
TREE STRUCTURED QBD MARKOV CHAINS AND
TREE-LIKE QBD PROCESSES

B. Van Houdt, C. Blondia

University of Antwerp
Department of Mathematics and Computer Science

Performance Analysis of Telecommunication Systems Research Group
Middelheimlaan, 1, B-2020 Antwerp - Belgium
{benny.vanhoudt,chris.blondia}@ua.ac.be

Abstract. In this paper we show that an arbitrary tree structured QBD Markov
chain can be embedded in a tree-like QBD process with a special structure. More-
over, we present an algebraic proof that applying the natural fixed point iteration
(FPI) to the nonlinear matrix equation V = B +

∑d
s=1 Us(I − V)−1Ds that solves

the tree-like QBD process, is equivalent to the more complicated iterative algorithm
presented by Yeung and Alfa [1].

1 INTRODUCTION

Tree structured Quasi-Birth-Death (QBD) Markov chains were first introduced in
1995 by Takine et al [2] and later, in 1999, by Yeung et al [1]. More recently,
Bini et al [3] have defined the class of tree-like QBD processes as a specific sub-
class of the tree structured QBD Markov chains. In this paper we show that an
arbitrary tree structured QBD Markov chain can easily be embedded in a tree-like
QBD process with a special structure. Moreover, we present an algebraic proof that
applying the natural fixed point iteration (FPI) to the nonlinear matrix equation
V = B +

∑d
s=1 Us(I − V)−1Ds that solves the tree-like QBD process, is equivalent

to the more complicated iterative algorithm presented by Yeung and Alfa [1]. Thus,

1

Eqs. (22), (23), (28) and (29) presented in [1] are equivalent to calculating the
inverse of a matrix. Apart from the FPI method, Bini, Latouche and Meini [3] have
developed two more iterative algorithms for the solution of tree-like QBD processes.
When combined with the construction presented in this paper, they can be used to
solve any tree structured QBD Markov process.

In the past few years, tree structured QBD Markov chains have been shown to
be useful in solving preemptive and non-preemptive single server queues with a
LCFS service discipline that serves customers of different types, where each type
has a different service requirement [2, 1, 4, 5]. Tree structured QBD Markov chains
have also been used to evaluate conflict resolution algorithms of the Capetanakis-
Tsybakov-Mikhailov-Vvedenskaya (CTMV) type [6, 7].

2 MARKOV CHAIN OF QUASI-BIRTH-DEATH TYPE WITH A TREE
STRUCTURE - A REVIEW

Let us briefly describe a tree structured Quasi-Birth-Death (QBD) Markov chain.
This type of Markov chain was first introduced in Takine et al [2] and Yeung, et al
[1]. Consider a discrete time bivariate Markov chain {(Xt, Nt), t ≥ 0} in which the
values of Xt are represented by nodes of a d-ary tree, and where Nt takes integer
values between 1 and m. Xt is referred to as the node and Nt as the auxiliary variable
of the Markov chain at time t. A description of the transitions of the Markov chain
is given below.

A d-ary tree is a tree for which each node has d children. The root node is denoted as
∅. The remaining nodes are denoted as strings of integers, with each integer between
1 and d. For instance, the k-th child of the root node is represented by k, the l-th
child of the node k is represented by kl, and so on. Throughout this paper we use
lower case letters to represent integers and upper case letters to represent strings of
integers when referring to nodes of the tree. We use ’+’ to denote concatenation on
the right. For example, if J = k1 k2 k3, then J + k = k1 k2 k3 k.

The Markov chain (Xt, Nt) is called a Markov chain of the QBD-type with a tree
structure if at each step the chain can only make transitions from a node to its
parent, children of its parent, or to its children. Moreover, if the chain is in state
(J + k, i) at time t, then the state at time t + 1 is determined as follows:

1. (J, j) with probability di,j
k , k = 1, . . . , d,

2

2. (J + s, j) with probability ai,j
k,s, k, s = 1, . . . , d,

3. (J + ks, j) with probability ui,j
s , s = 1, . . . , d.

Define m × m matrices Dk, Ak,s and Us with respective (i, j)th elements given by
di,j

k , ai,j
k,s and ui,j

s . Notice that transitions from state (J + k, i) do not dependent
upon J , moreover, transitions to state (J + ks, j) are also independent of k. When
the Markov chain is in a state of the root node (J = ∅) at time t, then the state at
time t + 1 is determined as follows:

1. (∅, j) with probability f i,j ,

2. (k, j) with probability ui,j
k , k = 1, . . . , d.

