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Abstract

This paper studies the robustness of FS-ALOHA(++), a contention resolution algorithm used to
reserve uplink bandwidth in wireless centralized LANs. The model takes into account errors on the
contention channel, the capture effect and allows packets to arrive according to a general Markovian
arrival process. Where channel errors and capture are typical for a wireless channel. Several analytical
models are developed, using matrix analytical methods, allowing us to calculate the delay distribution
of a request packet under different circumstances. Using these analytical models, we demonstrate
that both FS-ALOHA and FS-ALOHA++ perform well under bursty and correlated arrivals. FS-
ALOHA++ is shown to be more robust towards errors and capture. Moreover, it is concluded that
implementing multiple instances of FS-ALOHA (++) improves significantly the delays and sensitivity

of the algorithm towards errors.
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1 Introduction

Future wireless LANs are expected to support a large increment of customer demands for mobile services
and applications. Therefore, efficient network and service architectures must be devised to comply to these
demands with adequate Quality of Service (QoS). One of the trends towards designing such LANs is to
allocate the uplink bandwidth, that is, from the end users towards the network, in a dynamic way. This
calls for an efficient mechanism allowing mobile stations (MSs) to declare their current bandwidth needs to
the base station (BS). An often proposed solution, e.g., [8, 5, 9, 14], both in wired and wireless networks,
is to combine the technique of piggybacking with a contention channel. The performance of the contention
scheme used determines the reaction speed of the system on changing traffic conditions; therefore, it is an
important factor in the QoS provisioning.

Although Slotted ALOHA is easy to implement in such an environment, it is unable to guarantee good
delay bounds [2, 4]. FS-ALOHA(++), on the other hand, maintains the simplicity of Slotted ALOHA
and was specifically designed to operate in a wireless LAN with QoS provisioning. Its superiority on
Slotted ALOHA was demonstrated by means of simulation and analytical methods in [2, 3, 4]. However,
all these studies assumed Poisson arrivals, an error free channel and no capture events. In order to
obtain a more realistic view of the performance of FS-ALOHA(++) it is essential to allow for errors
and capture to occur. Moreover, assuming Poisson arrivals may not be adequate for many current and
future wireless applications. Therefore, we consider packets arriving according to a discrete time batch
Markovian arrival process (D-BMAP). DBMAPs form a class of tractable Markovian arrival processes,
which, in general, are non-renewal, and which include the discrete time variants of the Markov modulated
Poisson process, the PH-renewal process and superpositions of such processes as particular cases. Because
of its versatility, it lends itself very well to modeling bursty arrival processes commonly arising in computer
and communications applications [1, 11, 12]. During the last ten years, D-BMAPs have been used by many
researchers to develop more realistic arrival processes.

The paper is structured as follows. Section 2 introduces FS-ALOHA and FS-ALOHA++, as well as
the environment in which they operate. Sections 3, 4 and 7 present three different analytical models that
evaluate FS-ALOHA under different circumstances. Section 3 considers D-BMAP arrivals, but still not
errors or capture. In Section 4 errors are included in the model, while Section 7 discusses the influence of
capture. Sections 5, 6 and 7 present three analytical models for FS-ALOHA++, a slightly more advanced
version of FS-ALOHA, under similar circumstances. Sections 8 and 9 present a variety of numerical

examples. Conclusions are drawn in Section 10.

2 FS-ALOHA(++): a Review

In this section the operation of FS-ALOHA (++), and the environment in which they operate, are described
in some detail, additional comments and discussions can be found in [2, 3, 4]. Consider a cellular network

with a centralized architecture, i.e., the area covered by the wireless access network is subdivided into a



set of geographically distinct cells each with a diameter of approximately 100m. Each cell contains a base
station (BS) serving a finite set of mobile stations (MSs). This BS is connected to a router, which supports
mobility, realizing seamless access to the wired network. Two logically distinct communication channels
(uplink and downlink) are used to support the information exchange between the BS and the MSs. Packets
arriving at the BS are broadcasted downlink, while upstream packets must share the radio medium using
a MAC protocol. The BS controls the access to the shared radio channel (uplink). The access technique
is Time Division Multiple Access (TDMA) combined with Frequency Division Duplex (FDD) [13].

Traffic on both the uplink and downlink channel is grouped into fixed length frames, with a length
of L slots, to reduce the battery consumption [14]. The uplink and downlink frames are synchronized in
time, i.e., the header of a downlink frame is immediately followed by the start of an uplink frame (after
a negligible round trip time that is captured within the guard times, see Figure 1). Each uplink frame
consists of a fixed length contentionless and a fixed length contention period, where the length of the
contentionless period, in general, dominates that of the contention period. An MS is allowed to transmit
in the contentionless period after receiving a permit from the BS. The BS distributes these permits among
the MSs based on the requests it receives from the MSs and the existing QoS agreements between the
end users and the network. Within these requests, MSs declare their current bandwidth needs to the BS,
e.g., by indicating how many packets they have ready for transmission. Requests are transmitted using
the contention channel, unless the MS can piggyback the request to a data packet for which a permit was
already obtained, thereby reducing the load on the contention channel and avoiding the delay caused by
the contention channel.

A request is generally much smaller than a data packet; therefore, slots part of the contention period
can be subdivided into k minislots (realistic values for k in a wireless medium are 1 to 3, in a wired medium
higher values for k are possible). Each downlink frame starts with a frame header in which, among other
things, the required feedback on the contention period of the previous uplink frame is given. This feedback
informs the MSs participating in the contention period whether there was a collision or whether the request
was successfully received.

FS-ALOHA operates on the slots that are part of the fixed length contention period. Define T as the
number of minislots part of the contention period of a frame. From hereon we refer to minislots as slots.
In slotted ALOHA systems, an MS with a pending request will randomly choose one out of the T" slots to
send its request in the hope that no other MS with a pending request will choose the same slot. If an MS
is unsuccessful it will retransmit in the next frame. It is important to note that with slotted ALOHA, new
requests are allowed to transmit on the contention channel immediately after being generated; hence, they
are not blocked. FS-ALOHA on the contrary, divides the T slots of the contention period into two disjoint
sets of S and N slots such that T'= S + N (see Figure 1). The operation of FS-ALOHA is as follows:

e Newly arrived requests are transmitted, for the first time, by randomly choosing one out of the S
slots; this is the first set of S slots after the request was generated. If some of these transmissions

are unsuccessful, because multiple MSs transmitted in the same slot, the unsuccessful requests are



grouped into a Transmission Set (TS), which joins the back of the queue of TSs waiting to be served.

e The other N slots are used to serve the queue of backlogged TSs on a FIFO basis. Backlogged TSs
are served, one at a time, using slotted ALOHA, that is, all the requests part of the TS select one
out of the N slots and are transmitted in this slot. The requests that were transmitted successfully
leave the TS, the others retransmit in the IV slots of the next frame using the same procedure. The
service of a TS lasts until all the requests part of the TS have been successfully transmitted, in which
case the service of the next TS, if there is another TS in the queue, starts in the N slots of the next

frame.
Hence, two parameters play an important role in FS-ALOHA:

e The number of S > 1 slots in a frame. These slots are used by the MSs to transmit newly arrived

requests; S determines the TS generation rate.

e The number of N > 2 slots in a frame. These slots are allocated to the service of the TSs in the

distributed FIFO queue.

