
Transient analysis of tree-like processes and its
application to random access systems

J. Van Velthoven, B. Van Houdt
∗

and C. Blondia
University of Antwerp

Middelheimlaan 1
B-2020 Antwerp, Belgium

email: {jeroen.vanvelthoven,benny.vanhoudt,chris.blondia}@ua.ac.be

ABSTRACT
A new methodology to assess transient performance mea-
sures of tree-like processes is proposed by introducing the
concept of tree-like processes with marked time epochs. As
opposed to the standard tree-like process, such a process
marks part of the time epochs by following a set of Markov-
ian rules. Our interest lies in obtaining the system state at
the n-th marked time epoch as well as the mean time at
which this n-th marking occurs. The methodology trans-
forms the transient problem into a stationary one by apply-
ing a discrete Erlangization and constructing a reset Markov
chain. A fast algorithm, with limited memory usage, that
exploits the block structure of the reset Markov chain is
developed and is based, among others, on Sylvester ma-
trix equations and fast Fourier transforms. The theory of
tree-like processes generalizes the well-known paradigm of
Quasi-Birth-Death Markov chains and has various appli-
cations. We demonstrate our approach on the celebrated
Capetanakis-Tsybakov-Mikhailov (CTM) random access pro-
tocol yielding new insights on its initial behavior both in
normal and overload conditions.

1. INTRODUCTION
Over the last three decades, broad classes of frequently en-
countered queueing models have been analyzed by matrix-
analytic methods [22, 23, 18]. The embedded Markov chains
in these models are two-dimensional generalizations of the
classic M/G/1 and GI/M/1 queues, and quasi-birth-death
(QBD) processes. Matrix-analytic models include notions
such as the Markovian arrival process (MAP) and the phase-
type (PH) distribution, both in discrete and continuous time.
Considerable efforts have been put into the development of
efficient and numerically stable methods for their analysis
[5]. There is also an active search for accurate matching al-
gorithms for both PH distributions and MAP arrivals when

∗B. Van Houdt is a post-doctoral fellow of the FWO-
Flanders.

modeling communication systems, e.g., [2, 7, 15].

One of the more recent paradigms within the field of matrix-
analytic methods has been its generalization to discrete-time
bivariate Markov chains {(Xk, Nk), k ≥ 0}, in which the val-
ues of Xk are the nodes of a (d + 1)-ary tree (and Nk takes
values between 1 and h). By limiting the type of transi-
tions that can occur in such a Markov chain, tree structured
Markov chains of the M/G/1- [27], GI/M/1- [36] and QBD-
type [35] have been developed. In each of these models the
transitions fulfill a spacial homogeneity property, that is,
the transition probability between two nodes depends only
on the spacial relationship between the two nodes and not
on their specific values. Setting d = 0 reduces these Markov
chains to the standard M/G/1-, GI/M/1- and QBD-type
chains.

The set of tree-like processes [4] was originally introduced as
a subclass of the tree structured QBD Markov chains. Mean-
while, it has been shown that any tree structured QBD can
be reduced to a tree-like process [30]. Typical applications of
tree-like processes include single server queues with a LIFO
service discipline [36, 27, 14, 13]. In [29, 34, 31] tree-like
processes were used to analyze a set of well-known random
access algorithms, called tree or splitting algorithms. Some
recent work also indicates that tree-like processes can be
used to study priority queues [32]. Various numerical meth-
ods exist to examine the stability of a tree-like process and
to determine its stationary behavior.

In this paper we focus on the transient behavior of tree-like
processes. Our contribution is both of theoretical and practi-
cal nature. First, we introduce a new framework called tree-
like processes with marked time epochs to assess transient
performance measures in a unified manner. Such a process
distinguishes itself from the common tree-like process in the
sense that as it evolves it also marks part of the time epochs.
Any transient problem that can be linked to the n-th mark-
ing, for some n, of some tree-like process with marked time
epochs, can be dealt with using our methodology. Second,
to analyze this new process (that is, to generate numerical
results) we developed an efficient algorithm that uses a dis-
crete Erlangization to approximate the system state at the
n-th marking. The main building block of this algorithm
is a so-called reset Markov chain. Such a Markov chain al-
lows us to reformulate the transient problem at hand into
a stationary problem of an expanded Markov chain. When
performing this stationary analysis we further exploit the

block triangular block Toeplitz (btbT) structure of the ma-
trices involved.

We also demonstrate our approach by analyzing the tran-
sient behavior of the celebrated binary tree algorithm by
Capetanakis, Tsybakov and Mikhailov (CTM) [9, 28], for
random access systems. The key characteristic of the CTM
algorithm is its underlying tree (or stack) structure. Tree al-
gorithms have received considerable attention over the last
three decades and are still analyzed within the context of
various networking areas. The use of tree algorithms in
cable-TV networks (i.e., Hybrid-Fiber Coaxial networks) has
been proposed by various authors including [17, 16, 8], where
the focus was either on the frame structure, large round-trip
times or the finite population. A lot of this work was mo-
tivated by the activities of the IEEE 802.14 working group
on tree algorithms [12]. Tree algorithms as a means to solve
collision resolution problems have been addressed in the con-
text of Ad-Hoc networks [26], where the residual battery
energy affects the splitting process, and W-CDMA systems
[1] with a priority random-access protocol. A unified prob-
abilistic treatment to assess the asymptotic behavior of tree
algorithms has also appeared more recently [24, 20], avoid-
ing the need to resort to complex analysis techniques.

By considering the transient regime of tree algorithms we
can get an understanding of the initial protocol dynamics
even when the system is overloaded (that is, the overall in-
put rate λ is above the maximum stable throughput). To
the best of our knowledge, it is the first time that analyti-
cal results of this type are provided for the CTM protocol.
The link between the CTM algorithm and tree-like processes
necessary to apply our new methodology was established in
[29]. The transient behavior of other protocol variations can
be investigated in a similar manner by relying on the results
presented in [34].

Transient measures for discrete time Markov chains are of-
ten obtained through an iterative or recursive approach,
e.g., one starts with the initial probability vector and subse-
quently multiplies this vector with the transition matrix P
(while exploiting its structure). Even if the event of interest
occurs rather early in time, such an approach causes ex-
tra difficulties for tree-like processes as the number of states
that can be visited by the chain at time t grows exponentially
fast. Problems like this are circumvented by our approach
as we perform a single steady state analysis of an expanded
Markov chain.

The paper is structured as follows. We start by giving
some background information on tree-like processes, includ-
ing their definition and some of the key equations related
to their stationary behavior (Section 2). This is followed
by the introduction of our new framework, called tree-like
processes with marked time epochs (Section 3.1). After-
ward, a discrete Erlangization technique is applied to con-
struct the reset Markov chain that transforms the transient
problem in a stationary one (Section 3.2). A key role in
obtaining the reset MC’s stationary behavior is played by
the V matrix, for which several algorithms are presented
(Section 3.3). Next, we demonstrate how to derive the tran-
sient measure of interest from the matrix V (Section 3.4).
We apply our framework to assess a number of transient

performance measures associated with the well-known CTM
protocol (Section 4).

