the values of Xt are representedby nodes of a d-ary tree, and where Nt takes integer values between 1and m. Xt is referred to as the node and Nt as the auxiliary variableof the MC at time t. A d-ary tree is a tree for whih eah node hasd hildren. The root node is denoted as ;. The remaining nodes aredenoted as strings of integers, with eah integer between 1 and d. For



14instane, the k-th hild of the root node is represented by k, the l-thhild of the node k is represented by kl, and so on. Throughout this pa-per we use lower ase letters to represent integers and upper ase lettersto represent strings of integers when referring to nodes of the tree. Weuse '+' to denote onatenation on the right, e.g., if J = j1 j2 j3; k = jthen J + k = j1 j2 j3 j. If J an be written as K1+K2 for some stringsK1 and K2, K1 is alled an anestor of J .Algorithms that allow for the alulation of the steady state probabil-ities, have been identi�ed for three subsets of the tree strutured MCs,eah subset allows for a ertain type of transitions to our:The skip-free to the left, i.e., M/G/1 Type, MCs: It is impossible tomove from node J to ;, without visiting all anestors of J [Takineet al., 1995℄.The skip-free to the right, i.e., GI/M/1 Type, MCs: Transitionsfrom a node J are allowed to the root node ;, the hildren of Jand the hildren of all anestors of J [Yeung and Sengupta, 1994℄.The Quasi-Birth-Death (QBD) MCs: The hain an only maketransitions to its parent, hildren of its parent, or to its hildren[Yeung and Alfa, 1999℄.So far, the last subset has proven to be the most fruitful. Therefore,they are disussed in more detail in this setion. If a tree struturedQBD MC is in state (J + k; i) at time t then the state at time t+ 1 isdetermined as follows:1 (J; j) with probability di;jk ; k = 1; : : : ; d;2 (J + s; j) with probability ai;jk;s; k; s = 1; : : : ; d,3 (J + ks; j) with probability ui;js ; s = 1; : : : ; d.De�ne m�m matries Dk; Ak;s and Us with respetive (i; j)th elementsgiven by di;jk ; ai;jk;s and ui;js . Notie that transitions from state (J+k; i) donot dependent upon J , moreover, transitions to state (J+ks; j) are alsoindependent of k. When the Markov hain is in the root state (J = ;)at time t then the state at time t+ 1 is determined as follows:1 (;; j) with probability f i;j,2 (k; j) with probability ui;jk ; k = 1; : : : ; d.De�ne the m�m matrix F with orresponding (i; j)th element given byf i;j. Algorithms that alulate the steady state probabilities using the



Performane ofTeleommuniation Systems:Seleted Topis 15matries Dk, Ak;s, Us and F as input parameters are available in [Yeungand Alfa, 1999; Bini et al., 2002℄.Example 3.5. MMAP[K℄/PH[K℄/1 queue, where the MMAP[K℄ arrivalproess does not allow for bathes to our, with a last-ome-�rst-serve(LCFS) servie disipline an be modeled using a tree stutured QBDMC [He and Alfa, 2000℄. Indeed, the line of ustomers waiting in aMMAP[K℄/PH[K℄/1 queue an be represented by a string of integersbetween 1 and K, thus as nodes of a K-ary tree. The auxiliary variableis used to represent the phase of the server, the type of ustomer in theserver and the state of the MMAP[K℄ arrival proess. The root node ;orresponds to a queue with a busy server and an empty waiting room.Therefore, one needs a generalized boundary ondition to represent thesituation where the waiting room is empty and the server is not busy.Information on generalized boundary onditions and other extension,i.e., MCs with a forrest struture, an be found in [Yeung and Sengupta,1994℄.Example 3.6. Random aess algorithms (RAAs) known as stak al-gorithms, or tree algorithms with free aess, an be modeled using atree strutured QBD MC [Van Houdt and Blondia, 2001; Van Houdtand Blondia, 2002d℄. As a result, it is possible to study the maximumstable throughput, as well as the mean delay, for various D-BMAP (andBMAP) arrival proesses.4. Asymptoti approximations for theperformane evaluation of large broadbandnetworks4.1. The need for asymptoti methodsAfter a period of intensive development, multiservie broadband net-works are now a reality. Current implementations already serve as high-speed bakbone infrastrutures and more extensive usage, aompaniedby a further exploitation of these networks' advaned apabilities, is ex-peted when the need for providing omplex information servies withstrit quality guarantees will grow.There are two primary performane-related harateristis that distin-guish multiservie broadband networks from their \onventional" oun-terparts. The �rst is that, due to both the high transmission speedand the need for providing individualized|and stringent|quality ofservie (QoS) guarantees, very rare events (e.g., bu�er overows o-urring with probability as low as 10�6, or smaller) beome signi�ant.Consequently, most relevant performane metris must be based on dis-
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Figure 2. The e�et of burstiness: overow probability vs bu�er size (at a log-linearsale).tribution tails rather than mean values. The seond harateristi isthat most bandwidth-demanding traÆ types appearing on broadbandnetworks are bursty, i.e., they feature signi�ant rate exitations andorrelated paket interarrival times. These are properties that leave amark on the queueing phenomena governing the network's performane.The typial queueing e�ets of burstiness are demonstrated by themain graph of Fig. 2, depiting the bu�er overow probability (a stan-dard performane metri) at a network multiplexer or swith loaded bya superposition of bursty traÆ streams, as a funtion of the bu�er size.Two distint regions are learly identi�ed: In the �rst region (smallbu�er sizes) the rate orrelations do not beome apparent, the traÆis primarily haraterized (at the, so alled, `paket level') by proper-ties of the individual interarrival times between suessive pakets, andthe overow probability deays rapidly with inreasing bu�er size (atan exponentially fast rate, sine the graph uses a log-linear sale). Inthe seond region (larger bu�er sizes) the rate orrelation details (usu-ally olletively alled `burst level traÆ properties') beome notieable,resulting in a quite smaller rate of deay for the overow probability.Clearly, aurate predition of tail probabilities|like those in theexample|requires the usage of sophistiated traÆ models, able of pro-viding a suÆiently preise haraterization of traÆ at both the paketand burst levels. Suh detailed models, and assoiated analysis meth-ods, do exist and are invaluable whenever thorough queueing analysisis alled for. In due aount, the paper reviews two important lassesof models/solution methods (see the setions on matrix analyti teh-niques, and on generating funtions based tehniques). Unfortunately,detailed desriptions su�er from the `state spae explosion' problem. In-deed, the state spaes of models for all but the simplest traÆ patternshave to be rather large, if both the paket- and burst-level behavior is



