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APPROXIMATED TRANSIENT QUEUE LENGTH AND WAITING TIME
DISTRIBUTIONS VIA STEADY STATE ANALYSIS

B. Van Houdt and C. Blondia � University of Antwerp, Antwerpen, Belgium

� We propose a method to approximate the transient performance measures of a discrete time
queueing system via a steady state analysis. The main idea is to approximate the system state at
time slot t or on the n-th arrival—depending on whether we are studying the transient queue
length or waiting time distribution—by the system state after a negative binomially distributed
number of slots or arrivals. By increasing the number of phases k of the negative binomial
distribution, an accurate approximation of the transient distribution of interest can be obtained.

In order to efficiently obtain the system state after a negative binomially distributed number
of slots or arrivals, we introduce so-called reset Markov chains, by inserting reset events into the
evolution of the queueing system under consideration. When computing the steady state vector
of such a reset Markov chain, we exploit the block triangular block Toeplitz structure of the
transition matrices involved and we directly obtain the approximation from its steady state vector.
The concept of the reset Markov chains can be applied to a broad class of queueing systems and
is demonstrated in full detail on a discrete-time queue with Markovian arrivals and phase-type
services (i.e., the D-MAP/PH/1 queue). We focus on the queue length distribution at time t and
the waiting time distribution of the n-th customer. Other distributions, e.g., the amount of work
left behind by the n-th customer, that can be acquired in a similar way, are briefly touched upon.

Using various numerical examples, it is shown that the method provides good to excellent
approximations at low computational costs—as opposed to a recursive algorithm or a numerical
inversion of the Laplace transform or generating function involved—offering new perspectives
to the transient analysis of practical queueing systems.
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1. INTRODUCTION

Transient performance measures have long been recognized as being
complementary to the steady state characteristics of a queueing system,
especially when the inter-arrival and service times are not exponential,
either because there often exists a need to understand the initial
behavior of a system, or simply because the system has no steady state.
Obtaining transient information is generally considered more complicated
in comparison to a steady state analysis. Roughly speaking, two main
approaches have been developed to obtain transient distributions: the
first relies on numerically inverting the Laplace transform or generating
function involved (Choudhury[3]; Hofkens[4]; Lucantoni[9]), whereas the
second is based on recursive computations. Others, such as Ny[15],
combine uniformization techniques to reduce the problem to discrete
time and afterward apply a recursive algorithm. Although these methods
are effective in obtaining transient distributions related to the system
behavior at the very beginning, their computational costs grow rapidly
when considering events further along the time axis. As systems often
take a considerable amount of time to reach their steady state, these
methods can often no longer provide results within acceptable time frames.
We propose a method that can achieve accurate approximations to the
transient problem by making use of powerful steady state algorithms.

The key property of the proposed method is that we can approximate
the interval [0, t ] or [1,n] by a negative binomial distribution—which is the
discrete time counterpart of the Erlang distribution—with k phases, for k
sufficiently large. Meaning, the system state at time t (or on the n-th arrival)
can be approximated by observing the system after a negative binomially
distributed number of slots (or arrivals). The idea to approximate time t
by an Erlang distribution is not new and was explored some time ago to
obtain transient probabilities of finite state continues time Markov chains
(Carmo[2]; Ross[16]). The choice of the negative binomial distribution to
approximate time t (or the nth arrival) is in some sense optimal. Telek[17]

has proven that the discrete time PH distribution with k phases, a mean
mu > k and a minimal coefficient of variation is the negative binomial
distribution with parameters (k/mu , k). Thus, the closest we can get to a
deterministic distribution with a mean mu , if we make use of a discrete PH
distribution with at most k phases, is the negative binomial distribution with
parameters (p = k/mu , k).

The method proposed in this paper computes the approximated
transient performance measures via a single steady state analysis of a so-
called reset Markov chain, which we obtain by introducing reset events
in the evolution of the queueing system under consideration. The steady
state vector of this reset Markov chain, which we compute by exploiting
the structural properties of the transition block matrices, directly leads to
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the approximation of interest. The concept of the reset Markov chains can
be applied to a broad class of queueing systems, the main requirement
being that the queue is governed by a homogeneous Markov chain whose
transition matrix is sufficiently structured, e.g., a Quasi-Birth-Death (QBD),
M/G/1 or GI/M/1 type (Neuts[13,14]). Instead of giving a general rather
superficial discussion, we have chosen to present a detailed exposition
of the method when applied on a discrete time queue with Markovian
arrivals and phase-type services (the D-MAP/PH/1 queue). This choice
was motivated by Hofkens[4], where a VBR playout buffer is dimensioned
using the transient waiting time distribution of the nth customer in a D-
MAP/PH/1 queue. It should however be clear that reset Markov chains
can also be used for queueing systems containing batch arrivals, service
vacations or multiple servers.

The paper is structured as follows: Section 2 describes the main
characteristics of the D-MAP/PH/1 queue. Approximations to the queue
length distribution at time t and the waiting time distribution of the
nth customer, under the assumption that the queue is empty at time
0, are developed in sections 3 and 4. Within section 5 we indicate how
to compute the steady state vector of the reset Markov chains discussed
in sections 3 and 4. More general initial conditions, where the queue
holds r customers at time 0, are dealt with in section 6. Other transient
distributions such as the work left behind by the nth customer are briefly
touched upon in section 7. Finally, a considerable amount of numerical
examples demonstrating the accuracy and efficiency of the new method are
presented in section 8.