The work presented in this paper is in the same spirit as
[33], which was limited to the special case where d = 0, i.e.,
the standard set of QBD processes.

2. SOME BACKGROUND ON TREE-LIKE
PROCESSES

The set of tree-like processes [4] was first introduced as
a subclass of the set of tree structured Quasi-Birth-Death
Markov chains and afterward shown to be equivalent to them
[30]. This section provides some background information on
this type of discrete time Markov chains (MCs). Consider
a discrete time bivariate MC {(Xt, Nt), t ≥ 0} in which the
values of Xt are represented by nodes of a (d + 1)-ary tree,
for d ≥ 0, and where Nt takes integer values between 1 and
h. We will refer to Xt as the node and to Nt as the auxiliary
variable of the MC at time t. With some abuse of notation,
we shall refer to this MC as (Xt, Nt). The root node of the
(d + 1)-ary tree is denoted as ∅ and the remaining nodes
are denoted as strings of integers, where each integer takes
a value between 0 and d. For instance, the k-th child of the
root node is represented by k, the l-th child of the node k
by kl, and so on. Throughout this paper, we use the ‘+’ to
denote the concatenation on the right and ‘-’ to represent
the deletion from the right. For example, if J = k1k2 . . . kn,
then J + k = k1k2 . . . knk. Let f(J, k), for J 6= ∅, denote
the k rightmost elements of the sting J , then J − f(J, 1)
represents the parent node of J .

The following restrictions need to apply for an MC (Xt, Nt)
to be a tree-like process. At each step the chain can only
make a transition to its parent (i.e., Xt+1 = Xt − f(Xt, 1),
for Xt 6= ∅), to itself (Xt+1 = Xt), or to one of its own
children (Xt+1 = Xt + s for some 0 ≤ s ≤ d). Moreover, the
chain’s state at time t + 1 is determined as follows:

P [(Xt+1, Nt+1) = (J ′, j)|(Xt, Nt) = (J, i)] =
8

>

>

>

>

<

>

>

>

>

:

f̄ i,j J ′ = J = ∅,
b̄i,j J ′ = J 6= ∅,
d̄i,j

k J 6= ∅, f(J, 1) = k, J ′ = J − f(J, 1),
ūi,j

s J ′ = J + s, s = 0, . . . , d,
0 otherwise

Notice, the transition probability between two nodes de-
pends only on the spacial relationship between the two nodes
and not on their specific values. We can now define the h×h
matrices D̄k, B̄, F̄ and Ūs with respective (i, j)th elements
given by d̄i,j

k , b̄i,j , f̄ i,j and ūi,j
s . This completes the descrip-

tion of the tree-like process. Notice, a tree-like process is
fully characterized by the matrices D̄k, B̄, Ūs and F̄ .

Next we introduce a number of matrices that play a crucial
role when studying the stability and stationary behavior of
a tree-like process. The fundamental period of a tree-like
process starting in state (J + k, i) is defined as the first
passage time from the state (J + k, i) to one of the states
(J, j), for j = 1, . . . , h. Let Gk, for 0 ≤ k ≤ d, denote
the matrix whose (i, v)th element is the probability that the
MC is in state (J, v) at the end of a fundamental period
which started in state (J + k, i). Let the (i, v)th element of
the matrix Rk denote the expected number of visits to state

(J+k, v) before visiting node J again, given that (X0, N0) =
(J, i). Finally, let V denote the matrix whose (i, v)th element
is the taboo probability that starting from state (J + k, i),
the process eventually returns to node J + k by visiting
(J + k, v), under the taboo of the node J . Notice, due to
the restrictions on the transition probabilities, the matrix
V does not depend on k. Yeung and Alfa [35] were able to
show that the following expressions hold for these matrices:

Gk = (I − V)−1Dk, (1)

Rk = Uk(I − V)−1, (2)

V = B +
d
X

s=0

UsGs. (3)

Combining these equations, we have the following relation:

V = B +

d
X

s=0

Us(I − V)−1Ds. (4)

Provided that the tree-like process {(Xt, Nt), t ≥ 0} is er-
godic (which is the case if and only if the all the Gk matrices
are stochastic or likewise if and only if the spectral radius
of R = R0 + R1 + . . . + Rd is less than one), define

π̄i(J) = lim
t→∞

P [Xt = J, Nt = i],

π̄(J) = (π̄1(J), π̄2(J), . . . , π̄h(J)).

The vectors π̄(J) can be computed from π̄(∅) using the re-
lation π̄(J + k) = π̄(J)Rk and π̄(∅) is found by solving the
boundary condition π̄(∅) = π̄(∅)(

P

k
RkDk + F) with the

normalizing restriction that π̄(∅)(I − R)−1e = 1 (where e is
a column vector with all its entries equal to one).

3. TREE-LIKE PROCESS WITH MARKED
TIME EPOCHS

3.1 Process Definition
In order to develop a novel framework to derive transient
performance measures in a unified manner, we introduce
the tree-like process with marked time epochs. As such a
tree-like process evolves, each time epoch is either marked
or not, where the marking rules typically depend on the
performance measure of interest. In Section 3.3 and 3.4 we
will present a number of algorithms that allow us to compute
(i) the system state at the n-th marked time epoch and (ii)
the average time epoch at which the n-th marking occurs.

Consider a MC {(Xt, Nt, Mt), t ≥ 0}, where the values of
Xt are nodes of a (d + 1)-ary tree, Nt takes values that
range from 1 to h and Mt = m or u. (Xt, Nt, Mt) is a
tree-like process with marked time epochs if the transition
probabilities are of the following form, for y = m and u:

P [(Xt+1, Nt+1, Mt+1) = (J ′, j, y)|(Xt, Nt) = (J, i)] =
8

>

>

>

>

<

>

>

>

>

:

f̄ i,j,y J ′ = J = ∅,
b̄i,j,y J ′ = J 6= ∅,
d̄i,j,y

k J 6= ∅, f(J, 1) = k, J ′ = J − f(J, 1),
ūi,j,y

s J ′ = J + s, s = 0, . . . , d,
0 otherwise

Notice, the value of Mt+1 is affected by (Xt, Nt) and (Xt+1,
Nt+1), but not by Mt (given (Xt, Nt)); hence, the value

of M0 is irrelevant. Next, define the h × h matrices D̄y

k ,
B̄y, F̄ y and Ūy

s , for y = m and u, in the obvious manner.
Furthermore, let

D̄k = D̄m
k + D̄u

k ,

B̄ = B̄m + B̄u,

Ūs = Ūm
s + Ūu

s ,

F̄ = F̄ m + F̄ u,

for 0 ≤ k, s ≤ d. Remark that {(Xt, Nt), t ≥ 0} is a
tree-like process characterized by the matrices D̄k, B̄, F̄
and Ūs. We state that the tth time epoch of this tree-like
process is marked if and only if Mt+1 = m. Therefore,
the nonnegative matrix D̄m

k contains the probabilities that
(Xt, Nt) = (J + k, i), while (Xt+1, Nt+1) = (J, j) and time
epoch t gets marked. D̄u

k contains the probabilities for the
same event, but without marking time t. A similar interpre-
tation can be given for the other matrices. Whether a time
epoch t is marked therefore depends on the transition from
time t to time t + 1. We refer to the initial time epoch as
time t = 0 and when performing the transient analysis we
limit ourselves to the case where the tree-like process is in
the root node at time t = 0, that is, the probability that we
start in state (∅, i) is given by the ith entry of the stochastic
vector αini.