Performane ofTeleommuniation Systems:Seleted Topis 17to be aptured. The situation beomes worse when it is realized that, invirtually all ongestion phenomena of interest, the aggregate traÆ loadonsists of a (frequently heterogeneous) superposition of a large numberof individual streams and that the state spae of the model for the ag-gregate traÆ depends fatorially on the|already large|spaes of theonstituents.In an attempt to partially alleviate this diÆulty, `uid-ow' mod-els of traÆ have been proposed. These models disregard the disretenature of the paket level details, representing traÆ as the ow of aontinuous uid (hene their name). The instantaneous rate of this owis taken equal to the average rate of the real traÆ over an appropriatetime window, large enough to \hide" the paket details, but also smallenough to preserve the burst-level rate utuations. This approah hasbeen quite suessfully employed towards the aurate representation ofburst-level traÆ dynamis with a redued set of model parameters. Anexample is provided by the dashed graph in Fig. 2, whih representsthe overow probability urve orresponding to the uid-ow ounter-part of the original traÆ and whih mathes quite satisfatorily withthe exat result over the burst level region. For further information on(primarily Markovian) uid-ow models see: [Anik et al., 1982; Kosten,1984; Mitra, 1988; Stern and Elwalid, 1991℄ for the basi theoretial foun-dation and analysis tehniques, [Baiohi et al., 1992; Kontovasilis andMitrou, 1994; MDonald and Qian, 1998℄ for embelishments of the theoryand eÆient omputational algorithms, and [Kontovasilis and Mitrou,1995; Mitrou et al., 1995℄ for multiple-sale phenomena ourring whenthe traÆ possesses burst-level dynamis with a �ner struture.However, although the uid-ow onept works for reduing the om-plexity of models for individual traÆ streams, it annot alleviate thestate spae explosion due to superposition. For this reason, many impor-tant performane-related network mehanisms, partiularly those thatmust operate within a short time-frame (suh as on-line traÆ on-trol) or over a ombinatorially large domain (e.g., network-wide resoure(re)alloation), annot rely on \lassial" queueing tehniques, even theuid-ow ones.Fortunately, there's still a viable way of addressing the problem,grounded on the fat that modern broadband networks are, in some re-spets, \large" systems, featuring high link apaities and large swithes,and requiring that probabilities of hazardous events (like overows lead-ing to data losses) be very small (so as to provide reliable QoS guaran-tees). This setting suits well to the `Theory of Large Deviations' (TLD),a body of theoretial results and tehniques that address systems \saledup" by a large parameter and examine the irumstanes under whih