Notice, two requests that were generated in different frames can never be part of the same TS. Thus,
it is said that the grouping of requests in Transmission Sets is based on a time period corresponding to
the frame length. Therefore, FS-ALOHA can be regarded as a Group Random Access Protocol that uses
Slotted ALOHA as its collision resolution algorithm (CRA). More details on the operation of FS-ALOHA
can be found in [2, 3, 4].

Numerical experiments [2, 4] have indicated that the maximum stable throughput of FS-ALOHA under
Poisson arrivals, tends to decrease as a function of T. The maximum stable throughput for larger values of
T was augmented by introducing FS-ALOHA++ [2, 3]. It differentiates itself from FS-ALOHA by serving
K TSs simultaneously in the N slots of each frame (provided that K TSs were waiting in the FIFO queue
at the start of the service, otherwise it serves, simultaneously, all the TSs that were waiting). Fach of the
requests contained in the TSs in service, selects one of the N slots and transmits in this slot hoping that no
other station does so. Thus, in multiple access terminology, one could state that FS-ALOHA++ alters the
channel access protocol (CAP) of FS-ALOHA, while both use Slotted ALOHA as their collision resolution
algorithm (CRA). The strategy used by FS-ALOHA and FS-ALOHA++ when errors or capture occurs

will become apparent in the remainder of the paper.

3 FS-ALOHA with D-BMAP arrivals on an Error Free Channel
3.1 Analytical Model
FS-ALOHA with Poisson input has been studied in [4]. In this section an exact analytical model is

developed, allowing the computation of the delay density function associated to the request packets under

the following conditions:



e We assume a D-BMAP request arrival process [1] with a mean rate of A arrivals per frame. The time

unit of the D-BMAP arrival process is one frame time.

e If there are no Transmission Sets in the distributed FIFO queue nor in service, the total T'= S + N

slot is available to the new arrivals.
e The Bit Error Rate (BER) is assumed to be zero, an assumption that is relaxed in the next section.

These assumptions are identical to [4], except that we assume D-BMAP arrivals instead of Poisson arrivals.
For Poisson arrivals one obtains a Quasi-Birth-Death (QBD) Markov chain [11] by observing the couple
(q, Q) at the start of each frame, where ¢ represents the number of requests left in the TS that is currently
being served (provided that a TS is being served) and Q is the number of TSs waiting in the distributed
FIFO queue?. If we consider the same stochastic process for D-BMAP arrivals and add the current state
of the D-BMAP, say j, the resulting process is no longer a Markov chain, because the number of requests
part of a TS depend on the history of the D-BMAP arrival process. Therefore, a different approach is
required; the basic idea is to remember the “age” of the TS in service instead of the number of TSs waiting

in the TS queue. The state of the system is described by the triple (q, j, @), where

e ¢ > 2 denotes the number of requests left in the Transmission Set in service (if there is a Transmission

Set in service).

e j denotes the state of the D-BMAP associated with the start of the frame that follows the frame
in which the Transmission Set in service was generated (if there is a Transmission Set in service,

otherwise it is the state of the D-BMAP associated with the current frame).

e () indicates how many frames ago the Transmission Set in service was generated (@ = 0 if there is

no Transmission Set in service).

For instance, (q,7,Q) = (4, 4,3) indicates that 4 requests will attempt a transmission in the N slots of the
current frame, say frame n. Each of these 4 stations has had at least 1, in one of the S(+N) slots of frame
n — 3, and at most 3 unsuccessful attempts in the previous 3 frames (depending on the service completion
time of the previous TS?) and the state j of the D-BMAP determines the number of requests that make
use of the S slots in frame n — 2. If, for example, 2 of the 4 request are transmitted successfully (within
the N slots of frame n), the new state, associated with frame n + 1, would be (2, ,4).

Notice that this model can be used for Poisson arrivals as well. Moreover, although the model in [4]
leads to a QBD Markov chain, the calculations required to obtain the delay distribution from the steady

state probabilities are cumbersome. Whereas with this model, that uses a GI/M/1 type Markov chain,

2More specifically, level zero of the QBD consists of one state that corresponds to the case where there are no TSs waiting
in the queue nor being served. Level ¢ > 0 consists of multiple states that correspond to the case where there are i — 1 T'Ss
waiting in the queue, while a TS is being served (the j-th state of level ¢ indicates that there are j 4+ 1 requests left in the

TS).
31f the previous TS completed service in frame n — z, for z < 3, then these 4 requests have had an attempt in the S slots
of frame n — 3 and one attempt in one of the N slots in each of the frames n — xz + 1,...,n — 1; hence, at most 3 (if z = 3).

If the previous TS completed service before frame n — 3, these 4 requests had an attempt in one of the S + N slots of frame
n — 3 and one attempt in one of the N slots of frame n — 2 and n — 1.



one obtains the delay distribution from the steady state probabilities by means of a simple formula (see

Section 3.5).
3.2 Transition Matrix

The transitions in the system take place at the start of each frame. The maximum value of ¢, say gm,
corresponds to the highest possible i for which D; contains entries that differ from zero, where D;, for
i > 0, are the [ x [ matrices that characterize the input D-BMAP traffic. The (ji, j»)!"* entry of the matrix
D; represents the probability that ¢ new requests are generated within a frame, while a transition from
state j; to jo occurs. For D-BMAPs that do not posses such an index i or for D-BMAPs for which this
index i is very large, we choose g,, such that the sum of the entries of the matrices D;, for ¢ > ¢, is
negligible (i.e., < 107'%). In this way, the impact on the accuracy of the results should be minimized.
Hence, the range of ¢ equals {q | 2 < g < ¢}, while {j | 1 < j <} is the range of j.

During a state transition, ) can never increase by more than one. Therefore, the system can be
described by a transition matrix P with a GI/M/1 structure:

B B 0 0 0
B2 A] AO 0 0 AN

P = B3 A2 A] AO 0 PP (1)
B, A; Ay, A, A

where A; are I(¢ — 1) X (g, — 1) matrices, B;,i > 1, are I(g,,, — 1) X | matrices, By is an [ x [ matrix and
By is an I x I(g,, — 1) matrix.

The matrices By and By describe the system when the current frame is not serving a Transmission Set
(@ = 0). This implies that the total of T'= S + N slots is available to the new arrivals. By describes the
transitions when a Transmission Set is generated within these T slots, whereas B; describes the situation
in which no Transmission Set is generated.

