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1. Introduction

The central activity of performance evaluation is building formal de-
scriptions of the system under study, an activity refered to as modelling.
These models include workload models (e.g. packet traffic models), sys-
tem resource models (e.g. switch models, link models) and resource
control mechanism models (e.g. MAC protocol models). They are used
to gain insight in the performance of the system under certain load con-
ditions. To obtain the performance measures of interest, two technics
exist: simulate the system (i.e. built a program that simulates the model
behavior) or solve the model mathematically (i.e. compute the perfor-
mance measures analytically). In this paper, we concentrate on the
latter, making distiction between analytical methods that lead to closed
formulas (as described in the part on generating functions) and algo-
rithms that allow to compute the measures numerically (as in dealing
with matrix analytic methods).

An area where performance modeling is an essential tool for system
designers and developers today is the Internet. The Internet is evolving
from a best-effort network towards a system that combines Quality of
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Service (QoS) support with efficient resource usage. The extremely rapid
pace of change that can be observed in the Internet research community
(e.g. in the IETF), often does not allow rigorous performance evalua-
tion of the different proposals. Therefore, the performance evaluation
community (e.g. IFIP WG 6.3) should make an effort to provide the
necessary methods, techniques and tools to allow a better insight into
the system behavior.

The first part is devoted to the modeling of telecommunications sytems
using generating functions, the second part to modeling using matrix
analytical methods and finaly, the third part to the use of asymptotic
approximations. The first part considers discrete-time queueing mod-
els as representatin of telecommunication systems. These models are
particularly applicable when the time can be segmented in intervals of
fixed lenght (called slots) and information packets are transmitted at
slot boundaries. A typical example is an ATM transmission system. The
method to compute the performance measures of interest is based on the
use of generating functions. The aim is to obtain a closed form formula
for the generating function of the system content (i.e. how many packets
are present in the system), from which the most important performance
measures can be derived. The main characteristic of this approach is
that it is almost entirely analytical.

A second approach to compute performance measures is found in Sec-
tion 3. Here two recent and promising developments within the frame-
work of matrix analytical methods are discussed. Both models, have im-
portant applications in the performance analysis of telecommunication
systems. The first model is concerned with a markovian arrival process
with marked arrivals, of particular interest in systems where the packets
are originating from different possiblly correlated traffic streams. A sec-
ond model deals with Tree structured Markov chains. Their particular
structure can be exploited to obtian efficient computational methods to
obtain the measures of interest. Random access algorithms known as
stack algorithms, or tree algorithms with free access, are examples of
systems that can be modeled by means of tree stuctured Markov chain,
leading to expressions for the maximum stable throughput and mean
delay in such systems.

A third part is devoted to asymptotic approximations. These methods
have become extremely relevant due to the high transmission rates and
the stringent quality of service guarantees of modern systems, which
make very rate events (e.g. buffer overflow) significant. Hence, per-
formance measures are based on distribution tails, rather than on first
moments. This paper studies both asymptotics for multiplexers with
small buffers and for multiplexers with large buffers. In both cases, the
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aim is to link the traffic load and resource capacity to the probability
of loss due to buffer overflow. Also the case where the buffer space is
neither negligible nor dominant is discussed.

2. Performance Modeling of Communication
Systems Using Generating Functions

2.1. Discrete-time queueing models

In various subsystems of telecommunication networks, buffers are used
for the temporary storage of digital information units which cannot be
transmitted to their destination immediately. The performance of a com-
munication network may be very closely related to the behavior of these
buffers. For instance, information units may get lost whenever a buffer
is fully occupied at the time of their arrival to this buffer, they may ex-
perience undesirable delays or delay variations in buffers, ... Queueing
theory thus plays an important role in the performance modeling and
evaluation of telecommunication systems and networks. In particular,
queueing models in discrete time are very appropriate to describe traf-
fic and congestion phenomena in digital communication systems, since
these models reflect in a natural way the synchronous nature of modern
transmission systems, whereby time is segmented into intervals (“slots”)
of fixed length and information packets are transmitted at slot bound-
aries only, i.e., at a discrete sequence of time points.

In a discrete-time queueing model, the arrival stream of digital infor-
mation into a buffer (the input or arrival process) is commonly character-
ized by specifying the numbers of arriving packets during the consecutive
slots. In basic models, these numbers of arrivals are assumed to be in-
dependent and identically distributed (i.i.d.) discrete random variables,
and the corresponding arrival process is referred to as an independent
or uncorrelated arrival process. More advanced models allow the num-
bers of arrivals during consecutive slots to be nonindependent, and are
referred to as correlated arrival processes. The storage capacity of a
buffer is usually modeled as unlimited. This is an acceptable assump-
tion since in most communication systems the capacity is chosen in such
a way that the loss probabilities are very small, and furthermore, this
facilitates the use of analytical analysis techniques. The transmission of
information units from the buffer (the output process) is characterized
by the distribution of the transmission times of the information units,
the number of output channels of the buffer, the availability of the out-
put channels, and the order of transmission (the queueing discipline).
In basic models, all information units are assumed to be of fixed length,
which implies they have constant transmission times, the output chan-
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nels are permanently available, and the queueing discipline is assumed
to be first-come-first-served (FCFS). In some applications, however, it
is necessary to consider non-deterministic transmission times, interrup-
tions of the output channels, and non-FCFS queueing disciplines such
as e.g. priority queueing.

In the next section, we present an overview of a number of fundamen-
tal techniques for the analysis - in the steady state - of a wide range
of discrete-time queueing models. The main characteristics of the tech-
niques are that they are almost entirely analytical (except for a few
minor numerical calculations) and that an extensive use of probability
generating functions is being made. Note that a steady state only exists
if the mean number of packet arrivals per slot is strictly less than the
mean number of packets that can be transmitted per slot.

2.2. Steady-state queueing analysis using
generating functions

The behavior of a queueing system is commonly analyzed in terms of
the probability distributions of the buffer contents, i.e., the total number
of packets present in the buffer system, and the packet delay, i.e., the
amount of slots a packet spends in the system.

Buffer contents.  The first step in the analysis of the buffer contents
is to establish a so-called “system equation” that describes the evolution
in time of the buffer contents. If we define s, as the buffer contents at the
beginning of slot k, it is easily seen that the following basic relationship
holds :

Sk41 = Sp — tp + e (1)

where e, represents the total number of packet arrivals during slot £ and
t; denotes the number of packets that leave the buffer system at the end
of slot k. Here the characteristics of e; depend on the specific nature of
the arrival process. The random variable ¢; on the other hand depends
on the characteristics of the output process, and cannot be larger than
s in view of the synchronous transmission mode, which implies that
only those packets present in the buffer at the beginning of a slot are
eligible for transmission during the slot.

