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Abstract

In this paper we demonstrate how tree-like processes can be used
to analyze a general class of priority queues with three service classes,
creating a new methodology to study priority queues. The key result is
that the operation of a 3-class priority queue can be mimicked by means
of an alternate system that is composed of a single stack and queue. The
evolution of this alternate system is reduced to a tree-like Markov process,
the solution of which is realized through matrix analytic methods. The
main performance measures, i.e., the queue length distributions and loss
rates, are obtained from the steady state of the tree-like process through
a censoring argument. The strength of our approach is demonstrated via
a series of numerical examples.

1 Introduction

In this paper we introduce a new methodology to analyze priority queues with
three classes of service. The key feature of our approach lies in reformulating
the traditional three queue problem into a combined queue and stack problem.
We show that the behavior of the reformulated problem can be captured by a
Markov chain with a tree structured state space [16, 20]. This Markov chain—
that neither fits within the GI/M/1 or M/G/1 paradigm—is reduced to a
binary tree-like process [3, 17], which is a special case of a tree structured QBD
Markov chain [19]. The queue length distributions and loss rate, which are
the main performance measures captured by this methodology, are obtained
by applying a censoring argument on the tree-like process.

We model the incoming jobs as a Markov arrival process with marked jobs,
i.e., the MMAP[3] process [5, 4]. The MMAP[3] is a very general set of arrival
processes that allows correlated inter-arrival times and correlation between the
classes of consecutive jobs. Moreover, the input traffic does not need to consist
of three independent streams (one for each priority class). Furthermore, we
allow that the amount of time needed to execute a job depends on its class,
while the processing time of consecutive jobs of the same class is independent
and identically distributed (iid). Thus, in general, one cannot simply lump the
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priority one and two traffic into a single class as this would create correlation
into the service times of the lumped job class.

We will demonstrate our approach on a discrete-time preemptive priority
queueing system without batch arrivals. The approach can be adapted such
that it also applies to the continuous time setting or to nonpreemptive sys-
tems. In order to identify the key features of our new methodology, we restrict
ourselves to the case where the service time of a class-i job is geometric with
a mean 1/pi. Phase-type distributed service times can also be incorporated
into the model. The methodology is exact if the waiting rooms for the priority
1 and 3 jobs are both finite while the waiting room for the priority 2 jobs
has an infinite capacity. The infinite nature of the priority 2 queue does not
jeopardize the practical relevance of our model as priority queues are mainly
effective if sufficient jobs have the lowest priority. Therefore, hardly any pri-
ority 1 or 2 jobs will leave the system without receiving full service; hence,
whether the priority 2 queue is infinite or finite and sufficiently large makes
little difference.

The study of priority queues has a long history that started in the 1950s
(according to Miller [9]) and a plethora of applications in both communication
and manufacturing systems has benefited from its development. Starting from
the elementary M/M/1 priority queue, the complexity and generality of the
models under study has grown ever since. Various, more recent studies have
focused on priority queues with Markovian input traffic and phase-type (or
general) service requirements [1, 2, 7, 13, 14, 15].

In [1, 2] Alfa et al. studied priority queues with C ≥ 2 classes, MMAP[C]
input and phase-type services by setting up a QBD Markov chain [6] that
generalizes Miller’s result [8]. Although the queues considered in [1, 2] are
infinite, a similar approach can be used to solve the system when some of the
queues are finite. In case of 3 service classes and a finite capacity queue of size
K for each of the class-1 and class-3 jobs, the resulting QBD has size O(K2)
block matrices (the structure of which can be exploited to compute the rate
matrix R). Our approach has the advantage that the blocks characterizing
the binary tree-like process are of size O(K) only. The arrival process in [1, 2]
is however somewhat more general as one job per service class may arrive at
each time instant, as opposed to one job in total at each instant in our model.