Define the m × m matrix F with corresponding (i, j)th element given by f i,j . A
fundamental period of a tree structured QBD Markov chain that starts in the state
(J + k, i) is defined as the first passage time from the state (J + k, i) to one of the
m states (J, j) for j = 1, . . . ,m.

2.1 THE STATIONARY DISTRIBUTION OF THE QUEUE STRING

According to Yeung and Alfa [1] an ergodic QBD Markov chain with a tree structure
has a matrix geometric stationary distribution. Define, for each string J and 1 ≤
i ≤ m

π(J, i) = lim
t→∞

P [(Xt, Nt) = (J, i))]. (1)

Denote by π(J) = (π(J, 1), . . . , π(J,m)). In order to calculate the 1 × m vectors
π(J) the following three sets of m×m matrices play an important role [1].

Let Gk, 0 ≤ k ≤ d, denote the matrix whose (i, v)th element is the probability that
the Markov chain (Xt, Nt) is in state (J, v) at the end of the fundamental period given
that this period starts in state (J +k, i). These matrices are stochastic for recurrent
QBD Markov chains with a tree structure (Takine et al [2]). Let Rk, 0 ≤ k ≤ d,
denote the matrix whose (i, v)th element is the expected number of visits to (J+k, v)
given that (X0, N0) = (J, i) before visiting node J again. Let Vk, 0 ≤ k ≤ d, denote
the matrix whose (i, v)th element is the taboo probability that starting from (J+k, i),
the chain eventually returns to a node with the same length as J + k by visiting

3

(J + k, v), under the taboo of the node J and the sibling nodes of J + k, i.e., the
nodes J + s, s 6= k.

Yeung and Sengupta [5, Theorem 1] have shown that the following relationship holds
for the vectors π(J)

π(J + k) = π(J)Rk, (2)

where k = 1, . . . , d and the vector π(∅) is a left eigenvector of the matrix

F +
d∑

i=1

RiDi. (3)

The vector π(∅) is normalized by

π(∅)

(
I −

d∑
i=1

Ri

)
e = 1. (4)

Thus, in order to obtain the steady-state probabilities π(J), it suffices to determine
the matrices Ri for i = 1, . . . , d. Yeung and Alfa [1] have shown that the matrices
Rk can be written as

Rk =
d∑

s=1

UsΛs,k, (5)

where the Λs,k are m × m matrices that can be expressed in terms of Vk, with
k = 1, . . . , d, using Eq. (7-11) by replacing all matrices of the form X[N] by X. The
matrices Vk in their turn can be obtained from the following iterative formula [1,
Theorem 2]:

Vk[N + 1] = Ak,k +
d∑

s=1

Us

(
d∑

u=1

Λs,u[N]Du

)
, (6)

where Vk[0] = Ak,k and Λs,u[N] are m×m matrices that are expressed in terms of
the matrices V1[N], . . . , Vd[N] as follows:

Λk,k[N] = Tk[N]

I −
∑
u 6=k

Ak,u

∑
v 6=k

Γ0∪k
u,v,k[N]

Tk[N]

−1

, (7)

and

Λk,s[N] = Tk[N]

Ak,s +
∑

u 6=k,s

Ak,u

∑
v 6=s

Γ0∪s
u,v,s[N]

Λs,s[N], (8)

4

for s 6= k, where the matrices Tk[N] are defined as (I − Vk[N])−1, whereas the
matrices Γ0∪K

r,s,t [N] with K ⊆ {1, . . . , d}, r, s ∈ {1, . . . , d} \ K and t ∈ K, are defined
as

Γ0∪K
r,r,s [N] = Tr[N]

I −
∑

u 6∈r∪K
Ar,u

 ∑
v 6∈r∪K

Γ0∪r∪K
u,v,r [N]

Tr[N]

−1

Ar,s, (9)

and for t 6= r,

Γ0∪K
r,t,s [N] = Tr[N]

Ar,t +
∑

u 6∈r∪t∪K
Ar,u

 ∑
v 6∈t∪K

Γ0∪t∪K
u,v,t [N]

Γ0∪K
t,t,s [N]. (10)

By repeatedly applying Eq. (9-10), all the matrices Γ0∪k
r,s,t[N] occurring in Eqs. (7) and

(8) can be expressed in term of the Γ-matrices Γ0∪Kr
r,r,s [N], where Kr = {1, . . . , d}\{r}

and s ∈ Kr, that is, s 6= r. From Eq. (9) it follows that

Γ0∪Kr
r,r,s [N] = Tr[N]Ar,s. (11)

As a result, the number of Γ-matrices that need to be calculated during each iterative
step is

