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Abstract. In this paper we show that an arbitrary tree-like Markov chain can be embedded in
a binary tree-like Markov chain with a special structure. When combined with [7], this implies that
any tree structured QBD Markov chain can be reduced to a binary tree-like process. Furthermore, a
simple relationship between the V , Rs and Gs matrices of the original and the binary tree-like Markov
chain is established. We also explore the effectiveness of computing the steady state probabilities
from the reduced binary chain.

Key words. matrix analytic methods, (binary) tree-like Markov chains, embedded Markov
chains

1. Introduction. Tree structured Quasi-Birth-Death (QBD) Markov chains
were first introduced in 1995 by Takine et al [5] and later, in 1999, by Yeung et
al [10]. More recently, Bini et al [1] have defined the class of tree-like processes as
a specific sub-class of the tree structured QBD Markov chains. In [7] it was shown
that any tree structured QBD Markov chain can be embedded in a tree-like process.
Moreover, the natural fixed point iteration (FPI) to the nonlinear matrix equation
V = B +

∑d
s=1 Us(I − V )−1Ds that solves the tree-like process, was proven to be

equivalent to the more complicated iterative algorithm presented by Yeung and Alfa
[10]. In this paper, we demonstrate that any tree-like process can be reduced to a
binary tree-like process (i.e., a tree-like process with d = 2). Thus, combined with [7],
this implies that any tree structured QBD Markov chain can be embedded in a binary
tree-like process. We also clarify the relationship between the V , Rs and Gs matrices
of the original tree-like process and the binary one. The contribution made by this
paper is mostly of theoretical interest, because a careful study on the effectiveness
of computing the steady state probabilities from the reduced binary chain, seems to
indicate that the reduction technique does not give rise to a speed-up of the iterative
algorithms involved.

Typical applications of tree-like processes include preemptive and non-preemptive
single server queues with a LCFS service discipline that serves customers of different
types, where each type has a different service requirement [5, 10, 3, 2, 11]. Tree
structured QBD Markov chains have also been used to evaluate conflict resolution
algorithms of the Capetanakis-Tsybakov-Mikhailov-Vvedenskaya (CTMV) type [6, 9].
Some recent work also indicates that tree-like processes can be used to study FCFS
priority queues with three service classes [8].

2. Tree-like quasi-birth-death processes - a review. The set of tree-like
processes [1] was first introduced as a subclass of the set of tree structured Quasi-
Birth-Death Markov chains and afterward shown to be equivalent [7]. This section
provides some background information on this type of discrete time Markov chains
(MCs). Consider a discrete time bivariate MC {(Xt, Nt), t ≥ 0} in which the values
of Xt are represented by nodes of a d-ary tree, for d ≥ 2, and where Nt takes integer
values between 1 and m. We will refer to Xt as the node and to Nt as the auxiliary
variable of the MC at time t. With some abuse of notation, we shall refer to this
MC as (Xt, Nt). The root node of the d-ary tree is denoted as ∅ and the remaining
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Fig. 2.1. The structure of a tree-like Markov chain and the matrices characterizing its transitions.

nodes are denoted as strings of integers, where each integer takes a value between 1
and d. For instance, the k-th child of the root node is represented by k, the l-th child
of the node k by kl, and so on. Throughout this paper, we use the ‘+’ to denote
the concatenation on the right and ‘−’ to represent the deletion from the right. For
example, if J = k1k2 . . . kn, then J + k = k1k2 . . . knk. Let f(J, k), for J 6= ∅, denote
the k rightmost elements of the string J , then J − f(J, 1) represents the parent node
of J .

The following restrictions need to apply for an MC (Xt, Nt) to be a tree-like
process. At each step the chain can only make a transition to its parent (i.e., Xt+1 =
Xt − f(Xt, 1), for Xt 6= ∅), to itself (Xt+1 = Xt), or to one of its children (Xt+1 =
Xt+s for some 1 ≤ s ≤ d). Moreover, the state of the chain at time t+1 is determined
as follows:

P [(Xt+1, Nt+1) = (J ′, j)|(Xt, Nt) = (J, i)] =
f i,j J ′ = J = ∅,
bi,j J ′ = J 6= ∅,
di,j

k J 6= ∅, f(J, 1) = k, J ′ = J − f(J, 1),
ui,j

s J ′ = J + s, s = 1, . . . , d,
0 otherwise.