In the simplest models, uncorrelated arrivals from slot to slot, constant
transmission times of one slot each, and permanently available output
channels are assumed. In this case, the system equation (1) reduces to

spi1 = (s — )T +ep . (2)
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Here (...)" = maz(0,...), ¢ denotes the number of output channels, and
the random variables s; and e on the right-hand side are statistically in-
dependent of each other, which implies that the set {sj} forms a Markov
chain. Let Si(z) = F[z°¢] denote the probability generating function
(pgf) of si. By means of standard z-transform techniques [Bruneel and
Kim, 1993], the system equation (2) can then be translated into the z-
domain. This yields the following relationship between the pgf’s Si1(2)
and Si(z) :

c—1

Sk1(2) = B(2) 2 {) (2" — 2/) Problsy = j] + Sk(2)} ,  (3)

Jj=0

where E(z) denotes the pgf of the number of packet arrivals in a slot.
In the steady state, both Si1(z) and Si(z) will converge to a common
limiting function S(z), the pgf of the buffer contents s as the beginning
of an arbitrary slot in the steady state. Taking limits for £ — oo and
solving the resulting equation for S(z), we then obtain

S(z) = B0 . (4)

E(z) g(zc — 27) Prob[s = j]
7=0

The ¢ unknown constants Prob[s =j], 0 < 5 < ¢—1, in (4) can be
determined by invoking the analyticity of the pgf S(z) inside the unit
disk {z : |z| < 1} of the complex z-plane, which implies that any zero of
the denominator of (4) in this area must necessarily also be a zero of the
numerator, together with the normalization condition S(1) = 1 of the
buffer-contents distribution. This results in a set of ¢ linear equations
in the ¢ unknown probabilities and allows to obtain S(z) explicitly.
During the last few years research has largely focused on the introduc-
tion of more complicated characterizations of the arrival process, in or-
der to obtain more realistic, useful and tractable stochastic descriptions
of the sometimes bursty and heterogeneous traffic streams occurring in
modern integrated communication networks. When the arrival process
is correlated, the random variables s and e on the right-hand side of
the system equation (2) are no longer statistically independent, and the
above analysis technique needs to be modified. Specifically, since the
knowledge of the value of s, no longer suffices to determine the proba-
bility distribution of s;,1, the set {s;} does no longer form a Markov
chain, and a more-dimensional state description of the system has to be
used, containing extra information about the state of the arrival process.
As an example, let us consider a discrete-time queueing model with
one output channel, that is permanently available, and a simple corre-
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lated arrival process. Packets are generated by N independent and iden-
tical on/off-sources. Each source alternates between on-periods, during
which it generates one packet per slot, and off-periods, during which
no packets are generated. The successive on-periods and off-periods of
a source are assumed to be independent and geometrically distributed
with parameters « and [ respectively. Clearly, we then have the sys-
tem equation (2), where ¢ = 1, whereas e; can be derived from ej 1 as
follows [Bruneel, 1988] :

€r—1 N—ep_1
e = c; + Z d; . (5)
i=1 =1

Here the ¢;’s and the d;’s are two independent sets of i.i.d. Bernoulli
random variables with pgf’s

c(z)=1—-a+az (6)

and
diz)=B+(1-p8)z . (7)

From (2) and (5)-(7), the pair (eg_1,s) is easily seen to constitute
a (two-dimensional) Markovian state description of the system at the
beginning of slot k. We then define Py (z, z) as the joint pgf of the state
vector (ex_1, Sk), i.e.,

Py(x,z) = E[z-1 2°%] . (8)

The next step is then similar to the uncorrelated-arrivals case, namely
to derive a relationship between the pgf’s Py11(z, z) and Pg(z, z) corre-
sponding to consecutive slots, by means of the state equations :

f%JWJ)ZEkm@%A%4ﬁ}

:wmmNEK%%Q%lﬁ%”ﬂ 9)

rz N C
e i (o

Again taking limits for & — 0o, we now obtain a “functional equation”
for the limiting function P(z, z), which typically contains the P-function
on both sides, but with different arguments. Although the function
P(z, z) cannot be derived explicitly from the functional equation, several

performance measures related to the buffer contents can be derived from
it, as will be explained later.

,z) + (2 — 1) Prob[sy = 0]} .
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A similar analysis is possible for a variety of correlated arrival pro-
cesses, such as train arrivals [Xiong and Bruneel, 1993], [Wittevrongel
and Bruneel, 1998], Markov modulated arrivals [Xiong and Bruneel,
1995], [B. Steyaert and Bruneel, 1997], general on/off sources [Wit-
tevrongel and Bruneel, 1997], correlated train arrivals [S. De Vuyst and
Bruneel, 2001], and so on. For some arrival processes, the resulting
functional equation may contain a number of unknown boundary prob-
abilities, which in general are difficult to obtain exactly. An approxima-
tion technique can then used, which is based on the observation that a
buffer contents equal to n at the beginning of a slot implies that no more
than n packets have entered the buffer during the previous slot (see e.g.
[B. Steyaert and Bruneel, 1997], [Wittevrongel and Bruneel, 1997]).

Also in case more complicated models for the output process are used,
similar problems occur and a more-dimensional state description needs
to be used. For instance, when general transmission times are consid-
ered, additional information is needed in the state description about the
amount of service already received by the packet(s) in transmission, if
any [Bruneel, 1993]. In case interruptions of the output channels may
occur, we need to keep track of the state of each of the output chan-
nels (available or blocked) and the remaining sojourn time in this state
[D. Fiems and Bruneel, |.

Packet delay. The delay of a packet is defined as the number of
slots between the end of the slot of arrival of the packet, and the end of
the slot when this packet leaves the buffer. In case of a FCFS queueing
discipline, the analysis of the packet delay typically involves the deriva-
tion of a relationship between the delay of a tagged packet and the total
number of packets present in the buffer just after the arrival slot of the
tagged packet and to be transmitted before the tagged packet. How-
ever, for discrete-time queueing systems with one permanently available
output channel, constant transmission times of one slot, a FCFS queue-
ing discipline and an arbitrary (possibly correlated) arrival process, the
following relationship exists between the pgf S(z) of the buffer contents
and the pgf D(z) of the packet delay [Vinck and Bruneel, 1995]:

S(z) — 5(0)

bt = =50

(10)

The above relationship makes a full delay analysis superfluous, once the
buffer contents has been analyzed. Similar relationships also exist in case
of multiple servers [Vinck and Bruneel, 1996b] and non-deterministic
service times [Vinck and Bruneel, 1996a].
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2.3. Performance measures

The results of the analysis can be used to derive simple and accu-
rate (exact or approximate) formulas for a wide variety of performance
measures of practical importance, such as mean and variance of buffer
occupancies and delays, packet loss probabilities, ... The mean system
contents and the mean packet delay in the steady state can be found by
evaluating the first derivative of S(z) and D(z) at z = 1. Higher-order
moments of the system contents and the packet delay can be derived
analogously, by calculating higher-order derivatives of S(z) and D(z) at
z = 1. The tail distribution of the buffer contents is, for reasons of com-
putational complexity, often approximated by a geometric form based on
the dominant pole zy of the pgf of the buffer contents. That is, for large
values of n, the tail distribution of the buffer contents is approximated
by [H. Bruneel and Petit, 1994]

Prob[s = n] = —ﬂzan , (11)
2

where 6 is the residue of S(z) for z = z;. A quantity of considerable
practical interest is the probability that the buffer contents (in the infi-
nite buffer) exceeds a given threshold S. This probability can be used
to derive an approximation for the packet loss ratio (i.e., the fraction
of packets that arrive at the buffer but cannot be accepted) of a buffer
with finite waiting space S and the same arrival statistics [Steyaert and
Bruneel, 1995].

As mentioned before, it is not always possible to calculate the pgf
S(z) of the buffer contents explicitly. Nevertheless, a technique has
been developed to derive results concerning the moments and the tail
distribution of the buffer contents from the associated functional equa-
tion. The technique involves considering those values for which the first
argument(s) of the P(., z) functions in both sides of the functional equa-
tion become equal (see e.g. [Bruneel, 1988], [Xiong and Bruneel, 1995],
[Wittevrongel and Bruneel, 1997], [Wittevrongel and Bruneel, 2000]).