∑d−1
s=1

(
d
s

)
s(d − s)2 ≈ d32d

8 = O(d32d), where the calculation of each of these
Γ-matrices requires one or more m×m matrix products. Thus, each step requires at
least O(m3d32d) floating point multiplications (the exact number is a more complex
function of d, but this lower bound suffices to given an idea of the complexity of
these expressions). The complexity of this iterative scheme reduces significantly if
the tree structured QBD Markov chain does not allow transitions between sibling
nodes, that is, the matrices Ak,s = 0 for k 6= s. Yueng and Alfa [1] have shown that,
in this case, the Λk,s[N] matrices reduce to 0 if k 6= s and to Tk[N] for k = s. Hence,
Eq. (6) reduces to

Vk[N + 1] = Ak,k +
d∑

s=1

Us(I − Vs[N])−1Ds. (12)

with Vk[0] = Ak,k.

It should be noted that the Rk matrices can also be obtained from the iteration

Rk[N + 1] = Uk +
d∑

s=1

Rs[N]As,k +
d∑

s=1

Rk[N]Rs[N]Ds, (13)

where Rk[0] = 0. A similar equation exists for the Gk matrices [1]. One of the
advantages of Eq. (6) is that once we have obtained Vk—that is, Λk,s—we can
calculate Rk and Gk from Λk,s as follows [1]

Gk =
d∑

s=1

Λk,sDs, Rk =
d∑

s=1

UsΛs,k. (14)

5

The matrices Gk are not used to calculate the steady state, however, they allow
us to check whether the Markov chain is positive recurrent, that is, the chain is
positive recurrent if and only if the matrices Gk are stochastic [1]. For instance, in
[6] we always start by checking whether the Gk matrices are stochastic and if so, we
calculate—among other things—the mean delay from the steady state probabilities.
Another important advantage of Eq. (6) is discussed in Section 6.

3 TREE-LIKE QUASI-BIRTH-DEATH PROCESSES - A REVIEW

Tree-Like QBD processes were first introduced by Bini, Latouche and Meini [3] and
can be defined as a tree structured QBD Markov chain that meets a few additional
requirements. First, tree-like QBD processes do not allow transitions between sibling
nodes, that is, Ak,s = 0 for k 6= s. Second, the following expression holds

A1,1 = A2,2 = . . . = Ad,d = B, (15)

for some matrix B. For tree-like QBD processes it is clear, from the probabilistic
interpretation, that the matrices Vk are all identical, hence, we can drop the subscript
k. The matrix V obeys the following nonlinear matrix equation

V = B +
d∑

s=1

Us(I − V)−1Ds. (16)

Bini, Latouche and Meini [3] have introduced and compared a number of algorithms
to solve this matrix equation. The natural fixed point iteration (FPI), first presented
in [1], works as follows. Set V [0] = B and calculate V [N + 1] as

V [N + 1] = B +
d∑

s=1

Us(I − V [N])−1Ds. (17)

The fact that V [N] converges (linearly) to V has been proven as a special case in
[1, Theorem2]. In the next section we show that any tree structured QBD Markov
chain can be reduced to a tree-like QBD process by means of a simple construction.

Before we proceed, let us define a tree-like QBD process with a generalized boundary
condition. Such a stochastic process is characterized by the matrices Dk, Uk, B, F ,
E, E1 and E2 and operates on the state space Ω ∪ {(Φ, i) | 1 ≤ i ≤ m1}, where
Ω is the state space of an ordinary tree-like QBD process. The new node Φ is a
parent node of ∅ and transitions from Φ to Φ, from Φ to ∅ and from ∅ to Φ, are
characterized by the m1 × m1 matrix E, the m1 × m matrix E1 and the m × m1

6

matrix E2, respectively. The other matrices Dk, Uk, B and F are defined as above.
The main step in obtaining the stationary distribution of such a process is, obviously,
still the resolution of the nonlinear equation Eq. (16).

4 EMBEDDING TREE STRUCTURED QBD MARKOV CHAINS IN TREE-
LIKE QBD PROCESSES

The idea behind the construction used to reduce a tree structured QBD Markov
chain to a tree-like QBD process, has been applied before by He and Alfa [4] and by
Van Houdt and Blondia [6, 7] where it was used to reduce special tree structured
Markov chains that were not of the GI/M/1 type, see [5] for a definition, to a tree-like
QBD process.