Takine and Hasegawa [14] analyzed the preemptive priority queue with C ≥
2 service classes, C independent MAP arrival streams and state-dependent
service times, using the workload process of the queue. They generalize the
model presented by Machihara in [7] that relied on the diagonalization of
some matrices. In our setting we do not require independent MAP arrivals
streams and focus on the queue length distributions, while the approach in
[14] can deal with more general service requirements and is especially effective
to compute the waiting time distributions. Takine [13, 15] also studied the
nonpreemptive priority MAP/G/1 queue and derived various formulas for the
generating function of the queue length and Laplace-Stieltjes transform of the
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waiting time for each job class.
The remainder of the paper is organized as follows. The stack and queue

model reformulation of the 3-class priority queue is given Section 2. Section
4 presents a Markov chain that captures the evolution of this model for the
specific queueing system described in Section 3. In Section 5 we show how to
reduce this Markov chain to a tree-like process, while Section 6 discusses the
computation of its steady-state probabilities and of the performance measures
of interest. We demonstrate our approach via a set of numerical examples in
Section 7.

2 The 3-class priority queue and a combined stack

and queue problem

Consider a preemptive priority queueing system with three service classes con-
sisting of a single server and three waiting rooms, one for each service class.
Assume that class-1 jobs have the highest priority, followed by the class-2 jobs
and finally the class-3 jobs. The processing times of consecutive jobs belong-
ing to the same class are iid. Let the capacity of both1 the class-1 and class-3
waiting rooms be finite and of size K > 0, while the class-2 waiting room is
considered infinite in size. Jobs that find their corresponding waiting rooms
full, leave the system without being executed. A class-3 job that is pushed
out of the service facility will (re)occupy the leading position in the class-3
waiting room, possibly pushing out the youngest waiting class-3 job. We refer
to this traditional model as the three queue model (3Q). We now replace the
class-2 and class-3 waiting rooms by a single, infinite size stack, to obtain a
new model termed the stack & queue (S&Q) model. We will show that the
state of the 3Q model is uniquely identified by the current state of the S&Q
model.

The evolution of the S&Q model goes as follows. An example to further
clarify the relationship between the two systems is depicted in Figure 1. During
the description of the S&Q model, we will refer to this figure and indicate the
time instants at which such an event occurs. As long as there is at least one
class-1 job in the system (meaning a class-1 job is being processed), we use the
queue to store priority 1 jobs (time 1–3, 6–9 and 15), while all arriving class-2
or class-3 jobs are simply pushed on the stack (time 2, 3 and 8). If there are no
other class-1 jobs in the system when a priority 1 job arrives, it will occupy the
server. The possible class-2 or class-3 job that was in service will be pushed on
the stack2 together with the entire contents of the queue, making the queue
available again for class-1 jobs (time 1,6 and 15). Hence, as far as the class-1

1There is no need to select the same capacity K > 0 for the class-1 and class-3 waiting
rooms. It only simplifies the presentation of the model.

2The reason for first pushing the possible class-2 job on the stack (before the contents of
the queue) will become apparent further on.

3



jobs are concerned there is no difference between the 3Q model or the S&Q
model. During periods when there is no class-1 traffic present, we utilize the
queue for other means (time 0, 4–5, 10–14 and 16–18). Notice, the number of
priority 3 jobs on the stack might become larger than K, the capacity of its
waiting room in the 3Q model, as we simply push all class-3 arrivals on the
stack when a class-1 job is in service (time 5–13). Further on, it will become
apparent that the number of class-3 jobs waiting for service in the 3Q model
is identical to the minimum of K and the number of waiting class-3 jobs in
the S&Q model. There is no need to keep track of the correct number of
class-3 jobs at all times, it suffices that the number is identical to the one of
the 3Q system when the server becomes available for the class-3 jobs. Thus,
the number of class-3 job losses is identical in both models, however, the times
at which the these losses occur need not to coincide.

Assume that a class-1 job is completed and there are no other class-1 jobs
ready to start service, that is, the server is now available for class-2 or class-3
traffic (time 4, 10 and 16). Moreover, the queue used to store the class-1 jobs
is now empty and can be utilized for other purposes as long as there is no
class-1 traffic in the system. In such a case we start looking for a class-2 job
in the stack, by popping jobs from the stack until we encounter a class-2 job.
This class-2 job is placed in the service facility. As the service times within
a class are iid, the identity of and order in which the jobs of a specific class
are served is irrelevant, as long as an interrupted job is continued when the
server becomes available again to this job’s priority class. This is realized by
assuming that the class-2 jobs mutually switch positions in the stack such that
the oldest ones are on top.

