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Abstract

We present two approaches that aim at reducing the loss rates in an op-
tical buffer having access to a single outgoing channel. As opposed to a
conventional electronic buffer, such a system - consisting of a number of
fibre delay lines (FDLs) - can only realize a discrete set of delay values to
resolve contention. This leads to voids on the outgoing channel, which in-
creases the losses. Traditionally the FDL lengths are equidistant. Our first
approach distinguishes itself by allowing more flexibility on the delay line
lengths. Conditions on which improvements can be achieved are discussed.
These conditions are obtained by defining several heuristic algorithms. The
second approach tries to reduce channel losses by preliminary discards of
optical burst that cause large voids. To perform this analysis we make use
of a Markov Decision Process. Moreover we present a comparative study
between these two approaches and the traditional situation.

Index Terms: Optical buffer, fibre delay lines, loss rate, Markov Decision
Process.

1 Introduction

Next-generation networks are supposed to provide huge bandwidth as well
as support for diverse service demands, because of the increasing Internet
traffic. As a consequence the electronic switches and routers are becom-
ing the bottlenecks of the backbone network. In this context all-optical
packet switching (OPS) is emerging as the most promising technology for

covering these new requirements. However, OPS requires practical and cost-
effective implementations of optical header processing, which is still some
years away. As an intermediate solution, optical burst switching (OBS) has
been proposed ([12], [14], [15]), which avoids the need to process headers
in the optical domain. Although wavelength conversion greatly reduces the
need for OBS network buffering [6], contention can still arise. Buffering
in electronic packet-switched networks is implemented by storing packets
in random-access memory (RAM) buffers. However, RAM-like buffering is
not yet available in the optical domain. In optical networks, fibre delay
lines (FDLs) have been introduced to alleviate this problem, and several
architectures that make use of an FDL buffer have already been identified
([2], [3], [7]). Analytic and simulation based results concerning the loss of
such FDL based buffer systems have been reported in ([1], [4], [8], [5]).

Our work consists in improving the loss rates of the “classic” equidistant
FDL buffer (see Section 2). A first approach consists of considering alter-
nate delay line structures. Second, we have devised a new mechanism to
reduce the loss rate of an FDL buffer. This preventive drop mechanism does
not require a different hardware structure, i.e., it can operate in different
modes using the same equidistant FDL buffer. The paper is structured as
follows. Section 2 introduces the general notion of FDL buffers. Section 3
focuses on the non-equidistant structures and discusses the conditions un-
der which improvements in the loss rates can be achieved. In Section 4 the
preventive drop algorithm is explained and some results are presented. Sec-
tion 5 prescribes a comparative study of the classic equidistant buffer versus
the two approaches to reduce optical buffer losses: the non-equidistant FDL
buffer and the preventive drop mechanism. We end with some conclusions
in Section 6.

2 Fibre delay lines

In this paper, we study a single Wavelength Division Multiplexing (WDM)
channel and assume contention for it is resolved by means of a Fibre De-
lay Line (FDL) buffer, which can delay, if necessary, data packets, called
optical bursts (OBs), until the channel becomes available again. Unlike con-
ventional electronic buffers, however, it cannot delay bursts for an arbitrary
period of time, but it can only realize a discrete set of N delay values. Tradi-
tionally, there are two possibilities for the delay values a1 ≤ a2 ≤ . . . ≤ aN ,
either all fibres have the same length, i.e. ak = T with k = 1, 2, . . . , N ,
or the values are equidistant, i.e. ak = kD with k = 1, . . . , N , where D is



termed the buffer granularity. It is well known that this creates voids on
the outgoing channel ([8], [1]). We do not attempt to fill these voids as this
requires a lot of intelligence and would alter the order of the OBs; hence,
we refer to this scheme as a Non Void Filling scheme. Define the scheduling
horizon at time t as the earliest time t′ > t by which all OBs present at
time t will have left the system and denote it by H̄. When the k−th burst
sees a scheduling horizon H̄k upon arrival, with ai < H̄k ≤ ai+1 for some
0 ≤ i ≤ N (and with a0 = 0 and aN+1 = ∞), it will have to be delayed by
ai+1 time units (if i < N , otherwise it is dropped), possibly creating a void
on the outgoing channel (unless H̄k = ai+1). Figure 1 shows the evolution
of the scheduling horizon and the corresponding voids if ai = iD for all i.