2. THE D-MAP/PH/1 QUEUE

The D-MAP arrival process considered is the discrete time version
of the Markovian arrival process (MAP) Lucantoni[8,10] and was first
introduced in Blondia[1]. D-(B)MAPs form a class of tractable Markovian
arrival processes, which, in general, are non-renewal and which include the
discrete time variants of the Markov modulated Poisson process, the PH-
renewal process and superpositions of such processes as particular cases.
Formally, a D-MAP is defined by a set of two positive l × l matrices D0 and
D1, with the property that

D = D0 + D1 (1)

is a transition matrix. By definition, the Markov chain Jt associated with D
and having � j |1 ≤ j ≤ l� as its state space, is controlling the actual arrival
process as follows. Suppose Jt is in state j1 at time t . By going to the
next time instance t + 1, there occurs a transition to another or possibly
the same state, and an arrival may or may not occur. The entries (D1)j1,j2
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represent the probability of having a transition from state j1 to j2 and a
customer arrival. A transition from state j1 to j2 without an arrival will occur
with probability (D0)j1,j2 . For D primitive, the Markov chain Jt has a unique
stationary distribution. Let � be the stationary probability vector of the
Markov chain Jt , i.e., �D = � and �el = 1, with ei an i × 1 column vector of
ones. The mean arrival rate � of the D-MAP is given by � = �D1el .

The service times are assumed to follow a discrete time phase-type (PH)
distribution with matrix representation (m, �,T ), where m is a scalar, � a
1 × m stochastic vector and T a m × m substochastic matrix (Neuts[14]). The
sth component of the vector � represents the probability that a customer
starts his service in phase s. Let T ∗ = em − Tem , then the sth entry of T ∗

denotes the probability that a customer completes his service provided that
he is in phase s at the current time epoch. Finally, the (s1, s2)th entry of
T equals the probability that a customer continues his service in phase s2
at the next time epoch provided that he is in phase s1 at the current time
epoch. The mean service time is given by E [S ] = �(Im − T )−1em , where Ii
is a unity matrix of dimension i . The set of discrete time PH distributions
is known to be very useful in approximating service time distributions
encountered in communications networks (Lang[5]).

A single work conserving server is considered. All events, such as new
arrivals and service completions, are assumed to occur just prior to the
discrete time epochs. It is well known that the D-MAP/PH/1 queue forms
a QBD Markov chain with transition matrix P (Blondia[1]):

P =


B1 B0 0 0 � � �

B2 A1 A0 0
. . .

0 A2 A1 A0
. . .

...
. . . . . . . . . . . .

 , (2)

where B0 = D1 ⊗ �, B1 = D0, B2 = D0 ⊗T ∗, A0 = D1 ⊗T , A1 = (D0 ⊗T ) +
(D1 ⊗T ∗�) and A2 = D0 ⊗T ∗�, with ⊗ the matrix Kronecker product.
Notice, depending on whether � = �E [S ] < 1, the Markov chain P is
stationary or not.

3. THE QUEUE LENGTH DISTRIBUTION OF A D-MAP/PH/1
QUEUE AT TIME t

In this section, we focus on approximating the state of the Markov
chain P at time t , given that the queue is empty at time zero and the initial
phase of the D-MAP is distributed according to some stochastic vector �
(meaning that its ith entry �i equals the probability that state i is the initial
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D-MAP state). Denote X (t) = (�, 0, 0, � � � )(P )t as the probability vector of
the system at time t . Clearly, unless t is small, computing X (t) recursively
by means of X (t) = X (t − 1)P is a time consuming process, even when
exploiting the structure of P .

We propose a method that allows us to approximate X (t) directly, by
considering the system state Xk(t) after a negative binomially distributed
number of slots Zk,t , which we compute by means of a steady state
analysis of a reset Markov chain. The random variable Zk,t is chosen as
having a negative binomial distribution with parameters (p = k/(t + 1), k),
meaning Zk,t is the sum of k independent geometrica random variables with
parameter p = k/(t + 1). Using some of the basic properties of the negative
binomial distribution we have: E [Zk,t ] = t + 1 and Var [Zk,t ] = k(1 − p)/p2 =
(t + 1)2/k − (t + 1). Thus, as k, for 1 ≤ k ≤ t + 1, increases, the variance of
Zk,t decreases to zero and Zk,t becomes deterministic. Assuming that Zk,t can
be regarded as close to deterministic, the system state at time Zk,t should
provide us with a good approximation to the system state at time t .