18assoiated (saled) random variables may attain values in a designatedset with an exponentially small probability, asymptotially as the sal-ing parameter approahes in�nity. TLD may be used to ompute therate of exponential deay in the probabilities of interest and, moreover,determine the way in whih these `rare events' our. A omprehensivegeneral treatment of TLD an be found in, e.g., [Dembo and Zeitouni,1998℄, while [Buklew, 1990℄ provides a less formal exposition, expliitlygeared towards appliations. Referene [Weiss, 1995℄ may be onsultedfor a brief overview of topis and further referenes.Building on the TLD foundations, the very same harateristis thatlead to state-spae explosion in \onventional" models have been ex-ploited towards the development of asymptoti theories that quantifyongestion in broadband networks under bursty load. The purpose ofthis setion is to give an outline of the relevant results. Before embarkingon the review, however, it is important to note that, besides analytialtratability, a prime advantage of the asymptoti methods is their poten-tial for oneptual larity, something ruial for highlighting the e�etof fundamental phenomena in expliit terms.Generially, two suh ongestion-related phenomena may be identi-�ed: The �rst, frequently alled `multiplexing gain', relates to the fatthat (as a onsequene of the law of large numbers) aggregation of manyindependent traÆ streams results in smoother ompound traÆ, redu-ing the probability with whih the aggregate data rate raises above itsmean value. As more streams are multiplexed, the amount of bandwidthper stream required to ompensate for the rate exitations is redued (fora given QoS requirement), justifying the name of the phenomenon. Inthe absene of signi�ant bu�ering, multiplexing gain is the only meh-anism through whih QoS may be attained while using less bandwidththan peak-rate. In Fig. 2 this is reeted at the non-negligible proba-bility of overow even with a zero bu�er size. The relevant asymptotitheory is reviewed in Subsetion 4.2.The seond fundamental phenomenon relates to another mehanism ofontrolling rate exitations so as to avoid data losses, that of temporarilystoring exessive data into a bu�er. The larger the bu�ering resoure, thesmaller the apaity requirement for the output port beomes, for a givenloss probability. In analogy with multiplexing gain, this bandwidth-savings e�et will be alled `bu�ering gain'. In Fig. 2 it is reeted atthe deay of the overow probability with inreasing bu�er size, evenat the \slow" burst-level region. The asymptoti theory relevant tobu�ering gain is reviewed in Subsetion 4.3.The two regimes just outlined relate to either no bu�er, or a largebu�er, so that either the multiplexing gain, or the bu�ering gain domi-



Performane ofTeleommuniation Systems:Seleted Topis 19nate, respetively. In many ases the available bu�er is neither negligiblenor dominant and both phenomena are notieable. For this more gen-eral setting there is an improved asymptoti theory that an quantify theombined e�et of both gain fators, by onsidering systems where theload and resoures (bu�er and bandwidth) are proportionally saled by alarge parameter. Elements of this theory are provided in Subsetion 4.4.4.2. Asymptotis for multiplexers with smallbu�ersConsider a multiplexer (or an output port unit of a swith) featur-ing a negligibly small bu�er and serving traÆ through an output linkof apaity equal to C. The aggregate traÆ loading this system anbe desribed as a stohasti instantaneous-rate2 proess f r(t); t 2 IR g,whih it is assumed throughout stationary. Traking just instantaneousrates is adequate, as there is no bu�er to \reord the past history" ofthe traÆ. In the following, the properties of the instantaneous rate willbe desribed through the respetive log-moment generator (also alledthe `umulant generator') �(s) b= log IE esr(t). As an impliation of sta-tionarity, �(s) is independent of time.At this point it is reminded that the log-moment generator of a ran-dom variable (r.v.) is a onvex funtion (atually stritly onvex, unlessthe r.v. is a.s. onstant). The set f s 2 IR j �(s) < 1g is alled thegenerator's `e�etive domain'. If s = 0 is in the interior of this domain(a mild ondition, assumed throughout and satis�ed in all ases of pra-tial interest, in partiular when the r.v. is bounded|translated to theexistene of a �nite peak rate in our ase), then the generator is ananalyti funtion on the whole interior of its e�etive domain. By on-vexity, the derivative �0(s) is inreasing (stritly inreasing if the r.v. isnot a.s. onstant) and the same may be shown for �(s)=s. Furthermore,the limits of these funtions are related to the extremal values3 of theorresponding r.v. X as follows:ess infX = lims!�1�0(s) = lims!�1 �(s)s < lims!0 �(s)s = IE X = lims!0�0(s)< lims!+1 �(s)s = lims!+1�0(s) = ess supX: (12)Sine there is no bu�er, overows (and data losses) our whenever theinstantaneous data rate exeeds the system's apaity. We now derivean upper bound to the probability of overow. Indeed, by a Chebyhe�-



