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Abstract

This paper presents an algorithmic procedure to calculate the queue length and delay
distribution of customers in a discrete time D-MAP/PH/1 queue, where the service time
distribution of a customer depends on the inter-arrival time between himself and his
predecessor. Setting up a Markov chain that keeps track of the contents of such a queue
will result in a state space explosion as the inter-arrival times of all customers present in
the system must be remembered. We avoid these difficulties by making use of the age
process. This process keeps track of the “age” of the customer in the service facility.
From this process, which we solve by means of matrix analytic methods, we compute the
queue length and sojourn time distribution by means of a simple formula and obtain an
expression for the stability of the system. We also demonstrate that the D-MAP arrival
process can be easily replaced by the more general semi-Markovian arrival process, without
any additional computational costs. Queueing systems of this type arise in the domain of
synchronous optical buffers. Based on the numerical analysis of such a queueing system,
some guidelines for the design of optical buffers are presented. We also show the impact
on the numerical results when the cross-correlation that exists between the service and
inter-arrival times is neglected.

Index Terms: Matrix analytic methods, D-MAP arrival process, semi-Markovian arrivals,
phase-type services, correlated service and inter-arrival times, delay distribution, queue length
distribution, optical buffer, fibre delay line.



1 Introduction

This paper introduces an algorithmic procedure to calculate the delay and the queue length
distribution of a discrete-time first-come-first-serve queue with correlated arrivals (D-MAP
and SM, see Sections 2 and 8), and phase-type (PH) service times that depend on the inter-
arrival time between a customer and his predecessor. Moreover, the fact that a customer finds
the server idle upon arrival may also affect his service time. Earlier work on queueing systems
with correlated inter-arrival and service times can be found in [17, 6] and the references
therein. The continuous time analog of the queueing system discussed in this paper nearly
forms a subclass of the semi-Markovian queues introduced in [17] (see Remark 2, Section
3), where most of the results were derived from the theory developed in [16]. It is not a
true subclass as in our case customers who experience no waiting time have different service
requirements (therefore, we have a more general boundary condition). We restrict ourselves
to this set of queues as it suffices for our main purpose, that is, the analysis of the synchronous
optical buffer. Although there also exists an interest in analyzing asynchronous optical buffers,
the framework in [17, 16] cannot be applied directly as PH distributions have only a finite (or
infinite but countable) number of phases.

The basic model in [6] considers a system where the service time sk of customer k is
proportional to the inter-arrival time τk; thus, the service time of the k-th customer sk = ξτk

(ξ < 1). This model was extended in two different ways: (i) by adding an independent,
generally distributed, nonnegative random variable to the service time, (ii) by allowing the
proportionality constant ξ to be itself a random variable, that takes a value ξ1 > 0 with
probability g1 and ξ2 = 0 with probability 1 − g1. The arrival process in [6] is Poisson,
meaning that τk is exponentially distributed (actually, by setting ξ2 = 0 the arrival process
behaves like an ON-OFF source). Hwang and Sohraby [9] also considered proportional service
times with ξ = 1 and a more general ON-OFF arrival process.

In this paper the service times do not need to be proportional to the inter-arrival time,
but are PH distributed random variables characterized by (ατk

, T ) (that is, the initial phase
is determined by the inter-arrival time τk). In a synchronous optical buffer the service times
are far from proportional; therefore, neither [6, 9] applies. Also, the arrival process considered
in this paper is Markovian (D-MAP) and therefore has correlated inter-arrival times. Fur-
thermore, we demonstrate that introducing semi-Markovian arrivals within this framework
is straightforward. Queues with Markovian arrivals and correlated service and inter-arrival
times have also been considered in [1]. In this paper recursive equations for the calculation of
the moments of the waiting time and queue length are derived. Finally, in many studies the
Laplace-Stieltjes transform (LST) of the waiting time and/or queue length distribution is de-
termined, whereas we use matrix analytic methods that allow us to compute the distributions
of interest directly (as in [17]).

Both [6, 9] were motivated by the correlation that the finite speed of communication links
introduces between inter-arrival and service times. Our motivation lies in understanding the
behavior of buffers present in optical communication networks. More specifically, as opposed
to classical electronic buffers, optical buffers create voids on the outgoing channel. When
the optical packets (called bursts) have a fixed size, one can show that the void between two
packets is a function of the buffer granularity D and their inter-arrival time. By considering
these voids as additional service, one obtains a queue with correlated service and inter-arrival
times (see Sections 9-10).