2.4. Numerical example

As an illustration, we consider a statistical multiplexer to which mes-
sages consisting of a variable number of fixed-length packets arrive at
the rate of one packet per slot (“ train arrivals”), which results in a
primary correlation in the packet arrival process. The arrival process
contains an additional secondary correlation, which results from the fact
that the distribution of the number of leading packet arrivals (of new
messages) in a slot depends on some environment variable. This envi-
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ronment has two possible states ‘A’ and ‘B’, each with geometrically
distributed sojourn times [S. De Vuyst and Bruneel, 2001]. We compare
the results obtained for this correlated train arrivals model with the re-
sults that would be found if a model without secondary correlation or an
uncorrelated model for the packet arrival process were used. In Figure
1, the mean buffer contents for the three considered arrival models, i.e.,
Els] (correlated train arrivals), E[sprim| (uncorrelated train arrivals) and
E[syn] (uncorrelated packet arrivals) are plotted versus the total load p,
for different values of the environment correlation factor K, which can
be seen as a measure for the absolute lengths of the sojourn times, when
their relative lengths are given [S. De Vuyst and Bruneel, 2001]. The
message-length distribution is a mixture of two geometrics according to
the pgf L(z) = O.E)](l;i\)z + 0'5](::)’3 with mean 5 and a variance of 50.
In an ‘A’-slot, the number of new messages has a geometric distribu-
tion with mean 2, while no new messages are generated during ‘B’-slots.
The figure clearly shows the severe underestimation of the buffer con-
tents when the different levels of correlation in the arrival process are
neglected. Note that all the curves for E[sp.im] coincide with the one
representing E[s] for K = 1 (uncorrelated environment). In the case of
uncorrelated packet arrivals, E[sy,| slightly increases with higher values
of K, although not in the same drastic way as E[s] in case of correlated
train arrivals.

3. Performance Modeling using Matrix Analytic
Methods

Two recent, and promising, developments within the area of matrix
analytic methods are discussed in this section. It concerns the Markovian
arrival process with marked arrivals, i.e., the MMAP[K] arrival process,
and tree structured Markov chains of the M/G/1, GI/M/1 and Quasi-
Birth-Death (QBD) type. While presenting these new developments, we
mainly focus on their applicability towards telecommunication systems.

Matrix analytic methods, for queueing theory, found their origin in
the 1960s in the work of Cinlar and Neuts [Dshalalow, 1995]. Dur-
ing the 1970s, Neuts made a number of crucial contributions to the
M/G/1 and GI/M/1 structures and wrote a book, the use of which is
still widespread nowadays, on this subject [Neuts, 1981]. During the
1980s, Neuts pursued his work at the University of Delawaire together
with his associates and students Chakravarthy, Kumar, Latouche, Lu-
cantoni and Ramaswami. In 1989, a second, perhaps somewhat less
accessible to computer scientists, book [Neuts, 1989] appeared on the
M/G/1 structure that summarizes their achievements, it reflects the
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Figure 1.  Mean buffer contents versus the total load p for various values of K.

fact that the area of matrix analytic methods was growing vigorously.
The theory and its applications have grown unabated ever since. This
was clearly demonstrated in 1996, when the first conference on matrix
analytic methods, and its applications, was organized. At the time of
this writing a fourth conference will be held in July 2002 in Adelaide,
Australia.

3.1. Markovian Arrival Process with Marked
Arrivals

The usefulness of queueing theory as a means of analyzing the perfor-
mance of telecommunication systems has been demonstrated extensively.
However, until recently, most of the work done in this area applied to
queueing systems that do not distinguish between customers, that is, all
customers are of the same type and require the same type of service.
There are plenty of applications were it would be suitable to distinguish
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between multiple customer types. For example, suppose that packets
originating from K different, possibly correlated, traffic streams form
the input to a buffer, then it is often useful if we could obtain statistics,
e.g., the delay distribution, for each individual source. The Markovian
arrival process with marked arrivals, i.e., the MMAP[K] process, is an
important building block that allows us to obtain such information.

Both a continues and a discrete time version of the MMAP[K] ar-
rival process has been introduced [He and Neuts, 1998; He, 1996], but
we restrict ourselves to the discrete time variant. We shall distinguish
between two types of MMAP[K] processes: those that allow for batch
arrivals to occur, and those that do not.

MMAP[K] Process without Batch Arrivals. A discrete time
MMAP[K] arrival process that does not allow for batches to occur is a
natural extension of the D-MAP arrival process [Blondia, 1993]. Cus-
tomers are distinguished into K different types. The MMAP[K] is char-
acterized by a set of m xm matrices {Dy | 0 < k < K}, with m a positive
integer. The (j1,72)"" entry of the matrix Dy, for k > 0, represents the
probability that a type k customer arrives and the underlying Markov
chain (MC) makes a transition from state j; to state jo. The matrix D
covers the case when there are no arrivals. The matrix D, defined as

K
D =YDy,
k=0

represents the stochastic m x m transition matrix of the underlying MC
of the arrival process. Let 8 be the stationary probability vector of D,
that is, 8D = 0 and fe = 1, where e is a column vector with all entries
equal to one. The stationary arrival rate of type k customers is given
by Ay = 0Dge. Queues with MMAP[K] arrival processes are discussed
in Section 3.1

Example 3.1. Consider a D-MAP arrival process characterized by the
m x m matrices C and D. Suppose that we wish to mark the arrivals
by the state of the underlying MC at its generation time. This results
in a MMAP[K] arrival process with Dy = C and with the matrices Dy,
for 1 < k < K = m, equal to zero, except for their k-th row, which is
identical to the k-th row of D. Notice, the number of customer types
might be smaller than m, because some rows of D might be equal to
Zero.

MMAP[K] Process with Batch Arrivals. A discrete time
MMAPIK] arrival process that allows for batches to occur —a natural
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extension of the D-BMAP arrival process [Blondia, 1993]—is character-
ized by a set of m X m matrices Do where C is a string of integers
between 1 and K, that is, C =c¢;...¢ with 1 < ¢ < K and 1 <[ <b.
Let bpar be the maximum batch size of the MMAP[K] arrival process.
Let () denote the empty string and |C/| the length of the string C. The
(j1,72)" entry of the matrix D¢, with C # (), represents the probability
that a batch of |C] arrivals occurs, while the underlying MC makes a
transition from state j; to state js. The type of the I-th customer of the
batch is ¢;, for 1 <1 < |C], if C = c1...cc|- As before, D = YcDc
represent the transition matrix of the underlying MC and 6 its station-
ary probability vector. The stationary arrival rate of type k customers
is given by A\, = 0> . N(C,k)Dce, where N(C, k) counts the number
of occurrences of the integer £ in the string C. Queues with MMAP[K]
arrival processes are discussed in Section 3.1

Example 3.2. It is well known that a superposition of two, or more,
D-BMAPs is again a D-BMAP. However, when superposing D-BMAPs
customers generally loose their identity, meaning that we no longer know
whether the arrival came from the first or the second D-BMAP. A
MMAP[K] arrival process that eliminates this drawback can be con-
structed in the following way. Suppose that the first, resp. second, D-
BMAP is characterized by the my X m; matrices ﬁ}l, resp. ms X mgo
matrices ﬁ%, for n > 0. Let D¢, with C' a string of by > 0 ones followed
by by > 0 twos', be mima X mims matrices. Instead of labeling the
mimy states j of the underlying MC as 1 to m;mq, we denote them as
(4,5"), with 1 < j < mq and 1 < j' < my. The (j1,j2) entry, with
j1 = (51,71) and j2 = (j2,75), of the matrix D¢, with C a string of
b1 ones followed by by twos, equals (Dgl)jhﬁ (bl?z).iiajé'
examples is presented in [He and Neuts, 1998; He, 2001].