Apart from the introduction of this new framework, one of
the main contributions in this paper lies in the development
of efficient algorithms to compute the system state, either in
an exact or approximated manner, of the MC (Xt, Nt) at the
n-th marked time epoch. As a byproduct we will also derive
the average time at which this n-th marking occurs, which
is often an important performance measure on its own. For
this purpose, we will combine the concepts of a discrete Er-
langization and a reset Markov chain. The idea of applying
an Erlangization to assess transient results dates back to
Ross [25], who applied this technique to approximate the
system state at time t of a finite continuous time Markov
chain. Reset Markov chains were also used in the context of
[33].

3.2 Discrete Erlangization and reset Markov
chains

Denote the ith entry of the 1× h vector πm
n (J) as the prob-

ability that the Markov chain {(Xt, Nt), t ≥ 0} is in state
(J, i) at the n-th marked time epoch. The key property of a
discrete Erlangization is that we can approximate the system
state at the n-th marking tm(n) by considering the system
state at the Zl,n-th marked time epoch tm(Zl,n), where Zl,n

is a negative binomially distributed (NBD) random variable
with l phases and a mean n, for l(≤ n) sufficiently large.
Setting l = n would result in exact results, however l cannot
always be set to n as the reset MC might become periodic
(see further on). Using the NBD as a reset time implies,
among others, that the transition blocks of the reset MC pre-
sented below have a special structure that can be exploited
when computing the MC’s steady state probabilities.

To compute the system state at time tm(Zl,n), we make
use of an expanded Markov chain, called a reset Markov
chain. The key feature of such a Markov chain is that it
reformulates the transient problem of computing tm(Zl,n),
into a steady state analysis. Consider the stochastic process

that evolves according to {(Xt, Nt, Mt), t ≥ 0}, but that
is repeatedly reset when leaving the Zl,n-th marked time
epoch (meaning a transition occurs to state (X0 = ∅, i, m)
with probability (αini)i). Hence, if we perform a Bernoulli
trial with parameter p = l/n each time we have a transition
out of a marked time epoch, the system is reset whenever
l successes have occurred. We define the reset counter as
being the number of pending successes before the next re-
set event. It is clear that this reset counter takes values
in the range {1, 2, . . . , l}. When we add this reset counter
as an additional auxiliary variable to the tree-like process
{(Xt, Nt), t ≥ 0}, we obtain a Markov chain {(Xt,Nt), t ≥
0}, where Nt has the set {(i, j)|0 ≤ i ≤ l, 0 ≤ j ≤ h} as
its range. Remark, if we succeed in computing the station-
ary behavior of the expanded MC (Xt,Nt), we can easily
find the system state just prior to a reset event, which is
exactly the system state at time tm(Zl,n). The transition
probabilities of the reset MC can be written as

P [(Xt+1,Nt+1) = (J ′, (i′, j′))|(Xt,Nt) = (J, (i, j))] =
8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

f i,j,i′,j′ J ′ = J = ∅,

bi,j,i′,j′ J ′ = J 6= ∅,

di,j,i′,j′

k |J | > 1, f(J, 1) = k,
J ′ = J − f(J, 1),

ci,j,i′,j′

k |J | > 1, f(J, 1) = k, J ′ = ∅,

di,j,i′,j′

k + ci,j,i′,j′

1,k J = k, J ′ = ∅,

ui,j,i′,j′

s J ′ = J + s, s = 0, . . . , d,
0 otherwise

where |J | represents the length of the string J . Let di,j,i′,j′

k ,

ci,j,i′,j′

k , bi,j,i′,j′ , f i,j,i′,j′ and ui,j,i′,j′

s be the ((i−1)h+j, (i′−

1)h+ j′)th entry of the lh× lh matrix Dk, Ck, B, F and Us,
respectively. One readily establishes that these matrices are
given by:

Dk = (I ⊗ (D̄u
k + (1 − p)D̄m

k)) + (S0 ⊗ pD̄m
k),

B = (I ⊗ (B̄u + (1 − p)B̄m)) + (S0 ⊗ pB̄m),

Us = (I ⊗ (Ūu
s + (1 − p)Ūm

s)) + (S0 ⊗ pŪm
s),

Ck = S1 ⊗ pT̄ m
k eαini. (5)

where T̄ m
k = D̄m

k + B̄m +
Pd

s=0 Ūm
s . In these equations

I denotes the l × l unity matrix, e is a column vector of
the appropriate dimension with all entries equal to one and
S0 is an l × l matrix with ones on the first diagonal below
the main diagonal and all other entries equal to zero. The
matrix S1 has only one entry different from zero, being the
last entry on the first row, which equals one. The matrix F
that governs the transitions from the root node to itself can
be written as

F = (I ⊗ (F̄ u + (1 − p)F̄ m)) + (S0 ⊗ pF̄ m)

+

S1 ⊗ p

F̄ me +
d
X

s=0

Ūm
s e

!

αini

!

.

Consider the reset MC {(Xt,Nt), t ≥ 0} and define its tran-
sition matrix P l,n of infinite (countable) size such that the
strings are ordered lexicographically—that is, J < J ′ if
either |J | < |J ′| or there exists an k > 0 such that the
J − f(J, k) = J ′ − f(J ′, k) and the (|J | − k + 1)-th entry
of J is smaller than that of J ′. The block matrix P l,n has
the same structure as that of any tree-like process (see [4]),

therefore, the components πl,n(J), defined as

πl,n

(i,j)(J) = lim
t→∞

P [Xt = J,Nt = (i, j)],

πl,n
i (J) = (πl,n

(i,1)(J), πl,n

(i,2)(J), . . . , πl,n

(i,h)(J)),

πl,n(J) = (πl,n
1 (J), πl,n

2 (J), . . . , πl,n

l (J)),

of its stationary probability vector have the same form as
those of a tree-like process, i.e., πl,n(J +k) = πl,n(J)Rk, ex-
cept for πl,n(∅) (see Section 2). Hence, we can easily com-
pute the necessary components of πl,n = (πl,n(∅), πl,n(1),
πl,n(2), . . .) once the lh × lh matrix V , defined by Eq. (3),
and the vector πl,n(∅) are obtained. As lh can be consider-
ably large, we will speed up their computation by exploiting
the structure of the Dk, B, Us and Ck matrices. Three such
algorithms to determine V are presented in the next section.
A sufficient condition for the existence of πl,n is that the av-
erage reset time of (Xt,Nt) is finite, irrespective of whether
the MC (Xt, Nt) is ergodic. The finiteness of the average re-
set time is often obvious from an operational point of view.
If not, it can be verified rigorously by checking whether the
special radius of R = R0 + . . . + Rd is less than one (the
Gk matrices of (Xt,Nt) need not to be stochastic due to the
reset events).