The paper is structured as follows. Section 2 introduces the queueing system of interest.
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The construction of the GI/M/1 type Markov chain is presented in Section 3. Section 4 is
devoted to calculating the steady-state probabilities of such a system, while Section 5 focuses
on the ergodicity of the GI/M/1 type Markov chain of interest. The delay density function
is determined in Section 6, whereas in Section 7 we develop a simple formula to compute the
queue length distribution. Some comments on how to incorporate semi-Markovian arrivals
are provided in Section 8. Queueing systems of this type occur in the domain of optical
buffers. Section 9 explains why a Fibre Delay Line - Non Void Filling system fits within
this framework, while Section 10 contains some numerical examples. A comparison with a
queueing model that neglects the cross-correlation between the inter-arrival and service times
is also included.

2 The D-MAP/PH/1 queue with correlated service and inter-arrival times

The arrival process of the queueing system of interest is a discrete time Markov arrival process,
commonly known as the D-MAP process [3, 4], that does not allow batch arrivals; therefore,
it is a subclass of the D-BMAP arrival process, which allows batch arrivals. Formally, a
D-MAP is characterized — similar to its continuous time variant the MAP process [12] —
by two m × m matrices D0 and D1, where m is a positive integer. The (j, j′)th entry of
the matrix D1 represents the probability that a customer arrives and the underlying Markov
chain makes a transition from state j to state j′. The matrix D0 covers the case when there
is no arrival. The matrix D, defined as

D = D0 + D1,

represents the stochastic m × m transition matrix of the underlying Markov chain of the
arrival process. Let θ be the stationary probability vector of D, that is, θD = θ and θe = 1,
where e is a column vector with all entries equal to one. The stationary arrival rate is given
by λ = θD1e. It is easy to see that

θ = θD1(I − D0)
−1, (1)

where the inverse of the matrix I − D0 exists as D0 is substochastic.
The service time of a customer depends upon the inter-arrival time between himself and

the previous customer. If the server is empty when a new customer, with inter-arrival time k
time units, arrives, the service time of this customer has a common phase-type distribution
function [14] with a matrix representation (mser, αk,0, T ), where mser is a positive integer,
αk,0 is an 1 × mser nonnegative stochastic vector and T is an mser × mser substochastic
matrix. On the other hand, if the server is busy when a new customer, with inter-arrival
time k, arrives, the service process can be described by a phase-type distribution with matrix
representation (mser, αk, T ), where αk is an 1 × mser nonnegative stochastic vector. The ith

component of the vector αk,0 is the probability that a customer, with an inter-arrival time of
k time units, starts his service in phase i given that the server was empty when this customer
arrived. Analogous we can say that the ith component of the vector αk is the probability that
such a customer starts his service in phase i given that he saw the server busy upon arrival.
If t = e − Te, then the ith entry of the vector t denotes the probability that a customer
completes his service provided that he is in the ith phase at the current time instant. The
(i1, i2)

th entry of T , on the other hand, is the probability that a customer continues his
service in phase i2 at the next time instant provided that he is in phase i1 at the current time

2



instant. Notice, the minimum service time of a customer is one time unit (because the vectors
αk and αk,0 are assumed to be stochastic). The mean service time of a customer with an
inter-arrival time of k time units given that the server was busy when he arrived, is given by
1/µk = αk(I − T )−1e. Thus, assuming that all customers see the server busy upon arrival,
the mean service time of a customer equals

E[Sb] =
∑

k

ωk/µk, with ωk = θD1D
k−1

0 D1

λ
e. (2)

This expression is used to formulate the stability condition.
Finally, in the case of a simultaneous arrival and departure we assume that the departure

occurs first. For further use we define mtot = mserm. While constructing the GI/M/1 type
Markov chain in the next section, we will always observe the system just prior to possible
phase changes, arrivals or departures. Thus, if we refer to the system state at time n, such
events happening at time n are not yet taken into account by the system state.

Remark 1: The system described above is, from a theoretical point of view, equivalent
to the following system. A new customer, with inter-arrival time k, finding the server busy
(resp. idle) has a service process that can be described by a phase-type distribution with
matrix representation (mk, α

′
k, T k) (resp. (mk, α

′
k,0, T k)). By defining the phase-type distri-

bution function with matrix representation (mser, αk, T ), with mser =
∑∞

k=1 mk,

αk = (0k,f , α′
k, 0, 0, . . .),

T =















T 1 0 0 . . .