A variety of

The MMAP[K]/PH[K]/1 Queue. In this section we discuss the
MMAPI[K]/PHIK]/1 queue with a first-come-first-serve (FCFS) and a
last-come-first-serve (LCFS) service discipline. The service times of type
k customers, in a MMAP[K]/PH[K]/1 queue, have a common phase-type
distribution function with a matrix representation (mg, ay,T)), where
my, 1S a positive integer, oy is an 1 X my nonnegative stochastic vector
and T}, is an my X my, substochastic matrix. Let T,? = e — Tye, then the
mean service time of a type k customer equals 1/py = ag(I — T}) 'e.
The i-th entry of aj represents the probability that a type k& customer
starts its service in phase i. The i-th entry of T,?, on the other hand,
represents the probability that a type k& customer completes its service
provided that the service process is in phase i, while the (7, j)-th entry
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of T}, equals the probability that it does not complete its service and the
phase at the next time instance is j.

The positive recurrence, i.e., stability, of these queues was studied by
He in [He, 2000]. Explicit formulas for the Laplace-Stieltjes transforms
of the waiting times of a type k customer have been obtained for a server
with a FCFS service discipline [He, 2001]. An algorithm to obtain the
steady state probabilities of a MMAP[K]/PH[K]/1 queue, where the
MMAPIK] arrival process does not allow for batches to occur and the
server follows a LCFS service discipline, is found in [He and Alfa, 2000].
Finally, a simple algorithm, based on the GI/M/1 structure, has been
developed to calculate the delay distribution of a type k customer in
a FCFS MMAP[K]/PH[K]/1 queue [Van Houdt and Blondia, 2002a].
This algorithm is highly efficient if the MMAP[K] arrival process does
not allow for large batch arrivals to occur.

Example 3.3. Let us continue with the MMAP[2] arrival process in-
troduced in Example 3.2. Now, assume that each of the two D-BMAPs
model a traffic source and that the traffic generated by both sources
share a buffer. Moreover, assume that the packets generated by source
k, for £ = 1,2, have a fixed length of Ly bytes. Then, this buffer can
be modeled by a discrete time MMAP[2]/PH[2]/1 queue, because fixed
length service times have a phase type distribution. As a result, we could
calculate the delay distribution of a source k arrival using [Van Houdt
and Blondia, 2002a).

Example 3.4. Many random access algorithms (RAAs) that use
grouped access as their channel access protocol (CAP) can be modeled
in a natural way by means of a MMAP[K]/PH[K]/1 queue ([Van Houdt,
2001; Van Houdt and Blondia, 2002b; Van Houdt and Blondia, 2002c]).
When modeling such a RAA, a type k customer corresponds to a group
of k contenders and its service time distribution is the time necessary for
each of the k contenders to successfully transmit their packet, starting
from the completion time of the previous group.

3.2. Tree Structured Markov Chains

Another promising development in the theory of matrix analytic meth-
ods are tree structured Markov chains (MCs). Consider a discrete time
bivariate MC {(Xy, N;),t > 0} in which the values of X; are represented
by nodes of a d-ary tree, and where INV; takes integer values between 1
and m. X, is referred to as the node and NN; as the auxiliary variable
of the MC at time t. A d-ary tree is a tree for which each node has
d children. The root node is denoted as (). The remaining nodes are
denoted as strings of integers, with each integer between 1 and d. For
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instance, the k-th child of the root node is represented by k, the I-th
child of the node k is represented by kl, and so on. Throughout this pa-
per we use lower case letters to represent integers and upper case letters
to represent strings of integers when referring to nodes of the tree. We
use '+’ to denote concatenation on the right, e.g., if J = j1 j2 73,k = J
then J+ &k = 71 j2 73 j. If J can be written as Ky 4+ K9 for some strings
K7 and Ky, K is called an ancestor of .J.

Algorithms that allow for the calculation of the steady state probabil-
ities, have been identified for three subsets of the tree structured MCs,
each subset allows for a certain type of transitions to occur:

»  The skip-free to the left, i.e., M/G/1 Type, MCs: It is impossible to
move from node J to (), without visiting all ancestors of J [Takine
et al., 1995].

m The skip-free to the right, i.e., GI/M/1 Type, MCs: Transitions
from a node J are allowed to the root node 0, the children of J
and the children of all ancestors of J [Yeung and Sengupta, 1994].

» The Quasi-Birth-Death (QBD) MCs: The chain can only make
transitions to its parent, children of its parent, or to its children
[Yeung and Alfa, 1999].

So far, the last subset has proven to be the most fruitful. Therefore,
they are discussed in more detail in this section. If a tree structured
QBD MC is in state (J + k,4) at time ¢ then the state at time ¢ + 1 is
determined as follows:

1 (J,4) with probability di’ k= 1,....d,
2 (J +s,j) with probability a;” ks = 1,....d,

3 (J + ks, j) with probability w5/, s = 1,...,d.

Define m x m matrices Dy, Ay s and Uy with respective (1,7)" elements
given by dZ"j, afc’;js and u’. Notice that transitions from state (J+k,i) do
not dependent upon J, moreover, transitions to state (J + ks, j) are also
independent of k. When the Markov chain is in the root state (J = 0)

at time ¢ then the state at time ¢ + 1 is determined as follows:
1 (0, 4) with probability f*/,
N -1 U R
2 (k,j) with probability u,”,k =1,...,d.

Define the m x m maftrix F' with corresponding (4,7)" element given by
f"1. Algorithms that calculate the steady state probabilities using the
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matrices Dy, Ay s, Us and F as input parameters are available in [Yeung
and Alfa, 1999; Bini et al., 2002].

Example 3.5. MMAP[K]/PH[K]/1 queue, where the MMAP[K] arrival
process does not allow for batches to occur, with a last-come-first-serve
(LCFS) service discipline can be modeled using a tree stuctured QBD
MC [He and Alfa, 2000]. Indeed, the line of customers waiting in a
MMAP[K]/PH[K]/1 queue can be represented by a string of integers
between 1 and K, thus as nodes of a K-ary tree. The auxiliary variable
is used to represent the phase of the server, the type of customer in the
server and the state of the MMAP[K] arrival process. The root node ()
corresponds to a queue with a busy server and an empty waiting room.
Therefore, one needs a generalized boundary condition to represent the
situation where the waiting room is empty and the server is not busy.
Information on generalized boundary conditions and other extension,
i.e., MCs with a forrest structure, can be found in [Yeung and Sengupta,
1994].

Example 3.6. Random access algorithms (RAAs) known as stack al-
gorithms, or tree algorithms with free access, can be modeled using a
tree structured QBD MC [Van Houdt and Blondia, 2001; Van Houdt
and Blondia, 2002d]. As a result, it is possible to study the maximum
stable throughput, as well as the mean delay, for various D-BMAP (and
BMAP) arrival processes.

4. Asymptotic approximations for the
performance evaluation of large broadband
networks

4.1. The need for asymptotic methods

After a period of intensive development, multiservice broadband net-
works are now a reality. Current implementations already serve as high-
speed backbone infrastructures and more extensive usage, accompanied
by a further exploitation of these networks’ advanced capabilities, is ex-
pected when the need for providing complex information services with
strict quality guarantees will grow.