3.3 Computing theV matrix
(A) The lh × lh matrix V is the smallest nonnegative solu-
tion to Eqn. (4) and can be computed by a standard fixed
point iteration [4]. That is, the matrix V is obtained as
limN→∞ V [N] from the recursion

V [N + 1] = B +
d
X

s=0

Us(I − V [N])−1Ds, (6)

where V [0] = B. We can however benefit from the structural
properties of the B, Us and Ds matrices involved to make
this recursion faster. The matrices B, Us and Ds (for (0 ≤
s ≤ d) are all lower block bidiagonal matrices (see Eqn. (5)).
Let us denote the blocks on the main diagonal of a lower
block bidiagonal matrix X as X(0) and the blocks below the
main diagonal as X(1). Hence,

B(0) = B̄u + (1 − p)B̄m, B(1) = pB̄m,

U
(0)
s = Ūu

s + (1 − p)Ūm
s , U

(1)
s = pŪm

s ,

D
(0)
s = D̄u

s + (1 − p)D̄m
s , D

(1)
s = pD̄m

s .

The lower block bidiagonal structure implies that V has a
block triangular block Toeplitz (btbT) structure. As a con-
sequence, it suffices to determine the first block column of V
in order to know the entire matrix. That is, a btbT matrix
Y is completely characterized by its first block column as
follows:

Y =

2

6

6

6

6

6

6

6

4

Y (0) 0 · · · · · · 0

Y (1) Y (0) · · · · · · 0
...

. . .
. . .

. . .
...

Y (l−2)
. . .

. . . Y (0) 0

Y (l−1) Y (l−2) · · · Y (1) Y (0)

3

7

7

7

7

7

7

7

5

.

Notice also that the btbT structure is preserved by every
operation used in Eqn. (6), meaning all V [N], Gk and Rk

matrices are also btbT. Making use of Eqn. (1–4), we can

calculate matrix V [N + 1] from matrix V [N] using block
column vectors only. First, set

R
(i)
k [N + 1] =

(

U
(0)
k W (0)[N] i = 0,

U
(0)
k W (i)[N] + U

(1)
k W (i−1)[N] i > 0,

where the btbT matrix W [N] = (I −V [N])−1 can be calcu-
lated in a the time and memory complexity of O(l2h3) and
O(lh2), respectively. The time complexity can be further
reduced to O(lh3 + l log(l)h2) by making use of fast Fourier
transforms (see [19, Chapter 2]). Second, compute V [N +1]
as

V (i)[N + 1] =
8

>

<

>

:

B(0) +
P

k R
(0)
k [N + 1]D

(0)
k i = 0,

P

k
(R

(i)
k [N + 1]D

(0)
k + R

(i−1)
k [N + 1]D

(1)
k)+

1[i = 1]B(1) i > 0.

As a result, the amount of memory needed to compute V is
only linear in l as opposed to square.

(B) A second approach is to compute the blocks V (0), . . . ,

V (l−1) that characterize the matrix V recursively. If we
consider only the first block row of Eqn. (4), we get

V (0) = B(0) +

d
X

s=0

U (0)
s (I − V (0))−1D(0)

s . (7)

As V (0) has size h×h only, we can rely on the standard fixed
point iteration presented in Eqn. (6) for its computation.

Due to (4) we can establish the following equation for V (i),
for i > 0:

V (i) = Ki +

d
X

s=0

U (0)
s W (0)V (i)W (0)D(0)

s , (8)

with W (0) = (I − V (0))−1 and

Ki = 1[i = 1]B(1)+

d
X

s=0

"

U (1)
s W (i−1)D(0)

s + U (0)
s W (0)

i−1
X

k=1

V (k)W (i−k)

!

D0
s

+
“

U (1)
s W (i−2)1[i > 1] + U (0)

s W (i−1)
”

D(1)
s

#

.

Notice, having computed V (0), . . . , V (i−1) allows us to com-
pute Ki (as these suffice to compute the W (k) matrices, for
k < i, that characterize the btbT matrix (I − V)−1).

Two iterative approaches [4] can be followed to retrieve V (i)

from Eqn. (8). Both start by setting V (i)[0] = Ki. A first

iteration consists in generation the sequence V (i)[N] as

V (i)[N + 1] = Ki +
d
X

s=0

U (0)
s W (0)V (i)[N]W (0)D(0)

s . (9)

The second one generates a sequence by solving the Sylvester
matrix equation

V (i)[N + 1] − U
(0)
0 W (0)V (i)[N + 1]W (0)D

(0)
0 =

Ki +
d
X

s=1

U (0)
s W (0)V (i)[N]W (0)D(0)

s . (10)

For the sake of completeness we present an Hessenberg al-
gorithm that solves a Sylvester matrix equation of the form
X + AXB = C in the Appendix. The Sylvester scheme will
typically result in fewer iterations, however, more time is
needed to perform a single iteration, making the first ap-
proaches often the fastest. Compared to the algorithm pre-
sented in (A) both schemes tend to be significantly faster.
However, as reported in [4], the convergence of (9) and (10)
is not guaranteed, as opposed to the convergence of algo-
rithm (A). For the application discussed in Section 4 we
experienced no convergence problems for both (9) and (10).

3.4 Calculating the probability vectorsπm
n (J)

Having obtained the lh × lh matrix V , we are now in a po-
sition to compute the stationary measure πl,n of the reset
MC (Xt,Nt). Consider the Markov chain obtained by cen-
soring (Xt,Nt) on the states of the root node (∅, (i, j)). Its

transition matrix P l,n

∅ can be written as

P l,n

∅ = (F + V − B)+

(e − (F + V − B)e)((0, . . . , 0, 1) ⊗ αini),

where ⊗ denotes the Kronecker matrix product. The matrix
F covers the single step transitions, whereas V −B holds all
the paths from the root node to itself that start with a tran-
sition to one of its child nodes without the occurrence of a
reset event (as Eqn. (3) implies that

Pd

s=0 Us(I−V)−1Ds =
V − B). The return state (i, j) of all the remaining paths
from ∅ to itself is of the form (l, j) and is determined by αini

as the final transition of these paths is a reset event.