The class-3 jobs that are removed from the stack while searching the stack
for a class-2 job, are stored in the queue (time 4, 10, 14 and 16). Thus, as long
as there are no class-1 jobs, we use the queue (temporarily) to store class-3
jobs. If the queue is full (with class-3 jobs) when popping a class-3 job from
the stack, the job leaves the system without being performed (time 10 and
14). As with the class-2 jobs, we assume that the class-3 jobs also mutually
exchange positions such that the youngest jobs get dropped first, while the
elder receive service before the younger ones (that is why the lost jobs in the
3Q model immediately move to the lowest class-3 positions on the stack at
time 5 and 8 in the S&Q model). If a class-2 job is completed (and there is
no class-1 arrival) we start to pop jobs from the stack in search of another
class-2 job (time 14). If no such job is encountered, meaning that the stack
is empty and all class-3 jobs are now present in the queue, we start executing
the priority 3 jobs.

Finally, if a class-2 job arrives while a class-3 job is being performed, it
will interrupt its service and the class-3 job returns to the queue. Hence, we
do not push the entire contents of the queue on the stack in such case. Class-3
arrivals that occur while a class-2 or class-3 job is being executed are always
directly stored in the queue (time 5), or lost if the queue is full, while class-2
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Figure 1: System dynamics during a busy period for the 3Q and S&Q system

arrivals are pushed onto the stack in such cases. The execution of class-3 jobs
can only start when the stack is empty (time 0, 14 and 16-18), therefore, the
number of lost jobs during a busy period is identical in both the 3Q and S&Q
system.

3 Priority Queueing Model

In this section we present a detailed description of the priority queueing system
used to demonstrate our novel approach in detail. As indicated in the intro-
duction, the model can be extended in various directions, e.g., phase-type
services, nonpreemptive systems, continuous time models, etc. Our model is
the discrete time version of the 3Q model discussed in the previous section,
with the following arrival process and service time requirements. The job ar-
rival process is a MMAP[3] process with m phases. It is characterized by a
set of four matrices D0,D1,D2 and D3. The (i, j)-th entry of D0 represents
the probability that the phase changes from i (at time n) to j (at time n + 1),
while no arrivals occur (at time n). Similarly, Di gives the probability for
the same event, but with a class-i job arrival (at time n), for i = 1, 2 and 3.
Define θ as the stochastic vector that satisfies θ(D0 +D1 +D2 +D3) = θ. The
arrival rate of the class-i jobs λi can be computed as λi = θDiem (where em is
a column vector of size m with all its entries equal to one). The time needed
to process a class-i job is assumed to be geometric with a mean of 1/pi time
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slots.
As we are dealing with a discrete time model, we need to specify the order

in which simultaneously occurring events take place. The following order is
respected in our model: (i) A possible arrival at time n occurs first. The
arriving job is placed in its corresponding waiting room. If a class-1 or class-
3 job finds its waiting room full upon arrival, it immediately abandons the
system (without being performed). (ii) Next, a possible service completion
occurs, making the server ready to process another (waiting) job. Even if there
is no service completion, the job being processed returns to its corresponding
waiting room in case a job with a priority exceeding that of the job in progress
arrived during step (i). (iii) If the server is empty after step (ii), the next job
to be performed is selected from the waiting rooms according to the rules of
the priority system. Notice, if a class-1 (or 3) job arrival coincides with a
job completion and there were already K class-1 (or 3) jobs waiting to be
processed, the newly arriving job will abandon the system due to the above-
mentioned event order. Other orders of events can be considered as well,
but may increase the complexity of the tree-like process reduction technique
introduced further on. When setting up a Markov chain, we observe the system
at time n just prior to any events, e.g., arrivals, service completions, etc.