0 T 2 0
. . .

0 0 T 3
. . .

...
. . .

. . .
. . .















,

where 0k,f is a 1×
∑k−1

i=1 mi vector filled with zeros, we see that both cases are equivalent. An
analogous set of vectors αk,0 for the case when the server is idle upon arrival is found easily.
Notice, for practical purposes the dimension of the matrix T has to be finite. Often the matrix
T can easily be reduced to a finite, moderate size matrix (as many matrix representations of
the same PH distribution function exist). For instance, when all the service time distributions
have a general distribution with a finite support a, the dimension of T should not exceed a.
The study of the synchronous optical buffer presented in Sections 9 and 10 is of this type.
Also, if some of the matrices T k′ are identical to T k, for k 6= k′, it suffices to have a single
copy of T k in T . E.g., in a system where a customer who arrives more than 100 time units
after his predecessor, needs some additional service, the matrix T contains only two blocks.

3 Constructing the GI/M/1 Type Markov chain

In this section, we consider the D-MAP/PH/1 queue with service times depending on the
inter-arrival times. Instead of observing the system at each time instant, including the instants
when the server is idle, we create a GI/M/1 type Markov chain (MC) by observing the system
state only when the server is occupied.

Consider an MC with an infinite number of states labeled 1, 2, . . .. The set of states
{(i − 1)mtot + 1, . . . , imtot} is referred to as level i of the MC, for i > 0. The states of each
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level are labeled as (s, j), where 1 ≤ s ≤ mser and 1 ≤ j ≤ m. Let state (s, j) of level i of the
MC correspond to the situation in which there is a customer in service, who arrived i time
units ago, while the service process is currently in phase s and the D-MAP arrival process
was in state j at time n − i + 1, where n is the current time instant. Recall, we observe the
system just prior to possible phase changes, arrivals or departures.

The level of the Markov chain can never increase by more than one during a transition
between time instant n and the next time instant n + x where the server is busy (because
the customers are served in a FCFS order). As a result, the system can be described by a
transition matrix P with the following structure:

P =















C0 A0 0 0 0 . . .
C1 A1 A0 0 0 . . .
C2 A2 A1 A0 0 . . .
C3 A3 A2 A1 A0 . . .
...

...
...

. . .
. . .

. . .















, (3)

where Ai and Ci are mtot × mtot matrices.
Next, let us derive an expression for each of the matrices Ai and Ci. Suppose that the

MC is in state (s, j) of level i at time n. Then, a transition to state (s′, j) of level i+1 occurs
if the customer remains in the service facility (with probability (T )s,s′). Notice, in this case
the state of the D-MAP remains the same, therefore,

A0 = T ⊗ Im, (4)

where ⊗ denotes the Kronecker product between matrices and Im denotes the m × m unity
matrix. A transition from level i to i+1 cannot occur if there is a service completion at time
n, because there are no batch arrivals (implying that the next customer has an age of at most
i at time n + 1).

A transition to level i − l, with 0 ≤ l < i − 1, occurs if the customer in service completes
his service (with probability ts) and there is no arrival until time n+1− (i− l), that is, there
is no arrival at time n− i + 1, . . . , n− i + l and at time n + 1− i + l we have an arrival1. The
inter-arrival time between the customer completing service and the next one is l +1. Because
the new customer saw the server busy upon arrival, his service requirements are described by
(mser, αl+1, T ). Transitions from level i to i − l are governed by the Al+1; hence, for i > 1
and 0 ≤ l < i − 1,

Al+1 = tαl+1 ⊗ (Dl
0D1), (5)

for hereon, any matrix to the power 0 is taken to be the identity matrix of appropriate
dimension. Finally, a transition to level 1 occurs if the customer in service completes his
service (with probability ts) and a new customer, who arrived at or after time n, starts his
service. Such a customer sees the server empty upon arrival, so his service time is determined
by (mser, αk,0, T ). Because we observe the system only at time instants when the server is
busy, the inter-arrival time k can take on any value larger than or equal to i. Hence,

Ci−1 =
∑

k≥i−1

tαk+1,0 ⊗ (Dk
0D1). (6)

This concludes the description of the transition matrices.