The vector πl,n(∅) corresponding to the root node ∅, is the

invariant vector of P l,n

∅ , normalized as

πl,n(∅)(I − R)−1e = 1.

The matrix P l,n

∅ has a special structure, which we can ex-

ploit when computing πl,n(∅). More precisely, it is the sum
of a btbT matrix (F + V −B) and an lbC matrix, where an
lbC matrix is a matrix with its nonzero entries all positioned
in the last block column. In order to compute πl,n(∅) effi-
ciently, we can therefore rely on the algorithm presented in
[33, Section 5], the time and space complexity of which equal
O(m3l2) and O(m2l), respectively. The remaining compo-
nents of the stationary measure πl,n for the nodes of the
form J + k are given by πl,n(J + k) = πl,n(J)Rk, where
the matrices Rk (with 0 ≤ k ≤ d) can be calculated via
Eqn. (2). Fast Fourier transforms can be used to speed up
the computation of the components πl,n(J + k), because of
the btbT structure of Rk (see [33, Section 5] for details).

We now indicate how the probability vector πm
Zl,n

(J), used

to approximate the system state πm
n (J) at the n-th marked

time epoch, can be obtained from πl,n(J). The j-th entry
of the vector πm

Zl,n
(J) holds the probability that the MC

(Xt,Nt) is in state (J, (1, j)) provided that a reset event
occurs, hence,

πm
Zl,n

(∅) =
(πl,n

1 (∅).φ0)p

c
,

πm
Zl,n

(J + k) =
(πl,n

1 (J + k).φ1,k)p

c
.

Here, φ0 and φ1,k are the transposed vectors of F̄ me +

Pd

s=0 Ūm
s e and T̄ m

k e respectively and ‘.’ denotes the point-
wise matrix product. The normalization constant c, which
guarantees that

P

J
πm

Zl,n
(J)e = 1, is identical to the proba-

bility that a reset event occurs at an arbitrary time instant.
It can be verified, using the structural properties of πl,n,
that c = γe, where the 1 × h vector γ is given by

γ/p = πl,n
1 (∅).φ0 + πl,n(∅)(I − R)−1

d
X

k=0

R
(∗)
k .(eφ1,k)

!

,

(11)

where R
(∗)
k represents the first block column of the btbT

matrix Rk. Notice, in order to calculate the normalization
constant c, it suffices to know the probability vector cor-
responding to the root node of the reset MC. The average
time after which the Zl,n-th reset event takes place t̄n = 1/c,
which may be regarded as an approximation to the average
time at which the n-th marking occurs, is thus found as
a byproduct and is often of particular interest on its own.
Exact results can be generated provided that setting l = n
does not cause periodicity in the MC (Xt,Nt).

4. TRANSIENT ANALYSIS OF THE CTM
PROTOCOL WITH FREE ACCESS

In this section we make use of our new framework to ana-
lyze the transient behavior of the celebrated Capetanakis-
Tsybakov-Mikhailov (CTM) protocol [9, 28, 10, 11] for ran-
dom multiple access communication. An abundance of pa-
pers has been devoted to evaluate its performance (see [21]
for an extensive overview), to the best of our knowledge
none have been devoted to its transient behavior. We will
restrict ourselves to the basic binary CTM algorithm with
free access. Other protocol variations are also within reach
of our framework as their behavior can often be captured by
a tree-like process (see [34]).

The following standard assumptions are made [3, 21]. A sin-
gle channel is shared among an infinite population of users
that transmit packetized messages. A user is said to be-
comes active as soon as he has a message ready for trans-
mission. Users refrain from generating new messages while
being active. The time is slotted and each slot has a fixed
duration, equal to the length of a packet. Transmissions of
a packet are assumed to occur at the beginning of a time
slot and each transmission is within the reception range of
every user. Binary feedback (collision/no collision) is imme-
diately available at the end of each time slot. Simultaneous
transmissions are destructive, in the sense that all packet
involved become corrupt. However, a discrete-time batch
Markovian arrival process (D-BMAP) is used to model the
user activity, which greatly relaxes the standard Poisson as-
sumption. Some of the other standard assumptions can be
further relaxed if necessary.

The D-BMAP process [6] is the discrete-time counterpart of
the BMAP and is characterized by a sequence of h∗ × h∗

matrices Bn, for n ≥ 0, the entries of which are denoted by
bi,j
n . These matrices have the following probabilistic inter-

pretation. If the D-BMAP is in state i (1 ≤ i ≤ h∗) at the
start of slot t, n users become active and the state of the
D-BMAP equals j (1 ≤ j ≤ h∗) at the beginning of slot t+1
with a probability bi,j

n . The arrivals are assumed to occur
on the boundary of time slot t − 1 and t, meaning the n

users that became active can transmit their packet as early
as time slot t.

The CTM protocol is a collision resolution algorithm in
which users continue to retransmit a packet until it is cor-
rectly received. Apart from the immediate feedback, users
do not exchange any information about their activity on
the channel, as a consequence contention has to be resolved
without any additional information. In order to resolve con-
tention the CTM protocol divides the users involved in a
collision into two groups GR(1) and GR(2). The users of
the first group GR(1) retransmit their packet in the next
time slot, while users of the second group GR(2) wait until
the first group is resolved (meaning all messages belonging
to GR(1) have to be transmitted successfully and the users
of GR(2) need to be aware of this). The algorithm has a
recursive nature, in the sense that if GR(1) causes another
collision, GR(1) is split into two groups GR(1a) and GR(1b),
and so on. Notice, in this case the users of GR(2) need post-
pone any retransmission attempts until both GR(1a) and
GR(1b) have been resolved. The channel access protocol is
assumed to be the free access protocol. This means that
users that become active immediately—that is, at the start
of the next slot boundary—access the channel.

By allowing the immediate participation of new arrivals in
the contention tree, this problem can be regarded as a dy-
namic tree algorithm. The asymptotic behavior of tree al-
gorithms that do not support this dynamic feature were
studied in [24, 20]. Some transient statistics on these (non-
dynamic) tree algorithms can also be derived from our set-
ting. For instance, by assuming Poisson arrivals with λ = 0
and by considering a conflict of size n as the initial state,
we could compute the mean time until the i-th success (for
i ≤ n) of a size n conflict. By repeatedly resetting the tree-
like process at the i-th success, exact results can be realized
for limited values of n. Numerical results not presented here,
show that one typically observes a linear growth as a func-
tion of i.