D D

Hk

Hk+1

�k

k
th

arrival

(k+1)
st

arrival

Bk

void

�

Figure 1: Evolution of the scheduling horizon H̄ from one arrival to the
next. lk is the length of the k−th OB and τk the burst inter-arrival time

The length of the longest delay line corresponds to the maximum achiev-
able delay aN , therefore if an OB sees a scheduling horizon larger than
aN upon arrival, the burst will be dropped. In this paper we will explain
how the loss rate of the classic equidistant FDL buffer can be improved by
considering alternate delay line structures, which means that the delay line
lengths ak are not necessarily a multiple of some constant D, and by using
a new mechanism that can be implemented when using an equidistant FDL
buffer.

3 Non-equidistant structures

In this section we allow more flexibility on the delay line lengths in order
to obtain lower loss probabilities. Extensive numerical experiments, not

reported here, have shown that delay values ak larger than NLmax, where
N is the number of FDLs and Lmax is the maximum packet size, do not
lead to lower loss rates. Therefore, we restrict ourselves to delay values in
the range 1 to K, where K = NLmax. The combination of delay values
that minimizes the loss probability can be found in a brute-force manner if
the number of FDLs is limited. If the number of FDLs increases, it is no
longer feasible to compute the loss for every delay line length combination.
In this case heuristic algorithms are used to determine delay line values
that approximate the minimal loss probability. Given the size of the buffer
N , the maximum packet length Lmax and the maximum length allowed
K = NLmax, we have developed and compared three different heuristic
algorithms.

Least Used Elimination (LUE) algorithm: This algorithm starts by
considering an FDL buffer of size K with ak = k, for k = 1, . . . ,K. At each
step we determine the FDL that is used the least and remove it from the
FDL buffer. We repeat this step until N FDLs are left.

Largest Reduction Addition (LRA) algorithm: In the first step an
FDL buffer consisting of one FDL is considered. Its length a1, with 1 ≤
a1 ≤ K, corresponds to the minimal loss that can be realized by such an
FDL buffer. In each of the following steps an FDL is added, up to N . The
length of this FDL is chosen as the one whose addition causes the largest
reduction in the loss rate.

Smallest Increment Elimination (SIE) algorithm: The algorithm
takes a buffer of size K with FDLs of length 1, 2, . . . ,K. In each step the
delay value whose removal causes the smallest increase in loss is determined
and the corresponding FDL is removed. This is repeated until N FDLs are
left.

Before we present any numerical examples, let us introduce the analytical
framework used to calculate the loss rate for a specific set of FDLs, with
lengths a1, . . . , aN . New incoming OBs are assumed to arrive according to
a general Markovian arrival process [11]. Such a process is characterized by
a set of b× b matrices (Bs)s≥0, where the (i, j)-th element of Bs represents
the probability that the background Markov chain makes a transition from
state i to j, while, for s > 0, a new OB with a length of s time units
arrives and, for s = 0, there is no new burst arrival. Such an arrival process



generally has correlated inter-arrival times, as well as a correlation structure
on the length of consecutive OBs, meaning that the length of an OB can
be influenced by the size of (all) prior OBs. Moreover, the inter-arrival
times may also influence the length of an OB and vice versa. For instance,
while in state i, new incoming OBs, the lengths of which are distributed
according to some distribution Si, may arrive with a rate λi.

Let H̄n be the value of the scheduling horizon at time slot n and Jn

the state of the arrival process at time n (for all n ≥ 0). Notice, that H̄n

was defined as the value of the horizon as seen by the n-th arrival. Then,
(H̄n, Jn)n≥0 forms a discrete-time Markov chain (MC) with a (possibly
finite) transition matrix P :

P =



A0,0 A0,1 A0,2 . . . A0,aN
A0,aN+1 . . .

A1,0 A1,1 A1,2 . . . A1,aN
A1,aN+1 . . .

0 A2,1 A2,2 . . . A2,aN
A2,aN+1 . . .

...
. . . . . . . . .

...
...

. . .
...

. . . 0 AaN ,aN−1 AaN ,aN
AaN ,aN+1 . . .

...
. . . . . . . . .