Let us now explain how to compute the system state at time Zk,t

via a steady state analysis. Consider the stochastic process that evolves
according to the transition matrix P , but that is repeatedly reset after a
time Zk,t . Meaning, if we perform a Bernoulli trial at each time epoch, with
parameter p = k/(t + 1), the system will be reset whenever k successes have
occurred. The reset counter is then defined as the number of pending
successes before the next reset event. Clearly the reset counter takes values
in the range �1, 2, � � � , k�. Although adding the reset counter variable as an
additional auxiliary variable to the Markov chain P increases the size of
its transition blocks by a factor k, we will demonstrate that by exploiting
their structural properties, we can drastically reduce the time and memory
complexity needed to compute its steady state vector (see section 5). After
adding the reset counter as an additional auxiliary variable to the Markov
chain P , the reset process becomes a QBD characterized by the transition
matrix Pk,t :

Pk,t =



Bk,t
1 + Ck,t

0 Bk,t
0 0 0 � � �

Bk,t
2 + Ck,t

1 Ak,t
1 Ak,t

0 0
. . .

Ck,t
1 Ak,t

2 Ak,t
1 Ak,t

0
. . .

Ck,t
1 0 Ak,t

2 Ak,t
1

. . .
...

...
. . . . . . . . .


, (3)

aNotice, we use the following definition for a geometric random variable: X is geometric if
P [X = i] = (1 − p)i−1p, for i > 0.
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where

Ak,t
i = H k

0 (p)⊗Ai , (4)

Bk,t
i = H k

0 (p)⊗Bi , (5)

Ck,t
0 = H k

1 (p)⊗ (el�), (6)

Ck,t
1 = H k

1 (p)⊗ (eml�) = Ck,t
0 ⊗ em , (7)

for i = 0, 1 or 2, and p = k/(t + 1). The k × k matrices H k
i (p) given below,

describe the evolution of the reset counter:

H k
0 (p) =



(1 − p) 0 � � � 0 0

p (1 − p)
. . . 0 0

0 p
. . . 0 0

...
. . . . . . . . .

...
0 0 � � � p (1 − p)


,

H k
1 (p) =


0 0 � � � 0 p

0 0
. . . 0 0

...
. . . . . . . . .

...
0 0 � � � 0 0

 . (8)

Notice, the matrix H k
0 (p) covers all the transitions that do not bring about a

reset event, either because the reset counter was larger than one (in which
case it decreases by one with probability p) or because the reset counter
did equal one, but the Bernoulli trial failed. H k

1 (p) covers the transitions
associated with a reset event; such an event can only occur if the reset
counter was equal to one and the trial was successful.

Even though the D-MAP/PH/1 queue of interest might be unstable,
Pk,t is always stationary (for t + 1 > k > 0) due to the reset feature (see
Appendix A). An efficient algorithm that computes the steady state vector
	k,t , defined as 	k,tPk,t = 	k,t and 	k,t e = 1 (where e is an infinite column
vector with all its entries equal to one), for a matrix of the form Pk,t

is presented in section 5. This algorithm takes advantage of the block
triangular block Toeplitz form of the matrices Ak,t

0 , Ak,t
1 and Ak,t

2 . In order to
obtain the system state Xk(t) of the original Markov chain P at time Zk,t , it
suffices to consider the system state of the Markov chain Pk,t when a reset
event occurs. Denote 	k,t = (	k,t

0 , 	k,t
1 , � � � , ), where 	k,t

0 is a 1 × kl vector and
	k,t
i , for i > 0, a 1 × kml vector. Moreover, let 	k,t

i = (	k,t
i ,1, � � � , 	

k,t
i ,k), with 	k,t

i ,j ,
for j = 1, � � � , k, a 1 × ml (1 × l) vector for i > 0 (i = 0). The probability of
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being in some state s when a reset event takes place equals the expected
number of reset events that occur at an arbitrary time slot from state s,
divided by the rate 1/(t + 1) at which reset events occur. This yields

Xk(t) = p(t + 1)(	k,t
0,1, 	

k,t
1,1, 	

k,t
2,1, � � � ) = k(	k,t

0,1, 	
k,t
1,1, 	

k,t
2,1, � � � ). (9)

Indeed, a reset event can only occur (with probability p) when the reset
counter equals 1. Having found an approximation Xk(t) for X (t), we easily
find an approximation Qk(t) for Q (t), the queue length distribution at
time t , by summing the appropriate probabilities.

Remark. Instead of approximating the system state at time t by the state
at time Zk,t , we can also develop a slightly different approximation as
follows. We start by observing that the steady state vector 	k,t of Pk,t obeys
the following equation:


k(	k,t) = 1
t + 1

∞∑
i=0

P [Zk,t > i]X (i), (10)

where 
k(x) = ∑k
i=1

(
	k,t
0,i , 	

k,t
1,i , 	

k,t
2,i , � � �

)
. Indeed, if we observe the Markov

chain characterized by Pk,t at an arbitrary time instant, it is easy to show
that jP [Zk,t = j ]/(t + 1) equals the probability that the length of the reset
interval in which our observed slot lies, equals j . Thus, P [Zk,t = j ]/(t + 1)
equals the probability that the observed slot is the (i + 1)th of those j slots,
for i + 1 ≤ j . Hence,

∑
j>i P [Zk,t = j ]/(t + 1) = P [Zk,t > i]/(t + 1) equals

the probability that we observe the system i time units after a reset event.
The probability vector corresponding to such a slot is X (i). As k increases
to t + 1, these probabilities approach 1 for i ≤ t and 0 for i > t . Meaning
that as k increases, 
k(	k,t) approaches 1/(t + 1)

∑t
i=0 X (i). Defining

X ′
k(t) = (t + 1)
k(	k,t) − t
k(	k,t−1) thus provides us with an alternative

approximation for X (t). When comparing the approximations Qk(t) and
Q ′

k(t), obtained from Xk(t) and X ′
k(t), we found that the tail probabilities of

Xk(t) where somewhat more accurate (especially for k small), whereas X ′
k(t)

provides us with a closer match for the initial probabilities of the queue
length distribution.