The matrices A; and B;,i > 1, hold the transition probabilities provided that a Transmission Set ¢ is
being served in the current frame. Ag covers the case in which the service of the current Transmission Set
t is not completed within the current frame. The transition probabilities held by the matrices A4;,7 > 0,
correspond to the following situation: the service of the current Transmission Set ¢ is completed within the
current frame, say frame n, and the first 7+ — 1 frames following frame n — @, i.e., the frame in which the
Transmission Set ¢ was generated, do not generate a new Transmission Set, whereas frame n — Q +i (< n)
does generate a new Transmission Set. The matrices B;,7 > 1, on the other hand correspond to case where
the service of the current Transmission set ¢ is completed within the current frame, frame n, and the first
i—1 (= Q) frames following frame n — @ do not generate a new Transmission Set (as a result the total of

T =S + N slots are available to the new arrivals in frame n + 1).
3.3 Calculating the Transition Probabilities

In this subsection we indicate how to calculate the matrices A; and B; described above. Define p,(q, q'),

for ¢ > ¢', as the probability that in a set of g requests, g — ¢’ requests are successful when a set of z slots



is available to transmit the ¢ request packets. We are particularly interested in ps(q,q'), pn(q,¢’) and

ps+n~(q,q"). Von Mises [15] has shown, in 1939, that

I min(g,z) vta—d . q| (T o ,U)qfv
px(q,q') = U:zq;q/ (-1) quq’ cy (g —v)! 24 ) (2)

where C} denotes the number of different ways to choose s from r different items.
Next, denote Py as a ¢, — 1 X ¢, — 1 matrix whose (i, j)* element equals py(i + 1,j + 1). Let Py g

be a ¢, — 1 x 1 vector whose i'"

component equals py (i + 1,0). In order to describe the matrices A; and
B; we also define the matrices Fg, Fsyn, Eg, 2 <k <gm, and E§+N, 2 <k < gm, as (these matrices are

l x I matrices)

Fs = Y D;psli.0) (3)
i>0

Fs.n = Z D; psyn(i,0) (4)
i>0

E§ = > Dips(ik), (5)
i>k

E§+N = ZD1 pS+N(7:7k)7 (6)
i>k

where the D-BMAP arrival process is characterized by the matrices D;. Notice that (Eg)jyjf represents the
probability that a new TS with k& requests is generated in a frame where S slots are available to the new
arrivals, thus, another TS is currently being served in the remaining N slots, and the D-BMAP governing
the new arrivals makes a transition from state j to j'. Fg on the other hand holds the probabilities that
no new TS is generated in a frame where S slots are available to the new arrivals. Similar interpretations

exist, for the matrices Fsyn and E,’§+N. The transition probability matrices A; and B; are then found as

follows*:
Ay = Pn®I, (7)
A; = Pno® (Fs)'[EZEY ... EI], (8)
By = [E:%+N E:%+N E?;’:LN] ; (9)
By = Fsyn, (10)
B; = Pno® (Fs) ', (11)

where ® denotes the Kronecker product between matrices and I is the I x [ unity matrix. Notice that the
matrices 4; and B; decrease to zero with a rate (Fq)Z Looking at the probabilistic interpretation of Fg,
it should be clear that, in general, the smaller the arrival rate A the slower A; and B; decrease to zero.
Therefore, the model is not suited for very small arrival rates A (because this would imply that thousands

of A; and B; matrices are needed to perform the calculations).

4The notation [E2...FE{™] is used to denote a block vector whose i-th block equals E‘;’H, thus, this notation should not
be confused with a matrix product



3.4 Calculating the Steady State Probabilities

Define 7l*(q,7),i > 0, resp. n{!(j), as the probability that the system is in state (g, j,4), resp. (j,0), at

time n, i.e., at the start of frame n. Let

mG) = lim (), (12)
mila.d) = lim 7(q.4). (13)

Define the 1 x [ vector mo = (mo(1),...,mo(l)) and the 1 x (g — 1) vectors m; = (m;(2,1), ..., mi(2,1),
mi(3,1), ..., mi(3,1),mi(4,1),...,7i(qm,!)), for i > 0. From the transition matrix P (Equation 1) we see that
the Markov chain is a generalized Markov chain of the GI/M/1 Type [10]. For such a positive recurrent
Markov chain, we have m; = m;_1 R, > 1, where R is an I(g,, — 1) X l(g,, — 1) matrix that is the smallest
nonnegative solution to the following equation:

R=) R'A; (14)

i>0

This equation is solved by means of an iterative scheme [10]. In order to obtain 7y and m; we solve the
following equation

B B
(Mo, 1) = (70, m1) [ s R]i,qB, . RoiflA, : (15)
i> i i> 7

The vector (mg, ) is normalized as moe; + m1 (I — R) 'ej(y, 1) = 1, where I is the unity matrix of size
I(gm — 1) and e; is an i x 1 vector filled with ones. Theorem 1.5.1 in [10] states that the Markov chain
with transition matrix P is positive recurrent if and only if the spectral radius sp(R) of the matrix R,
where R is the minimal nonnegative solution to Equation 14, is smaller than one and there exists a positive
solution to Equation 15. It is not difficult to see that A = ZiZO A; is an irreducible stochastic matrix,
provided that the input D-BMAP is irreducible, and therefore, a simple condition exists to check whether
sp(R) < 1 [10, 11]. We could also study the stability of FS-ALOHA by noticing that FS-ALOHA, when
subject to D-BMAP arrivals, is equivalent to a discrete time MMAP[K]/G[K]/1 queue with a generalized
initial condition, where the MMAP[K] stands for a Markov chain with marked arrivals [7]. The stability

of such queues has been studied by He [6, Theorem 7.1].
3.5 Calculating the Delay Density Function

Let D be the random variable that denotes the delay experienced by a request packet. We state that
D = 0 if a request packet is successful during its first transmission attempt. D = i if a request packet is
successful in frame n + ¢ provided that the first attempt took place in frame n. The probability that a
request has a delay of i frames, can be calculated as the expected number of requests with an “age” of i
frames that transmit successfully during an arbitrary frame, divided by the expected number of requests
that transmit successfully during an arbitrary frame (that is, A for a stable system). Using the steady
state probabilities, we easily find

Pl i =30 LN qu (.4). (16)

q=2



for i > 0, with A the arrival rate of the D-BMAP, i.e., the mean number of newly arriving request packets

per frame. The probability P[D = (] is found as 1 -}, , P[D = i].
4 FS-ALOHA with D-BMAP arrivals and Memoryless Errors

In this section we relax the assumption on the BER made in the previous section, and allow for memoryless
errors to occur. The feedback from the BS is considered error free, a condition that can be realized by
protecting the feedback field with a strong error correction code. From a practical point of view, Markovian
errors would be more appropriate, but there seems to be no apparent way to incorporate such errors in
the current model, even if we were to restrict ourselves to Poisson arrivals. This is due to the fact that
error can occur both in the S and N slots of a frame. Our Markov chain observes the S and N slots of
different frames during a state transitions, therefore, one needs to keep track of the entire history of the
Markovian environment of the error. This would clearly result in an explosion of the state space, unless
the Markov chain has only one state, that is, if the errors are memoryless. Therefore, we restrict ourselves
to memoryless errors. We assume an error occurs in a slot with a probability 0 < e < 1.

Errors occurring on the channel influence the transmissions as follows. If a slot holds a collision, that
is, if two or more MSs transmit a request in the same slot, then the BS interprets, correctly, this slot as a
collision, whether or not an error occurred in this slot. On the other hand, if a slot does not hold a collision
and an error does occur in the slot, the BS will interpret, incorrectly, the slot as holding a collision. A slot
that neither holds a collision or an error is correctly recognized by the BS. As a result, a single error in
the slots dedicated to the new arrivals is sufficient to create a new TS; hence, TSs with zero or one request
exist, as opposed to the error free model of the previous section (recall that ¢ > 2). Also, the average
number of frames required to resolve a TS with k requests increases due to the presence of errors. The
service of a TS ends if the IV slots, assigned to the service of TSs, do not hold a collision nor an error.