...
...

. . .


, (1)

where the matrices Ah,h′ are the following b× b matrices:

Ah,h′ =

 B0 + B1 h′ = 0
Bh′+1 h′ > 0
0 otherwise

for h = 0,

Ah,h′ =

 B0 h′ = h− 1
Bh′−ai+1 ai−1 < h ≤ ai ≤ h′, 1 ≤ i ≤ N
0 otherwise.

with a0 = 0 for 0 < h ≤ aN and

Ah,h′ =
{ ∑∞

s=0 Bs h′ = h− 1
0 otherwise.

for h > aN . Similar to [5], the steady state probability vector π =
(π0, π1, π2, . . .) of P can be computed by exploiting the block skip-free to
the left structure of P [9] after applying a censoring argument [10]. The
loss rate is easily found from the invariant vector of P .
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Figure 2: Loss probabilities achieved by the LUE, LRA and SIE algorithm
for fixed length OBs (LDet = 20), geometric inter-arrival times and N = 10
FDLs

When comparing the performance of these three heuristic algorithms, we
will restrict ourselves to the following basic traffic scenario. Afterward, in
Section 5, we present more realistic traffic models based on Internet traces.
Assume that a new OB arrival occurs in a slot with probability p indepen-
dently from slot to slot, that is, the inter-arrival times are independent and
geometrically distributed (with mean 1/p). The consecutive OB lengths are
uncorrelated and follow a deterministic distribution with a mean LDet = 20,
i.e., B0 = 1 − p and BLDet = p. Figure 2 demonstrates that the LRA and
SIE clearly outperform the LUE approach, unless the system becomes over-
loaded. The performance of the LRA and SIE approach is similar. As K is
typically much larger than N , the LRA algorithm requires significantly less
computational resources as the SIE algorithm. Therefore, we will in the
remainder of the paper make use of the LRA algorithm when considering
non-equidistant FDL values.

Figure 3 shows the loss probability as a function of the load for equidistant
delay values, with D = LDet−1 = 19 and for the combination of delay values
found by the LRA method. We observe that for low loads the performance
of the heuristic LRA method coincides with the loss rate of an equidistant
FDL buffer. When the load is greater or equal to 60, 17%, lower losses are
realized by selecting non-equidistant delay values. The load at which the
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Figure 3: Comparison of the loss probabilities between equidistant delay
values and non-equidistant structures for Bernoulli traffic, deterministic
OB size with mean LDet = 20 and N = 10 FDLs

the LRA algorithm starts to outperform the equidistant choice is denoted
as ρeq,h. To achieve these lower loss rates, the LRA algorithm shortens the
length of the longest delay line(s). Figure 4 shows the manner in which the
FDL lengths, as computed by the LRA approach, differ from the equidistant
choice with D = LDet − 1 = 19. More specifically, Figure 4 depicts the
distance by which we need to reduce each of the delay lines for different
system loads. As the load increases (beyond ρeq,h) more and more FDLs
need to be shortened, starting with the longest (N -th) FDL, followed by
the N − 1-th and so on.

Figure 5 studies the impact of the burst length LDet and the number
of FDLs N on the load ρeq,h. From this figure we may conclude that an
increase in the number of FDLs or an increase in the mean deterministic OB
length results in a decrease of ρeq,h. It also seems that the curves level out,
which means that the equidistant choice is the best choice for low loads,
no matter how many FDLs we take. In the simple case where N = 1, the
following theorem can be proven. A proof is given in Appendix A.

Theorem 1 Let N = 1, the OB inter-arrival times be independent and
geometrically distributed (with mean 1/p) and let the OBs have a fixed length
equal to LDet. Then, for ρ = pLDet ≤ 1, the loss probability is minimized by
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Figure 4: Influence of the load on the non-equidistant structures for
Bernoulli traffic, deterministic OB size with mean LDet = 20 and N = 10
FDLs
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Figure 5: Influence of the deterministic OB lengths and the number of
FDLs on the load ρeq,h

setting the FDL length a1 = LDet − 1. For ρ > 1, the optimal FDL length
a1 = b1/pc or d1/p− 1e as both choices result in the same loss.