1Indeed, we are at level i − l at time n + 1 if the customer in service has an age i − l at time n + 1, thus,

he arrived at time n + 1 − i + l.
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Remark 2: As indicated in the introduction, if αk,0 = αk for all k, this system is the
discrete time analog of (a special case) of the semi-Markovian queue considered in [17]. This
can be seen as follows. A0 plays the same role as S in [17], the difference being that A0

corresponds to the matrix of a discrete PH variable. Notice, by definition of A0, the state of
the D-MAP is also part of the phase of A0; therefore, we refer to these phases as meta phases
(j, v) where j is the phase of the customer in the service facility and v the state of the D-MAP
immediately after his arrival. Let P (t)(j,v),(j′,v′) be the probability that the inter-arrival time
between customer k and k + 1 is less than or equal to t time units and that customer k + 1
starts service in meta phase (j′, v′) , provided that customer k ended this service in meta
phase (j, v). Then, the matrix P (t) holding these probabilities as its entries can be written
as:

P (t) =
t
∑

i=1

eαi ⊗ (Di−1
0 D1). (7)

The matrix P (t) now plays the same role as in [17]. The same remark can be made with
respect to the system with semi-Markovian arrivals considered in Section 8 (if we replace
Di−1

0 D1 by Li).

4 Calculating the Steady-State Probabilities

In this section, we consider the D-MAP/PH/1 queue with service times depending on the
inter-arrival times and indicate how to calculate the steady-state probabilities of the Markov
chain characterized by the transition matrix P . From equation (3), we see that the Markov
chain is a Markov chain of the GI/M/1 type [14]. Define the 1 × mtot vectors πi = (πi(1, 1),
πi(1, 2), . . . , πi(1, m), πi(2, 1), . . . , πi(mser, m)), for i ≥ 1. The steady state vector π =
(π1, π2, . . .) of P exists if and only if ρb < 1, where ρb = λ

∑

k ωk/µk = λE[Sb] and λ, ωk and
µk were defined in Section 2. A proof of this theorem based on Neuts’ stability condition [13]
is provided in Section 5. Moreover, πi = πi−1R, for i > 1, where R is an mtot ×mtot matrix
that is the smallest nonnegative solution of the following equation:

R =

∞
∑

i=0

RiAi. (8)

There are several techniques to calculate R, a brief overview is given in the Appendix. In
order to obtain π1 we solve the boundary equation:

π1 = π1

∞
∑

i=0

RiCi, (9)

where the vector π1 is normalized as

π1(I − R)−1e = 1. (10)

5 Algebraic proof for the ergodicity of a GI/M/1 type Markov chain

In this section we will prove that the GI/M/1 type Markov chain introduced in Section 3 is
ergodic if and only if ρb = λE[Sb] = λ

∑

k
ωk

µk
< 1. We start by defining the 1×mser stochastic
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vectors βk for k ≥ 1:

βk = βk(T + tαk). (11)

Some elementary manipulations shown that they obey the following equality:

βkt = µk. (12)

Lemma 1 The vector Πg, defined as

1

ρb

∞
∑

k=1

(

βk

µk

⊗ (θD1D
k−1
0 D1)

)

, (13)

is an invariant vector of
∑∞

l=0 Al and Πg is stochastic.

Proof. The sum
∑∞

l=0 Al can be written as T ⊗ Im +
∑∞

l=1 tαl ⊗ Dl−1
0 D1. The product

Πg(T ⊗ Im) equals

1

ρb

∞
∑

k=1

(

βk

µk

T ⊗ (θD1D
k−1
0 D1)

)

=
1

ρb

∞
∑

k=1

(

βk − µkαk

µk

⊗ (θD1D
k−1
0 D1)

)

,

by means of Eqns. (11) and (12). Second, we calculate Πg(tαl ⊗ Dl−1
0 D1). This equals

1

ρb

∞
∑

k=1

(

βk

µk

tαl ⊗ (θD1D
k−1
0 D1)(D

l−1
0 D1)

)

.

Using Eqns. (12) and (1) we can further simplify this to

1

ρb

∞
∑

k=1

(

αl ⊗ (θD1D
k−1
0 D1)(D

l−1
0 D1)

)

=
1

ρb

(

αl ⊗ (θD1(I − D0)
−1D1)(D

l−1
0 D1)

)

=
1

ρb

αl ⊗ (θD1D
l−1
0 D1). (14)

From hereon it is straightforward to prove that Πg is an invariant vector of
∑∞

l=0 Al:

Πg

∞
∑

l=0

Al =
1

ρb

∞
∑

k=1

(

βk − µkαk

µk

⊗ (θD1D
k−1
0 D1)

)

+
∞
∑

l=1

1

ρb

αl ⊗ (θD1D
l−1
0 D1)

=
1

ρb

∞
∑

k=1

(

βk

µk

⊗ (θD1D
k−1
0 D1)

)

= Πg.