It should be clear that the triple (g, j, Q) as defined in the previous section is still a Markov chain of the
GI/M/1 type. However, the entries and the size of the matrices A; and B; have changed. These matrices
will be denoted as A; and B; in order to avoid any confusion with the matrices of the previous section
(this is done for all the matrices or vectors defined in this section).

First, define pZ(q, ¢') as the probability that in a set of g requests, ¢ — ¢’ are successful when a set of =
slots is available to transmit the g request packets and at least one error occurs in these z slots. Because

the errors are memoryless we have

q’ Ck wak
k _ !
q,9 Zc 17? Z pm(‘]:"’)%: (]‘7)
v=max(0,q' —k) a-v
where p,(q,q') was defined in Section 2 and € represents the probability that an arbitrary slot holds an
error. Obviously, we are interested in p&(q,q'), Py (q,q') and p&, N (q.¢').
Next, denote P¥ as a (¢m + 1) X (¢m + 1) matrix whose (i, j)* element equals p& (i — 1,5 —1). Py

is defined as a (gm + 1) x (g + 1) matrix whose first two columns are equal to zero and whose (i, j)!"

element, for j > 2, equals (1 — é)Npn(i — 1,7 —1). The (g, + 1) x 1 vector pN,O has its i*” entry equal to



(1—&)Npn(i—1,0). Finally, the I x [ matrices Fs, Foyn, E"é, for 0 < k < ¢y, and E:’§+N, for 0 < k < qpm,

are defined as

Fs = Y Dips(i,0) (1-¢)° (18)
i>0

FS+N = ZD1 pS+N(7:,0) (1 7é)S+N (19)
i>0

B = > Di [lsoy ps(isk) (1-8)° + 556, k)] (20)
i>k

E§+N = ZDi [1{k>0} psin(is k) (1—&)°*N +ﬁg+N(i: k)] ) (21)
i>k

where 14 = 1 if A is true and 0 otherwise. Notice that p,(i,1) = 0 and therefore, it is sufficient to write
L{k>oy instead of 1g4513. The matrices Ef hold the probability that a new TS with & > 0 requests is
generated in a frame where z slots are available to the new arrivals. F, on the other hand holds the

probabilities that no new TS is generated. We are now in a position to specify the matrices A; and B;:

Ay = (Pn+PHYs T, (22)
A;i = Pno® (Fs)! [Eg Ey ... qum] = (23)
By = [BSin Blin - B¥iy], (24)
B = P, )
B; = Pno®(Fs) !, (26)

where I is the [ x [ unity matrix. The steady state probabilities, denoted as 7;, are calculated in a similar

manner as before. Finally, the delay distribution P[D = 4], for i > 0, is found as

qm s - g—1 l
pip =i =y G a5 5y ), 1)

P[D = 0] is found as 1 — 3", P[D =].
5 FS-ALOHA-++ with Poisson Arrivals and Memoryless Errors

In this section an exact analytical model is developed, allowing the computation of the delay density

function associated to the request packets under the following conditions:
e We assume a Poisson request arrival process with a rate of A arrivals per frame.

e If there are no Transmission Sets in the queue nor in service, the total T = S + N slots is available

to the new arrivals.

o FS-ALOHA++ serves K > 2 TSs at once provided that K or more Transmission Sets are waiting

to be served (otherwise it serves those that are waiting).

e Memoryless bit errors occur on the channel, however, the feedback present in the frame headers is

considered error free.



These assumptions are identical to [2, 3], except that we allow for memoryless errors to occur. Ideally
we would like to consider D-BMAP arrivals as we did in Sections 3 an 4 for FS-ALOHA. However, so
far, we have not managed to obtain an exact model. We have developed a model, presented in Section
6, for D-BMAP arrivals that allows to determine the maximum stable throughput of FS-ALOHA++ and
that underestimates the delay suffered by a request packet. Evidence that the margin of underestimation
produced by this model is small is presented in Section 9.1.

The approach followed in this section is a generalization of the model in [2, Chapter 6]. Therefore, we
skip some of the details when presenting the model. Also, we add a bar to all the vectors and matrices
defined in this section. The vector PN,O and the matrices 151@ and Py, defined in the previous section,
will reappear in this section, however, in this section they should be regarded as vectors and matrices of
dimension Kgq,, + 1 instead of g,,, + 1. Their entries are still calculated using the same formulas.

A GI/M/1 Type Markov chain can be obtained as follows. Define level zero, a single state, as the case
where there are no TSs being served nor waiting in the queue and level 7,7 > 0, with Kq,, + 1 states, as the
case in which there are i — 1 TSs waiting in the queue and one to K TSs are being served simultaneously.
The g-th state of level ¢ > 0 indicates that there are ¢, 0 < g < K¢, requests left in the TSs that are
currently in service—due to the memoryless errors this number can be zero or one. Let us now consider
the different transitions that might occur if we observe the system at the start of each frame. For level

1 > 0 there are two possibilities:

e First, the service does not finish in the current frame. As a result, a transition is made to level i
or i + 1 depending on whether a new TS is generated in the S slots. The corresponding transition

probability matrices are denoted by A; and Aj.

e Secondly, the service finishes in the current frame. As a result, for ¢ > K, the new level is i — K or
i — K + 1 depending on whether a new TS is generated in the S slots (with corresponding transition
probability matrices Ag 1y and Ax). For 1 < i < K, we get a transition to level one there are at
most K —1 TSs waiting; therefore, a possible new TS generated in the S slots is served simultaneously
with all the other waiting TSs. The corresponding transition probability matrix is B; ;. For i = 1,
there is a transition to i« = 0 or ¢+ = 1 depending on whether a new TS is generated in the S slots

(matrices By o and By 7).
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For level zero, we remain at level zero if no TS is generated in the S + IV slots, otherwise a transition to

level one is made (matrices By and By 1). As a result we have the following transition matrix P:

( Boo  Boax 0
B]’g B]7] +A] AO 0
0 B27] A] AO 0 I
0 B 0 A, Ay O
P= : , (28)
0 B 0 e 0 A A 0 L.
0 Ak Ag 0 ... 0 A A4, ©
0 0 Agi1 Ag 0 0 A A, O

where all the matrices are Kgq,, + 1 X Kgq,, + 1 matrices, except for the 1 x 1 matrix Bo707 the 1 x Kq,, + 1
matrix BOJ and the K¢, + 1 x 1 matrix B1,0-
Let p; be the probability that j new requests are generated in a frame, i.e., p; = M /jle=*. In order to

describe the transition probability matrices, we define the following variables:

pule) = 1-(1-2)F fjpfpz (,0),

S B [P Ga 1) + sy (1= 8)7pa(Gog — 1] ¢ <gm+1
0 q>qm+1

ey = {

where p, (i, 7) and pZ (i, j) were defined in Section 2 and 4, where é is the probability that an error occurs in
a slot. Notice, g () is the probability that a TS is generated in a frame provided that z slots are available
to the new arrivals (where z = S and S + N are of interest to us). The vector ppt(z) isa 1 x K¢, + 1
vector whose ¢g-th component is the probability that a TS with g — 1 request is generated provided that x
slots are available to the new arrivals. We need to define one more vector operation before we can express

the transition probability matrices, being

X(n*) — X(nfl*) (*)X,

Xt = X

)

for n > 1, where X is a 1 x Kq,, + 1 vector and (x) denotes the convolution operation followed by a

truncation which keeps the first Kgq,, + 1 elements. With these notations and definitions we can easily

express the transition probability matrices B; ; as follows:

Boo = 1—pu(S+N),

Boi = pat(S+ N),

Biy = (1—py(S))Pnyo,

By, = pN,oﬁnt(S):

- N A i Bar(8) )1
B = o [on() (245)) + 0 puts) (2205) ]
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where 2 < i < K. Similarly, for A;, we find

A = pu(S) (P +Py),
A = (1=pu(8) (PE +Py),
Kx)
1 - pnt(s)
A =
“ Par(S)Pw (pgt 5)) 7
1 _ _ ]jnt S
AK+] - (1 pqt (pqt S >

We denote g, resp. 7;(q) for i > 0, the steady state probability related to level zero, resp. state ¢ of level
i. These probabilities are found by means of an iterative scheme similar to the one described in Section
3.4. Next, we indicate how to obtain the delay distribution D of a request packet from the steady state
probabilities. We separate the following two cases. First, a request could be successful during its first

attempt, in which case the delay D equals zero, this happens with probability

PID=01=(1-8) Y 5y [moll = g + (1= 7)1 = )] (29)

because Poisson arrivals see time averages (PASTA). Otherwise, if a request is unsuccessful during its first

transmission, we subdivide its delay, as in [2], into three parts:

e First, we have the time required for the completion of the TSs that were (still) in service when the

arbitrary request made its first transmission attempt, denoted as ¢ 4.

e Second, assuming there are G TSs waiting in the FIFO queue at the arrival time of our arbitrary
request, we have the delay associated to K |G/ K| TSs that are served by placing K TSs in the server
at a time. This delay is denoted by 5.

e Finally, ¢ entails the time between the start of the service of the TS holding our arbitrary request
and its successful transmission. Notice, this TS may be served simultaneously with 1 to K — 1 other

TSs.

If the arbitrary request, that was unsuccessful during its first transmission attempt, arrived when the
Markov chain was at level zero, its delay is 1 + t¢, otherwise it equals t4 + tg + tc. Next, we briefly
describe how t 4, tg and to are calculated.

The delay t4 > 1 depends upon ¢, the number of requests left in service at the arrival time of our
arbitrary request and is found as

Plta@ > = [(Pv+ PF) 1] . (30)

where r > 0, 1. is a column vector of ones and X;; denotes the i-th element of a column vector. Let
Plta(q) = r] be the (¢ + 1,7 + 1)*" element of the matrix Fy.

The delay tg > 0 depends upon G, the number of TSs in the FIFO queue at the arrival time of our

arbitrary request and is calculated as follows. For G < K, tg(G) equals zero, whereas for K < G < 2K
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we find

_ (K *)
Pltp(G) = 1] = [(ﬂ) Fa (31)

pgt(s)

Finally, tp(G) for G > 2K is found as the convolution of t5(G — K) and tg(K).

1,r+1

Because t4 and tp are independent, the delay t4(q) + t5(G), denoted as t44+p(q,G), is found as the
convolution of t4(q) and tg(G). Finally, the delay t¢ depends upon G and the length | of t4 + t5.
_ — r+1
Plto(G,1) > 11 =Y Plpay(G.1) = ] [(PR) 7' 1] (32)
s>1 &

th element of

where the (i,)!" element of the Kgq,, x Kq,, matrix PL equals % times the (i + 1,5 + 1)
Py + If’,@ Plpiag(G,1) = s] represents the probability that s — 1 other requests are served simultaneously
with our arbitrary request, that was unsuccessful during its first transmission attempt, provided that
ta +tg = [ and that G TSs were in the FIFO queue at the arrival time of our request. Also, when
calculating the probability P[pqq(G,1) = s], one should notice that the distribution of number of requests,
part of the TS of our arbitrary request, depends on whether our request arrived when the Markov chain
was at level zero, in which case the new arrivals used S + N slots, or not. The calculation of pi,(G,1) is

a generalization of [2]. Having found the distribution of t445(q,G) and to(G,1), we can easily calculate

P[D = i], for i > 0, by remarking that Poisson arrivals see time averages (PASTA).
6 FS-ALOHA-++ with D-BMAP Arrivals and Memoryless Errors

In this section, we present an analytical model that allows us to derive a lower bound of the delay experi-
enced by a request packet under the same conditions as in Section 5, with the generalization of D-BMAP

arrivals (instead of Poisson arrivals). This model approximates the delay as follows:

e For request packets belonging to a TS that is served simultaneously with K — 1 other TSs, the
approximated delay is the sum of two components. The first component equals the time that elapses
between the moment that the youngest of these K TSs was created and the moment that the service
of these K TSs starts. The second component equals the time that elapses between the start of the

service and the moment at which the request packet is transmitted successfully.

e For packets belonging to a TS that is served simultaneously with less than K — 1 other TSs, the
approximated delay is one frame plus the time that elapses between the start of the service and the

moment at which the request packet is transmitted successfully.

Hence, the approximated delay provides a low bound. Next, a GI/M/1 Type Markov chain, similar to
the one considered in Section 4, is defined and the approximated delay is easily found from its steady
state probabilities. The vector I5N,0, resp. the matrices Ay and B;, defined in the previous sections, will
reappear in this section, however, their dimension is now K¢, + 1, resp. (K¢, + 1)I.

As in Section 4, level zero of the Markov chain contains [ states, where [ is the number of states that

the D-BMAP has, and state 1 < j < [ corresponds to the situation in which there are no TSs in service
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(nor waiting) and the state of the D-BMAP at the start of the current frame is j. Thus, the full T = S+ N
slots are available to the new arrivals. Level i > 0, with (K¢, + 1) states, corresponds to either one of

the following two situations:

e First, the Markov chain is at level i > 0, in state (g, j), if there are currently K TSs, the youngest of
which was generated i frames ago, being served simultaneously, if 0 < ¢ < Kg,, requests remain in
service in the current frame, say frame n, and if 1 < j <[ was the state of the D-BMAP corresponding
to the frame following the one in which the youngest of the K TSs in service was generated, that is,

frame n — i + 1. An example scenario for i = 5 is presented in Figure 2.

e Second, state (q,7) at level i also corresponds to the situation in which 1 < s < K TSs are served
simultaneously, the service of these s TSs started ¢ — 1 frames ago, there are ¢ requests remaining in
service in the current frame, say frame n, and the D-BMAP state corresponding to frame n — i + 1

is j. An example scenario for i = 4 is presented in Figure 3.

As far as the transition probabilities are concerned, it does not matter whether the first or the second
situation applies.