4 The Markov Chain

In this section we make use of the relationship between the 3Q and S&Q model
to analyze the priority queueing system described in Section 3. A Markov chain
with a tree structured state space [16, 20] that captures the system dynamics
of the S&Q model is set up. Let Mn denote the phase of the MMAP[3] job
arrival process at time n. Due to the geometric nature of the job durations
it suffices to keep track of the class of the job in progress. Let Sn = i, for
i = 1, 2 and 3, if a class-i job is executed at time n and let Sn = 0 if there are
no jobs in the system. Define Qn as the queue contents at time n (where Qn

takes values in the range 0 to K) and Xn as the stack contents at the same
time instant.

The stack contents will be denoted as a string of integers J = j1j2 . . . j|J |,
where ji = 2 or 3 for i = 1, . . . , |J | and |J | represents the length of the
string. The empty string is denoted as J = ∅. The rightmost element of the
string (i.e., j|J |) corresponds with the class of the job at the top of the stack,
while the leftmost element reflects the class of the bottom entry. Elements
pushed onto or popped from the stack are therefore added to or removed
from the right-hand side of the string J . Let f(J, i) denote the string holding
the i rightmost elements of the sting J (for i ≤ |J |). We use the ‘+’ to
denote the concatenation on the right and ‘-’ to represent the deletion from
the right. For example, if J1 = 3223 and J2 = 322, then J1 + J2 = 3223322
and J1 − f(J1, 2) = 32. We also use the shorthand J = 3r if J is a string of
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length r with all its elements equal to 3. For convenience we also denote the
string J = ∅ as 30. We refer to the set of states with Xn = J as node J of the
tree. The node J = ∅ is further split into two subnodes ∅0 and ∅1. With some
abuse of notation we sometimes write J + ∅1 = ∅1 + J = ∅0 + J = J + ∅0 = J .

It is not hard to see that (Xn, Sn, Qn,Mn) forms a Markov chain for the
S&Q model of the priority queueing system discussed in Section 3. We par-
tition its state space into three sets of states, when joined the first two sets
form the node Xn = ∅. For each of the three sets below the job arrival process
has a range equal to 1, . . . ,m.

• Xn = ∅0 : there are no class-1 or class-2 jobs in the system. This implies
that (Sn, Qn) = (0, 0) or (3, q) for q = 0, . . . ,K. Notice, whenever the
Markov chain is in one of these states we use the queue to store class-3
jobs.

• Xn = ∅1 : the stack is empty and a class-1 or class-2 job is processed.
If Sn = 1, meaning a class-1 job is being performed, we use the queue
for class-1 jobs (and the range of Qn equals 0, . . . ,K). The empty stack
indicates that there are no class-2 or class-3 jobs in the system. If Sn = 2,
we utilize the queue for class-3 jobs. The range of Qn is also equal to
0, . . . ,K. Apart from the class-2 job in service, there are no other class-1
or class-2 jobs present.

• Xn = J , with |J | > 0 : the stack is not empty. From the description of
the S&Q model we know that Sn = 1 or 2. As in the Xn = ∅1 case, the
range of Qn also equals 0, . . . ,K and the class of the jobs in the queue
depends in the same manner on the value of Sn.

To facilitate the description of the transition probabilities, we introduce the fol-
lowing notation. Let PJ,J ′((s, q) → (s′, q′)) be an m×m matrix whose (i, i′)-th
element equals the probability that (Xn+1, Sn+1, Qn+1,Mn+1) = (J ′, s′, q′, i′)
given that (Xn, Sn, Qn,Mn) = (J, s, q, i). When presenting the expression for
these m × m matrices, we will only briefly touch upon some of the equalities,
the others are found in an analogue manner.
(A) Let us start with the case where Xn = ∅0. This means that there are
no class-1 or class-2 jobs in the system and the queue is available/utilized for
class-3 jobs. The Markov chain remains in the node ∅0 unless there is a class-1
or class-2 job arrival at time n (see Eq. (1)). From hereon we denote (1 − pi)
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as p̄i.