20type argument, for any s � 0,Prf r(t) > C g = Z 1x=C+ dFr(x) � Z 1x=C+ es(x�C) dFr(x)� Z 1x=0 es(x�C) dFr(x) = expf�(s)� sCg:By taking logarithms and optimizing over the permissible range of pa-rameters, we obtainlog Prf r(t) > C g � � sups�0�Cs� �(s)	: (13)This bound is known in the literature as `Cherno�'s bound'. Assuminga stable system (i.e., C > IE r(t)), the maximum over nonnegative realsoinides with the maximum over the entire real line, i.e.,8C > IE r(t) b= �r; sups�0�Cs��(s)	 = sups2IR�Cs��(s)	 b= I(C); (14)the value of the Fenhel-Legendre transform of �(�) at C. Furthermore,it may be shown that, for C > �r, the Fenhel-Legendre transform I(�) isan inreasing funtion (atually stritly inreasing, unless r(t) is a.s. on-stant), expressing the intuitively appealing fat that the overow prob-ability beomes smaller as the system's apaity inreases.Assume now that the aggregate traÆ onsists of a large number nof independent and identially distributed streams, while the system'sapaity is proportionally saled, maintaining a �xed amount of band-width per soure, i.e., C = n. Sine log-moment generators are ad-ditive for independent r.vs, the aggregate generator is �n(s) = n�(s)(where now �(�) signi�es the generator of a single stream) and from equa-tions (13) and (14) it follows that the overow probability is boundedby e�nI(), deaying exponentially with large n at a rate equal to I().This reets the fat that, as more soures are multiplexed and thebandwidth per soure  remains �xed, overows beome less probable,beause the ompound traÆ \smoothens". In other words, and due tothe monotoniity of I(�), a smaller value of  is required as n inreases,for a given target overow probability. This is exatly the multiplexinggain phenomenon, disussed in the previous subsetion.The Cherno� bound of eq. (13) is onservative, allowing for safeperformane-related deisions. Not only that, but the bound is asymp-totially tight, as the number of soures n ! 1. Spei�ally, byCram�er's Theorem (see, e.g., [Dembo and Zeitouni, 1998, Theorem 2.2.3℄),it holds limn!1 1n log Prf rn(t) > n g = �I(); (15)



Performane ofTeleommuniation Systems:Seleted Topis 21where, as with the generator, rn(t) denotes the aggregate rate. Thisresult suggests that, when n is large enough, the probability of overowis e��, where � = nI() + o(n). (The quantity � expresses the ahievableQoS at a logarithmi sale and will be alled the `quality level' in thesequel.) There is also a more detailed result, alled the `Bahadur-Rao'orretion, that strengthens the asymptoti equivalene of (15) to linear,rather than logarithmi order. (In this result, I() still remains thedominant fator determining the probability of overow.) For details,see, e.g., [Dembo and Zeitouni, 1998, Theorem 3.7.4℄.When the traÆ is a heterogeneous mix of independent traÆ streams,the previous theory still applies. Indeed, onsider k traÆ lasses, eahontaining ni, i = 1; : : : ; k independent and idential streams. Thenthe total number of soures is n = Pki=1 ni and the aggregate gen-erator is onstruted by the individual ounterparts through �n(s) =Pki=1 ni�i(s). In this setting (15) still holds, i.e., for large n the prob-ability of overow is approximately e��, with quality level � = nI() =sups�Cs�Pki=1 ni�i(s)	.We now disuss the omputation of the deay rate in the asymp-toti (15). Due to the onvexity of log-moment generators, the funtionto be maximized in (14) is onave and attains a unique maximum.Moreover, by di�erentiability (again borrowed from the generator) thederivative of the funtion in (14) is zero at the maximizing argument.From these observations and from eq. (12) it follows that when the a-paity C is between the aggregate mean and peak rates, the quality levelis omputed as� = nI(C=n) = sups�0�Cs� kXi=1 ni�i(s)	 = Cs� � kXi=1 ni�i(s�); (16)where s� is the unique4 argument satisfyingkXi=1 ni�0i(s�) = C; (17)and where the equations have been expressed in a form suitable for ageneral heterogeneous traÆ mix.Usually, (16) and (17) must be solved numerially. However, theanonial example of a homogeneous on/o� traÆ mix admits a losedform solution. Indeed, for any on and o� sojourn distributions (just as-suming �nite means, respetively IE Ton and IE To�) eah onstituent rateproess is stationary and ergodi. By letting p = IE Ton=(IE Ton+IE To�)stand for the probability of visiting the on-state, the instantaneous