Notice, the transition probabilities between two nodes depend only on the spacial
relationship between the two nodes and not on their specific values.

We can now define the m×m matrices Dk, B, F and Us with respective (i, j)th

elements given by di,j
k , bi,j , f i,j and ui,j

s . This completes the description of the tree-
like process. Notice, a tree-like process is fully characterized by the matrices Dk, B,
Us and F (see Figure 2.1).

Next, we introduce a number of matrices that play a crucial role when studying
the stability and stationary behavior of a tree-like process. The fundamental period
of a tree-like process starting in state (J + k, i) is defined as the first passage time
from the state (J + k, i) to one of the states (J, j), for j = 1, . . . ,m. Let Gk, for
1 ≤ k ≤ d, denote the matrix whose (i, v)th element is the probability that the MC
is in state (J, v) at the end of a fundamental period which started in state (J + k, i).
Let the (i, v)th element of the matrix Rk, for 1 ≤ k ≤ d, denote the expected number
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of visits to state (J + k, v) before visiting node J again, given that (X0, N0) = (J, i).
Finally, let V denote the matrix whose (i, v)th element is the taboo probability that
starting from state (J + k, i), the process eventually returns to node J + k by visiting
(J + k, v), under the taboo of the node J . Notice, due to the restrictions on the
transition probabilities, the matrix V does not depend on k. Yeung and Alfa [11]
were able to show that the following expressions hold for these matrices:

Gk = (I − V )−1Dk,

Rk = Uk(I − V )−1,

V = B +
d∑

s=1

UsGs.

Combining these equations, we have the following relation:

V = B +
d∑

s=1

Us(I − V )−1Ds.

Provided that the tree-like process {(Xt, Nt), t ≥ 0} is ergodic (which is the case if
and only if all the Gk matrices are stochastic or likewise if and only if the spectral
radius of R = R1 + . . .+Rd is less than one [10]), define its steady state probabilities
as

πi(J) = lim
t→∞

P [Xt = J,Nt = i],

π(J) = (π1(J), π2(J), . . . , πm(J)).

The vectors π(J) can be computed from π(∅) using the relation π(J + k) = π(J)Rk.
π(∅) is found by solving the boundary condition π(∅) = π(∅)(

∑
k RkDk +F ) with the

normalizing restriction that π(∅)(I −R)−1e = 1 (where e is a column vector with all
its entries equal to one).

In this paper we will consider a tree-like process with a somewhat more general
boundary condition as a starting point. We extend the state space of (Xt, Nt) with a
single node ∅s consisting of ms states. This node acts as a super root and transitions
from and to this node can only occur via the node ∅. Transitions from, to and within
node ∅s are characterized by the ms ×m, m ×ms and ms ×ms matrices Fs→, F→s

and Fs, respectively. Apart from π(∅) and π(∅s), the computation of the vectors π(J)
is not affected by adding the node ∅s. We expand the MC with the node ∅s, because
the reduced tree-like process in [7] contains such a node, as do some applications (e.g.,
[8]).

3. Constructing the binary tree-like processes. The idea behind the con-
struction used to reduce a tree-like process to a binary one exists in representing
each integer part of a string J as a star followed by a series of zeros. For instance,
Xt = J = j1 . . . jn is represented in its binary form as

ψ(J)
def.
= ∗

j1−1︷ ︸︸ ︷
0 . . . 0 ∗

j2−1︷ ︸︸ ︷
0 . . . 0 ∗ . . . ∗

jn−1︷ ︸︸ ︷
0 . . . 0 .
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We will also denote ψ(∅) = ∅ and ψ(∅s) = ∅s. Obviously, simply representing all
strings J by a binary string does not make (ψ(Xt), Nt) a binary tree-like process, as
a single transition may add/remove a series of zeros preceded by a single star.

To reduce (ψ(Xt), Nt) into a binary tree-like process we construct an expanded
MC (Xn,Nn = (Qn,Mn)). The technique used to set-up this expanded MC has some
similarity with Ramaswami’s [4] to reduce a classic M/G/1-type MC to a QBD MC
or to the approach taken in Van Houdt et al [9] to construct a tree structured QBD.