In the CTM protocol each active user maintains an integer
value, referred to as the current stack level. A user that
became active during slot t − 1 initializes its current stack
level for slot t at zero. A user is allowed to send its packet
during the current time slot if its current stack level equals
zero. The current stack level of a user is updated as follows.
If slot t does not hold a collision, all users with a current
stack level for slot t equal to i > 0 set their current stack
level for slot t+1 to i−1. If slot t however holds a collision,
the current stack level for slot t + 1 is set to i + 1 and users
with a current stack level for slot t equal to zero are divided
into two groups. A user joins the first (resp. the second)
group with a probability q (resp. 1 − q) and sets its current
stack level for time t + 1 to zero (resp. one). Remark, the
current stack level maintained by a user may be regarded as
the number of pending groups that require resolution before
the user is allowed to retransmit.

Let us now briefly indicate how to model the CTM protocol
as a tree-like process (for more details see [29]). Consider
the Markov chain {(Xt, Nt), t ≥ 0}. Let Xt be the string
holding the current stack level for slot t for all backlogged
stations, i.e., stations with a current stack level (for slot t)

larger than zero. The sample space of the random variable
Xt is Ω1 = {∅}∪{J : J = sk . . . s1, sj ≥ 0, 1 ≤ j ≤ k, k ≥ 1}.

For instance, if Xt = sk . . . s1 there are
Pk

i=1 si backlogged
stations and the current stack level equals i for si of the
backlogged stations. The auxiliary variable Nt holds both
the number of active stations with a current stack level for
slot t equal to zero and the state of the D-BMAP at the
start of slot t+1. Its sample space is given by Ω2 = {(n, j) :
n ≥ 0, 1 ≤ j ≤ h∗}.

The Markov chain (Xt, Nt) (with state space Ω1 × Ω2) has
a tree structure, but each node has an infinite number of
children. To reduce this MC to a tree-like process one can
approximate (Xt, Nt) by a bivariate Markov chain (Xd

t , N
d
t),

obtained by setting a maximum value d on the number of
stations that can have a same current stack level for slot t.
This way, each node of X

d
t has only (d + 1) children and the

variable N
d
t has a finite range of size h = h∗(d + 1). The

introduction of the value d as a restriction on the number
of stations having the same current stack level, implies that
some packets get dropped whenever a situation occurs in
which more than d packets attain the same current stack
level value. The CTM protocol does not drop packets, thus,
d has to be chosen large enough such that number of dropped
packets can be neglected (e.g., < 10−10). In practice, setting
d = 10 or 15 often suffices.

For further use, we will now quickly reintroduce the matrices
D̄k, Ūs and F̄ that fully characterize the tree-like process
(Xd

t , Nd
t). The matrices D̄k cover the transition probabilities

from state (J+k, (i, j)) to the state (J, (i′, j′)). This happens
when slot t does not hold a collision, which implies

D̄k((i, j), (i′, j′)) =

8

<

:

(Bi′−k)j,j′ i ≤ 1, i′ ≥ k, i′ < d,
P

n≥d−k
(Bn)j,j′ i ≤ 1, i′ ≥ k, i′ = d,

0 otherwise.
(12)

The matrices Ūs hold the transition probabilities of going
from state (J + k, (i, j)) to the state (J + ks, (i′, j′)), which
happens when a collision occurs in slot t. Hence,

Ūs((i, j), (i
′, j′)) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Ci
sq

i−sq̃s(Bi′−(i−s))j,j′

i > 1, i ≥ s, i′ ≥ i − s, i′ < d,

Ci
sq

i−sq̃s
P

n≥d−(i−s)(Bn)j,j′

i > 1, i ≥ s, i′ ≥ i − s, i′ = d,

0 otherwise,

(13)

where q̃ = 1 − q and Ci
s denotes the number of different

possible combinations of s from i different items. Finally,
the transition probabilities that the process goes from state
(∅, (i, j)) to the state (∅, (i′, j′)) are given by the matrix F̄ .
This matrix is given by

F̄ ((i, j), (i′, j′)) =

8

<

:

(Bi′)j,j′ i ≤ 1, i′ < d,
P

n≥d
(Bn)j,j′ i ≤ 1, i′ = d,

0 otherwise.
(14)

We are now in a position to apply our framework to assess
some transient performance measures of the CTM protocol.

Let us first take a look at the transient throughput of the
CTM algorithm. The throughput Tn in slot n equals the

100 200 300 400 500 600 700
0.293

0.294

0.295

0.296

0.297

0.298

0.299

0.3

n

T
l n

l=n−1
l=100
l=50
l=20
l=10

Figure 1: Throughput in slot n under Poisson arrivals: the

influence of l on the accuracy

probability that a packet is successfully transmitted in slot
n. This happens when there is exactly one station with its
current stack level equal to zero for slot n. We can apply
our framework by marking all time epochs, i.e., Du

k = Bu =
Uu

s = F u = 0, as this probability is readily available from
the system state at time n. More specifically, we have

Tn =
h∗

X

j=1

πm
n (1, j), where πm

n (i, j) =
X

J

πm
n (J, (i, j)),

and πm
n (J, (i, j)) are the obvious h = h∗(d + 1) components

of the vector πm
n (J). An simple expression for Tn can be

found from the 1 × h vector γ = (γ0, γ1, . . . , γd), defined
by Eqn. (11), with γi = (γi(1), . . . , γi(h

∗)). That is, γ/c
contains, for each combination of the current stack level i
and the state of the D-BMAP process j, the probability
that, at the n-th marking there are i stations with a current
stack level equal to zero, while the state of the D-BMAP
process is j. Hence,

Tn =
h∗

X

j=1

γ1(j)

c
.

We first present some results in case the user activity is
modeled as a Poisson arrival process, that is, we set Bn =
e−λλn/n!, for n ≥ 0. Flajolet and Jacquet [11] have shown
that the CTM algorithm with free access (with q = 0.5)
is stable under a Poisson flow of arrivals if the arrival rate
λ < 0.360177. We refer to this value as the maximum stable
throughput (MST) of the random access algorithm.

Figure 1 depicts some approximations T l
n for the transient

throughput Tn for different values of l, the number of phases
of the negative binomial distribution used to setup the reset
process. T l

n is computed in the same manner as Tn, except
that the vectors πm

n (J) are approximated by πm
Zl,n

(J). The
rate of the Poisson process λ = 0.3. As mentioned earlier, in
some cases we cannot set l equal to n as this causes the MC
(Xt,Nt) to become periodic. Marking all time epochs will
always cause periodicity, therefore the best approximation
we can realize is by setting l equal to n−1. Figure 1 indicates
that smaller values of l will result in a larger underestimation
of the throughput Tn, however, for relatively small values

0 1000 2000 3000 4000 5000
0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

n

T
50 n

λ = 0.3
λ = 0.36
λ = 0.365
λ = 0.4
λ = 0.6

Figure 2: Throughput in slot n under Poisson arrivals for

various arrival rates λ

0 10 20 30 40 50
0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

n

T
n−

1
n

λ = 0.4
λ = 0.5
λ = 0.6
λ = 0.7

Figure 3: Throughput in the n-th slot

of l we still obtain a quite accurate approximation of the
throughput compared to letting l = n − 1. Working with a
smaller l value implies that less time and memory is needed
for the computation of the matrix V and the probability
vectors πm

Zl,n
(J). For l = 100, the computation time, as

given by the Matlab Profiler, is close to 30 seconds using an
Intel Pentium M 1.70GHz processor with 1GB of memory.
The Windows Task Manager indicated a peak memory usage
of 80Mb for the entire Matlab session during the calculation
of this figure.