Πg is clearly a stochastic vector as βk is stochastic and θD1D
k−1
0 D1e equals λωk. �

The vector Πg holds the probabilities that, when observing the system at an arbitrary
time instant, the phase of the server equals s (for s = 1, . . . , mser) and the state of the D-MAP
was j (for j = 1, . . . , m) immediately after the arrival of the customer occupying the service
facility, provided that the server is busy during this time instant and under the assumption
that αk,0 = αk for all k.
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Lemma 2 Πg (
∑∞

l=1 lAl) e = 1/ρb.

Proof. We can rewrite (
∑∞

l=1 lAl)e using the the stochastic nature of the vectors αk and the
equality D1e = (I − D0)e as

(

∞
∑

l=1

lAl

)

e =
∞
∑

l=1

l(tαl ⊗ Dl−1
0 D1)e =

∞
∑

l=1

(

tαlemser
⊗ lDl−1

0 D1em

)

= t ⊗
∞
∑

l=1

lDl−1
0 D1em = t ⊗ (I − D0)

−1em. (15)

Thus, applying Eqns. (12) and (1), we have

Πg

(

∞
∑

l=1

lAl

)

e =
1

ρb

∞
∑

k=1

(

βk

µk

t ⊗ (θD1D
k−1
0 D1)((I − D0)

−1em)

)

=
1

ρb

∞
∑

k=1

(

θD1D
k−1
0 D1)((I − D0)

−1em)
)

=
1

ρb

(

θD1(I − D0)
−1D1)((I − D0)

−1em)
)

=
1

ρb

. (16)

�

Theorem 1 The Markov chain characterized by the transition matrix P (see Eqn. (3)) is
ergodic if and only if ρb < 1.

Proof. Neuts [13] has shown that a GI/M/1 type MC is ergodic if and only if the product
of the stochastic invariant vector of

∑∞
l=0 Al with the vector (

∑∞
l=0 lAl)e is larger than one.

Therefore, Lemma 1 and Lemma 2 suffice to proof the theorem. �

6 Calculating the Delay Density Function

As opposed to the general approach in many queueing systems, we calculate the delay distri-
bution without obtaining the steady state probabilities of the queue length. The term delay
is used here as a synonym for the sojourn time, thus it encompasses both the waiting and the
service time. Let X be the random variable that denotes the delay suffered by a customer.

Theorem 2 If π, the steady state vector of the Markov chain characterized by P , exists, the
delay distribution X of an arbitrary customer is given by

P [X = i] =
c

λ

mser
∑

s=1





m
∑

j=1

πi(s, j)



 (t)s. (17)

where c is a normalization constant that equals the probability that the system is busy. If the
vectors αk,0 equal αk for all k, then c = λE[Sb].

Proof. The probability that a customer has a delay of i time units, denoted by P [X = i], equals
the expected number of customers with an “age” of i time units that complete their service
at an arbitrary time instant divided by the expected number of customers that complete
their service during an arbitrary time instance — that is, λ for a stable queue. This explains
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the expression given by (17). If the vectors αk,0 equal αk for every k, we use the identity
∑

i πi = Πg as follows, where Πg is the invariant vector of
∑∞

l=0 Al:

1 =
∑

i

P [X = i] =
c

λ

∑

i

mser
∑

s=1





m
∑

j=1

πi(s, j)



 ts =
c

λ

mser
∑

s=1





m
∑

j=1

Πg(s, j)



 ts

=
c

λ

mser
∑

s=1





m
∑

j=1

1

ρb

∑

k

(θD1D
k−1
0 D1)j

(βk)s

µk



 ts

=
c

λ

mser
∑

s=1

(

∑

k

1

E[Sb]
ωk

(βk)s

µk

)

ts =
c

λE[Sb]

∑

k

ωk =
c

λE[Sb]
.

�

Theorem 3 If the queue is stable and αk,0 = αk for all k, the delay distribution is a phase-
type distribution with representation (γ,Q), where γ = E[Sb]Πg(I − R)∆, Q = ∆−1R∆,
∆ = diag(δ) and δ = (I − R)−1(t ⊗ e).