The MC (Xn,Nn) is defined on the state space Ω = {(∅s, (0, i))|i = 1, . . . ,ms} ∪
{(∅, (0, i))|i = 1, . . . ,m} ∪ {(J, (a, i))|J = ∗j1j2 . . . jn; jk = 0 or ∗; k = 1, . . . , n;
n ≥ 0; a = −(d − 1), . . . , d − 1; i = 1, . . . ,m}1. We will establish a one-to-one corre-
spondence between the state (J, i) of the original chain and the state (ψ(J), (0, i)) of
the expanded chain (for all J and i). The key idea behind establishing this association
is that whenever a transition occurs that adds a series of k − 1 zeros preceded by a
star to the node variable ψ(Xt) = J , we split this transition into k transitions that
each add one symbol at a time. Similarly, the removal of a star followed by k − 1
zeros from ψ(Xt) will be split into k transitions that each remove one symbol. The
role of the random variable Qn is as follows. Having Qn = a < 0, implies that a series
of zeros is being removed and so far −a zeros have been removed. While Qn = a > 0
indicates that a more zeros need to be added to the string Xn.

More formally, consider a realization (Xt(w), Nt(w)) of the Markov chain (Xt, Nt).
The corresponding realization of the expanded chain (Xn,Nn = (Qn,Mn)) is defined
as follows.

Initial state: If (X0(w), N0(w)) = (J, i), then set (X0(w),N0(w)) = (ψ(J), (0, i)).
Also, set t = 0 and n = 0; t represents the steps of the original chain (Xt, Nt) and n
represents the steps of the expanded chain.

Transition Rules: We distinguish between three possible cases: Qn(w) = 0,
Qn(w) > 0 and Qn(w) < 0.

1. Qn(w) = 0, consider (Xt(w), Nt(w)), and do one of the following:
a. Suppose Xt+1(w) = Xt(w) + k = J + k, for some 1 ≤ k ≤ d and

string J 6= ∅s. Let Xn+1(w) = Xn(w) + ∗ = ψ(J) + ∗ and Nn+1(w) =
(k − 1, Nt+1(w)).

b. Given Xt+1(w) = Xt(w)−k = J , for some 1 ≤ k ≤ d and string J 6= ∅s.
Notice, if k > 1, then ψ(J + k) ends on a zero (while for k = 1, it ends
on a star) and we can define Xn+1(w) = ψ(J + k) − 0 and Nn+1(w) =
(−1, Nt(w)) (notice, Mn+1(w) = Nt(w) and not Nt+1(w)). For k = 1,
set Xn+1(w) = ψ(J + k)− ∗ = ψ(J) and Nn+1(w) = (0, Nt+1(w)).

c. In all other cases (with Qn(w) = 0), set Xn+1(w) = ψ(Xt+1(w)) and
Nn+1(w) = (0, Nt+1(w)). These cases include the transitions to and
from ∅s and those for which Xt+1(w) = Xt(w).

Next, both n and t are incremented by one.
2. Qn(w) > 0, define Xn+1(w) = Xn(w)+0 andNn+1(w) = (Qn(w)−1,Mn(w)).

Remark, ifQn+1(w) becomes zero, then Xn+1(w) = ψ(Xt(w)). Next, increase
n by one and do not alter the value of t.

3. Qn(w) < 0, consider Xn(w) and distinguish between the following two cases:
a. Assume f(Xn(w), 1) = ∗. Let Xn+1(w) = Xn(w) − ∗ = ψ(Xt(w)) and
Nn+1(w) = (0, Nt(w)).

1Many of these states will be transient. However, their corresponding entries in the steady state
probability vectors will automatically become zero, so there is no need to remove them.
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b. Assume f(Xn(w), 1) = 0. Set Xn+1(w) = Xn(w) − 0 and Nn+1(w) =
(Qn(w)− 1,Mn(w)).

Next, increase n by one and do not alter the value of t.
Next, we show that (Xn,Nn) is a (binary) tree-like process with a generalized

boundary condition. Indeed, if we remove the nodes ∅ and ∅s from the state space Ω we
end up with a state space of a standard tree-like process, where the star node figures
as the root node. Moreover, the string Xn never grows/shrinks by more than one
symbol at a time and it can be readily seen from its construction that the transition
between different nodes only depends upon their spacial relationship as required.
When describing the transition matrices that characterize (Xn,Nn), we will add a hat
to all matrices involved (if a conflict arises with earlier notations). Furthermore, the
transition matrices Z between two nodes J and J ′ that both start with a star, are
partitioned into nine submatrices as follows:

Z =

 Z−,− Z−,0 Z−,+

Z0,− Z0,0 Z0,+

Z+,− Z+,0 Z+,+

 ,
where Zx,y with x, y 6= 0 are square matrices of dimension (d − 1)m, while Z0,0 is a
square matrix of size m and all other matrices have an appropriate dimension such
that Z is square. The subscripts of these matrices refer to the signs of Qn and Qn+1.
Let Ix denote the unit matrix of size x. In case x = m (with m the number of values
Nt and Mn can take), we drop the subscript.