P∅0,∅0
((s, q) → (s′, q′)) =























































D0 s = s′ = q = q′ = 0,
D3 s = 0, s′ = 3, q = q′ = 0,
p3D0 s = 3, s′ = 0, q = q′ = 0,

or s = s′ = 3,K > q = q′ + 1 > 0,
p̄3D0 + p3D3 s = s′ = 3, q = q′ < K,
p̄3D3 s = s′ = 3, q = q′ − 1 < K
p̄3D0 s = s′ = 3, q = q′ = K,
p3(D0 + D3) s = s′ = 3, q = q′ + 1 = K,
0 otherwise.

(1)

The expression for q = K can be understood by recalling that, due to the event
order, an arriving job that finds the queue fully occupied is lost irrespective of
whether there is a service completion at this particular time. This has to be
kept in mind when considering other, future expressions with q = K. In the
event of a class-2 arrival, we find Xn+1 = ∅1 and the queue remains available to
the class-3 jobs (see Eq. (2), line 1 with s′ = 2 and line 3–5). This is no longer
the case if a class-1 job arrival occurs, because we need to push all q class-3
jobs present in the queue on the stack (together with the class-3 job residing
in the server unless this job ended at time n); hence, Xn+1 = 3max(K,q(+1))

(see Eq. (2), line 1–2, and (6), line 4–6):

P∅0,∅1
((s, q) → (s′, q′)) =































Ds′ s = 0, s′ = 1 or 2, q = q′ = 0,
p3D1 s = 3, s′ = 1, q = q′ = 0,
p3D2 s = 3, s′ = 2, q = q′ < K,
p̄3D2 s = 3, s′ = 2, q = q′ − 1 < K
D2 s = 3, s′ = 2, q = q′ = K,
0 otherwise.

(2)

(B) Next, assume that Xn = ∅1. If the (class-1 or class-2) job in progress
finishes and leaves no other class-1 or class-2 jobs behind in the system, we
have Xn+1 = ∅0 (see Eq. (3), notice that the q jobs in the queue are of class-3
if s = 2). Otherwise, we remain in the node ∅1 (see Eq. (4) and (5) for J = ∅1)
unless (a) there is still a class-1 job in the system at time n+1 and a class-2 or
class-3 job arrived at time n which we need to push on the stack (see Eq. (6)
and Eq. (7), lines 1–2 with s = 1), (b) the class-2 job in progress does not end
at time n and a class-1 or class-2 job arrives (see Eq. (7), line 2 for s = 2 and
line 3), or (c) a class-2 job finishes at time n with at least one queued class-3
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job, while a new class-1 job arrives (see Eq. (6), line 3).

P∅1,∅0
((s, q) → (s′, q′)) =































psD0 s = 1 or 2, s′ = 0, q = q′ = 0,
p1D3 s = 1, s′ = 3, q = q′ = 0,
p2D0 s = 2, s′ = 3,K > q = q′ + 1 > 0,
p2D3 s = 2, s′ = 3, q = q′ < K
p2(D0 + D3) s = 2, s′ = 3, q = q′ + 1 = K
0 otherwise.

(3)

For J 6= ∅0, we have

PJ,J((1, q) → (s′, q′)) =






































p1D0 s′ = 1,K > q = q′ + 1 > 0,
p̄1D0 + p1D1 s′ = 1, q = q′ < K,
p̄1D1 s′ = 1, q = q′ − 1 < K,
p̄1D0 s′ = 1, q = q′ = K
p1(D0 + D1) s′ = 1, q = q′ + 1 = K
p1D2 s′ = 2, q = q′ = 0,
0 otherwise,

(4)

and

PJ,J((2, q) → (s′, q′)) =






















p2D1 s′ = 1, q = q′ = 0,
p̄2D0 + p2D2 s′ = 2, q = q′ < K,
p̄2D3 s′ = 2, q = q′ − 1 < K,
p̄2(D0 + D3) + p2D2 s′ = 2, q = q′ = K
0 otherwise.