There are two primary performance-related characteristics that distin-
guish multiservice broadband networks from their “conventional” coun-
terparts. The first is that, due to both the high transmission speed
and the need for providing individualized and stringent quality of
service (QoS) guarantees, very rare events (e.g., buffer overflows oc-
curring with probability as low as 1075, or smaller) become significant.
Consequently, most relevant performance metrics must be based on dis-
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Figure 2. The effect of burstiness: overflow probability vs buffer size (at a log-linear
scale).

tribution tails rather than mean values. The second characteristic is
that most bandwidth-demanding traffic types appearing on broadband
networks are bursty, i.e., they feature significant rate excitations and
correlated packet interarrival times. These are properties that leave a
mark on the queueing phenomena governing the network’s performance.
The typical queueing effects of burstiness are demonstrated by the
main graph of Fig. 2, depicting the buffer overflow probability (a stan-
dard performance metric) at a network multiplexer or switch loaded by
a superposition of bursty traffic streams, as a function of the buffer size.
Two distinct regions are clearly identified: In the first region (small
buffer sizes) the rate correlations do not become apparent, the traffic
is primarily characterized (at the, so called, ‘packet level’) by proper-
ties of the individual interarrival times between successive packets, and
the overflow probability decays rapidly with increasing buffer size (at
an exponentially fast rate, since the graph uses a log-linear scale). In
the second region (larger buffer sizes) the rate correlation details (usu-
ally collectively called ‘burst level traffic properties’) become noticeable,
resulting in a quite smaller rate of decay for the overflow probability.
Clearly, accurate prediction of tail probabilities like those in the
example requires the usage of sophisticated traffic models, able of pro-
viding a sufficiently precise characterization of traffic at both the packet
and burst levels. Such detailed models, and associated analysis meth-
ods, do exist and are invaluable whenever thorough queueing analysis
is called for. In due account, the paper reviews two important classes
of models/solution methods (see the sections on matrix analytic tech-
niques, and on generating functions based techniques). Unfortunately,
detailed descriptions suffer from the ‘state space explosion’ problem. In-
deed, the state spaces of models for all but the simplest traffic patterns
have to be rather large, if both the packet- and burst-level behavior is
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to be captured. The situation becomes worse when it is realized that, in
virtually all congestion phenomena of interest, the aggregate traffic load
consists of a (frequently heterogeneous) superposition of a large number
of individual streams and that the state space of the model for the ag-
gregate traffic depends factorially on the—already large—spaces of the
constituents.

In an attempt to partially alleviate this difficulty, ‘luid-flow’ mod-
els of traffic have been proposed. These models disregard the discrete
nature of the packet level details, representing traffic as the flow of a
continuous fluid (hence their name). The instantaneous rate of this flow
is taken equal to the average rate of the real traffic over an appropriate
time window, large enough to “hide” the packet details, but also small
enough to preserve the burst-level rate fluctuations. This approach has
been quite successfully employed towards the accurate representation of
burst-level traffic dynamics with a reduced set of model parameters. An
example is provided by the dashed graph in Fig. 2, which represents
the overflow probability curve corresponding to the fluid-flow counter-
part of the original traffic and which matches quite satisfactorily with
the exact result over the burst level region. For further information on
(primarily Markovian) fluid-flow models see: [Anick et al., 1982; Kosten,
1984; Mitra, 1988; Stern and Elwalid, 1991] for the basic theoretical foun-
dation and analysis techniques, [Baiocchi et al., 1992; Kontovasilis and
Mitrou, 1994; McDonald and Qian, 1998] for embelishments of the theory
and efficient computational algorithms, and [Kontovasilis and Mitrou,
1995; Mitrou et al., 1995] for multiple-scale phenomena occurring when
the traffic possesses burst-level dynamics with a finer structure.

However, although the fluid-flow concept works for reducing the com-
plexity of models for individual traffic streams, it cannot alleviate the
state space explosion due to superposition. For this reason, many impor-
tant performance-related network mechanisms, particularly those that
must operate within a short time-frame (such as on-line traffic con-
trol) or over a combinatorially large domain (e.g., network-wide resource
(re)allocation), cannot rely on “classical” queueing techniques, even the
fluid-flow ones.

Fortunately, there’s still a viable way of addressing the problem,
grounded on the fact that modern broadband networks are, in some re-
spects, “large” systems, featuring high link capacities and large switches,
and requiring that probabilities of hazardous events (like overflows lead-
ing to data losses) be very small (so as to provide reliable QoS guaran-
tees). This setting suits well to the ‘Theory of Large Deviations’ (TLD),
a body of theoretical results and techniques that address systems “scaled
up” by a large parameter and examine the circumstances under which
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associated (scaled) random variables may attain values in a designated
set with an exponentially small probability, asymptotically as the scal-
ing parameter approaches infinity. TLD may be used to compute the
rate of exponential decay in the probabilities of interest and, moreover,
determine the way in which these ‘rare events’ occur. A comprehensive
general treatment of TLD can be found in, e.g., [Dembo and Zeitouni,
1998], while [Bucklew, 1990] provides a less formal exposition, explicitly
geared towards applications. Reference [Weiss, 1995] may be consulted
for a brief overview of topics and further references.

Building on the TLD foundations, the very same characteristics that
lead to state-space explosion in “conventional” models have been ex-
ploited towards the development of asymptotic theories that quantify
congestion in broadband networks under bursty load. The purpose of
this section is to give an outline of the relevant results. Before embarking
on the review, however, it is important to note that, besides analytical
tractability, a prime advantage of the asymptotic methods is their poten-
tial for conceptual clarity, something crucial for highlighting the effect
of fundamental phenomena in explicit terms.

Generically, two such congestion-related phenomena may be identi-
fied: The first, frequently called ‘multiplexing gain’, relates to the fact
that (as a consequence of the law of large numbers) aggregation of many
independent traffic streams results in smoother compound traffic, reduc-
ing the probability with which the aggregate data rate raises above its
mean value. As more streams are multiplexed, the amount of bandwidth
per stream required to compensate for the rate excitations is reduced (for
a given QoS requirement), justifying the name of the phenomenon. In
the absence of significant buffering, multiplexing gain is the only mech-
anism through which QoS may be attained while using less bandwidth
than peak-rate. In Fig. 2 this is reflected at the non-negligible proba-
bility of overflow even with a zero buffer size. The relevant asymptotic
theory is reviewed in Subsection 4.2.

The second fundamental phenomenon relates to another mechanism of
controlling rate excitations so as to avoid data losses, that of temporarily
storing excessive data into a buffer. The larger the buffering resource, the
smaller the capacity requirement for the output port becomes, for a given
loss probability. In analogy with multiplexing gain, this bandwidth-
savings effect will be called ‘buffering gain’. In Fig. 2 it is reflected at
the decay of the overflow probability with increasing buffer size, even
at the “slow” burst-level region. The asymptotic theory relevant to
buffering gain is reviewed in Subsection 4.3.

The two regimes just outlined relate to either no buffer, or a large
buffer, so that either the multiplexing gain, or the buffering gain domi-
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nate, respectively. In many cases the available buffer is neither negligible
nor dominant and both phenomena are noticeable. For this more gen-
eral setting there is an improved asymptotic theory that can quantify the
combined effect of both gain factors, by considering systems where the
load and resources (buffer and bandwidth) are proportionally scaled by a
large parameter. Elements of this theory are provided in Subsection 4.4.

4.2. Asymptotics for multiplexers with small
buffers

Consider a multiplexer (or an output port unit of a switch) featur-
ing a negligibly small buffer and serving traffic through an output link
of capacity equal to C. The aggregate traffic loading this system can
be described as a stochastic instantaneous-rate? process {r(t), t € R},
which it is assumed throughout stationary. Tracking just instantaneous
rates is adequate, as there is no buffer to “record the past history” of
the traffic. In the following, the properties of the instantaneous rate will
be described through the respective log-moment generator (also called
the ‘cumulant generator’) ¢(s) = log IE e*” ). As an implication of sta-
tionarity, ¢(s) is independent of time.