22rate of a single stream is Bernoulli distributed, with generator �(s) =log[pesr + (1� p)℄, where r is the stream's peak rate. Then, appliationof (17) and (16), yields� = n�� log �p + (1� �) log 1� �1� p�; where p < � b= Cnr < 1:Up to this point, the fous of the disussion was on estimating thesystem's performane under given resoures and traÆ load. However,network traÆ engineering usually deals with problems of an \inverse"nature. One partiularly important one is the so alled, traÆ admis-sion ontrol (also named onnetion admission ontrol|CAC), wherethe network resoures (in our ase the multiplexer's apaity C) and thedesired quality level � are given and the task onsists of deiding whethera andidate traÆ mix may be admitted by the network while still sat-isfying the QoS requirement. Formally, assume that the traÆ load ata multiplexer may onsist of a superposition of streams from k di�erenttraÆ lasses, eah with known harateristis (quanti�ed through therespetive generators �i(�), i = 1; : : : ; k) and let a potential traÆ mix berepresented by the vetor n = �n1; : : : ; nk�, with elements the numbersof streams from eah lass partiipating in the mix. In this notation, atraÆ mix may be admitted without violating the QoS, i� it belongs tothe so alled admission domain fn j f(n) � � g, where f(n) stands forthe right hand side of (16).Given this framework, traÆ admission ontrol ould in priniple pro-eed by omputing f(n) through (17) and (16) and omparing the resultto the target quality level �. However, the relevant omputations involveall traÆ lasses in the mix, making it diÆult to take inremental de-isions (useful in the ommon ase when a single new onnetion asksto join an already aepted|potentially large|mix). For this reason,alternative algorithms are required, whih usually rely on determiningthe boundary of the admission domain (i.e., mixes satisfying f(n) = �).If that boundary was linear, then a partiularly simple algorithm wouldbe possible, beause there would be onstants ai, i = 1; : : : ; k and b(possibly dependent on C and � but not on the traÆ mix), suh thatthe admission domain would ontain exatly those n satisfyingkXi=1 aini � b: (18)Thus, for the purposes of admission ontrol, eah traÆ stream wouldbe ompletely haraterized by the quantity ai orresponding to its lassand inremental admission ontrol would proeed by merely adding this
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Figure 3. Admission domain for two traÆ lasses and linear approximation of theboundary around n�quantity to a register (maintaining the sum for the already present traf-�) and omparing to b.Unfortunately, the boundary of the admission domain, as de�nedby (16) and (17) is not linear5; the typial form of its shape is dis-played on Fig. 3 for two traÆ lasses (ignore for the moment the linearsegment). Despite this diÆulty, it is still possible to obtain a loallyoptimal linearization, by observing that, due to (16), f(n) is onvex andthe same holds for the omplement of the admission domain. Thus, it isassured that the tangent hyperplane at a point n� on the boundary willrest inside the admission domain (see Fig. 3), while also oiniding withthe true boundary at n�. By observing that f(n�) = � and by using (16)and (17), it follows that �f=�nijn=n� = ��i�s�(n�)� and, further, thatthe subset of the domain bounded by the tangent hyperplane ontainsthose traÆ mixes n satisfyingkXi=1 ni�i(s�(n�))s(n�) � C � �s�(n�) : (19)In order to use (19), one must determine a traÆ mix n� at the bound-ary of the true admission domain and then ompute the orrespondingvalue of the maximizing s-parameter, namely s�(n�). Although theseinitialization steps require rather heavy omputations, the atual admis-sion ontrol through (19) is simple, beause the latter is of the simpleform (18). However, note that, sine the linearization is optimal onlywith respet to the hosen n�, suessive onnetion admissions (andterminations) may move the urrent traÆ mix away from the initialhoie n�, at a viinity of the domain for whih the linearization isoverly onservative (see the �gure), thus resulting in a waste of networkresoures. In suh a ase, a new boundary point lose to the urrent



24traÆ mix should be hosen and the linearization proedure around itshould be applied afresh.We lose this subsetion by noting that, while the basi asymptotiperformane estimate is a standard result in the Theory of Large Devi-ations (and thus known for many years), its appliation in the study ofbroadband networks and, in partiular, the results on admission domainsand the linearization of their boundaries were originally ontributed by[Hui, 1988; Hui, 1990℄.4.3. Asymptotis for large bu�ers: e�etivebandwidth theoryWe now turn into the study of multiplexers that feature large bu�er-ing apabilities. Like previously, we seek to present a theory linking thetraÆ load and the network resoures (viz., the amount of bu�er mem-ory and the output link's apaity) to the probability of data loss due tobu�er overow, the latter serving as the performane metri. While inthe bu�erless setting it was adequate to represent the traÆ harater-istis through instantaneous rate properties, this subsetion deals withlarge bu�ers that expose the properties of rate orrelations over largetime intervals. Therefore, it is neessary to study random variables ofthe form V (�; � + t), denoting the amount of data generated over theinterval (�; � + t℄. It will be assumed throughout that the data proesshas stationary inrements6, i.e., V (�; � + t) depends only on the length tof the time-interval, not its origin, and an be denoted simply as V (t).By virtue of stationarity, IE V (t) = �rt for all time-lengths t, �r being themean traÆ rate. Further stohasti properties of V (t) will be desribedthrough the orresponding log-moment generator�(�; t) b= log IE e�V (t); (20)for whih two relevant onditions are introdued:C1 For eah �, the limit �1(�) = limt!1 �(�;t)t exists and is �nite.C2 �1(�) is stritly onvex and di�erentiable.Condition C1 ensures that the traÆ is not long-range dependent (a asefor whih the theory, in the form presented here, does not hold), whileCondition C2 is a guarantee that the strit onvexity and di�erentiabilityof the generator �(�; t) will also be inherited by the limit.Under Condition C1, the `e�etive bandwidth funtion' (EBF) of thetraÆ is de�ned as a(�) = �1(�)=�; � � 0: (21)