Consider an arbitrary tree structured QBD Markov chain (Xt, Nt). Such a Markov
chain is characterized by the m×m matrices F,Dk, Uk and Ak,s, with k, s = 1, . . . , d.
First, we construct a tree-like QBD process (X̃t, Ñt), with a generalized boundary
condition, characterized by the md × md matrices F̃ , B̃, D̃k, Ũk, with k = 1, . . . , d,
an m×m matrix Ẽ, an m×md matrix Ẽ1 and an md×m matrix Ẽ2. The random
variables X̃t and Ñt are defined as follows. Consider a realization (Xt(w), Nt(w))
of the Markov chain (Xt, Nt). Whenever (Xt(w), Nt(w)) is of the form (J + k, i)
with k ∈ {1, . . . , d} and i ∈ {1, . . . ,m}, we define X̃t(w) = J and Ñt(w) = (k, i).
Otherwise, that is, if (Xt(w), Nt(w)) = (∅, i) with i ∈ {1, . . . ,m}, we define X̃t(w) =
Φ and Ñt(w) = i. It should be clear from its construction that (X̃t, Ñt) is a Markov
chain that operates on the state space Ω ∪ {(Φ, i) | 1 ≤ i ≤ m}, where Ω is the
state space of the Markov chain (Xt, Nt). Moreover, the construction indicates that
there exists a one-to-one mapping between both state spaces. Hence, the Markov
chain (X̃t, Ñt) is positive recurrent if and only if (Xt, Nt) is positive recurrent and
the steady state probabilities of (Xt, Nt) are easy to obtain from those of (X̃t, Ñt).

Next, we consider the following three cases. First, suppose that (Xt, Nt) is in state
(∅, i); therefore, (X̃t, Ñt) is in state (Φ, i). In this case the chain (Xt, Nt) either makes
a transition to state (∅, j) with a probability Fi,j or to state (k, j) with probability
(Uk)i,j . Thus, the chain (X̃t, Ñt) makes a transition to (Φ, j) or (∅, (k, j)). As a
result we have

Ẽ = F, Ẽ1 = [U1 U2 U3 . . . Ud]. (18)

Second, suppose that (Xt, Nt) is in state (k, i); therefore, (X̃t, Ñt) is in state (∅, (k, i)).
Then (Xt, Nt) makes a transition to (∅, j) with probability (Dk)i,j , to (s, j) with

7

probability (Ak,s)i,j or to (k+s, j) with a probability (Us)i,j . Hence, (X̃t, Ñt) makes
a transition to (Φ, j), to (∅, (s, j)) or to (k, (s, j)). Therefore, we find that

Ẽ2 =


D1

D2
...

Dd

 , F̃ =


A1,1 A1,2 . . . A1,d

A2,1 A2,2 . . . A2,d
...

...
. . .

...
Ad,1 Ad,2 . . . Ad,d

 , (19)

whereas the matrices Ũk, with 1 ≤ k ≤ d, are found as

Ũk =



0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0
... 0

U1 . . . Uk−1 Uk Uk+1 . . . Ud

0 . . . 0 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 0 . . . 0


. (20)

Notice that all the m × m blocks in Ũk are equal to zero except for the k-th row.
Finally, suppose that (Xt, Nt) is in state (J + r + k, i), with J an arbitrary string
of zero or more integers; therefore, (X̃t, Ñt) is in state (J + r, (k, i)). Then (Xt, Nt)
makes a transition to (J + r, j) with probability (Dk)i,j , to (J + r + s, j) with
probability (Ak,s)i,j or to (J +r+k+s, j) with a probability (Us)i,j . Hence, (X̃t, Ñt)
makes a transition to (J, (r, j)), to (J + r, (s, j)) or to (J + r + k, (s, j)). As a result,
we find that B̃ = F̃ and the matrices D̃k are equal to

D̃k =



0 . . . 0 D1 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 Dk−1 0
... 0

0 . . . 0 Dk 0 . . . 0
0 . . . 0 Dk+1 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 Dd 0 . . . 0


. (21)

Notice that all the m×m blocks in D̃k are equal to zero except for the k-th column.
Eqs. (18–21) fully characterize the tree-like QBD process, with a generalized bound-
ary condition. To obtain the steady state probabilities we need to solve Eq. (16)
where the matrices V,B,Ds and Us are replaced by Ṽ , B̃, D̃s and Ũs, that is,

Ṽ = B̃ +
d∑

s=1

Ũs(I − Ṽ)−1D̃s. (22)

8

We can resolve this equation by means of Eq. (17). From the probabilistic interpre-
tation of Ṽ , or from Eq. (22) and the structural properties of D̃s and Ũs, it should
be clear that Ṽ can be written as

Ṽ =


Ṽ1 A1,2 . . . A1,d−1 A1,d

A2,1 Ṽ2 . . . A2,d−1 A2,d
...

...
. . .

...
...