In Figure 2 we compare the transient throughput for differ-
ent arrival rates λ. For λ = 0.3, we notice that the transient
throughput rapidly converges to the input rate λ. When we
take the arrival rate λ closer to the MST (e.g., λ = 0.36),
the throughput grows more slowly over time, but still seems
to reach the input rate for n large enough. One can also ob-
serve that taking values for λ above the MST, does not seem
to result in an output rate that is above the MST. Actually,
for slot n = 107 we have T 100

n = 0.35996 and T 100
n = 0.35812

for λ = 0.36 and λ = 0.365, respectively. For such arrival
rates a somewhat higher throughput is often achieved in the
first few slots, as shown in Figure 3. After this initial phase
during which several stations get backlogged, the number of
collisions increases as the new arrivals need to compete with

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1000

1500

2000

λ

t su
c(n

)

n=50
n=100
n=200

Figure 4: Average time t̄suc(n) until the n-th success under

Poisson input

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1000

2000

3000

4000

5000

6000

7000

λ

t co
l(n

)

n=50
n=100
n=200

Figure 5: Average time t̄col(n) until the n-th collision under

Poisson input

some of these backlogged stations.

Next, we will calculate the average time t̄suc(n) at which
the n-th successful transmission takes place. To apply our
framework, it suffices to mark all time epochs that corre-
spond to a successful transmission. The matrices D̄m

k , Ūm
s

and F̄ m that mark a time epoch are calculated from the
matrices D̄k, Ūs and F̄ , given by Eqns. (12–14), as follows:

D̄m
k ((i, j), (i′, j′)) =

D̄k((i, j), (i′, j′)) if i = 1,
0 otherwise.

,

for k = 0, . . . , d and

F̄ m((i, j), (i′, j′)) =

F̄ ((i, j), (i′, j′)) if i = 1,
0 otherwise.

.

The entries of the matrices Ūs are equal to zero for i = 1,
hence, Ūm

s = 0. When computing t̄suc(n), we can set l equal
to n to generate exact results. Recall, t̄suc(n) = t̄n = 1/c,
where c is the normalization constant defined in Section 3.4.

Figure 4 shows the mean time t̄suc(n) that passes until the
n-th successful transmission occurs, for n = 50, 100 and 200.
If this rate is low, the number of slots needed to trans-
mit n packets successfully is relatively high. When λ in-
creases t̄suc(n) decreases up to some point where a mini-

0 1000 2000 3000 4000 5000

0.27

0.275

0.28

0.285

0.29

0.295

0.3

n

T
l n

l=10
l=20
l=50

Figure 6: Throughput in the n-th slot

mum is reached, afterward t̄suc(n) increases again. This can
be understood as follows. When λ is low, the total num-
ber of packets generated is small and therefore a consider-
able amount of time is required to generate n packets, most
of these packets are successful during their first attempt.
Higher values of λ reduce the time required to generate n
packets, but at the same time also increases the mean num-
ber of transmission attempts needed. When the arrival rate
becomes too large, the effect of the increased collision prob-
ability starts to dominate, which causes the minimum. Our
results indicate that for large values of n, the rate λ for
which t̄suc(n) is minimal, can become larger than the MST.

Similarly, define t̄col(n) as the average time at which the n-
th collision takes place. To determine t̄col(n) we can apply
our framework with

D̄m
k = F̄ m = 0 and Ūm

s = Ūs.

Remark, each time epoch where at least two stations have a
current stack level equal to zero are marked, as these stations
will transmit their packet in the next time slot causing a col-
lision. The average time until the n-th collision is depicted
in Figure 5, for n = 50, 100, 200. As one can expect, this
average time decreases as the Poisson arrival rate increases.

Until now, we assumed that the users become active accord-
ing to a Poisson process. As a final result, we will consider a
two-state Markov modulated Poisson process as well. When
in the first (the second) state, stations become active ac-
cording to a Poisson process with rate λ1 (λ2). Transitions
between the two states take place with a probability 0.001 at
the end of each time slot, that is, the average sojourn time in
both states is 1000 slots. We assume that the system is ini-
tialized in state 1. Figure 6 shows the transient throughput
for different values of l for λ1 = 0.5 and λ2 = 0.1. Therefore
the matrices Bn are given by

Bn =

»

0.999eλ1λn
1 /n! 0.001eλ1λn

1 /n!
0.001eλ2λn

2 /n! 0.999eλ2λn
2 /n!

–

.

As can be seen in Figure 6, during the first 1000 to 1500
slots the throughput decreases, after which it slowly starts
to grow toward the arrival rate λ = 0.3. This is in line with
the previous observations: initially we have an overloaded

system as λ1 = 0.5 which causes the initial decrease as ex-
plained before. On average, after about 1000 slots, the state
of the D-BMAP will change to λ2 = 0.1, allowing the back-
logged stations to access the channel more often. As the
CTM protocol is still stable under this arrival process, the
throughput will eventually converge to λ = 0.3 as n goes to
infinity. How one checks the stability of the CTM protocol
under D-BMAP arrivals is explained in [29].

APPENDIX
For reasons of completeness, we present a Hessenberg type
algorithm to solve a Sylvester matrix equation of the type
X + AXB = C.

Algorithm:
• Input: the matrices A, B and C.

• Apply a Hessenberg decomposition on the matrix A:
A = PHP ∗, where P ∗ denotes the complex conjugate
of P and P is a unitary matrix (meaning PP ∗ = I).

• Let U∗BU = T be a complex Schur decompostion of
B, with U unitary and T a triangular matrix.

• By premultiplying X +AXB = C by P ∗ and postmul-
tiplying it by U , X + AXB = C can be rewritten as
HY T + Y = F , with H a Hessenberg and T a trian-
gular matrix. Here, Y = P ∗XU and F = P ∗DU .

• Denote zi and zij as the i-th column and the (i, j)-th
entry of a matrix Z, respectively. Then, considering
the i-th column of the equation HY T + Y = F gives
us [I + tiiH]yi = fi −

Pi−1
j=1 tjiHyj .

• Hence, to compute X we need to solve d linear Hes-
senberg systems, where d denotes the dimension of the
square matrices A, B and C.