Similar to Section 4, we find that the transition matrix has the following structure:

B, By 0 0 0
By Ci+A4; Ay, 0 0

P= Bs QQ + 42 A A 0 (33)
Ag

By Cs3+ As /12 ;11

where B is an [ x [ matrix, By an [ x (K @m + 1)l matrix, B;fori>1a (K @m + 1)l x I matrix, while the
others are (K¢, + 1)l x (K¢ + 1)l matrices. Moreover, from the probabilistic interpretations provided,
it should be clear that the matrices B; for i > 0 are equal to B;, as defined in Section 4. Moreover, the
matrix ;10 equals Ay. The matrices %L-, for i > 0, hold the probabilities that the current service finishes,
that K TSs are generated in an interval of i frames and the last of these K TSs was generated in the "
frame of the interval. The matrices C; on the other hand, hold the probabilities that the current service
finishes and that less that K TSs are generated in 7 frames.

In order to calculate the matrices /L and C'z we define the following [ X | matrices E"é? where ¢ >

1,0<k<Kqguand 1 <n<K:

i1
skl F Frk
BE = (Fs) B
ki1
kn rlon—1 k—1,1
Egi = E , E , Egj Esi’js
1=0 j=n—1

where 1 < n < K and the matrices Fg and Eg as defined in Section 4. Looking at the probabilistic

interpretations of these matrices, it is clear that
1 5 20, K K g K
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for ¢ > 0. Next, let the [ x [ matrices E’él be defined as

Bh= 3 (B B (B) (35)

1<5<i

Using these matrices and their probabilistic interpretation, we can express the matrices C’l as
M - o K
Oy = Py ® [Eg .. EK ] : (36)

for i > 0. The steady state probabilities 7 and 7;(q, j), for ¢ > 0, are calculated in a similar way as before

and the approximated delay D, for i > 0, is found as

o 1—-¢e)(1- 1 N)i~1q
plp—i = 3% 490 1N) zﬁ,q] (37)
q=0
and P[D = 0] equals 1 — Y iso P[D = i]. Notice, if the D-BMAP arrival process is a Poisson process,
P[D = 0] is equal to P[D = 0]. Evidence that the lower bound for the delay is close to the exact delay is

presented in Section 9.1.

7 FS-ALOHA(4++) and the Capture Effect

In radio channels, a collision of two (or more) requests does not necessarily destroy both requests. Because
of signal fading, requests from different transmitting stations can arrive with very different power levels,
and the strongest request may survive. This situation, in which one of the requests involved in a collision
is nevertheless successfully received, is termed capture. The surviving request is said to have captured the
other request(s) with which it collided. When capture occurs, clearly, the BS receives the successful request,
but does not perceive the captured requests. However, the feedback from the BS allows the captured
requests to realize that they have been captured, because the BS adds the address of the successful packet
to the feedback field. As a result, captured requests will be retransmitted in the next frame. Notice, with
FS-ALOHA(++), the service ends whenever the N slots dedicated to the service, as perceived by the BS,
do not hold a collision (nor an error). Thus, because the BS considers a capture event as a success, the
service could end before all requests belonging to the TSs in service have been successfully transmitted.
As a result, requests part of one TS might be obliged to join the next TS (if there is a next one, otherwise
they will be retransmitted as if they were new requests).

The theoretically unlimited shifting of requests between successive TSs, due to the capture effect, is an
undesirable effect. Indeed, if only two requests are left in service, without capture both would be successful
in the very near future. However, due to the capture, one of these requests might not be successful for
quite some time. Thus, we can expect that capture increases the worst case delays. There is another
argument that supports this idea. Capture causes requests to shift between TSs, thus the FCFS order of
FS-ALOHA(++) is somewhat damaged. With respect to the delay variation of a queueing system, it is
generally known that a FCFS service discipline guarantees the lowest delay variation (whereas LCFS the

worst). Thus, any process that deranges the FCFS order, increases the delay variation.
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To avoid these negative effects due to capture, we could slightly modify FS-ALOHA(++) in such a
way that more capture tends to improve the delay characteristics. Although, we are slightly adapting
FS-ALOHA(++), we do not assign a new name to the algorithm. The first modification goes as follows.
Instead of ending the service of a TS when the N slots dedicated to its service do not hold a collision (nor
an error), we end the service if these N slots are all error free and empty. As a result, a capture event
cannot occur in the last frame of the service and all the requests belonging to the TSs that are being served
remain part of their TS.

Obviously, capture can also occur in the S (or S+ N) slots dedicated to the new arrivals. The approach
used by such requests is referred to as the second modification. One way to deal with this is to generate
a TS unless all the slots used by the new arrivals are error free and empty. This turns out to be a bad
approach, because it causes FS-ALOHA to become unstable even for Poisson arrivals with a mean rate
below 1.5 requests per frame, a moderate error rate (e = 1/50), T' = 10 contention slots and no capture.
The unstability is formally observed by adapting the GI/M/1 Type Markov chain of Section 4, in order to
incorporate both modifications. Therefore, we suggest that a request that is captured when transmitted
in a slot that is available to the new arrivals, uses the following strategy: If the feedback provided by the
BS indicates that a TS is formed, the captured request simply joins the TS as if it was part of a capture
free collision. Otherwise, the request will reattempt transmission in the slots dedicated to the new arrivals
in the next frame.

Without capture occurring, the modified FS-ALOHA (++) performs worse than the original one. In
this section, we present a model that allows us to assess the magnitude of this penalty. Only a few
minor changes are required to the GI/M/1 Type Markov chain presented in Sections 4 and 5, to evaluate

FS-ALOHA (++) under the following conditions:
e The modified version of FS-ALOHA under D-BMAP arrivals, memoryless errors and no capture.
e The modified version of FS-ALOHA++ under Poisson arrivals, memoryless errors and no capture.

Due to the modifications made to FS-ALOHA(++), we can expect capture to improve the delay charac-
teristics. Indeed, a capture event in the N slots of the modified version of FS-ALOHA (++) will always
reduce the time needed to complete service, as well as the request packet delays. A capture event in the
S slots could slightly increase the delay of a request, however, this increase is believed to be minor. As a
result, the “no capture” scenario can, to a certain extent, be considered a worst case.