Ad−1,1 Ad−1,2 . . . Ṽd−1,d−1 Ad−1,d

Ad,1 Ad,2 . . . Ad,d−1 Ṽd

 , (23)

where Ak,s are the A-matrices of (Xt, Nt). Moreover, from the probabilistic interpre-
tation of Ṽk it should be clear that Ṽk = Vk, where Vk, 1 ≤ k ≤ d, are the V -matrices
related to the tree structured QBD Markov chain (Xt, Nt). As a result Eq. (22)
reduces to

Ṽk[N + 1] = Ak,k +
d∑

s=1

Us

(
d∑

u=1

Λ̃s,u[N]Du

)
, (24)

where the matrices Λ̃s,u[N] are found as follows. Define Ṽ [N] as

Ṽ [N] =


Ṽ1[N] A1,2 . . . A1,d−1 A1,d

A2,1 Ṽ2[N] . . . A2,d−1 A2,d
...

...
. . .

...
...

Ad−1,1 Ad−1,2 . . . Ṽd−1,d−1[N] Ad−1,d

Ad,1 Ad,2 . . . Ad−1,d Ṽd[N]

 , (25)

then Λ̃k,s[N] is the m × m matrix found on the k-th row and the s-th column of
(I − Ṽ [N])−1. Next, we will prove that Λ̃k,s[N] = Λk,s[N], where Λk,s[N] are the
Λ-matrices of (Xt, Nt) defined by Eqs. (7–11). Thus, Eqs. (7–11)—these equation
were obtained by Yeung and Alfa [1] based on their probabilistic interpretation—
describe how to obtain an explicit expression for the inverse of I − Ṽ in terms of
Ak,s and Ṽk[N]. We start by considering two special cases.

4.1 NO TRANSITIONS BETWEEN SIBLING NODES

Suppose that (Xt, Nt) does not allow transitions between sibling nodes, that is,
Ak,s = 0 for k 6= s. As noted in Section 2.1, Eq. (6) reduces to Eq. (12). Moreover,
Ṽ , defined in Eq. (25), is a block diagonal matrix; therefore, Eq. (24), obviously
reduces to Eq. (12). As a result, we find that Vk[N] = Ṽk[N].

9

4.2 THE CASE d = 2

Suppose that each node of (Xt, Nt) has two child nodes, that is, d = 2. In this case
one finds, by means of Eqs. (7–11), that

Λ[N] =
[

Λ1,1[N] Λ1,2[N]
Λ2,1[N] Λ2,2[N]

]
=[

T1[N] [I −A1,2T2[N]A2,1T1[N]]−1 T1[N]A1,2Λ2,2[N]
T2[N]A2,1Λ1,1[N] T2[N] [I −A2,1T1[N]A1,2T2[N]]−1

]
.

It is easily checked that (I − Ṽ [N]) Λ[N] = I; hence, Vk[N] = Ṽk[N].

4.3 THE GENERAL CASE

The easiest way to prove the general case is to use the probabilistic interpretation
of the Γ0∪K

r,t,s [N] and Λk,s[N] matrices. In this section we present an algebraic proof.
Because Vk[0] = Ṽk[0], it is sufficient to prove that

T1[N]−1 −A1,2 . . . −A1,d

−A2,1 T2[N]−1 . . . −A2,d
...

...
. . .

...
−Ad,1 −Ad,2 . . . Td[N]−1




Λ1,1[N] Λ1,2[N] . . . Λ1,d[N]
Λ2,1[N] Λ2,2[N] . . . Λ2,d[N]

...
...

. . .
...

Λd,1[N] Λd,2[N] . . . Λd,d[N]

 = I,

(26)

where I is the md × md unity matrix and the matrices Tk[N] and Λk,s[N] were
defined in Section 2.1.

Lemma 1. Equation (26) is satisfied if

∑
v 6=s

Γ0∪s
i,v,s[N] = Ti[N]

Ai,s +
∑
u 6=i,s

Ai,u

∑
v 6=s

Γ0∪s
u,v,s[N]

 , (27)

for i 6= s.

Proof. Let k 6= s and premultiply (27) by Ak,i, take the sum over i 6= k, s, postmul-
tiply by Λs,s[N] and add Ak,sΛs,s[N] to find thatAk,s +

∑
i6=k,s

Ak,i

∑
v 6=s

Γ0∪s
i,v,s[N]

Λs,s[N] = (28)

Ak,sΛs,s[N] +
∑
i6=k,s

Ak,iTi[N]

Ai,s +
∑
u 6=i,s

Ai,u

∑
v 6=s

Γ0∪s
u,v,s[N]

Λs,s[N].