A star is only added to Xn in case 1a, while the addition of a zero only occurs in
case 2. Hence, [

(U∗)0,0 (U∗)0,+

]
=

[
U1 U2 U3 . . . Ud

]
,

[
(U0)+,0 (U0)+,+

]
=


I 0 0 . . . 0

0 I 0
. . . 0

...
. . . . . . . . .

...
0 . . . 0 I 0

 ,
where U1, . . . , Ud are the m × m matrices belonging to the MC (Xt, Nt). All other
blocks of the matrices U0 and U∗ are zero. According to cases 1b, 3a and 3b, the
non-zero blocks of the matrices D0 and D∗ equal[

(D∗)−,0

(D∗)0,0

]
=

[
DT

2 ∆−1 DT
3 ∆−1 . . . DT

d ∆−1 DT
1

]T
,

[
(D0)−,− (D0)−,0

(D0)0,− (D0)0,0

]
=



0 I 0 . . . 0

0 0 I
. . . 0

...
...

. . . . . .
...

0 0 . . . 0 I
∆ 0 . . . 0 0

 ,

where ∆ is a diagonal matrix with entries2 Dke and T denotes the transpose of a
matrix. In practice (e.g., [6, 9]) ∆ need not be invertible as some of its diagonal

2Remark, the vectors Dke, 1 ≤ k ≤ d, are all identical.
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entries might be zero, say those appearing on rows S ⊂ {1, . . . ,m}. In this case
all the states of the form (J, (a, s)) are transient for a < 0 and s ∈ S and can be
removed at once. Hence, it suffices that ∆ can be inverted after removing the rows
and columns corresponding to these states. For ease of notation, we assume that S is
empty. The identity matrices in D0 are a consequence of case 3b. The appearance of
the ∆ matrix is caused by case 1b for k > 1, as we remove a zero and keep Mn+1(w)
equal to Mn(w) irrespective of the value of k. The matrices of the form ∆−1Dk make
sure that Mn+1(w) = Nt(w) in case 3a. This construction is needed as we cannot
determine the correct value of k until we have removed all the necessary zeros (which
are counted by Qn(w)). Transitions of the MC (Xt,Nt) from a node J , which differs
from ∅s and ∅, to itself are captured by the matrix B̂; where B̂0,0 = B, while all other
blocks of B̂ are identical to zero. Finally, the transitions among the nodes ∅ and
∅s are still characterized by the matrices F , Fs, F→s and Fs→, while the transition
matrix from node ∅ to node ∗ is identical to [(U∗)0,− (U∗)0,0 (U∗)0,+] and from node
∗ to node ∅ is given by [(D∗)T

−,0 (D∗)T
0,0 (D∗)T

+,0]
T .

4. Structural properties of the V̂ , R and G matrices. In this section, the
structural properties of the matrices V̂ , R0, R∗, G0 and G∗ of the MC (Xn,Nn) will
be discussed and their relationship with the matrices V , Gk and Rk, for k = 1, . . . , d,
of the original MC (Xt, Nt) will be identified. A⊗B denotes the Kronecker product
of the matrices A and B.

Consider the matrix V̂ whose elements labeled ((a, i), (a′, i′)) are the the taboo
probabilities that starting from a state (J + k, (a, i)), for k = 0 or ∗, the process
(Xn,Nn) eventually returns to the node J+k by visiting the state (J+k, (a′, i′)), under
the taboo of node J . By construction of (Xn,Nn), every sample path in (Xn,Nn) that
starts and ends in a state with Qn = 0, and that does not visit any other such state,
corresponds to a single transition in (Xt, Nt). So with every path in (Xn,Nn) that
starts in the state (J + k, (0, i)) and that eventually returns to the node J + k under
the taboo of node J by visiting the state (J + k, (0, i′)), there corresponds exactly
one path in (Xt, Nt), namely a path starting in state (ψ−1(J + k), i) that eventually
returns to node ψ−1(J + k) by visiting the state (ψ−1(J + k), i′). By construction of
(Xn,Nn), both these sample paths occur with the same probability. As a consequence,
V̂0,0 = V . Any sample path of (Xn,Nn) starting from a state (J + k, (0, i)) to the
same node J + k, under taboo of its parent node J , is either of length one, or starts
by adding a star to the string J + k. Due to the structure of B̂ and D∗, this implies
that V̂0,+ = 0 and V̂0,− = 0.