4. THE WAITING TIME DISTRIBUTION OF THE nth CUSTOMER
IN A D-MAP/PH/1 QUEUE

We can apply a similar idea as in the previous section to obtain an
approximation Wk(n) for the waiting time distribution W (n) of the nth
customer. The key is to reset the Markov chain P not at time Zk,t , but at the
Zk,nth arrival, where Zk,n is a random variable having a negative binomial
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distribution with parameters (p = k/n, k). Let us have a closer look at the
reset Markov chain used to obtain the approximation Wk(t). Resetting the
system at the Zk,nth arrival means that we perform a Bernoulli trial at each
arrival epoch and when k successes have occurred, we reset the system.
Thus, the reset counter will remain the same unless there is an arrival with
an associated Bernoulli trial that is successful, in which case the counter
decreases by one (unless it equaled one and is subsequently set to k).
Denoting the transition matrix of this Markov chain as P̃k,n , we have

P̃k,n =



B̃k,n
1 + C̃ k,n

0 B̃k,n
0 0 0 � � �

B̃k,n
2 + C̃ k,n

1 Ãk,n
1 Ãk,n

0 0
. . .

C̃ k,n
1 Ãk,n

2 Ãk,n
1 Ãk,n

0
. . .

C̃ k,n
1 0 Ãk,n

2 Ãk,n
1

. . .
...

...
. . . . . . . . .


, (11)

where

Ãk,n
0 = H k

0 (p)⊗A0, (12)

Ãk,n
1 = (H k

0 (p)⊗ (D1 ⊗T ∗�)) + (Ik ⊗ (D0 ⊗T )), (13)

Ãk,n
2 = Ik ⊗A2, (14)

B̃k,n
0 = H k

0 (p)⊗B0, (15)

B̃k,n
i = Ik ⊗Bi , (16)

C̃ k,n
0 = H k

1 (p)⊗ (D1el�) (17)

C̃ k,n
1 = H k

1 (p)⊗ (D1el�⊗ em) = C̃ k,n
0 ⊗ em , (18)

with i = 1, 2 and p = k/n. Notice, the matrices A0 and B0 correspond to an
arrival, whereas the matrices A2,B1 and B2 do not.

Denote Yk,n as the time at which the Zk,nth arrival occurs in the original
Markov chain P and let the vector X (Yk,n) reflect the system state of the
Markov chain P at time Yk,n . In order to obtain X (Yk,n) it suffices to
consider the system state of the Markov chain P̃k,n when a reset event
occurs. Denote 	̃k,n = (	̃k,n

0 , 	̃k,n
1 , � � � , ), where 	̃k,n

0 is a 1 × kl vector and 	̃k,n
i ,

for i > 0, a 1 × kml vector. Moreover, let 	̃k,n
i = (	̃k,n

i ,1 , � � � , 	̃
k,n
i ,k ), with 	̃k,n

i ,j , for
j = 1, � � � , k, a 1 × ml (1 × l) vector for i > 0 (i = 0). Then, in view of the
argument presented to obtain Eqn. (9), it follows

X (Yk,n) = E [reset]p(	̃k,n
0,1 · (D1el)T , 	̃

k,n
1,1 · (D1el ⊗ em)T , 	̃

k,n
2,1 · (D1el ⊗ em)T , � � � ),

(19)
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where E [reset] is the expected reset time of the Markov chain P̃k,n (which
might differ from the expected arrival time of the nth customer) and
the vector product appearing in Eqn. (19) is the point-wise product. An
algorithm to compute E [reset] is presented in Appendix B. Indeed, a
reset event can only occur (with probability p) when the reset counter
equals 1 and when an arrival occurs. Having found an approximation
X (Yk,n) for the system state at the nth arrival, we can define the following
approximation Wk(n) to W (n), the waiting time distribution of the nth
customerb:

P [Wk(n) = 0] =
∑
j

X (Yk,n)〈0,j〉 +
∑
s,j

X (Yk,n)〈1,j ,s〉(T ∗)s , (20)

P [Wk(n) = w] =
∑
q≥1

∑
s,j

X (Yk,n)〈q ,j ,s〉P [S (q−1)∗ + R(s) = w], (21)

where S (q−1)∗ denotes the (q − 1)-fold convolution of the service time
distribution S , X (Yk,n)st the entry of the vector X (Yk,n) that corresponds
to state st and R(s) denotes the residual service time provided that the
current phase of service is s, i.e., P [R(s) = r ] = (T rT ∗)s .

5. COMPUTING THE STATIONARY VECTORS �k,t AND �̃k,n

Both the transition matrices Pk,t and P̃k,n have the following form:

P =



B1 + C0 B0 0 0 � � �

B2 + C1 A1 A0 0
. . .