Proof. Using the equality
∑

i πi = Πg, we find π1 = Πg(I −R). The remainder of the proof
follows from Theorem 2 and is similar to [7, Theorem 4.4]. �

7 Calculating the Queue Length Distribution

Let Q be the random variable that denotes the queue length, i.e., the number of customers
present in the waiting room. Define the m × 1 vectors dq,i, where the jth component of the
vector dq,i is the probability that q arrivals occur in an interval of length i that started in
state j. These vectors can be computed by means of the following recursion:

dq,0 = 1[q = 0]e,

d0,i = (D0)
ie,

dq,i = D1dq−1,i−1 + D0dq,i−1.

By means of these vectors we can compute the queue length distribution as follows:

P [Q = q] = c
∑

i≥q





mser
∑

s=1

m
∑

j=1

πi(s, j)(dq,i)j



 , (18)

for q > 0 and

P [Q = 0] = 1 − c + c
∑

i≥q





mser
∑

s=1

m
∑

j=1

πi(s, j)(d0,i)j



 , (19)

with c equaling the probability that the server is busy, see Section 6. Recall, in case the
vectors αk,0 equal αk for every k, the factor c equals ρb.
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8 Semi-Markovian Arrivals

Consider a semi-Markov chain (ξn, τn) with m phases. The variable ξn represents the phase
of the semi-Markov chain immediately after the n-th transition. The variable τn denotes the
number of time slots between the (n − 1)-th and the n-th transition (inter-transition time).
The semi-Markovian (SM) arrival process is constructed as follows. Define

P [ξn = j′, τn = t|ξn−1 = j] = lj,j′(t), (20)

for j, j′ ∈ {1, . . . , m} and t ≥ 1. The variable lj,j′(t) equals the probability that a customer
arrives t time units after his predecessor, while the underlying semi-Markov chain makes a
transition from state j to j′. Let Lt be the m×m matrix whose (j, j′)-th element equals lj,j′(t).
The matrix L =

∑

t Lt is the transition matrix of the underlying Markov chain. Let ξ be its
invariant probability vector, then the mean inter-arrival time 1/λ = ξ

∑

t tLte. In the special
case where two m dimensional square matrices exist D0, D1 ≥ 0 such that Lk = Dk−1

0 D1, the
SM arrival process is a D-MAP. Notice, in this particular case L = (I−D0)

−1D1; therefore,
ξ = θD1, where θ is the invariant probability vector of D = D0 + D1.

In order to generalize the results presented in Sections 3 and 4, one simply needs to replace
the products Dk

0D1 by Lk+1 in Eqns. (5) and (6). This provides us with the probabilities
πi(s, j) that the server holds an age i customer at an arbitrary point in time, the phase
of the customer in service equals s and the state of the SM arrival process immediately
after his arrival is j. The delay distribution X can be computed from these vectors by
means of Eqn. (17), the constant c is found by normalizing X. However, for the queue length
distribution we need to make some minor changes to Eqns. (18) and (19). Define the following
recursion:

F̄ q,0 = 1[q = 0]I,

F̄ q,i =
i−1
∑

i′=q−1

F̄ q−1,i′Li−i′ .

d̄q,0 = 1[q = 0]e,

d̄0,i =
∑

i′>i

Li′e,

d̄q,i =
i
∑

i′=q

F̄ q,i′d̄0,i−i′e.

for i > 0. Notice, the (j, j′)-th element of F̄ q,i represents the probability of having q arrivals
in an interval of length i, where the last arrival occured at the end of the interval, while the
state of the semi-Markov chain at the start, resp. end, is j, resp. j′. The j-th element of d̄q,i

equals the probability that q arrivals occur in an interval of length i that started in state j.
Replacing the vectors dq,i by d̄q,i in Eqns. (18) and (19) gives us the queue length distribution
Q.

Remark 3: Assume that αk,0 = αk for all k. The class of queues obtained by further
restricting ourselves to the GI arrival process (i.e., the case where the matrices Li are scalars),
is the discrete time analog of the subclass of the semi-Markovian queues analyzed in [17] for
which the inter-arrival time and initial phase of customer k + 1 are unaffected by the end
phase of customer k. In this case, T plays the role of S, while J(t) = e

∑t
i=1 αiLi.
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Figure 1: Evolution of the scheduling horizon H̄ from one arrival to the next. Lk is the
length of the k−th OB and τk the burst inter-arrival time

9 Fibre Delay Lines

In this section, we study a single Wavelength Division Multiplexing (WDM) channel and
assume contention for it is resolved by means of a Fibre Delay Line (FDL) buffer, which
can delay, if necessary, data packets, called optical bursts (OBs), until the channel becomes
available again. Unlike conventional electronic buffers, however, it cannot delay bursts for an
arbitrary period of time, but only for multiples of a basic unit D, called the granularity of
the FDL buffer. In [10, 5] it is shown that this leads to voids on the outgoing channel. We do
not attempt to fill these voids (as this would alter the order of the bursts), hence, the term
Non Void Filling system.