If a path in (Xn,Nn) starts in a node (J+k, (a, i)) with a < 0, this means that the
process is in the course of removing symbols from the string J +k, so only transitions
to node J are possible from such a state. So by definition of V̂ , V̂−,− = V̂−,+ = 0 and
V̂−,0 = 0. In case a path in (Xn,Nn) starts in a node (J + k, (a, i)) with a > 0, the
process will, with probability one, reach the state (J ′, (0, i)) after making a transitions,
where J ′ = J + k + s1 + ... + sa, with all si = 0, for i = 1, . . . , a. Having reached
(J ′, (0, i)), the process will follow a path starting from this state that passes l times
through the node J ′ again, before eventually reaching node J ′ − f(J ′, 1) by visiting
some state (J ′ − f(J ′, 1), (−1, i′)). The probability of all these paths is given by the
(i, i′)-th element of the matrix (

∑∞
l=0 V̂

l
0,0∆) = (

∑∞
l=0 V

l)∆ = (I − V )−1∆. In case
a = 1, the process has now reached the node J + k again, otherwise it will still make
a− 1 transitions with probability one, after which it reaches the node J + k again via
the state (J + k, (−a, i′)). So V̂+,− = Id−1 ⊗ (I − V )−1∆, V̂+,0 = 0, and V̂+,+ = 0.
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Due to the structure of V̂ , the only non-zero block of V̂ k, k ≥ 2, is (V̂ k)0,0 = V k.
Hence,

(I − V̂ )−1 =
∞∑

k=0

V̂ k =

 Id−1 ⊗ I 0 0
0 (I − V )−1 0

Id−1 ⊗ (I − V )−1∆ 0 Id−1 ⊗ I

 .
Using the expressions R0 = U0(I(2d−1)m − V̂ )−1 and R∗ = U∗(I(2d−1)m − V̂ )−1,

we find that the non-zero entries of R0 and R∗ are equal to

[ (R0)+,− (R0)+,0 (R0)+,+ ] =[
0 0 (I − V )−1 0 0

Id−2 ⊗ (I − V )−1∆ 0 0 Id−2 ⊗ I 0

]
,

and

[ (R∗)0,− (R∗)0,0 (R∗)0,+ ] = [ R2∆ . . . Rd∆ R1 U2 . . . Ud ].

Remark, (R0)d = 0, which is as expected as there can be at most d − 1 consecutive
zeros in a binary representation ψ(J) of any string J . Analogously, the non-zero
components of G0 = (I(2d−1)m − V̂ )−1D0 and G∗ = (I(2d−1)m − V̂ )−1D∗ can be
written as (G0)−,− (G0)−,0

(G0)0,− (G0)0,0

(G0)+,− (G0)+,0

 =

 0 Id−1 ⊗ I
(I − V )−1∆ 0

0 Id−1 ⊗ (I − V )−1∆

 ,
and

[ (G∗)T
−,0 (G∗)T

0,0 (G∗)T
+,0 ]T = [ DT

2 ∆−1 . . . DT
d ∆−1 GT

1 . . . GT
d ]T .

Remark that ∆e = Dke, meaning ∆−1Dke = e, for k ∈ {1, . . . , d}. As a conse-
quence, G0 and G∗ are stochastic if and only if all the matrices Gk, k ∈ {1, . . . , d},
of (Xt, Nt) are stochastic (as (I − V )−1∆e = (I − V )−1Dke = Gke). This means
that the binary tree-like process (Xn,Nn) is ergodic if and only if the tree-like process
(Xt, Nt) is ergodic.

5. Computing steady state probabilities. From the previous section, it is
clear that any algorithm that computes V̂ produces the matrix V as a by-product and
vice versa. The steady state probabilities of (Xn,Nn) and (Xt, Nt), provided that the
MC is stationary, can be easily computed from V̂ and V , respectively, as explained
in Section 2. In this section we will demonstrate that the use of some algorithms to
compute V̂ , is equivalent to the computation of V via the same algorithm, provided
that we make use of the structural properties of the matrices involved.