C1 A2 A1 A0
. . .

C1 0 A2 A1
. . .

...
...

. . . . . . . . .


. (22)

A Markov chain of this form is called a Quasi-Birth-Death (QBD) Markov
chain with a generalized initial condition Neuts[13]. The key in finding the
steady state probability vector 	 = (	0, 	1, � � � ) of P , where 	0 and 	i , for
i > 0, have the same dimension as B1 and A1, respectively, is to solve the
following equation:

G = A2 + A1G + A0G 2. (23)

bThe notations 〈0, j〉 and 〈q , s, j〉 are used to reflect the states associated with an empty queue
and a queue holding q customers (the first being in phase s in the service facility), respectively,
while the current state of the arrival process is j .
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The matrices A0, A1 and A2 of both the Pk,t and the P̃k,n Markov chains
are block triangular block Toeplitz (btbT) matrices. A btbT matrix X is
characterized by its first block column as follows:

X =



X1 0 � � � 0 0

X2 X1
. . . 0 0

...
. . . . . . . . .

...
Xk−1 Xk−2

. . . X1 0
Xk Xk−1 � � � X2 X1

 . (24)

One of the advantages of working with btbT matrices is that it suffices to
store the first block column. Moreover, it is easily seen that the product
between two btbT matrices is again btbT. Therefore, the G matrices Gk,t

and G̃k,n , corresponding to Pk,t and P̃k,n , are also btbT matrices.
We propose to use the Cyclic Reduction (CR) algorithm to compute

G (Meini[12]). This algorithm is very easy to implement, requires a low
amount of memory, converges quadratically and is numerically stable.
Although A = A0 + A1 + A2 is not stochastic in our case (as C1 > 0), the
convergence of the CR algorithm is still guaranteed by the stationarity
of the Markov chains concerned. Additionally, each of the intermediate
matrices used by the CR algorithm is a btbT matrix (because the inverse
of a btbT is also btbT). Hence, we can easily reduce the time and
memory complexity of a single iteration from O(k3m3l 3) and O(k2m2l 2)
to O(k2m3l 3) and O(km2l 2), respectively. The time complexity can even be
further reduced to O(km3l 3 + k log(k)m2l 2) by making use of fast Fourier
transforms (see Meini[11], Chapter 2 for details).

Having found G , one computes the btbT matrices R and R1 as A0(I −
A1 − A0G)−1 and B0(I − A1 − A0G)−1 (notice, the blocks of the btbT matrix
R1 are not square) (Latouche[7]). The steady state probability vectors 	i are
then found as:

	0 = 	0(B1 + C0 + R1(B2 + (I − R)−1C1)), (25)

	1 = 	0R1, (26)

	i = 	i−1R , (27)

for i > 1, while 	0 and 	1 are normalized as 	0e + 	1(I − R)−1e = 1.

6. GENERAL INITIAL CONDITIONS

In the previous sections we considered the transient behavior of the
D-MAP/PH/1 queue where the system was empty at time 0 and the initial
D-MAP state was determined by a vector �. In this section we indicate how
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to deal with a more general initial system state. We assume that r customers
are present in the queue at time 0 and let �1 determine the phase of the
customer in service at time 0, that is, (�1)i represents the probability that
its service is in phase i at time 0. Clearly, we can apply the same principles
as in the previous two sections to obtain an approximation for the queue
length distribution at time t , as well as the waiting time distribution of the
nth customer. The only difficulty lies in the fact that the transition matrices
involved are no longer of the form given in section 5, because the reset
events no longer result in a transition to an empty queue state.

Given the more general initial condition mentioned above, it can be
readily seen that both transition matrices Pk,t and P̃k,n involved have the
following form:

P =



B1 B0 0 � � � 0 C0 0 � � �
B2 A1 A0 � � � 0 C1 0 � � �

0 A2 A1
. . . 0 C1 0 � � �

...
...

. . . . . . . . .
...

...
. . .

0 0 0
. . . A1 A0 + C1 0 � � �

0 0 0
. . . A2 A1 + C1 A0

. . .

0 0 0
. . . 0 A2 + C1 A1

. . .
...

...
...

. . . . . .
...

...
. . .


, (28)

where the matrices C0 and C1 appear on the (r + 1)th block column of the
transition matrix P . As in the previous sections, these matrices correspond
to a reset event.

The C0 and C1 matrices appearing in both Markov chains of interest
have the following form: C0 = �0� and C1 = �1� for some column vectors
�i , for i = 0, 1, and for some row vector �. We shall use the superscripts
k, t and k,n to identify the system of interest. The �0 and �1 vectors hold
the probabilities that a reset event takes place given that the server is idle
and busy, respectively. The current phase of the customer in service does
not influence these probabilities; hence, �1 = �0 ⊗ em . Given that we are in
some state i of the Markov chain, the reset probabilities are not affected
by the initial state. Therefore, looking at the two previous sections, we find
�k,t0 = (H k

1 (k/(t + 1))ek)⊗ el and �k,n0 = (H k
1 (k/n)ek)⊗ (D1el). The vector �

determines the new initial state after resetting the system: � = (0, (�⊗ �1)),
where 0 denotes a zero vector of the appropriate dimension (that is, of
dimension ml(k − 1)).