This algorithm has a time complexity of O(d3). It is easy
to implement as for instance each of the decompositions re-
quired is a Matlab built-in function. Moreover, the ‘\’ Mat-
lab command to solve the d linear systems recognizes the
Hessenberg structure and solves each of the systems in O(d2)
time. Notice, from Eqn. (10) that we only need to perform
the Hessenberg and the Schur decomposition once because

A = U
(0)
0 W (0) and B = W (0)D

(0)
0 , which are independent of

the values of k and N .

A. REFERENCES
[1] K. Al Agha, P. Jacquet, and N. Vvedenskaya. Analysis

of the priority stack random-access protocol in
W-CDMA systems. IEEE Transactions on Vehicular
Technology, 51(3):588–596, 2002.

[2] S. Asmussen, O. Nerman, and M. Olsson. Fitting
phase-type distributions via the EM algorithm.
Scandinavian Journal of Statistics, 23:419–441, 1996.

[3] D. Bertsekas and R. Gallager. Data Networks.
Prentice-Hall Int., Inc., 1992.

[4] D. A. Bini, G. Latouche, and B. Meini. Solving
nonlinear matrix equations arising in tree-like
stochastic processes. Linear Algebra Appl., 366:39–64,
2003.

[5] D. A. Bini, G. Latouche, and B. Meini. Numerical
methods for structured Markov chains. Oxford
University Press, 2005.

[6] C. Blondia. A discrete-time batch markovian arrival
process as B-ISDN traffic model. Belgian Journal of
Operations Research, Statistics and Computer Science,
32(3,4):3–23, 1993.

[7] A. Bobbio, A. Horváth, M. Scarpa, and M. Telek.
Acyclic discrete phase type distributions: Properties
and a parameter estimation algorithm. Performance
Evaluation, 54(1):1–32, 2003.

[8] O. Boxma, D. Denteneer, and J. Resing. Delay models
for contention resolution in closed populations.
Performance Evaluation, 53:169–185, 2003.

[9] J.I. Capetanakis. Tree algorithms for packet broadcast
channels. IEEE Trans. Inform. Theory, 25(5):319–329,
1979.

[10] G. Fayolle, P. Flajolet, M. Hofri, and P. Jacquet.
Analysis of a stack algorithm for random
multiple-access communication. IEEE Transactions on
Information Theory, IT-31(2):244–254, 1985.

[11] P. Flajolet and P. Jacquet. Analytic models for tree
communication protocols. Technical Report 648,
INRIA, 1987.

[12] N. Golmie, Y. Saintillan, and D.H. Su. A review of
contention resolution algorithms for IEEE 802.14
networks. IEEE Communication Surveys, 2(1), 1999.

[13] Q. He and A.S. Alfa. The MMAP[K]/PH[K]/1 queues
with a last-come-first-serve preemptive service
discipline. Queueing Systems, 28:269–291, 1998.

[14] Q. He and A.S. Alfa. The discrete time
MMAP[K]/PH[K]/1/LCFS-GPR queue and its
variants. In Proc. of the 3rd Int. Conf. on Matrix
Analytic Methods, pages 167–190, Leuven (Belgium),
2000.

[15] G. Horváth, P. Buchholz, and M. Telek. A MAP
fitting approach with independent approximation of
the inter-arrival time distribution and the lag
correlation. In Proc of QEST 2005. IEEE Computer
Society, 2005.

[16] P. Jacquet, P. Mühlethaler, and P. Robert.
Performant implementations of tree collision
resolution algorithms for CATV networks. Technical
Report 4107, INRIA, 2001.

[17] A.J.E.M. Janssen and M.J.M. de Jong. Analysis of
contention tree algorithms. IEEE Transactions on
Information Theory, 46:2163–2172, 2000.

[18] G. Latouche and V. Ramaswami. Introduction to
Matrix Analytic Methods and stochastic modeling.
SIAM, Philadelphia, 1999.

[19] B. Meini. Fast algorithms for the numerical solution of
structured Markov chains. PhD thesis, University of
Pisa, 1998.

[20] A. Mohamed and P. Robert. A probabilistic analysis
of some tree algorithms. Annals of Applied Probability,
15(4):2445–2471, 2005.

[21] M. L. Molle and G.C. Polyzos. Conflict resolution
algorithms and their performance analysis. Technical
report, University of Toronto, CS93-300, 1993.

[22] M.F. Neuts. Matrix-Geometric Solutions in Stochastic
Models, An Algorithmic Approach. John Hopkins
University Press, 1981.

[23] M.F. Neuts. Structured Stochastic Matrices of M/G/1
type and their applications. Marcel Dekker, Inc., New
York and Basel, 1989.

[24] P. Robert. On the asymptotic behavior of some
algorithms. Random Structures and Algorithms,
27(2):235–250, 2005.

[25] S.M. Ross. Approximating transient probabilities and
mean occupation times in continues-time markov
chains. Probability in the Engineering and
Informational Sciences, 1:251–264, 1987.

[26] Y.E. Sagduyu and A. Ephremides. Energy-efficient
collision resolution in wireless Ad-Hoc networks. In
IEEE Infocom, San Francisco, 2003.

[27] T. Takine, B. Sengupta, and R.W. Yeung. A
generalization of the matrix M/G/1 paradigm for
Markov chains with a tree structure. Stochastic
Models, 11(3):411–421, 1995.

[28] B. S. Tsybakov and V.A. Mikhailov. Free synchronous
packet access in a broadcast channel with feedback.
Problemy Peredachi Inform, 14(4):32–59, 1978.

[29] B. Van Houdt and C. Blondia. Stability and
performance of stack algorithms for random access
communication modeled as a tree structured QBD
Markov chain. Stochastic Models, 17(3):247–270, 2001.

[30] B. Van Houdt and C. Blondia. Tree structured QBD
markov chains and tree-like QBD processes. Stochastic
Models, 19(4):467–482, 2003.

[31] B. Van Houdt and C. Blondia. Robustness of Q-ary
collision resolution algorithms in random access
systems. Performance Evaluation, 57:357–377, 2004.

[32] B. Van Houdt and C. Blondia. Analyzing priority
queues with 3 classes using tree-like processes.
Submitted for publication, 2005.

[33] B. Van Houdt and C. Blondia. QBDs with marked
time epochs: a framework for transient performance
measures. In Proc. of QEST 2005, pages 210–219.
IEEE Computer Society, 2005.

[34] B. Van Houdt and C. Blondia. Throughput of Q-ary
splitting algorithms for contention resolution in
communication networks. Communications in
information and systems, 4(2):135–164, 2005.

[35] R.W. Yeung and A.S. Alfa. The quasi-birth-death
type markov chain with a tree structure. Stochastic
Models, 15(4):639–659, 1999.

[36] R.W. Yeung and B. Sengupta. Matrix product-form
solutions for markov chains with a tree structure. Adv.
Appl. Prob., 26:965–987, 1994.