5.1. Fixed point iteration (FPI) [10, 1]. This algorithm computes V̂ as
follows. Set V̂ [0] = B̂ and compute V̂ [N + 1] as

(5.1) V̂ [N + 1] = B̂ + U∗(I(2d−1)m − V̂ [N ])−1D∗ + U0(I(2d−1)m − V̂ [N ])−1D0.

In this case V̂ [N ] monotonically converges to V̂ . It is easily seen that more iterations
are required to compute V̂ , when compared to computing V via the FPI algorithm.
We can improve the convergence by taking the specific structure of the V̂ matrix into
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account. That is, it suffices to compute the component V̂0,0[N + 1] via (5.1) and
to update the other entries such that V̂ [N + 1] has the same form as V̂ . Using the
expressions for U∗, U0, D∗ and D0 we have

V̂0,0[N + 1] = B +
d∑

i=1

Ui(I − V̂0,0[N ])−1Di,

which is identical to applying the FPI algorithm to V .

5.2. Reduction to quadratic equations (RQE) [1]. This algorithm allows
us to compute G0 and G∗ iteratively, from which we can derive the matrix V̂ . We
start with G0[0] = G∗[0] = 0 and solve the following two quadratic equations to obtain
G0[N + 1] and G∗[N + 1] from G0[N ] and G∗[N ]:

0 = D0 +
(
B̂ − I(2d−1)m + U∗G∗[N ]

)
G0[N + 1] + U0G

2
0[N + 1],(5.2)

0 = D∗ +
(
B̂ − I(2d−1)m + U0G0[N + 1]

)
G∗[N + 1] + U∗G

2
∗[N + 1],(5.3)

where G0[N ] and G∗[N ] converge to G0 and G∗, respectively. This iterative proce-
dure converges more slowly when compared to applying the RQE algorithm to the MC
(Xt, Nt). This can be seen by realizing that the G∗[N ] and G0[N ] matrices hold the
first-passage probabilities from the node ∗∗ and ∗0 to the node ∗ in the trees TN,∗ and
TN,0, respectively, with the tree TN,∗ = {∅s, ∅, ∗}∪{∗(∗s10s2)N i|i = 0 or ∗; s1, s2 ≥ 0}
and TN,0 = {∅s, ∅, ∗}∪{∗0s1(∗s20s3)N−1i|i = 0 or ∗; s1, s2, s3 ≥ 0}, for N ≥ 1. Apply-
ing the RQE algorithm to the MC (Xt, Nt), however, generates a sequence of matrices
Gk[N ], for k = 1, . . . , d, where Gk[N ] holds the first-passage probabilities from the
node k to the node ∅ in the tree TN,k = {∅s, ∅}∪{(k)s1 . . . 1sk(dsk+1 . . . 1sd+k)N−1i|i =
1, . . . , d; sj ≥ 0; j = 1, . . . , d+k}. Thus, a sample path that visits a node J containing
a series of identical integers k > 1 is more rapidly taken into account in the latter
case.

We can improve upon (5.2)-(5.3) by taking the structure of the matrices involved
into account. More specifically, the matrix equation D0 +(B̂− I(2d−1)m +U∗G∗)G0 +
U0G

2
0 = 0 can be simplified to

0 = ∆ +

B − I +
∑

1≤j≤d

j 6=k

UjGj

 (I − V )−1∆ + UkGk(I − V )−1∆.

If we post-multiply this equation by ∆−1Dk for k = 1, . . . , d, we end up with the d
quadratic equations used by the RQE algorithm when applied to the MC (Xt, Nt).

5.3. Newton’s iteration (NI) [1]. The NI algorithm can be used to compute
the m ×m matrices Gk of a tree-like process in a quadratically converging manner.
However, each step requires the solution of a (large) linear system of equations of the
form:

∑d
k=1HkXKk = X + L for some square matrices Hk,Kk and L of dimension

m. Thus, after applying the reduction technique presented in this paper, it suffices
to develop an efficient algorithm to solve a system of the form H1XK1 +H2XK2 =
X+L, which is identical to a generalized Sylvester matrix equation, except for the X
appearing on the right-hand side. Currently, it is unclear whether such a simplification
can result in a computational gain.
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