Performane ofTeleommuniation Systems:Seleted Topis 25As a log-moment generator, �(�; t) is onvex in �, a property also trans-ferred to the limit �1(�) as well. Thus, aording to the disussion earlyin Subsetion 4.2, the EBF a(�) is an inreasing funtion. Furthermore, ifCondition C2 also holds, then a(�) is stritly inreasing. Lastly, observethat, by virtue of (12),�r = limt!1 IE V (t)t = �01(0) = a(0) � a(�) � lim�!1a(�) =lim�!1 �1(�)� = limt!1 ess supV (t)t b= r̂;establishing that the EBF is bounded between mean and peak rate. (Thepeak rate r̂ is with respet to an asymptotially large time-window andmay, in some ases, be smaller than the instantaneous peak rate.)The importane of the EBF is due to the following properties: Assumethat traÆ of EBF a(�) loads a multiplexer featuring in�nite bu�er spaeand an output link of apaity C. Further, assume there is some � > 0,suh that a(�) < C. Then, it may be proved that the distribution tailof the queue ontent Q(t) has at all times an exponential upper boundof rate �. In other words, there exists a onstant d(�), suh thatPrfQ(t) > B g � d(�)e��B ; 8t � 0; 8B � 0:There is also a \reiproal" result: If a(�) > C the apaity is not largeenough and it may be shown that the distribution tail of the queueontent annot be bounded exponentially using rate �.These two statements taken together suggest that, in order to ahievean exponential deay of at least rate � for the overow probability underinreasing bu�er size, the system's apaity must be greater than a(�).In this ase, the ahievable deay rate is �� = supf � j a(�) < Cg.Obviously, when the EBF is stritly inreasing (as when Condition C2holds), �� = a�1(C). In fat, for this ase the following stronger assertionan be made: If, besides Condition C1, C2 also holds, the bu�er ontentQ(t) has a stationary distribution with tail satisfyinglimB!1 � log PrfQ > B gB = �; where � = a�1(C): (22)This result not only establishes asymptoti exponentiality for queue tails,but may also be used to determine the bandwidth requirements, as afuntion of the bu�er size and the QoS level.Indeed, assume that the multiplexer has a large (but �nite) bu�ersize B and set the requirement that the system overows with prob-ability at most e��. (This spei�es a quality level equal to � in the



26terminology of the previous subsetion.) Then, by (22), one must en-sure that � � �=B or, equivalently, C � a(�=B), whih is the desiredresult. Although this last relation is in a form suitable for admissionontrol, it must be remembered that a(�) is the EBF for the whole traf-� load, thus it depends on the properties of all multiplexed streams.Fortunately, the de�nition of the EBF by (21) and the additivity of log-moment generators over independent r.vs, ensure that, for a traÆ mixn = �n1; : : : ; nk�, ontaining ni streams of lass i, for i = 1; : : : ; k, theaggregate EBF is simply a(�) = Pi niai(�). In partiular, the relationfor the bandwidth requirements beomesa(�=B) = kXi=1 niai(�=B) � C; (23)speifying a linear boundary of the form (18) for the admission domainand enabling the partiularly simple algorithm for inremental admissionontrol disussed in Subsetion 4.2.As a matter of fat, the name `e�etive bandwidth' is exatly due tothe linearity in (23), as the quantity ai(�=B) determines, independentlyof the rest of the traÆ environment the amount of bandwidth that mustbe granted to a soure of lass i, in order to satisfy the QoS requirementswith the given amount of bu�ering. Due to this independene, eahtraÆ stream behaves, in a sense, like a onstant-rate ounterpart; forthis reason e�etive bandwidths are sometimes alled `e�etive rates' or`equivalent bandwidths'. It is mentioned that originally the term wasintrodued by [Hui, 1988℄, in onnetion with (19). However, sine thelinearization in (19) is only loally signi�ant, the term is now mostlyused in the sense (23), for the large-bu�er regime.Note that the linearity preludes any potential for bandwidth savingsdue to multiplexing gain. Indeed n traÆ streams require bandwidthC = na(�=B), thus maintaining a onstant bandwidth per soure C=n,no matter how large n beomes. This is not surprising, as the theoryholds asymptotially as the bu�er size B ! 1 when the multiplexinggain is negligible, ompared to the bu�ering gain e�et.At this point it is remarked that the e�etive bandwidth theory wasdeveloped through a series of ontributions. The asymptoti exponen-tiality of distribution tails for the stationary queue ontent and the impli-ations for this on a linear admission domain were originally establishedfor iid, Markovian on/o�, and other simple traÆ models [Gibbens andHunt, 1991; Gu�erin et al., 1991; Kelly, 1991℄ and were later generalizedfor the lass of arbitrary Markovian uids [Elwalid and Mitra, 1993℄.An extended theory that overs more general stationary rate proesses