First, define ﬁj{, as a (K)gqm + 1 x (K)gm + 1 matrix whose (i, )" element, for (i,) # (1,1), equals
pn(i — 1,5 — 1) and whose (1,1)!" equals zero. The i'* component of the (K)g,, + 1 x 1 vector 15;{,70
represents the probability that a TS ends provided that ¢ — 1 requests are still competing. Thus, due to
the first modification to FS-ALOHA (++), we find

[0 ]

- 0
Pno = - (38)
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Replacing the matrix Py and the vector Py by P§ and 13]’{,’0 in Section 4 and 5, allows us to calculate
the delay distribution under both above-mentioned conditions. To further clarify this, we express the

transition probabilities for FS-ALOHA:

Ay = (PR+PHel, (39)
Ar = Pio®(Fs) ! (Eg EL ... Egm) (40)
B: = By= (Eg+N Blin ... Eg:;N), (41)
Bf = Bi=Fsyn, (42)
Bf = Pio®(Fs) . (43)

Notice, only the first [ rows of fi;‘, for ¢ > 0, and BZ* for i > 1, differ from zero. This observation does not
reduce the computation time of the R matrix significantly, because the iterations are done using Horner’s

scheme and the R matrix is dense.
8 Numerical Results for FS-ALOHA

In this section we explore the influence of correlation, burstiness, the number of contention slots 7', mem-
oryless errors and capture on the delay distribution of a request packet using FS-ALOHA by means of the
analytical models presented in Section 3, 4 and 7. Thus, new requests are either generated by a Poisson
arrival process, or by a D-BMAP arrival process, allowing us to incorporate correlation and burstiness
into the traffic stream. The computation times for each of the delay curves presented varies between
a few seconds (Poisson arrivals) and a few minutes (D-BMAP arrivals) on a Sun Ultra Enterprise 2170
with two 167 Mhz processors and 3x128 Mbyte RAM. Unless Poisson arrivals are considered, we use the
following M state Markov chain to model the arrival process. The number of new requests generated in a
frame, when the D-BMAP is in state j, is distributed binomially with parameters (jm, ), where m and
[ are parameters of the D-BMAP. Transitions between these M states can occur at the end of each frame

according to the following M x M transitions matrix Py;:

1—at at 0 0
a” 1—at —a~ at 0
Py = 0 a l—-at —a ... 0 ) (44)
0 0 0 oo 1 —a™

Thus, the arrival process is characterized by the following five parameters: M, m, 3, a~ and a™. Higher
values of (8 increase the arrival rate, while decreasing ™ and a¥ results in a stronger correlated arrival
process. In this section, the parameters M and m are fixed at 6 and 5, unless stated otherwise, whereas
the parameter [ is set such that the arrival rate X is 0.2T requests per frame; hence, the throughput on
the contention channel is 20% (provided that the Markov chain is positive recurrent). Finally, it should
be clear that this arrival process is an M-state D-BMAP that is characterized by the M x M matrices
Do, -, Darm. The (j1,42)t" entry of D; equals (Pr)j, 5, CM' B (1 — gymin—4,

2
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8.1 Poisson Arrivals vs. D-BMAP Arrivals

In this section we compare the delay distribution of a request packet for Poisson and D-BMAP arrivals.
For now, the bit error rate (BER) is equal to zero; hence, we use the model presented in Section 3. For
the D-BMAP arrivals we fix a™ = a~ = 1/5, therefore, the mean sojourn time in a state is small, i.e., 2.5
frames. The number of contention slots T'= S + N = 10, whereas the number of S and N slots varies and
is represented in the figures by (S, N). The results are presented in Figure 4.

A first, obvious, observation in Figure 4 is that the delays are larger for D-BMAP arrivals. This is
easily explained by noticing that the mean arrival rate for Poisson arrivals is fixed at 2, whereas for the
D-BMAP arrivals we have time periods were the mean arrival rate is as low as 2/3.5 = 4/7, i.e., when
the arrival process is in state one, and time periods were the mean arrival rate is as high as 24/7, i.e.,
when the arrival process is in state M = 6. A second observation is that the delay distribution decays
exponentially®, except for N small. To some extent, this can be explained by means of Equation 16, that
is, if we forget about the ¢ in Equation 16 and approximate (1 — 1/N)?"! by one, we get an exponential
decay. Finally, in [4], it was shown that, for Poisson arrivals, the best delays are obtained with S & N.
Figure 4 seems to confirm the usefulness of this engineering rule, which is also based on the intuitive idea
that S ~ NV provides the best balance between the TSs generation rate, related to S, and the TSs service

times, related to V.

8.2 The Influence of the Number of Contention Slots (T)

Apart from checking whether the engineering rule concerning the number of S and N slots as mentioned in
the previous section, still applies, this section addresses the issue whether it is worth implementing parallel
instances of FS-ALOHA in the contention period. With parallel instances we mean the following. Suppose
that we have T = T Ty contention slots, with 77 > 3. Then, we could use T, instances of FS-ALOHA,
each one using T slots. New arrivals decide which instance they use based on their arrival time—that
is, we partition the frame in 75 subframes and any new arrival occurring in the i-th subframe, uses the
i-th instance®. The use of parallel instances implies that we have T distributed FIFO queues with TSs,
instead of one. Clearly, implementing multiple instances increases the complexity of the algorithm, but
perhaps the delay improvements outweigh the additional implementation effort.

Figure 5 presents the results for T = S + N = 5 and T = 15 contention slots”. The input process is
the same as in the previous paragraph, except that 8 is chosen such that A\ = 0.27. For T' = 5 the best
results are found for N larger than S, whereas for T = 15 we get the best results for S slightly larger
than N. In conclusion choosing S & N seems like a useful rule of thumb. As far as the parallel instances

are concerned, we can see, by comparing the results for 7' = 5 and 15, that the delays can be reduced by

5This is not exactly true; what we mean here is that this seems to be the case if we consider the 1 to 1010 region only.

6Instead of using their arrival time, a request could also select the instance randomly. Given that the arrivals occur
uniformly in a frame, these two scenarios coincide.

71t should be noted that, provided that the arrivals occur uniformly in a frame, we can evaluate the performance of multiple
instances by adapting the value of 8 appropriately. Indeed, it is easy to show that Zg>k C;’”ﬂg(l —pB)ymi=9g T;k(l 7T271)9*k

= CMi(B/Ty)* (1 — B/T2)™i~k where T, denotes the number of instances used.
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a factor two using three instances with 7' = 5 instead of one with 7" = 15. Thus, if a network designer

provisions a lot of contention slots, we suggest to implement more than one instance of FS-ALOHA.

8.3 Correlation and Burstiness

In this section we study the influence of the mean sojourn time related to the M D-BMAP states on
the delay distribution. Notice, longer sojourn times imply a stronger correlated and more bursty arrival
process. We use the D-BMAP defined in Section 8 and start by setting a™ = a~ large and decrease
both gradually. Recall, the mean sojourn time in a state is a* /2 frames. The results presented in Figure
6 indicate that the grouping strategy works well in limiting the delay increase due to the augmented
correlation and burstiness. The sojourn time has only a limited influence on the delay in the right plot,
because the mean arrival rate associate to state M = 2 equals 2.666 requests per frame, which is well
below the maximum stable throughput for Poisson arrivals [2, 3]. The mean arrival rate associated to
state M = 6 in the left plot is 3.429, which is very close to the maximum stable throughput; hence, the

large delays for a™ = o~ small.
8.4 FErrors on the Channel

In this section we investigate the influence of errors on the channel by means of the model presented in
Section 4. We start by setting é, the probability that a slot holds an error, equal to 1/250,...,1/15. Tt
is hard to state whether such a value of € is an optimistic or pessimistic estimate as the probability of an
error depends on the modulation scheme, the signal-to-noise ratio (SNR), the forward error control (FEC),
length of a slot and much more [13]. For a wired channel it is safe to say that é = 1/250 is very pessimistic.
We start by reproducing Figure 4 for é = 0,1/250,...,1/15 and S = N = 5. Numerical experiments, not
reported here, have shown that errors have a similar impact on the delay for other choices of S and IV,
with S + N = 10 (actually, the impact of errors is slightly smaller for larger values of .S).