Although we can regard a transition matrix of the form given in
Eqn. (28) as a QBD with a generalized boundary condition, a more
efficient algorithm is presented in Appendix C. This algorithm is based on
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a QBD reduction technique to compute the steady state vector and exploits
the structure of the matrices C0 and C1. We shall refer to a Markov chain
of this particular form as an r -reset QBD, as P is a QBD that also allows an
immediate reset event to level r .

Remark. The more general case where the initial number of customers
follows a bounded distribution Nini , i.e., there exists some nmax such that
P [Nini ≤ nmax ] = 1, can be treated in a similar way. However, in this case
one needs to add two artificial states to each level (i < nmax) to construct
the QBD (one for the upward and one for the downward direction).
Two artificial states suffice as drawing a random number rini from the
distribution Nini , can be split in several steps: (i) we first draw a random
number to decide whether rini is more, less or equal to i (where i is the
level in which the reset event occurs), (ii) given that rini is more (less) than
some j we can draw a random number to decide whether it is equal to j + 1
or more ( j − 1 or less) and repeat this step until rini is determined.

7. OTHER TRANSIENT PERFORMANCE DISTRIBUTIONS

The introduction of reset events is not only effective in acquiring the
distribution of the queue length at time t or the waiting time of the
nth customer, but can also facilitate the computation of other transient
performance distributions.

For instance, assume we want to calculate the distribution of the
amount of work left behind by the nth customer. In order to find this
distribution, it suffices to obtain the queue length distribution at the nth
service completion. We can approximate this distribution by means of
a technique analogue to section 4, but instead of resetting the Markov
chain after Zk,n arrivals, the reset event takes place at the Zk,nth service
completion. We can incorporate such events in the Markov chain P , by
performing a Bernoulli trail (with success probability p = k/n) whenever
a customer leaves the service facility and by resetting the chain at the kth
success.

Other examples include the queue length distribution when a specific
state j of the arrival process (or a certain phase s of the service process) is
entered/visited for the nth time. When considering a D-MAP/PH/1 queue
with service vacations, reset events can be used to approximate the queue
length distribution at the beginning/end of the nth service vacation and
so on.

8. NUMERICAL EXAMPLES

A fairly arbitrary D-MAP/PH/1 queue was chosen to perform these
experiments. Many other cases not presented in this section provided
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similar results. We consider a 2-state D-MAP that generates an arrival with
probability d1 = 0. 1 when in state 1 and with probability d2 = 0. 25 or 0. 5
while in state 2. The average sojourn time in both states is 500 and 1000
slots, respectively. Hence,

D0 =
[
0. 998(1 − d1) 0. 002(1 − d1)
0. 001(1 − d2) 0. 999(1 − d2)

]
, D1 =

[
0. 998d1 0. 002d1
0. 001d2 0. 999d2

]
.

(29)

For d2 = 0. 25, the arrival rate � of the D-MAP equals 0. 2, whereas for d2 =
0. 5 we have � = 0. 3666. The service times follow a 3-phase PH distribution
characterized by (3, �,T ):

T =
 4/5 0 0

0 1/2 0
0 0 1/4

 , � = (3/4, 1/8, 1/8). (30)

The mean service time E [S ] = �(I − T )−1e3 = 4. 1666, resulting in a system
load � = 0. 8333 and 1. 5277 for d2 = 0. 25 and 0. 5, respectively. Notice, for
d2 = 0. 5 the system is severely overloaded causing a continuous growth of
the mean queue length.

8.1. Queue Length Distribution Q(t)

Figure 1 presents the exact queue length distribution Q (t), for t =
50, 500 and 5000, as well as the approximations Qk(t) for various values
of k. The exact results were obtained by a brute-force method whose
computation time grows as a function of t , whereas the computational
resources needed for the approximation method are almost insensitive to
t (for a fixed value of k). The computation time for k = 150 takes less
than 10 secondsc on a PC with a 2Ghz Intel Pentium CPU and 512 MB
RAM without relying on fast Fourier transforms. The initial state of the D-
MAP was state 2 (i.e., � = (0, 1)). Results not presented here have shown
that the accuracy of the results was not influenced by the choice of the
initial D-MAP state. A number of conclusions can be drawn from Figure 1.
In general, it is fair to say that the approximation method provides good-
to-excellent results for fairly limited values of the system parameter k.
Secondly, as t grows, the accuracy of Qk(t) tends to decrease (while keeping
k fixed). This is logical because Var [Zk,t ] = (t + 1)2/k − (t + 1) grows as
a function of t for k fixed. The exception to this general rule is Figure
1(e), were we obtain better results in comparison with t = 500. This is

cExcept for Figure 1(f), due to the long queue lengths. Computing R and solving the boundary
problem takes less than 10 seconds even for k = 200.
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FIGURE 1 Queue length distribution Q (t) for � = 0. 8333: a) t = 50, c) t = 500 and e) t = 5000;
and � = 1. 5277: b) t = 50, d) t = 500, f) t = 5000.
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due to the fact that the queueing system is stable, i.e., �< 1, therefore,
it has a steady state distribution Q . Given the mean sojourn times of 500
and 1000 slots for the D-MAP arrival process, it can be expected that Q (t)
starts to approach the steady state distribution Q for t larger than a few
thousand. Furthermore, it should be intuitively clear that the error made
by Qk(t) depends to a great extent on the magnitude of the changes that
Q (t) undergoes while increasing (or decreasing) t . If t is large and the
system has a steady state, we may expect these changes to be minor and
therefore, Qk(t) more easily approximates Q (t) for k small. This intuition
is also confirmed by Figures 1(b,d,f) were the changes are significant for all
t as the mean queue length grows continuously as a function of t . Indeed,
even for k = 50 the error on the 10−7-quantile is considerable.