(5)

For r > 0, one finds

PJ,J+3r((s, q) → (s′, q′)) =






































p1D3 J 6= ∅0, s = s′ = 1, q = q′ + 1 > 0, r = 1,
p̄1D3 J 6= ∅0, s = s′ = 1, q = q′, r = 1,
p2D1 J 6= ∅0, s = 2, s′ = 1, q = r, q′ = 0,
p3D1 J = ∅0, s = 3, s′ = 1, q = r < K, q′ = 0,
p̄3D1 J = ∅0, s = 3, s′ = 1, q = r − 1 < K, q′ = 0,
D1 J = ∅0, s = 3, s′ = 1, q = r = K, q′ = 0,
0 otherwise.

(6)

While J 6= ∅0 and r ≥ 0 yields

PJ,J+23r((s, q) → (s′, q′)) =














p1D2 s = s′ = 1, q = q′ + 1 > 0, r = 0,
p̄sD2 s = s′ = 1 or 2, q = q′, r = 0,
p̄2D1 s = 2, s′ = 1, q = r, q′ = 0,
0 otherwise.

(7)
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(C) Let us now consider the case Xn 6= ∅. The transitions to nodes of the
form J + 3r and J + 23r, for r ≥ 0, are analogue to the J = ∅1 scenario and
are given by Eq. (4–7). We further distinguish between the case where Xn is
of the form 3r, for some r > 0 and J + 23r for some r ≥ 0. The only nonzero
transitions that remain untouched are those that correspond to a (class-1 or
class-2) service completion that causes a decrease in the current stack size
(meaning no class-1 or class-2 arrival can take place at time n). If J = 3r, for
some r > 0, we end up in node ∅0 as all the class-3 jobs are popped from the
stack (in search for a class-2 job); hence, for r > 0

P3r ,∅0
((s, q) → (s′, q′)) =







































p1D0 s = 1, s′ = 3, q = 0, q′ = r − 1 < K − 1,
p1D3 s = 1, s′ = 3, q = 0, q′ = r < K,
p1(D0 + D3) s = 1, s′ = 3, q = 0, q′ = K − 1 < r,
p2D0 s = 2, s′ = 3, q′ = q + r − 1 < K − 1,
p2D3 s = 2, s′ = 3, q′ = q + r < K,
p2(D0 + D3) s = 2, s′ = 3, q′ = K − 1 < q + r,
0 otherwise.

(8)

The order of events, in particular the fact that an arrival occurs before a job
completion, explains why q′ = K − 1 in line 3 and 6 of Eq. (8) when a class-3
arrival occurs with q + r ≥ K. If Xn = J +23r, for r ≥ 0, the events discussed
by Eq. (8) cause the removal of r class-3 jobs and one class-2 job from the
stack:

PJ+23r ,J((s, q) → (s′, q′)) =






































p1D0 s = 1, s′ = 2, q = 0, q′ = r < K,
p1D3 s = 1, s′ = 2, q = 0, q′ = r + 1 < K + 1,
p1(D0 + D3) s = 1, s′ = 2, q = 0, q′ = K ≤ r,
p2D0 s = s′ = 2, q′ = q + r < K,
p2D3 s = s′ = 2, q′ = q + r + 1 < K + 1,
p2(D0 + D3) s = s′ = 2, q′ = K ≤ q + r,
0 otherwise.

(9)

The steady state probabilities (and related performance measures) of a
Markov chain (MC) with a tree structured state space can be computed via
matrix analytic methods, provided that it falls within the M/G/1 or GI/M/1
paradigm [16, 20]. A MC is of the M/G/1 type if the node variable Xn can
only decrease in length by one at a time. Similarly, for a GI/M/1 type MC
the node variable Xn may not grow in length by more than one at a time.
As neither of these restrictions applies to our MC, a reduction is needed if we
want to rely on these matrix analytic results. In the next section we introduce
an efficient reduction technique that reduces our MC to a tree-like process
[3]. The set of tree-like processes coincides with the intersection of the set
of M/G/1 and GI/M/1 type MCs as any tree-structured QBD MC can be
reformulated as a tree-like process [17].
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5 The tree-like process