At this point it is reminded that the log-moment generator of a ran-
dom variable (r.v.) is a convex function (actually strictly convex, unless
the r.v. is a.s. constant). The set {s € R | ¢(s) < oo} is called the
generator’s ‘effective domain’. If s = 0 is in the interior of this domain
(a mild condition, assumed throughout and satisfied in all cases of prac-
tical interest, in particular when the r.v. is bounded translated to the
existence of a finite peak rate in our case), then the generator is an
analytic function on the whole interior of its effective domain. By con-
vexity, the derivative ¢'(s) is increasing (strictly increasing if the r.v. is
not a.s. constant) and the same may be shown for ¢(s)/s. Furthermore,
the limits of these functions are related to the extremal values® of the
corresponding r.v. X as follows:

essinf X = lim ¢'(s) = lim 9(s) < lim $s) _ E X = lim ¢'(s)
§——00 s——0oc S s—=0 S s—0
< lim $() = lim ¢'(s) =esssup X.
s—>+oo 8§ s—>+o0

(12)

Since there is no buffer, overflows (and data losses) occur whenever the
instantaneous data rate exceeds the system’s capacity. We now derive
an upper bound to the probability of overflow. Indeed, by a Chebycheff-
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type argument, for any s > 0,

Pr{r(f)>C} = /(ﬁ+ /°°m”(~dF()
< / e0=C) 4F, (z) = exp{a(s) — 5C}.
=0

By taking logarithms and optimizing over the permissible range of pa-
rameters, we obtain

log Pr{ r(t) >C}<f§up{097 s)}. (13)

This bound is known in the literature as ‘Chernoff’s bound’. Assuming
a stable system (i.e., C > F'r(t)), the maximum over nonnegative reals
coincides with the maximum over the entire real line, i.e.,

VvC > Er(t)=r, SI;IS{CS*d)(S)} = 911p{097 s)} =1(C), (14)

the value of the Fenchel-Legendre transform of ¢(-) at C. Furthermore,
it may be shown that, for C' > 7, the Fenchel-Legendre transform I(-) is
an increasing function (actually strictly increasing, unless () is a.s. con-
stant), expressing the intuitively appealing fact that the overflow prob-
ability becomes smaller as the system’s capacity increases.

Assume now that the aggregate traffic consists of a large number n
of independent and identically distributed streams, while the system’s
capacity is proportionally scaled, maintaining a fixed amount of band-
width per source, i.e., C' = nc. Since log-moment generators are ad-
ditive for independent r.vs, the aggregate generator is ¢, (s) = ne(s)
(where now ¢(-) signifies the generator of a single stream) and from equa-
tions (13) and (14) it follows that the overflow probability is bounded
by e "¢ decaying exponentially with large n at a rate equal to I(c).
This reflects the fact that, as more sources are multiplexed and the
bandwidth per source ¢ remains fixed, overflows become less probable,
because the compound traffic “smoothens”. In other words, and due to
the monotonicity of I(-), a smaller value of ¢ is required as n increases,
for a given target overflow probability. This is exactly the multiplexing
gain phenomenon, discussed in the previous subsection.

The Chernoff bound of eq. (13) is conservative, allowing for safe
performance-related decisions. Not only that, but the bound is asymp-
totically tight, as the number of sources n — oc. Specifically, by
Cramér’s Theorem (see, e.g., [Dembo and Zeitouni, 1998, Theorem 2.2.3]),
it holds

lim — logPr{ rn(t) > ne} = —I(c), (15)

n—oc n
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where, as with the generator, r,(¢) denotes the aggregate rate. This
result suggests that, when n is large enough, the probability of overflow
is e7¢, where € = nI(c) + o(n). (The quantity € expresses the achievable
QoS at a logarithmic scale and will be called the ‘quality level’ in the
sequel.) There is also a more detailed result, called the ‘Bahadur-Rao’
correction, that strengthens the asymptotic equivalence of (15) to linear,
rather than logarithmic order. (In this result, I(c) still remains the
dominant factor determining the probability of overflow.) For details,
see, e.g., [Dembo and Zeitouni, 1998, Theorem 3.7.4].

When the traffic is a heterogeneous mix of independent traffic streams,
the previous theory still applies. Indeed, consider k traffic classes, each
containing n;, 1 = 1,...,k independent and identical streams. Then
the total number of sources is n = Z;C:] n; and the aggregate gen-
erator is constructed by the individual counterparts through ¢,(s) =
Zle ni$;(s). In this setting (15) still holds, i.e., for large n the prob-
ability of overflow is approximately e~ ¢, with quality level € = nl(c) =
sup {Cs — 31y nagi(s) }.

We now discuss the computation of the decay rate in the asymp-
totic (15). Due to the convexity of log-moment generators, the function
to be maximized in (14) is concave and attains a unique maximum.
Moreover, by differentiability (again borrowed from the generator) the
derivative of the function in (14) is zero at the maximizing argument.
From these observations and from eq. (12) it follows that when the ca-
pacity C' is between the aggregate mean and peak rates, the quality level
is computed as

k k
e=nl(C/n) = Sgg{cs =Y nigi(s)} = Cs* = mii(s*),  (16)
52 i=1 i=1
where s* is the unique* argument satisfying

k
S nidl(s") = C, (17)
i=1

and where the equations have been expressed in a form suitable for a
general heterogeneous traffic mix.

Usually, (16) and (17) must be solved numerically. However, the
canonical example of a homogeneous on/off traffic mix admits a closed
form solution. Indeed, for any on and off sojourn distributions (just as-
suming finite means, respectively IF Ty, and F T,g) each constituent rate
process is stationary and ergodic. By letting p = E T, /(FE Ton + E Tyg)
stand for the probability of visiting the on-state, the instantaneous
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rate of a single stream is Bernoulli distributed, with generator ¢(s) =
log[pe®” + (1 — p)], where r is the stream’s peak rate. Then, application
of (17) and (16), yields

6=n<,310gé+(15)10g—>, where p<5££<1,
P 1 nr

Up to this point, the focus of the discussion was on estimating the
system’s performance under given resources and traffic load. However,
network traffic engineering usually deals with problems of an “inverse”
nature. One particularly important one is the so called, traffic admis-
sion control (also named connection admission control CAC), where
the network resources (in our case the multiplexer’s capacity C') and the
desired quality level € are given and the task consists of deciding whether
a candidate traffic mix may be admitted by the network while still sat-
isfying the QoS requirement. Formally, assume that the traffic load at
a multiplexer may consist of a superposition of streams from k different
traffic classes, each with known characteristics (quantified through the
respective generators ¢;(-), i = 1,..., k) and let a potential traffic mix be
represented by the vector n = (m, ... ,nk), with elements the numbers
of streams from each class participating in the mix. In this notation, a
traffic mix may be admitted without violating the QoS, iff it belongs to
the so called admission domain {n | f(n) > €}, where f(n) stands for
the right hand side of (16).

Given this framework, traffic admission control could in principle pro-
ceed by computing f(n) through (17) and (16) and comparing the result
to the target quality level e. However, the relevant computations involve
all traffic classes in the mix, making it difficult to take incremental de-
cisions (useful in the common case when a single new connection asks
to join an already accepted—potentially large—mix). For this reason,
alternative algorithms are required, which usually rely on determining
the boundary of the admission domain (i.e., mixes satisfying f(n) = €).
If that boundary was linear, then a particularly simple algorithm would
be possible, because there would be constants a;, + = 1,...,k and b
(possibly dependent on C and e but not on the traffic mix), such that
the admission domain would contain exactly those n satisfying

k

=1

Thus, for the purposes of admission control, each traffic stream would
be completely characterized by the quantity a; corresponding to its class
and incremental admission control would proceed by merely adding this
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Figure 3.  Admission domain for two traffic classes and linear approximation of the
boundary around n*

quantity to a register (maintaining the sum for the already present traf-
fic) and comparing to b.