8.2. Waiting Time Distribution W(n)

In this section we present some results for the waiting time distribution
of the nth customer. We consider the same D-MAP/PH/1 queue as in
the previous section and set d1 = 0. 25. As before, the initial D-MAP state
vector is chosen as � = (0, 1). Figure 2 presents a comparison between
the approximations Wk(n) and the exact distribution W (n) for n =
150 and 400. Exact results were obtained by numerically inverting the
two-dimensional generating function of the queueing delay of the nth
arrival (Hofkens[4], Theorem 1) by means of a MATLAB implementation
of the Fourier-series method presented in Choudhury[3]. Unfortunately
computing exact results in this manner is very time consuming, especially
for n large. Therefore, we had to limit ourselves to n ≤ 400 (which
already took many hours to compute). The computation time of the
approximation method is nearly insensitive to the value of n and

FIGURE 2 Waiting time distribution W (n) for � = 0. 8333: a) n = 150, b) n = 400.
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computing X (Yk,n) requires about 1 second for k = 50, obtaining the
waiting time distribution from X (Yk,n) takes a few seconds. In conclusion,
using the approximation method we can obtain (fairly) accurate results
at substantially lower computational costs, bringing the computation of
transient waiting time distributions more within practical reach.

8.3. General Initial Conditions

Finally, some results on the same D-MAP/PH/1 queue (with d1 =
0. 25) and an initial number of r = 50 customers in the queue at time 0,
are depicted in Figure 3. The first of these 50 customers will start his
service at time 0, meaning �1 = � in this particular case. As before,
we find a good agreement between the exact results, obtained by a
brute-force computation and our approximation method. Both queue
length distributions (at time t = 50 and 500) are strongly affected by the
initial 50 customers present in the system. As t is further increased the
local maximum around q = 50 will eventually disappear (as the system has
a steady state for � = 0. 8333).

APPENDIX A: STATIONARITY OF Pk,t AND P̃k,n

The Markov chains characterized by the transition matrices Pk,t and P̃k,n

are stationary, for 1 ≤ k ≤ t and 1 ≤ k < n.

Proof. We start with the Markov chain Pk,t . Denote I as the set of empty
queue states 〈0, k, i〉 of Pk,t for which �i > 0, where 〈0, c , i〉 reflects an empty
queue with the D-MAP state being i and the reset counter equal to c .
The states in I are obviously recurrent as their expected return time is

FIGURE 3 Queue length distribution Q (t) with r = 50 initial customers for � = 0. 8333: a) t = 50,
b) t = 500.
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upper bounded by (t + 1)/�i . All other states can be subdivided into two
subsets: (i) those states j that are unreachable from any of the states in I
and (ii) the states j that can be reached with some probability pij > 0 from
one of the states i in I (before a reset event occurs). The first set of states
is clearly transient as the probability that Zk,t is finite equals one. Notice,
depending on the initial state of the Markov chain, these states are either
visited a finite number of times or not at all. The second set of states forms
an irreducible class of states that are all recurrent, because the expected
return time of any state j belonging to the second subset is upper bounded
by (t + 1)/(�ipij). The arguments for P̃k,n are analogous and make use of
the fact that E [reset] is finite for all n and k ≤ n whenever the arrival rate
of the D-MAP � > 0.

The presence of possible transient states does not cause any problems as
their corresponding entries in the stationary probability vector equal zero.

APPENDIX B: COMPUTING THE EXPECTED VALUE E[reset]
The expected value of the nth arrival, denoted as E [Yn], can obviously

be read as

E [Yn] = E [Yn − Yn−1] + E [Yn−1 − Yn−2] + · · · + E [Y2 − Y1] + E [Y1 − Y0],
(31)

where Y0 = 0. The probability vector of the D-MAP state after i arrivals
equals �((I − D0)

−1D1)
i . Meaning that E [Yi − Yi−1], for i = 1, � � �n, matches

E [Yi − Yi−1] = �((I − D0)
−1D1)

i−1
∞∑
j=1

j(D0)
j−1D1el , (32)

= �((I − D0)
−1D1)

i−1((I − D0)
−2D1)el . (33)

Define �1 = ((I − D0)
−2D1)el and �i = (I − D0)

−1D1�i−1, for i > 1, then
E [Yi − Yi−1] = ��i . Hence, the expected reset time of the Markov chain P̃k,n

can be written as

E [reset] =
∑
i≥1

P [Zk,n ≥ i]��i , (34)

where the probabilities P [Zk,n ≥ i] decrease to zero and can be computed
by means of a k-fold convolution or explicitly as

P [Zk,t ≥ i] = 1 − P [Zk,t < i] = 1 −
i−1∑
j=k

(
j − 1
k − 1

)(
k

t + 1

)k(
1 − k

t + 1

)j−k

.