Define the scheduling horizon as the earliest time by which all previously arrived OBs will
have left the system and denote it by H̄. When the k−th burst sees a scheduling horizon H̄k

upon arrival, it will have to be delayed by at least H̄k. An FDL buffer can delay bursts only
for multiples of D, so H̄k cannot always be realized exactly and this leads to voids on the
outgoing channel, as illustrated in Figure 1. In this figure the horizon seen by the k-th burst
lies somewhere between D and 2D, meaning that the k-th burst is delayed for 2D time units.
Similarly, the k + 1-th burst is delayed by 4D. It is not difficult to show (see [8], lemma 1)
that the length of a void between OB k and k+1 is distributed according to (τk−Lk) mod D,
where τk represents the inter-arrival time between these two OBs and Lk is the length of the
k−th OB. Unless an OB burst finds the FDL buffer empty upon arrival, this void can be
regarded as additional service required for OB k + 1. As such, the system evolves like of
a FIFO queue with the same D-MAP arrival process, but with a modified service time for
customers who find the server busy: L

′

k = Lk + Vk, where Vk is the void between the k and
k + 1-th OB. Given that all bursts have the same length L, the void Vk depends solely on the
inter-arrival time and the constants L and D. Thus, the algorithms developed in Sections 4,
6 and 7 can be used to analyze FDL buffers.

10 Numerical example

In this section we present some numerical examples of an FDL buffer with Markovian arrivals.
The results are compared with those obtained by the classic D-MAP/PH/1 queue that does
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not take the cross-correlation between the inter-arrival and service times into account. A
similar comparison for the M/M/1 queue was presented in [8]. The OBs are assumed to have
a fixed length L. New incoming OBs follow an interrupted Bernoulli process (IBP). An IBP
process consists of two states: new OBs arrive with probability p in state two, whereas in
state one the IBP generates no traffic. The sojourn time in state i = 1, 2 is geometrically
distributed with a mean si and we fix s1 = 10s2. This process is characterized by two m×m
matrices D0 and D1:

D0 =

[

1 − 1
s1

1
s1

(1 − p) 1
s2

(1 − p)
(

1 − 1
s2

)

]

, D1 =

[

0 0
p
s2

p
(

1 − 1
s2

)

]

. (21)

In this example Lk equals L for each k, so the service time for OBs who find the server busy
equals L

′

k = L + Vk = L + [(τk − L) mod D] and thus depends on the inter-arrival times.
Customers who find the server idle have a deterministic service time equal to L. A matrix
representation of the modified PH distributions is given next. Define T as the following
(L + D − 1) × (L + D − 1) matrix

T =























0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0

...
...

. . .

0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0























.

Notice, L+D−1 is the maximum service time of an OB (as the length of a void is between zero
and D − 1). Let αi be an 1× (L + D − 1) nonnegative stochastic vector, the entries of which
all equal zero except for the (D − [(i−L) mod D])-st which equals one. The vectors αi,0 are
independent of the value of i, that is, αi,0 = αL+1. Therefore, the service requirements of an
OB who finds the server busy, resp. idle, upon arrival has a common phase-type distribution
function with matrix representation (mser, αi, T ), resp. (mser, αi,0, T ).

Figure 2 shows the waiting time distribution for L = 50 (slots), the mean on period s2

equals 1.5, s1 = 10s2 and p = 0.211
L

; therefore λ = 0.2/L = 0.004. The granularity parameter
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D varies between 20 and 50. Looking at Figure 2 one sees that the waiting time has a tendency
to grow as a function of the granularity D. This is logical as an infinite FDL buffer with a
granularity D can only realize a subset of the delays that an FDL with granularity D/n can
introduce (provided that D/n ∈ N). The interest in FDLs with a large granularity D stems
from that fact that real systems can only support a finite number of fibres. The curves for
D = 25 and 50 deviate from the general tendency mentioned above. This can be understood
by looking at the void length distribution, which shows that setting the granularity D equal
to 25 or 50 assures that the most probable void length equals one (see Figure 3, this figure
was generated using Lemma 1 of [8]). For this particular example, the density function of the
inter-arrival time distribution is decreasing. Therefore, it is best to choose D ≈ (L − 1)/n,
for some n ∈ N as this will guarantee that bursts who have a small inter-arrival time, cause
small voids. This observation was also made in [11, 18], where a different approach was taken
to study FDL buffers.