4 Preventive drop mechanisms

In this section we will describe a new mechanism to reduce the loss rate of
an FDL buffer that can be implemented when using an equidistant FDL
buffer. The underlying idea is that as voids on the outgoing fibre diminish
the capacity of the system, it might be worthwhile to drop optical bursts
that cause large voids even though there is still buffer capacity at hand. In-
tuitively, such a preventive drop approach seems especially useful when the
system is heavily loaded as there are plenty of other bursts, possibly causing
smaller voids, available that may take advantage of the remaining buffer ca-
pacity. Hence one “bad” burst, who causes a large void, might be dropped
in order to accept multiple “good” bursts. An advantage of the preventive
drop mechanism is that we do not need to rely on heuristic methods in
order to determine the optimal drop policy, because the system behavior
can be captured by a Markov decision process (MDP) [13]. In the next
subsection we will discuss the MDP, specifically for the case where inter-
arrival times are geometric with parameter p and consecutive OB lengths
are uncorrelated and follow some distribution L with a finite support. We
consider an equidistant FDL buffer consisting of N FDLs, the granularity
D of which equals Lmax − 1 (with Lmax the maximum OB length). The
model can be extended in a natural manner to include correlated arrival
patterns and OB lengths.

4.1 The Markov decision process

Due to the geometric assumption on the arrival process, we can capture
the system behavior by means of the scheduling horizon. The range of
the scheduling horizon equals S = {0, 1, . . . , ND + Lmax − 1}, which is
also the state space of our MDP. For each state h ∈ S, there exists a set
A(h) of decisions or actions. In our case the set A(h) is the same for
all h; hence, we simply denote this set as A. The idea is to associate a
probability q(a) to each action a ∈ A. When action a is taken (in state
h) when an arrival occurs we will drop this arrival with probability q(a)
(unless h = 0, i.e., the buffer is empty). Therefore A = {a1, . . . , an}, with
0 = q(a1) < q(a2) < . . . < q(an) = 1. Each action incurs an immediate
cost and also affects the probability law for the next transition. A formal
definition of the MDP is given by the tuple 〈S,A,P, C〉, where S is the set of
possible states, A is the set of possible actions, P : S ×A×S → [0, 1] is the
state transition function specifying the probability P{h′ | h, a} = ph,h′(a)

of observing a transition to state h′ ∈ S after taking action a ∈ A in state
h ∈ S and, finally C : S × A → R is a function specifying the cost ch(a) of
taking action a ∈ A at state h ∈ S [13]. If at a decision moment the action
a is chosen in state h, then regardless of the past history of the system, the
following happens: (i) An immediate cost ch(a) is incurred, (ii) At the next
decision moment the system will be in state h′ with probability ph,h′(a)
where ∑

h′∈S

ph,h′(a) = 1,

for each h ∈ S.
As q(a) denotes the probability that a new OB is dropped under action

a, the state transition function for our model is given by

ph,h′(a) =

 (1− p) + pP [L = 1] h′ = 0
pP [L = h′ + 1] h′ > 0
0 otherwise

,

for h = 0. Notice, if an arriving OB sees an horizon h = 0, meaning the
buffer is empty, we do not drop the OB, irrespective of the action a taken.
For 0 < h ≤ ND we have,

ph,h′(a) =

 (1− p) + pq(a) h′ = h− 1
p(1− q(a))P [L = h′ −Ddh/De+ 1] h′ ≥ Ddh/De
0 otherwise

,

and for h > ND we have

ph,h′(a) =
{

1 h′ = h− 1
0 otherwise

.

The cost function is defined such that the long-run average costs coincide
with the average number of losses per slot. This can be achieved by setting
ch(a) as

ch(a) =

 0 h = 0
pq(a) h = 1, . . . , ND
p h = ND, . . . , ND + Lmax − 1

.

Thus, minimizing the long-run average cost, corresponds to minimizing the
OB loss rate. The goal of the decision model is to prescribe a policy for
controlling the system, which is a prescription for taking actions at the



next decision moment. In our case we need a drop policy, which is a rule
for deciding when packets have to be dropped based on the current horizon
value (i.e., buffer occupation). A policy R is a mapping R : S → A and
under a given policy R, action R(h) is always executed whenever we visit
state h. The optimal policy Ropt is defined to be the policy that mini-
mizes the long-run average cost induced among all policies R. A number of
techniques are known for the derivation of the optimal policy: exhaustive
enumeration (only for small systems), linear programming, policy-iteration,
and value iteration. The MDP problem considered in this paper was solved
using the value-iteration algorithm (see Appendix B), which takes as input
the action-dependent transition probabilities ph,h′(a) and the state-action
costs ch(a).