(35)
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APPENDIX C: COMPUTING THE STATIONARY VECTOR OF AN
r-RESET QBD

To compute the steady state vector 	 of P (see Eqn. (28)), we
shall construct a level dependent QBD Markov chain (Latouche[6]) with
transition matrix PQBD , by exploiting the structure of the matrices C0 and
C1. The matrix PQBD is set up such that, when censored on the states of
P only, PQBD coincides with P . The set of states of P that correspond to
having i , for i ≥ 0, customers in the queue is referred to as level i of the
Markov chain P . To construct PQBD we add a single state to each level of the
Markov chain P and we call this state the artificial state of level i . The idea
behind this construction is the following: whenever a reset event occurs,
PQBD enters the artificial state of the current level i . Next, if r > i , r − i
transitions between artificial states will follow, each one increasing the level
by one. Similarly, if r < i , i − r transitions will follow, each one decreasing
the level by one. Finally, when level r is reached, we make a transition from
the artificial state of level r to one of the other states of level r , using the
vector �. Hence,

PQBD =



Br
1 Br

0 0 � � � 0 0 0 0 � � �

Br
2 A<r

1 A<r
0 � � � 0 0 0 0 � � �

0 A<r
2 A<r

1
. . . 0 0 0 0 � � �

...
...

. . . . . . . . .
...

...
...

. . .

0 0 0
. . . A<r

1 A<r
0 0 0 � � �

0 0 0
. . . Ar

2 Ar
1 Ar

0 0
. . .

0 0 0
. . . 0 A>r

2 A>r
1 A>r

0
. . .

0 0 0
. . . 0 0 A>r

2 A>r
1

. . .
...

...
...

. . . . . .
...

...
. . . . . .



, (36)

where

Ar
0 = A>r

0 =
[
A0 0
0 0

]
, A<r

0 =
[
A0 0
0 1

]
, Br

0 =
[
B0 0
0 1

]
,

A<r
1 = A>r

1 =
[
A1 �1
0 0

]
, Ar

1 =
[
A1 �1
� 0

]
, Br

1 =
[
B1 �0
0 0

]
, (37)

Ar
2 = A<r

2 =
[
A2 0
0 0

]
, A>r

2 =
[
A2 0
0 1

]
, Br

2 =
[
B2 0
0 0

]
.

Making use of the results presented in Latouche[6], we can develop the
following algorithm to compute 	̂, the invariant vector of PQBD . Denote
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	̂ = (	̂0, 	̂1, � � � ), where 	̂0 and 	̂i , for i > 0, have the same dimension as Br
1

and Ar
1. We start by defining a set of r matrices denoted as G2, � � � ,Gr and

G>r . The matrix G>r is computed by solving the following equation:

G>r = A>r
2 + A>r

1 G>r + A>r
0 (G>r )

2. (38)

This equation is of the same form as Eqn. (23) and is solved using the CR
algorithm (Meini[12]). Next, the remaining r − 1 matrices Gi are found in
a backward order:

Gr = (I − Ar
1 − Ar

0G>r )
−1Ar

2, (39)

Gi = (I − A<r
1 − A<r

0 Gi+1)
−1A<r

2 , (40)

for i = r − 1, r − 2, � � � , 2. Using these r matrices, we proceed by
introducing the matrices R0, � � � ,Rr and R>r :

R0 = Br
0(I − A<r

1 − A<r
0 G2)

−1, (41)

Ri = A<r
0 (I − A<r

1 − A<r
0 Gi+2)

−1, (42)

Rr−1 = A<r
0 (I − Ar

1 − Ar
0G>r )

−1, (43)

Rr = Ar
0(I − A>r

1 − A>r
0 G>r )

−1, (44)

R>r = A>r
0 (I − A>r

1 − A>r
0 G>r )

−1, (45)

for i = 1, � � � , r − 2. Applying Theorem 3.2 from Laoutche[7], the steady
state vector 	̂ can be expressed as:

	̂0 = 	̂0

(
Br
1 + R0Br

2

)
, (46)

	̂i = 	̂i−1Ri−1, (47)

	̂r+j = 	̂r+1(R>r )
j−1, (48)

for i = 1, � � � , r + 1 and j ≥ 2. The vector 	̂0 is normalized as

	̂0e + 	̂0

r−1∑
k=0

(
k∏

j=0

Rj

)
e + 	̂0

(
r∏

j=0

Rj

)
(I − R>r )

−1e = 1. (49)

Having obtained the vector 	̂, we can derive 	, the invariant vector of P ,
as follows. Write 	̂0 and 	̂i , for i > 0, as (	̂f

0, 	̂
art
0 ) and (	̂

f
i , 	̂

art
i ), respectively,

where both 	̂art
0 and 	̂art

i are scalars. When censored on all the non-artificial
states, PQBD coincides with P , therefore,

	i = 	̂
f
i /(1 − c), (50)

where i ≥ 0 and c = ∑
i≥0 	̂

art
i .
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