Figure 4 depicts the approximated waiting time distribution, by relying on the classic
D-MAP/PH/1 queue (with a modified boundary behavior). To generate these results we can
make use of Section 4 and 6 by setting αk = α for all k (and leaving all the other parameters
unaltered). The last D − 1 entries of α equal zero, while the i-th equals the probability
that a void has length D − i (for i = 1, . . . , D). Comparing Figure 2 and 4 clearly shows
that neglecting the cross-correlation makes a substantial difference. More importantly, the
beneficial properties of setting D = 25 or 50 do not appear in Figure 4. Thus, the influence
of the correlation is critical when selecting the granularity D.

Finally, Figure 5 depicts the queue length distribution for various granularity values D.
Again, the granularities D = 25 and 50 are somewhat special. Thus, the shorter voids
caused by this particular choice of D does not only reduce the waiting time, but also causes
fewer bursts to be present in the buffer (as bursts followed by a short void are more rapidly
served). This observation seems to suggest that we can also expect smaller loss rates when
choosing D ≈ (L − 1)/n (with n ∈ N). This idea was confirmed in [10, 18]. In both these
papers a Markov chain was formed by keeping track of the scheduling horizon H̄ (see Section
9). Although the approach taken here can only be used for infinite buffers with fixed length
optical bursts, it allows us to study the number of bursts in the FDL. This distribution cannot
be obtained from the steady state of the scheduling horizon. Also, using this approach one can
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easily incorporate semi-Markovian arrivals at no additional computational costs (see Section
8).

A note on the implementation: For large values of L and D one requires a lot of memory
to store all the Ai and Ci matrices simultaneously. In this case the following method can
be used to reduce the memory complexity. Store a matrix X = [I D0 D2

0 D3
0 . . .] and use

this matrix to determine the necessary Ai matrices during each iteration while computing R

(Eqn. (8)). The disadvantage being that the computation of the steady-state probabilities is
somewhat slower by repeatedly computing the Ai matrices. Hence, it is a trade-off between
the time and memory consumption of the algorithm. Roughly speaking, the overall time and
memory complexity per iteration is O(m3(L+D)3) and O(m2(L+D)2). The number of iter-
ations required depends on various system parameters—e.g., the load, correlation structure,
etc.—as well as on the algorithm used (see Appendix).
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Appendix

In this section we present a brief overview of two techniques, discussed in [13, 15], to calculate
the smallest nonnegative solution of Eqn. (8). Various other algorithms exist which we shall
not discuss (see [2] and the references therein). The direct iteration scheme computes R as

R0 = A(τ) =
∞
∑

l=0

τ lAl, Rk+1 =
∞
∑

ν=0

Rν
kAν , k ≥ 0. (22)

The number of iterations required by this scheme may grow considerably, especially when the
Perron Frobenius (PF) eigenvalue τ of R is close to one. The choice for R0 guarantees that
the PF eigenvalue of all the matrices Rk equals τ . Let ξ(A(z)) denote the PF eigenvalue of
A(z) =

∑

i Aiz
i. Neuts [14] has shown that τ is the unique solution in (0, 1) of the equation

x = ξ(A(x)), (23)

which can be solved using a bisection algorithm. If the PF eigenvalue is close to one, it is often
more efficient to use the following variant of the Newton-Kantorovich scheme [15]. Define the
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function F (X) as

F (X) = X −
∞
∑

ν=0

XνAν . (24)

Then the following scheme can be used:

R0 = 0, Rk+1 = Rk + Y k, (25)

with

Y k = −F (Rk) + ZkA1 + (RkZk + ZkRk)A2, (26)

and

Zk = −F (Rk)(I − A1)
−1. (27)

The most effient method to compute R in terms of the time complexity is probably found by
taking the time inverse of the GI/M/1 process and to compute the G matrix of the resulting
M/G/1 type MC by means of a quadratically converging algorithm. We did not explore this
possibility as it generally requires more memory, which was, to some extent, the limiting
factor in Sections 9 and 10.
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