Unfortunately, the boundary of the admission domain, as defined
by (16) and (17) is not linear®; the typical form of its shape is dis-
played on Fig. 3 for two traffic classes (ignore for the moment the linear
segment). Despite this difficulty, it is still possible to obtain a locally
optimal linearization, by observing that, due to (16), f(n) is convex and
the same holds for the complement of the admission domain. Thus, it is
assured that the tangent hyperplane at a point n* on the boundary will
rest inside the admission domain (see Fig. 3), while also coinciding with
the true boundary at n*. By observing that f(n*) = € and by using (16)
and (17), it follows that Of /On;|p—n~ = —qﬁi(s*(n*)) and, further, that
the subset of the domain bounded by the tangent hyperplane contains
those traffic mixes n satisfying

k k k
ZMMSC* <. (19)
P s(n*) s*(n*)

In order to use (19), one must determine a traffic mix n* at the bound-
ary of the true admission domain and then compute the corresponding
value of the maximizing s-parameter, namely s*(n*). Although these
initialization steps require rather heavy computations, the actual admis-
sion control through (19) is simple, because the latter is of the simple
form (18). However, note that, since the linearization is optimal only
with respect to the chosen m*, successive connection admissions (and
terminations) may move the current traffic mix away from the initial
choice n*, at a vicinity of the domain for which the linearization is
overly conservative (see the figure), thus resulting in a waste of network
resources. In such a case, a new boundary point close to the current



24

traffic mix should be chosen and the linearization procedure around it
should be applied afresh.

We close this subsection by noting that, while the basic asymptotic
performance estimate is a standard result in the Theory of Large Devi-
ations (and thus known for many years), its application in the study of
broadband networks and, in particular, the results on admission domains
and the linearization of their boundaries were originally contributed by
[Hui, 1988; Hui, 1990].

4.3. Asymptotics for large buffers: effective
bandwidth theory

We now turn into the study of multiplexers that feature large buffer-
ing capabilities. Like previously, we seek to present a theory linking the
traffic load and the network resources (viz., the amount of buffer mem-
ory and the output link’s capacity) to the probability of data loss due to
buffer overflow, the latter serving as the performance metric. While in
the bufferless setting it was adequate to represent the traffic character-
istics through instantaneous rate properties, this subsection deals with
large buffers that expose the properties of rate correlations over large
time intervals. Therefore, it is necessary to study random variables of
the form V(7,7 + t), denoting the amount of data generated over the
interval (7,7 + ¢]. It will be assumed throughout that the data process
has stationary increments®, i.e., V(7,7 +1) depends only on the length ¢
of the time-interval, not its origin, and can be denoted simply as V().
By virtue of stationarity, 'V (¢) = rt for all time-lengths ¢, 7 being the
mean traffic rate. Further stochastic properties of V' (¢) will be described
through the corresponding log-moment generator

$(0,t) =log E V), (20)
for which two relevant conditions are introduced:
C1 For each 6, the limit ¢ (0) = limy_, o @ exists and is finite.
C2 ¢ (0) is strictly convex and differentiable.

Condition C1 ensures that the traffic is not long-range dependent (a case
for which the theory, in the form presented here, does not hold), while
Condition C2 is a guarantee that the strict convexity and differentiability
of the generator ¢(6,t) will also be inherited by the limit.

Under Condition C1, the ‘effective bandwidth function’ (EBF) of the
traffic is defined as

a(f) = ¢ (0)/6, 6> 0. (21)
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As a log-moment generator, ¢(f,t) is convex in @, a property also trans-
ferred to the limit ¢ (#) as well. Thus, according to the discussion early
in Subsection 4.2, the EBF «(-) is an increasing function. Furthermore, if
Condition C2 also holds, then a(-) is strictly increasing. Lastly, observe
that, by virtue of (12),

EV(
r— 1im 2V 40y = a(0) < a(8) < Tim a(8) =
t— o0 t f—oc
lim boo() _ oy SSSSUP V(t) =
H— o0 t—00

establishing that the EBF is bounded between mean and peak rate. (The
peak rate 7 is with respect to an asymptotically large time-window and
may, in some cases, be smaller than the instantaneous peak rate.)

The importance of the EBF is due to the following properties: Assume
that traffic of EBF a(-) loads a multiplexer featuring infinite buffer space
and an output link of capacity C. Further, assume there is some 6 > 0,
such that a(f) < C. Then, it may be proved that the distribution tail
of the queue content () has at all times an exponential upper bound
of rate 6. In other words, there exists a constant d(#), such that

Pr{Q(t) > B} <d()e ’®,  vt>0,VB>0.

There is also a “reciprocal” result: If a(f) > C the capacity is not large

enough and it may be shown that the distribution tail of the queue
content cannot be bounded exponentially using rate 6.

These two statements taken together suggest that, in order to achieve
an exponential decay of at least rate 0 for the overflow probability under
increasing buffer size, the system’s capacity must be greater than a(0).
In this case, the achievable decay rate is 8* = sup{f | a(f) < C}.
Obviously, when the EBF is strictly increasing (as when Condition C2
holds), * = a~'(C). In fact, for this case the following stronger assertion
can be made: If, besides Condition C1, C2 also holds, the buffer content
Q(t) has a stationary distribution with tail satisfying

-1
lim ogPr{Q>B}:
B—o0 B

0, where 6 =a"'(C). (22)

This result not only establishes asymptotic exponentiality for queue tails,
but may also be used to determine the bandwidth requirements, as a
function of the buffer size and the QoS level.

Indeed, assume that the multiplexer has a large (but finite) buffer
size B and set the requirement that the system overflows with prob-

ability at most e~ “. (This specifies a quality level equal to € in the
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terminology of the previous subsection.) Then, by (22), one must en-
sure that § > €/B or, equivalently, C' > a(e/B), which is the desired
result. Although this last relation is in a form suitable for admission
control, it must be remembered that a(-) is the EBF for the whole traf-
fic load, thus it depends on the properties of all multiplexed streams.
Fortunately, the definition of the EBF by (21) and the additivity of log-
moment generators over independent r.vs, ensure that, for a traffic mix
n = (nl, e ,nk), containing n; streams of class 4, for s = 1,..., k, the
aggregate EBF is simply a(f) = >, n;a;(f). In particular, the relation
for the bandwidth requirements becomes

k
a(e/B) = Zniai(e/B) < C, (23)

specifying a linear boundary of the form (18) for the admission domain
and enabling the particularly simple algorithm for incremental admission
control discussed in Subsection 4.2.

As a matter of fact, the name ‘effective bandwidth’ is exactly due to
the linearity in (23), as the quantity a;(e/B) determines, independently
of the rest of the traffic environment the amount of bandwidth that must
be granted to a source of class 7, in order to satisfy the QoS requirements
with the given amount of buffering. Due to this independence, each
traffic stream behaves, in a sense, like a constant-rate counterpart; for
this reason effective bandwidths are sometimes called ‘effective rates’ or
‘equivalent bandwidths’. It is mentioned that originally the term was
introduced by [Hui, 1988], in connection with (19). However, since the
linearization in (19) is only locally significant, the term is now mostly
used in the sense (23), for the large-buffer regime.

Note that the linearity precludes any potential for bandwidth savings
due to multiplexing gain. Indeed n traffic streams require bandwidth
C = na(e/B), thus maintaining a constant bandwidth per source C/n,
no matter how large n becomes. This is not surprising, as the theory
holds asymptotically as the buffer size B — oo when the multiplexing
gain is negligible, compared to the buffering gain effect.

At this point it is remarked that the effective bandwidth theory was
developed through a series of contributions. The asymptotic exponen-
tiality of distribution tails for the stationary queue content and the impli-
cations for this on a linear admission domain were originally established
for iid, Markovian on/off, and other simple traffic models [Gibbens and
Hunt, 1991; Guérin et al., 1991; Kelly, 1991] and were later generalized
for the class of arbitrary Markovian fluids [Elwalid and Mitra, 1993].
An extended theory that covers more general stationary rate processes
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followed [Kesidis et al., 1993; Chang, 1994; Glynn and Whitt, 1994],
making explicit use of results from Large Deviations Theory. Further-
more, a modification [Duffield and O’Connell, 1996] of the limiting gen-
erator ¢oo(f), using a time scaling more general than linear, allowed
the treatment of traffic with long range dependence. See [Chang and
Thomas, 1995] for a review of the effective bandwidth theory along the
statistical mechanics viewpoint and [Veciana et al., 1995] for a discussion
of resource management techniques based on the effective bandwidth
concept. Further references may be found in [Kelly, 1996].