Various numerical experiments, not reported here, have indicated that
every action Ropt(h) part of the optimal policy Ropt is either action a1 or
an, meaning that we either prematurely drop all the bursts that observe a
scheduling horizon h or none. In other words, the lowest loss rate is realized
by either dropping all bursts that make use of the k-th delay line and cause
a void of size v (i.e., h = kD − v with k > 0), or by accepting all bursts
of this type. This observation allows a significant reduction in the system
optimization time, because it now suffices to consider just two actions per
state of the MDP process.

4.2 Results for the preventive drop mechanism

In this section we consider the traffic scenario as described at the start of
Section 4 with LDet = 20 and N = 10. Figure 6 plots the loss probabilities
as a function of the load for the equidistant delay values, the equidistant de-
lay values with preventive drop and the combination of delay values found
by the heuristic LRA algorithm. For both the equidistant and preventive
drop scenario the granularity D is chosen as LDet − 1. From Figure 6
we can conclude that there also exists a load ρeq,d such that if ρ < ρeq,d

the equidistant choice coincides with the drop mechanism. Moreover, in
this particular case ρeq,h equals ρeq,d. Other numerical experiments sug-
gest that this result holds as long as the inter-arrival times are geometric
and OB lengths fixed. Furthermore, the loss rate for loads ρ above ρeq,h

(= 0.6017) remains the same for the LRA and drop method up to some
load ρh,d (= 0.6045). The region [ρeq,h, ρh,d] corresponds to those loads for
which the LRA algorithm produces a combination of FDLs with exactly one
shortened delay line, while the drop mechanism only prohibits voids asso-
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Figure 6: Loss probabilities for equidistant delay values, the preventive
drop mechanism and the LRA algorithm for Bernoulli arrivals, fixed OB
lengths LDet = 20 and N = 10 FDLs

ciated with the first (longest) FDL. As soon as the LRA approach shortens
a second delay line it outperforms the optimal drop strategy. Nevertheless,
the drop mechanism still performs significantly better when compared with
the equidistant delay values. Therefore preventive dropping remains useful
for high loads scenarios and can be implemented without the need to change
any hardware.

Figure 7 gives a graphical representation of the optimal drop policy at
different loads. It shows the number of voids, starting from the largest
void, that we must avoid for the different delay lines. From this figure
we can conclude that as the workload increases beyond ρeq,d, it becomes
worthwhile to drop OBs that make use of the longest (N -th) FDL while
causing a large void. For even higher loads some void lengths when using
the N − 1-th fibre should be avoided as well and so on. E.g., for ρ = 0.7
an OB is dropped if its acceptance would cause (i) a void of size 19 when
using the N − 1-th delay line or (ii) a void of length 14 or more when using
the N -th delay line.
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Figure 7: Influence of the load on the drop policy for Bernoulli traffic,
deterministic OB size with mean LDet = 20 and 10 FDLs

5 (Non-)equidistant FDLs versus preventive dropping

In this section we make a comparative study between the various approaches
to reduce optical buffer losses in a more general setting. For this study we
make use of packet traces collected by the NLANR (National Laboratory
for Applied Network Research). More specifically, we have used IP packet
traces coming from the following two links: AIX (a measurement point
that sits at the interconnection point of NASA Ames and the MAE-West
interconnection of Metropolitan Fiber Systems) and COS (Colorado State
University). The cumulative distributions of the packet sizes of the consid-
ered traces are depicted in Figure 8. To speed up the heuristic algorithms
and optimization process we have clustered the packet sizes in the follow-
ing way: all IP packets with a size less than or equal to 100 bytes are
regarded as size 2 packets, all packets with a size between 101 + (i − 3)50
and 150 + (i − 3)50 bytes are considered size i (with i = 3, . . . , 30) pack-
ets. Figure 9 shows the resulting packet length distribution of the clustered
trace and clearly identifies the different tail behavior on both links. These
two clustered distributions are used as the OB length distribution when
comparing the loss probabilities realized by the different buffer strategies
discussed in this paper. We assume geometric inter-arrival times and we
use an FDL buffer with N = 10 FDLs. The classic approach consists of
taking equidistant delay values. Setting the granularity parameter D equal
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Figure 8: Trace-based IP packet length distribution as captured on the COS
and AIX links