The results are presented in Figure 7, where the curves for € = 0 where obtained with the model in
Section 3. A first, obvious observation is that the delay increases with increasing é. Moreover, the results
show that the increase for Poisson arrivals is less compared to D-BMAP arrivals. Thus, models that
study the impact of errors using Poisson arrivals are, from a practical point of view, somewhat optimistic.
Therefore, we use D-BMAP arrivals for our remaining experiments. Finally, although the impact on the
delay distribution is small for ¢ < 1/50, errors can seriously increase the delay for higher error rates é.
Therefore, if the modulation scheme, error codes, signal-to-noise ratio, ... cannot guarantee an error rate
€ less than 1/5T, the performance of FS-ALOHA might degrade drastically.

This rule is confirmed by Figure 8, where we study FS-ALOHA for T = 5 and 15. For T = 15 the
Markov chain becomes transient for € > 1/20 (actually, the chain becomes unstable for é somewhere
between 1/20 and 1/21). For Poisson arrivals and 7" = 15 we get instability for ¢ > 1/19, thus the
instability is only slightly influenced by the arrival process and is mainly determined by the error rate.

These observations further indicate that the use of multiple instances of FS-ALOHA, each with a small
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value of T, is not only better in terms of the suffered delay, but also improves the sensitivity of the

algorithm towards errors.

8.5 FS-ALOHA and Capture Events

In Section 7, we introduced a modified version of FS-ALOHA, designed to avoid requests to switch between
TSs. In this section, a comparison between the original FS-ALOHA and this modified version is made.
We consider both Poisson and D-BMAP arrivals, different error rates (these are included in the figures)
and assume no capture. Notice, for the modified version, the “no capture” scenario is believed to be close
to a worst case, that is, including capture is expected to improve the tail of the distribution.

Figure 9 shows that the delay increase of the modified version, compared to the original FS-ALOHA
algorithm, is substantial. Thus, the modified version of FS-ALOHA should not be implemented. This is
somewhat expected, because high delays are not caused by a few TSs with a high number of requests,
but are a consequence of a high number of TSs with few competitors. In case of no capture, using the
modified version increases the service time of each TS by one frame, and this additional frame causes, in
its turn, a larger backlog in the FIFO queue. One can expect this to improve with the modified version
of FS-ALOHA++, because the penalty of the modified FS-ALOHA++ algorithm is, approximately, one
frame per K TSs.

9 Numerical Results for FS-ALOHA 4+

The main opbjective of this section is to demonstrate, by means of the models presented in Section 5, 6
and 7, that FS-ALOHA++, with K = 2 or 3, improves the robustness of FS-ALOHA. The best results for
FS-ALOHA++ with Poisson arrivals and é = 0, are found when SK ~ N [2, 3]. Numerical experiments,
not included in this paper, have indicated that this remains true if € > 0. Figure 10 reproduces the left plot
of Figure 7 for K = 2 and 3, by means of the model presented in Section 5. By comparing these figures, it
should be clear that FS-ALOHA 4+ performes much better when subjet to high error rates é. Serving TSs
simultaneously improves the robustness of the algorithm with respect to errors, because high error rates
generate a substantial number of empty TSs, i.e., TSs holding zero requests, and each of these empty TS
requires one or more frames to be served when FS-ALOHA is employed. Whenever such an empty TSs is
served simultaneously with some other TS, FS-ALOHA++ gains at least one frame in comparison with

FS-ALOHA.

9.1 FS-ALOHA++ and D-BMAP arrivals

In Section 6 we presented a model that allowed us to find a lower bound for the delay of a request packet
when FS-ALOHA++ is subject to D-BMAP arrivals and memoryless errors. Poisson arrivals are a special
case of D-BMAP arrivals, thus, we can compare the results for Poisson arrivals using the model of Section 5.
Afterwards, we present some intuitive arguments that indicate why a similar lower bound can be expected

for the D-BMAP arrival process defined in Section 8. The results are presented in Figure 11. They indicate
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that the lower bound is fairly close to the actual delay for different parameter settings. Moreover, Figure
11 indicates that we get a better approximation with higher error rates é and arrivals rates A. Finally, as
expected, smaller K values result in a better approximation.

We can expect a similar, or perhaps even better, approximation for the D-BMAP arrival process defined
in Section 8, because the worst delays for D-BMAP arrivals are caused by the time periods with a high
mean arrival rate and the higher the arrival rate, the better the approximation. The following D-BMAP
arrival process is used: M = 2,m = 15 and B is chosen such that A = 0.2T. o™ and o~ are set at 1/5
and are gradually decreased to 1/1000. The parameters M and m are changed, when compared to the
previous sections, to reduce the memory requirements of the analytical model. The rather high memory
requirements are caused by the fact that the K M?m + M x K M?m + M matrices A; decrease rather slowly
to zero. By keeping M'm = 30 and reducing M, we have significantly reduced the memory requirements.
The results are presented in Figure 12. When compared with the right plot in Figure 6, it is fair to say
that FS-ALOHA and FS-ALOHA ++ perform similar as far as dealing with bursty and correlated arrivals

is concerned.

9.2 FS-ALOHA++ and Capture Events

We introduced a modified version of FS-ALOHA (++) in Section 7. Section 8.5 demonstrated that the
modified version of FS-ALOHA is unable to guarantee good delay bounds. Moreover, the algorithm was
very sensitive to errors (see Figure 9). The modified version of FS-ALOHA++ on the other hand is capable
of guaranteeing delay bounds and is much more robust with respect to errors. This is shown in Figure 13
for Poisson arrivals (A = 2) and K = 2 and 3. Recall, the “no capture” scenario was considered a worst
case scenario for the modified algorithm, whereas capture could easily increase the worst case delays of the
original algorithm (see Section 7). Based on these and previous results, it is fair to say that the modified
FS-ALOHA++ algorithm, where K = 3 outperforms K = 2, possesses good robustness properties with

respect to correlated and bursty arrivals, errors and capture.
10 Conclusions

The robustness of the contention resolution algorithm FS-ALOHA(++) has been studied in this paper
with respect to errors, capture and Markovian arrivals. Several analytical models were developed by
means of matrix analytical methods, allowing us to calculate the delay distribution of a request packet
under different circumstances. Prior work on FS-ALOHA has been limited to Poisson arrivals and error
and capture free channels [2, 3, 4]. A variety of numerical examples has shown that both FS-ALOHA and
FS-ALOHA++ are capable of dealing with correlated and bursty arrivals. However, the performance and
stability of FS-ALOHA becomes troublesome for the high error rates and is unsure when subject to capture
events. FS-ALOHA++ was shown to be more robust towards errors. FS-ALOHA(++) was also slightly
modified to eliminate possible negative effects of capture. However, the modified version of FS-ALOHA

performs very poor and should not be used in practice. The modified version of FS-ALOHA++ on the
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other hand performs much better and seems suitable for practical purposes. Finally, it was concluded that
implementing multiple instances of FS-ALOHA (++) presents an attractive tradeoff between the suffered

delay and the implementation costs.
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