Apart from the general properties discussed earlier, the particular
form of the EBF «(-) depends on stochastic details specific to the corre-
sponding traffic stream. To review some examples, consider Markovian
on/off fluid models, featuring a peak rate r and exponentially distributed
on and off sojourns with mean durations 7 and o, respectively. In this
case the EBF takes the form

=3 b o )

a result that originally appeared in [Gibbens and Hunt, 1991] and was
further exploited in [Guérin et al., 1991]. In the more general case of
arbitrary Markovian fluids, traffic is described through a ‘rates-matrix’
R = diag{ri,...,rn} and the infinitesimal generator M of a continuous-
time Markov Chain, which governs the transitions between rate values.
For this class of models it has been shown [Elwalid and Mitra, 1993]
that the EBF is a(f) = Amax(R + %M), i.e., the largest eigenvalue of
the essentially nonnegative matrix R + %M . A further generalization
[Kontovasilis and Mitrou, 1997] allows the explicit calculation of effective
bandwidths corresponding to semi-Markovian fluids, i.e., models where
transitions between rates are still Markovian, but the periods during
which rate values are sustained may be arbitrarily distributed (but not
heavy-tailed). In this case, the EBF is determined through an implicit
function problem, derived from the requirement that the spectral radius
of an appropriate nonnegative matrix be equal to unity. For general
on/off traffic streams, of peak rate r, this result simplifies as follows:
Let ¢4 (s) and ¢_(s) stand for the log-moment generators corresponding
to the distributions of the on and off sojourns, respectively. Then, for
any 6 > 0, the EBF is a(0) = u(0)/60, where u(6) is the unique positive
solution of

¢y (rd —u) + ¢_(—u) =0.

We close this subsection by mentioning that, instead of adopting a
traffic model and trying to determine the EBF through it (something
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not always feasible), there are alternative approaches, which target the
direct measurement of the EBF, thus bypassing modeling. For work
along this line, see, e.g., [Duffield et al., 1995; Courcoubetis et al., 1995].

4.4. Scaling the system’s size

The two previous asymptotic regimes were appropriate for either very
large buffers or very small ones. However, there are cases where the
buffering resource is neither negligible nor overly dominant and then
both the multiplexing- and buffering-gain effects are noticeable and must
be taken into account. We now briefly discuss results for this more gen-
eral setting. The relevant asymptotic regime assumes a large number of
traffic streams n and proportionally scaled (large) buffer B and band-
width C. In other words, B = bn and C = c¢n, maintaining a constant
amount of resources per stream, as n — oc. This type of scaling was
originally introduced by [Weiss, 1986], in connection with traffic consist-
ing of exponential on/off fluids.

In our setting, each traffic stream is a data generation process, which,
as in Subsection 4.3, is assumed to have stationary increments. The gen-
erator (20) is again used as the traffic descriptor. (Generalizations, re-
laxing the assumption on stationarity or the requirement for iid streams
exist.) Let the stationary queue content under a load of n traffic streams
be denoted as @,,; then the probability of overflow is Pr{ @,, > bn }. The
basic result [Botvich and Duffield, 1995; Courcoubetis and Weber, 1996]
(also [Simonian and Guibert, 1995], for the particular context of gen-
eral on/off fluids) is that, under some regularity conditions, notably the
validity of Condition C1 in Subsection 4.3,

i logPr{Q, > bn}

n—o00 n

= I(c,b) = %I>1£ Sl;p{(ct +0)0 — ¢(0,1)}. (24)

There is also a generalization [Duffield, 1996] which, among other things,
relaxes the requirement for Condition C1 (by introducing a different
time-scaling for the generator) and is appropriate for usage with long
range dependent traffic.

For a heuristic explanation of (24) remember that, by Lindley, @, =
sup;~o (Vi (t) —net), where V,,(t) is the total amount of data generated by
the n streams over time ¢. Then (24) is essentially Cramér’s asymptotic
on V,,(t)—nct (see (15) and (14)), followed by an optimization of the time
scale (using Laplace’s principle of the ‘dominating term’). Note that the
appropriate time scale relevant to the result is neither ¢ = 0 (as was
the case with bufferless systems, where only instantaneous rates were
needed) nor ¢t = oo (which was appropriate for very large buffers), but
actually the argument extremizing (24), say t*. The value of t* depends
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on ¢ and b and expresses the relative importance of the multiplexing-
and buffering-gain. Indeed, by assuming differentiability, (24) implies
that

«  0I(c,b) 0I(c,b) 0b
= -z 25
de / b de I(va)zﬁ’ (25)

thus t* quantifies the (local) tradeoff between bandwidth and buffer
for a given quality level per source. More specifically, it is possible
to formally define a ‘buffer-bandwidth’ curve of the form b(c, €), that
describes the amount of buffering required for achieving a desired quality
level, given the capacity (all quantities being scaled by the number of
sources). It may be shown that this curve is convex [Duffield and Low,
1998; Kumaran and Mandjes, 2001]. Since, by (25), de/db = —1/t*, the
inverse curve is also convex and decreasing, implying that t* increases
with b. This is intuitive, as larger buffers pronounce more the traffic
correlations, requiring a larger time-scale for their representation.

Still in connection with this point, it has been shown [Botvich and
Duffield, 1995; Courcoubetis and Weber, 1996] that as b — oo then t* —
oo and I(e, b) tends to the asymptotic (22). Similarly, when b — 0, then
also t* — 0 and I(c,b) tends to the asymptotic of (15) and (14), where
in place of the instantaneous rate generator the limit lim; o ¢(s/t,t) is
implied”. Thus the theories for small and large buffers may be regarded
as special cases of the results in this subsection. Note however, that ap-
plication of (24) is considerably more difficult than the other asymptotic
results, not only because the generator ¢(f,t) must be determined for
all time-scales instead of at a limiting value, but also because the min-
imization with respect to time is non-convex (unlike the maximization
in 0) and thus difficult to perform numerically.

We close by noting that it is possible to define an admission domain
for the more general regime of this subsection. This domain is neither
linear (as in Subsection 4.3) nor possessing a convex complement (as
in Subsection 4.2). However, it is still possible to obtain a local lin-
earization, around points on the boundary, thus introducing a (locally
significant) notion of effective bandwidth for this case too. For more
details see [Kelly, 1996].

Notes

1. For simplicity, we assume that the arrivals of the first D-BMAP occur before those of
the second, there is however no need to do so.

2. Here we adopt a fluid approach and represent the flow of data as a continuum. However,
all results in this section bear obvious analogies with a discrete-time setting, in which r(t)
stands for the amount of data contributed during the time-slot indexed by (the now integer) t.
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3. The upper extremal value of a r.v. X, called ‘essential supremum’ and denoted by
esssup X, is the largest value that X is not improbable to exceed, namely esssup X =
sup{ r€R|Pr{X >z}>0 } The lower extremum, called ‘essential infimum’ and denoted
by essinf X, is defined analogously.

4. Except in the trivial case where all traffic rates are a.s. constant. This case is excluded
here.

5. Nonlinearity is unavoidable if the nature of the multiplexing gain phenomenon is to be
preserved. This point will be discussed to a greater extent in Subsection 4.3.

6. This assumption holds in particular when data are generated according to a stationary
rate process {r(t), t € R}, since in that case V(1,7 +t) = f:'H’ r(z) dz.

7. This limit coincides with the definition in Subsection 4.2 for fluid traffic.
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