to Lmax − 1 (where Lmax denotes the maximum packet size) will be the
basic scenario during these numerical explorations. The other approaches
consist of the heuristic LRA algorithm that explores non-equidistant struc-
tures and the FDL buffer implementing the optimal preventive drop policy.
A final alternate approach exists in finding the minimal loss rate for an
equidistant buffer with a granularity D in the range [2, Lmax − 1]. The re-
sults corresponding to this final approach are plotted as full lines in Figures
10 and 11.

Figure 10, resp. Figure 11, shows the results for the various FDL buffer
structures using the clustered distributions of the COS, resp. AIX link. The
conclusion from Section 3, where in case of deterministic OB lengths and
low loads, the classic equidistant FDL buffer with a granularity D equal
to Ldet − 1 = Lmax − 1 coincides with the alternate approaches, can be
generalized to this more general setting. The load ρeq,h and ρeq,d at which
the non-equidistant structures and drop mechanism, respectively, starts to
realize lower losses is however significantly smaller and their values no longer
coincide. Indeed, we find ρeq,h = 0.3781 (0.2611) for the COS (AIX) link,
whereas for the COS (AIX) setting ρeq,d = 0.4272 (0.3492). In general
we found that the OB length distributions with more probability mass at
their maximum length tended to result in a higher value for ρeq,h and ρeq,d.
Thus, improving equidistant FDL buffers becomes harder as more packets
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Figure 9: The clustered IP packet length distribution from COS and AIX

have a maximum length. We also see that there is a region [ρeq,h, ρeq,d]
were one can profit from having non-equidistant structures, whereas the
optimal preventive drop policy still coincides with the classic equidistant
FDL buffer.

Overall, the drop mechanism seems less powerful to combat losses as
the non-equidistant FDL buffers (found by the LRA method). However,
one should keep in mind that the drop mechanism uses the same set of
delay fibres for the entire range of ρ, that is, the same hardware. The
performance difference between the drop mechanism and the two other
alternate approaches also decreases as more packets are of maximum length
(compare Figures 10 and Figure 11 keeping the (clustered) packet length
distributions in mind). If we compare these results with those presented in
Sections 3 and 4, we may conclude that packet size distributions for which
a considerable amount of the packets are of maximum length, like the COS
trace, lead to results comparable with fixed length OBs.

Figure 12 sheds light on the non-equidistant structures needed to realize
the improved loss curves. As in Section 3 the length of the longest delay line
decreases first, followed by the second longest and so on. For the preventive
drop strategy a similar effect is observed as soon as the load is above ρeq,d:
as the workload increases the optimal drop policy prohibits the largest voids
associated with delay line N , followed by line N − 1, etc. (see Figure 13).
Remark that Figure 12 and Figure 13 give results for the packet lengths as
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Figure 10: Comparison of the loss probabilities obtained with different
methods for the clustered IP packet trace (COS)
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Figure 11: Comparison of the loss probabilities obtained with different
methods for the clustered IP packet trace (AIX)

observed on the AIX link, results not included here have shown that similar
results hold for the COS setting.

Finally, the approach of taking equidistant delay values with a differ-
ent granularity D seems almost as effective as the use of a non-equidistant
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Figure 12: Influence of the load on the non-equidistant structures for the
clustered IP packet trace captured on AIX

buffer. In general it outperforms the preventive drop mechanism, but gen-
erates slightly worse results than the non-equidistant structures.