10

By means of Eq. (8) we can rewrite this as

Tk[N]−1Λk,s[N] = Ak,sΛs,s[N] +
∑
i6=k,s

Ak,iΛi,s[N]. (29)

This proves that the k-th row multiplied by the s-th column of Eq. (26) is zero for
k 6= s. For k = s, we premultiply (27) by As,i, sum over i 6= s, postmultiply by
−Ts[N] and add I, the m×m unity matrix, to find thatI −

∑
i6=s

As,i

∑
v 6=s

Γ0∪s
i,v,s[N]

Ts[N]

 = (30)

I −
∑
i6=s

As,iTi[N]

Ai,s +
∑
u 6=i,s

Ai,u

∑
v 6=s

Γ0∪s
u,v,s[N]

Ts[N].

Using Eqs. (7) and (8), Eq. (30) can be written as

I = Ts[N]−1Λs,s[N]−
∑
i6=s

As,iΛi,s[N]. (31)

This completes the proof of this lemma.

Let K ⊆ {1, . . . , d} and denote |K| as the number of elements in the set K, then we
have the following lemma:

Lemma 2. Let K ⊆ {1, . . . , d} \ {i}, with 1 ≤ |K| ≤ d− 1, then

∑
v 6∈K

Γ0∪K
i,v,s [N] = Ti[N]

Ai,s +
∑

u 6∈K∪i

Ai,u

∑
v 6∈K

Γ0∪K
u,v,s[N]

 , (32)

where s ∈ K.

Proof. We use backward induction on the size |K| of the set K. Let |K| = d − 1;
hence, K = {1, . . . , d} \ {i}. For such a set K, in view of Eq. (11), Eq. (32) reduces
to

Γ0∪K
i,i,s [N] = Ti[N]Ai,s. (33)

Suppose that Eq. (32) is valid for any set K with |K| > n ≥ 1. We now show that
Eq. (32) is valid for any set K with |K| = n. By means of Eq. (10) we have

∑
v 6∈K∪i

Γ0∪K
i,v,s [N] =

∑
v 6∈K∪i

Ti[N]

Ai,v +
∑

u 6∈K∪i∪v

Ai,u

 ∑
t6∈K∪v

Γ0∪K∪v
u,t,v [N]

Γ0∪K
v,v,s[N].

11

(34)

The size of K1, defined as K∪v, is n+1; therefore, we find, for u 6∈ K1, by induction
that  ∑

t6∈K∪v

Γ0∪K∪v
u,t,v [N]

Γ0∪K
v,v,s[N]

= Tu[N]

Au,v +
∑

w 6∈K∪u∪v

Au,w

 ∑
x 6∈K∪v

Γ0∪K∪v
w,x,v [N]

Γ0∪K
v,v,s[N]

= Γ0∪K
u,v,s[N], (35)

where the second equality follows from Eq. (10). If we combine Eq. (34) with
Eq. (35), we obtain

∑
v 6∈K∪i

Γ0∪K
i,v,s [N] =

∑
v 6∈K∪i

Ti[N]

Ai,vΓ0∪K
v,v,s[N] +

∑
u 6∈K∪i∪v

Ai,uΓ0∪K
u,v,s[N]


= Ti[N]

∑
v 6∈K∪i

∑
u 6∈K∪i

Ai,uΓ0∪K
u,v,s[N]

= Ti[N]
∑

u 6∈K∪i

Ai,u

∑
v 6∈K∪i

Γ0∪K
u,v,s[N]

= Ti[N]
∑

u 6∈K∪i

Ai,u

∑
v 6∈K

Γ0∪K
u,v,s[N]− Ti[N]

∑
u 6∈K∪i

Ai,uΓ0∪K
u,i,s[N].

Therefore, Eq. (32) is fulfilled if

Γ0∪K
i,i,s [N] = Ti[N]Ai,s + Ti[N]

∑
u 6∈K∪i

Ai,uΓ0∪K
u,i,s[N]. (36)

Using Eq. (35), this is equivalent with

Γ0∪K
i,i,s [N] = Ti[N]Ai,s + Ti[N]

∑
u 6∈K∪i

Ai,u

∑
t6∈K∪i

Γ0∪K∪i
u,t,i [N]Γ0∪K

i,i,s [N]. (37)

Next, we define Υ0∪K
i [N] =

∑
u 6∈K∪i Ai,u

∑
t6∈K∪i Γ

0∪K∪i
u,t,i [N] and rewrite Eq. (37) as

Ti[N]−1Γ0∪K
i,i,s [N] = Ai,s + Υ0∪K

i [N]Γ0∪K
i,i,s [N]. (38)

By means of Eq. (9) we find[
I −Υ0∪K

i [N]Ti[N]
]−1

Ai,s = Ai,s+Υ0∪K
i [N]Ti[N]

[
I −Υ0∪K

i [N]Ti[N]
]−1

Ai,s, (39)

12

and this equation is equivalent to

I =
[
I −Υ0∪K

i [N]Ti[N]
]
+ Υ0∪K

i [N]Ti[N]. (40)

This completes the proof of this lemma.