Performane ofTeleommuniation Systems:Seleted Topis 27followed [Kesidis et al., 1993; Chang, 1994; Glynn and Whitt, 1994℄,making expliit use of results from Large Deviations Theory. Further-more, a modi�ation [DuÆeld and O'Connell, 1996℄ of the limiting gen-erator �1(�), using a time saling more general than linear, allowedthe treatment of traÆ with long range dependene. See [Chang andThomas, 1995℄ for a review of the e�etive bandwidth theory along thestatistial mehanis viewpoint and [Veiana et al., 1995℄ for a disussionof resoure management tehniques based on the e�etive bandwidthonept. Further referenes may be found in [Kelly, 1996℄.Apart from the general properties disussed earlier, the partiularform of the EBF a(�) depends on stohasti details spei� to the orre-sponding traÆ stream. To review some examples, onsider Markovianon/o� uid models, featuring a peak rate r and exponentially distributedon and o� sojourns with mean durations � and �, respetively. In thisase the EBF takes the forma(�) = 12�r � ( 1� + 1� )1� +r�r � ( 1� + 1� )1��2 + 4r���;a result that originally appeared in [Gibbens and Hunt, 1991℄ and wasfurther exploited in [Gu�erin et al., 1991℄. In the more general ase ofarbitrary Markovian uids, traÆ is desribed through a `rates-matrix'R = diagfr1; : : : ; rng and the in�nitesimal generator M of a ontinuous-time Markov Chain, whih governs the transitions between rate values.For this lass of models it has been shown [Elwalid and Mitra, 1993℄that the EBF is a(�) = �max�R + 1�M�, i.e., the largest eigenvalue ofthe essentially nonnegative matrix R + 1�M . A further generalization[Kontovasilis and Mitrou, 1997℄ allows the expliit alulation of e�etivebandwidths orresponding to semi-Markovian uids, i.e., models wheretransitions between rates are still Markovian, but the periods duringwhih rate values are sustained may be arbitrarily distributed (but notheavy-tailed). In this ase, the EBF is determined through an impliitfuntion problem, derived from the requirement that the spetral radiusof an appropriate nonnegative matrix be equal to unity. For generalon/o� traÆ streams, of peak rate r, this result simpli�es as follows:Let �+(s) and ��(s) stand for the log-moment generators orrespondingto the distributions of the on and o� sojourns, respetively. Then, forany � > 0, the EBF is a(�) = u(�)=�, where u(�) is the unique positivesolution of �+(r� � u) + ��(�u) = 0:We lose this subsetion by mentioning that, instead of adopting atraÆ model and trying to determine the EBF through it (something