6 Conclusion

Within this paper we presented two novel approaches to reduce loss rates
in an optical FDL buffer: (i) non-equidistant delay line buffers and (ii) a
preventive drop mechanism. The basic equidistant FDL buffer was shown to
be optimal in case of low workloads, but as the system workload increases,
a substantial reduction of the loss rate can be realized by using a non-
equidistant FDL buffer or by implementing a preventive drop algorithm. We
further demonstrated that the non-equidistant FDL buffer is in general more
powerful, but the required hardware depends upon the system workload,
which is not the case for the preventive drop algorithm.
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Figure 13: Influence of the load on the drop policy for the clustered IP
packet trace captured on AIX

Appendix A: Proof of Theorem 1

The assumptions made in Theorem 1 correspond to setting N = 1, a1 = D
and the set of matrices (Bs)s≥0 as

Bs =

 1− p s = 0
p s = LDet

0 otherwise
. (2)

The steady state vector π = (π0, π1, . . .) of P (see Eqn. 1) which in general
can be found in a manner similar to [5] can be determined explicitly in this
particular case. For ease of notation we will drop the subscript of LDet.
We distinguish between the following two cases: (a) D ≤ L − 1 and (b)
D ≥ L− 1.

(a) D ≤ L − 1: For D in the range 1, 2, . . . , L − 1 the first D + 1
components of the steady state vector π equal:

πi =

 c(1− p)D i = 0,
cp(1− p)D−i i = 1 . . . , D − 1
cp i = D,

, (3)

where
c =

1
1− pD(1− p)D + p(L− 1)

. (4)



As arriving OBs that see a horizon H̄ > D are dropped. The loss rate can
be computed as

ploss = 1−
∑D

i=0 πicp

p
= 1− c.

Hence, ploss is minimal if D = −1
log(1−p) , where 1

p − 1 ≤ −1
log(1−p) ≤

1
p (due

to the Taylor series expansion of log(1 − z)). Notice, ploss is identical for
D = 1/p − 1 and D = 1/p. Moreover, ploss is a decreasing function of D
in the range [1,−1/ log(1 − p)) and increasing on (−1/ log(1 − p), L − 1].
Therefore, if ρ = pL ≤ 1, setting D = L − 1 is optimal (in the range
1, . . . , L− 1) in order to obtain minimal loss, otherwise D = b 1

pc or d 1
p − 1e

realizes the lowest loss.
(b) D ≥ L−1: In this case, some careful calculations show that the first

D + 1 components of the steady state vector π equal:

πi =


c(1− p)D i = 0,
cp(1− p)D−i i = 1, . . . , L− 1,
cp(1− p)D−i(1− (1− p)L−1) i = L, . . . , D − 1
cp(1− (1− p)L−1) i = D,

(5)

where
c =

1
(1− p)D + (p(L− 1) + 1)(1− (1− p)L−1)

. (6)

This implies that ploss can be expressed as

ploss =
p(L− 1)(1− (1− p)L−1)

(1− p)D + (p(L− 1) + 1)(1− (1− p)L−1)
, (7)

which is minimal in the range D > L− 1 if D = L− 1. Combined with (a)
this completes the proof of Theorem 1.

Appendix B: Value-iteration algorithm

A number of techniques are known for the derivation of the optimal
policy, but the policy-iteration algorithm and the linear programming
formulation both require that in each iteration a system of linear equations
of the same size as the state space is solved. In general, this will be
computationally burdensome for a large state space, therefore we use a

different algorithm, being the value-iteration algorithm, which avoids large
systems of equations by using a recursive solution from dynamic program-
ming. The algorithm computes recursively a sequence of value-functions
Vn(i) : ∀i ∈ S and n = 1, 2, . . . which approximate the minimal average cost
per unit time. The algorithm, explained in detail in [13], works as following:

Step 0: Select the initial value-function V0(i) such that: 0 ≤ V0(i) ≤
mina ci(a),∀i ∈ S and set n = 1.

Step 1: Update the value-function Vn(i),∀i ∈ S by using:

Vn(i) = min
a∈A

ci(a) +
∑
j∈S

pij(a)Vn−1(j)

 ,

and determine Rn as a stationary policy whose actions minimize the right
side of this equation for all i ∈ S.

Step 2: Compute the upper bound Mn and the lower bound mn by
using:

Mn = max
j∈S

{Vn(j)− Vn−1(j)}, mn = min
j∈S

{Vn(j)− Vn−1(j)}.

The algorithm is stopped, returning the desired policy Ropt = Rn, when
0 ≤ Mn − mn ≤ εmn, where ε is a pre-specified small tolerance number.
Otherwise, proceed to Step 3.

Step 3: Set n = n + 1 and go to step 1.
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