If we combine this lemma for K = {s} with Lemma 1 we obtain the following
theorem.

Theorem 1. The matrices Vk[N] obtained through Eqs. (6–11) are equal to the
matrices Ṽk[N] obtained through Eqs. (24–25), that is, Λk,s[N] = Λ̃k,s[N] for all
N ≥ 0.

If we use Eq. (24–25) to obtain the matrices Vk[N +1] from Vk[N], we need approx-
imately O(m3d3) floating point multiplications, a significant improvement, for d

large, over Eqs. (6–11) that require at least O(m3d32d) multiplications. Recall that
O(m3d32d) was a rough underestimation of the actual number of multiplications
required to perform (6-11).

We end this section by considering the following special case. Suppose that the tree
structure QBD Markov chain (Xt, Nt) allows transitions between sibling nodes J +k

and J + s if k ≥ s, that is, Ak,s = 0 if k < s. Such a Markov chain was presented
in [7] in order to analyze the modified binary CTM algorithm (in this paper we
reduced the chain to a tree-like QBD process based on the specific characteristics
of the application). Obviously, the matrices Ṽ and Ṽ [N] are lower triangular block
matrices, therefore, their inverse can be calculated by O(m3d2) multiplications.

5 STRUCTURAL PROPERTIES OF THE G̃k AND R̃k MATRICES

In this section we study the structure of the G̃k and R̃k matrices related to the
Markov chain (X̃t, Ñt). Yeung and Alfa [1, Section 6.1] have shown that G̃k =
(I − Ṽk)D̃k. As a result of Eq. (21), we find that the matrix G̃k is zero except for
the k-th block column. Moreover, because of Theorem 1 and Eq. (14) we find

G̃k =


0 . . . 0 G1 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 Gk 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 Gd 0 . . . 0

 , (41)

13

where Gi are the G-matrices related to the Markov chain (Xt, Nt). Similarly we find

R̃k =


0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

R1 . . . Rk−1 Rk Rk+1 . . . Rd
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0

 , (42)

where Ri are the R-matrices related to the Markov chain (Xt, Nt).

6 NUMERICAL EXAMPLES

In this section we provide some numerical examples to indicate that calculating the
Rk matrices from the Vk matrices, that is, using Eq. (14), might be much more
efficient compared to applying Eq. (13) where the matrices Rk are found without
first retrieving the Vk matrices.

We consider the same application as Yeung and Alfa in [1]. Consider a preemptive
resume Last Come First Served MAP/PH/1 queue in continuous time. The arrival
process is described by two sub-generator matrices F0 and F1 with dimensions m.
The service times follow a d dimensional phase type distribution represented by
(β, S), with S0 = −Se. A customer whose service is preempted at phase j will
resume his service at phase j when it reenters the service system. This queue can
be modeled by a tree structured QBD Markov chain characterized by the matrices
F , Dk, Uk, Ak,s as indicated in [1]. Next, we consider 12 numerical examples, six
with d = 3 and six with d = 6. For each of these examples we calculate the Rk

matrices following two different approaches (a comparison with similar results can
be conducted for the Gk matrices). First, we compute Rk, for k = 1, . . . , k, by
means of Eq. (13). Second, we reduce the tree structured QBD Markov chain to a
tree-like QBD Markov process and apply Eq. (24) —this equation was proven to be
equivalent to Eq. (6). When we compare both methods we will refer to the number
of iterations required. It should be noted however that each iteration of Eq. (24)
requires d times as many floating point multiplications as Eq. (13).

For d = 3, we define β = [0.1 0.3 0.6], m = 2 and the matrices S, F0 and F1 as
follows:

S =

 −5 0.5 1
0.2 −4/q 0.1
0.1 0 −4/q

 , F0 =
[

−5 5− 3/q
4− 3/q −4

]
F1 =

[
1.5/q 1.5/q
2/q 1/q

]
.