28not always feasible), there are alternative approahes, whih target thediret measurement of the EBF, thus bypassing modeling. For workalong this line, see, e.g., [DuÆeld et al., 1995; Couroubetis et al., 1995℄.4.4. Saling the system's sizeThe two previous asymptoti regimes were appropriate for either verylarge bu�ers or very small ones. However, there are ases where thebu�ering resoure is neither negligible nor overly dominant and thenboth the multiplexing- and bu�ering-gain e�ets are notieable and mustbe taken into aount. We now briey disuss results for this more gen-eral setting. The relevant asymptoti regime assumes a large number oftraÆ streams n and proportionally saled (large) bu�er B and band-width C. In other words, B = bn and C = n, maintaining a onstantamount of resoures per stream, as n ! 1. This type of saling wasoriginally introdued by [Weiss, 1986℄, in onnetion with traÆ onsist-ing of exponential on/o� uids.In our setting, eah traÆ stream is a data generation proess, whih,as in Subsetion 4.3, is assumed to have stationary inrements. The gen-erator (20) is again used as the traÆ desriptor. (Generalizations, re-laxing the assumption on stationarity or the requirement for iid streamsexist.) Let the stationary queue ontent under a load of n traÆ streamsbe denoted as Qn; then the probability of overow is PrfQn > bn g. Thebasi result [Botvih and DuÆeld, 1995; Couroubetis and Weber, 1996℄(also [Simonian and Guibert, 1995℄, for the partiular ontext of gen-eral on/o� uids) is that, under some regularity onditions, notably thevalidity of Condition C1 in Subsetion 4.3,limn!1 � log PrfQn > bn gn = I(; b) b= inft>0 sup� �(t+ b)� � �(�; t)	: (24)There is also a generalization [DuÆeld, 1996℄ whih, among other things,relaxes the requirement for Condition C1 (by introduing a di�erenttime-saling for the generator) and is appropriate for usage with longrange dependent traÆ.For a heuristi explanation of (24) remember that, by Lindley, Qn =supt>0(Vn(t)�nt), where Vn(t) is the total amount of data generated bythe n streams over time t. Then (24) is essentially Cram�er's asymptotion Vn(t)�nt (see (15) and (14)), followed by an optimization of the timesale (using Laplae's priniple of the `dominating term'). Note that theappropriate time sale relevant to the result is neither t = 0 (as wasthe ase with bu�erless systems, where only instantaneous rates wereneeded) nor t = 1 (whih was appropriate for very large bu�ers), butatually the argument extremizing (24), say t�. The value of t� depends



Performane ofTeleommuniation Systems:Seleted Topis 29on  and b and expresses the relative importane of the multiplexing-and bu�ering-gain. Indeed, by assuming di�erentiability, (24) impliesthat t� = �I(; b)� =�I(; b)�b = � �b� ����I(;b)=� ; (25)thus t� quanti�es the (loal) tradeo� between bandwidth and bu�erfor a given quality level per soure. More spei�ally, it is possibleto formally de�ne a `bu�er-bandwidth' urve of the form b(; �), thatdesribes the amount of bu�ering required for ahieving a desired qualitylevel, given the apaity (all quantities being saled by the number ofsoures). It may be shown that this urve is onvex [DuÆeld and Low,1998; Kumaran and Mandjes, 2001℄. Sine, by (25), d=db = �1=t�, theinverse urve is also onvex and dereasing, implying that t� inreaseswith b. This is intuitive, as larger bu�ers pronoune more the traÆorrelations, requiring a larger time-sale for their representation.Still in onnetion with this point, it has been shown [Botvih andDuÆeld, 1995; Couroubetis and Weber, 1996℄ that as b!1 then t� !1 and I(; b) tends to the asymptoti (22). Similarly, when b! 0, thenalso t� ! 0 and I(; b) tends to the asymptoti of (15) and (14), wherein plae of the instantaneous rate generator the limit limt!0 �(s=t; t) isimplied7. Thus the theories for small and large bu�ers may be regardedas speial ases of the results in this subsetion. Note however, that ap-pliation of (24) is onsiderably more diÆult than the other asymptotiresults, not only beause the generator �(�; t) must be determined forall time-sales instead of at a limiting value, but also beause the min-imization with respet to time is non-onvex (unlike the maximizationin �) and thus diÆult to perform numerially.We lose by noting that it is possible to de�ne an admission domainfor the more general regime of this subsetion. This domain is neitherlinear (as in Subsetion 4.3) nor possessing a onvex omplement (asin Subsetion 4.2). However, it is still possible to obtain a loal lin-earization, around points on the boundary, thus introduing a (loallysigni�ant) notion of e�etive bandwidth for this ase too. For moredetails see [Kelly, 1996℄.Notes1. For simpliity, we assume that the arrivals of the �rst D-BMAP our before those ofthe seond, there is however no need to do so.2. Here we adopt a uid approah and represent the ow of data as a ontinuum. However,all results in this setion bear obvious analogies with a disrete-time setting, in whih r(t)stands for the amount of data ontributed during the time-slot indexed by (the now integer) t.



303. The upper extremal value of a r.v. X, alled `essential supremum' and denoted byess supX, is the largest value that X is not improbable to exeed, namely ess supX =sup� x 2 IR j PrfX > xg > 0	. The lower extremum, alled `essential in�mum' and denotedby ess infX, is de�ned analogously.4. Exept in the trivial ase where all traÆ rates are a.s. onstant. This ase is exludedhere.5. Nonlinearity is unavoidable if the nature of the multiplexing gain phenomenon is to bepreserved. This point will be disussed to a greater extent in Subsetion 4.3.6. This assumption holds in partiular when data are generated aording to a stationaryrate proess f r(t); t 2 IR g, sine in that ase V (�; � + t) = R �+t� r(x) dx.7. This limit oinides with the de�nition in Subsetion 4.2 for uid traÆ.
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