14

d = 3 d = 6
q Eq. (13) Eq. (24) Eq. (13) Eq. (24)
1 232 84 192 71
2 424 75 313 56
4 902 77 686 56
6 1539 85 1263 65
8 2439 98 2268 83
10 3823 120 4508 125

Table 1: Number of Iterations required

The six examples are obtained by setting q = 1, 2, 4, 6, 8 and 10. A higher value of
q results in a longer service time and in a smaller arrival rate. For each of the six
examples we have a stable queue. For d = 6, we use the same arrival process as with
d = 3. We define β = [0.1 0.1 0.1 0.15 0.25 0.3] and the matrix S as

S =



−5 0.3 0.2 0 0.5 0.5
0.05 −4/q 0.1 0.05 0 0.1
0.05 0 −4/q 0.03 0.02 0
0.02 0.05 0.05 −5 0.1 0.5
0.01 0 0.05 0.04 −5/q 0.01
0 0.05 0.05 0.1 0.1 −4/q

 .

Again, six examples are obtained by setting q = 1, 2, 4, 6, 8 and 10. The influence
of q on the queue is the same as before. The results are presented in Table 1, using
the following stopping criterion:

f

(
d∑

k=1

Vk[N + 1]−
d∑

k=1

Vk[N]

)
< 10−10, (43)

where f(X) denotes the sum of all the entries of a matrix X.

The results in Table 1 are not difficult to explain. It should be clear from Eq. (13),
that the (i, v)-th element of the matrix Rk[N], found by Eq. (13), holds the expected
number of visits to state (J + k, v) given that (X0, N0) = (J, i) before visiting the
node J again and this by means of a path of length N or less. Whereas, the (i, v)-th
element of Rk[N], found by Eq. (24), also holds the expected number of visits to the
state (J + k, v) given that (X0, N0) = (J, i) before visiting the node J again, but
this time by means of a path of arbitrary length that only uses the levels |J | + 1
to |J | + N + 1 (see [1, 3]). Thus, the number of iterations required by Eq. (24)
is always smaller. Moreover, as the transitions between sibling nodes become more
frequent, the difference between the number of iterations required by both algorithms

15

increases. In our numerical example, we noticed that increasing q results in fewer
arrivals, but longer service times. Thus, the number of transitions between sibling
nodes increases significantly when q increases. This explains the results in Table 1.
In conclusion, whenever an application has a high number of transitions between
sibling nodes, compared to the number of transitions to parent or child nodes, it is
more efficient to calculate the Rk matrices by means of the Vk matrices.

7 CONCLUSIONS

In this paper we have shown that an arbitrary tree structured QBD Markov chain can
easily be embedded in a tree-like QBD process with a special structure. Moreover, we
presented an algebraic proof that applying the natural fixed point iteration (FPI)
to the nonlinear matrix equation V = B +

∑d
s=1 Us(I − V)−1Ds that solves the

tree-like QBD process, is equivalent to the more complicated iterative algorithm
presented by Yeung and Alfa [1]. Thus, Eqs. (22), (23), (28) and (29) presented in
[1] are equivalent to calculating the inverse of a matrix. Apart from the FPI method,
Bini, Latouche and Meini [3] have developed two more algorithms for the solution
of tree-like QBD processes. When combined with the construction presented in this
paper they can be used to solve any tree structured QBD Markov process. Finally,
we have also shown that for applications that have a high number of transitions
between sibling nodes, compared to the number of transitions to parent or child
nodes, it is more efficient to calculate the Rk matrices by means of the Vk matrices.

ACKNOWLEDGEMENTS

The first author is a postdoctoral Fellow of the FWO-Flanders. We would like to
thank the reviewers for their valuable comments.

References

[1] Yeung, R.W.; Alfa, A.S. The quasi-birth-death type markov chain with a tree
structure. Stochastic Models, 1999, 15 (4), 639–659.

[2] Takine, T.; Sengupta, B.; Yeung, R.W. A generalization of the matrix M/G/1
paradigm for markov chains with a tree structure. Stochastic Models, 1995, 11
(3), 411–421.

16

[3] Bini, D. A.; Latouche, G.; Meini, B. Solving nonlinear matrix equations arising
in tree-like stochastic processes. Linear Algebra Appl., 2003, 366, 39–64.

[4] He, Q.; Alfa, A.S. The discrete time MMAP[K]/PH[K]/1/LCFS-GPR queue and
its variants. In Proc. of the 3rd Int. Conf. on Matrix Analytic Methods, pages
167–190, Leuven (Belgium), 2000.

[5] Yeung, R.W.; Sengupta, B. Matrix product-form solutions for markov chains
with a tree structure. Adv. Appl. Prob., 1994, 26, 965–987.

[6] Van Houdt, B.; Blondia, C. Throughput of Q-ary splitting algorithms for con-
tention resolution in communication networks. To appear in Adv. in Perf. Eval.,
2003.

[7] Van Houdt, B.; Blondia, C. Stability and performance of stack algorithms for
random access communication modeled as a tree structured QBD markov chain.
Stochastic Models, 2001, 17 (3), 247–270.

17