In order to reduce the Markov chain (Xn, Sn, Qn,Mn) to a tree-like process
we need to eliminate all transitions that add/remove multiple jobs to/from
the stack in a single transition. Moreover, while doing so we have to make
sure that transitions from a node J 6= ∅0 to J , J + 2 or J + 3 do not depend
on J , while transitions from J 6= ∅ to J ′ = J − f(J, 1) may be influenced by
f(J, 1), the top element on the stack, but not by J ′ = J − f(J, 1). We shall
reduce the MC (Xn, Nn = (Sn, Qn,Mn)) to a tree-like process by constructing
an expanded MC (Xk,Nk = (Sk,Qk,Mk)). The technique used to construct
this expanded MC is similar to Ramaswami’s [12] to reduce a classic M/G/1-
type MC to a QBD MC or to the approach taken in Van Houdt et al [18] to
construct a tree structured QBD. The key idea behind this expanded MC is
that whenever a transition occurs that adds a string of the form J ′ = 3r+1 or
J ′ = 23r, for r > 0, to the node variable Xn = J , we split this transition into
r + 1 transitions3 that each add one integer to the node variable Xk. After
adding the first element (a 2 or 3), we set Sk = 3+ to indicate that we still
need to push a series of 3s to the stack (the exact number of 3s is stored in the
Qk variable). Likewise we split transitions that pop a string J ′ = 23r or 3r,
with r > 0, from the stack into r + 1 transitions and let Sk = 2− to indicate
that we are popping elements from the stack until we encounter a class-2 job4

(Qk now indicates the number of class-3 jobs that was popped from the stack,
without getting lost, since the last class-1 job left the system).

More formally, assume a given realization (Xn(w), Nn(w) = (Sn(w), Qn(w),
Mn(w))) of the MC (Xn, Nn = (Sn, Qn,Mn)). The expanded chain (Xk,Nk =
(Sk,Qk,Mk)) is constructed as follows. The range of Sk equals 1, 2, 2− and
3+ if J 6= ∅0, while Qk takes values in 0, . . . ,K for Sk = 1, 2 and 1, . . . ,K for
Sk = 2−, 3+. Thus, we add 2K states to each node J 6= ∅0 of the original MC
(Xn, Nn).

Initial state: If (X0(w), N0(w)) = (J, (s, q, i)), then set (X0(w),N0(w)) =
(J, (s, q, i)). Also, set n = 0 and k = 0, n represents the steps of the original
chain and k represents the steps of the expanded chain. We will establish a
one-to-one correspondence between the state (J, (s, q, i)) of the original chain
and the state (J, (s, q, i)) of the expanded chain.

3When a transition from J = ∅0 to 3r+1 occurs we split the transition into r + 2 steps,
where the first step goes from ∅0 to ∅1. The advantage of splitting this type of transitions
into r +2 steps as opposed to r +1 is that we can use the same transition matrix to go from
node ∅1 to J = 3 as from J = J

′ to J
′ + 3 for any J

′ 6= ∅.
4Transition from J = 3r to ∅0 are split into r + 1 steps, where the last step goes from

∅1 to ∅0. Therefore, we can use the same transition matrix to go from node J = 3 to ∅1 as
from J = J

′ + 3 to J
′ for any J

′ 6= ∅.
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Transition Rules: We distinguish between three possible cases: Sk(w) 6=
2− or 3+, Sk(w) = 2− and Sk(w) = 3+.
(A) Sk(w) 6= 2−, 3+: Consider (Xn(w), (Sn(w), Qn(w),Mn(w))), and do one
of the following:

1a. Assume Xn(w) = J and (Xn+1(w), Sn+1(w), Qn+1(w)) = (J + 23r, 1, 0)
for some r > 0, then set Xk+1(w) = J + 2 and Nk+1(w) = (3+, r,
Mn+1(w)).

1b. Otherwise, provided that Xn(w) = J 6= ∅0 and (Xn+1(w), Sn+1(w),
Qn+1(w)) = (J + 3r, 1, 0) for some r > 1, let Xk+1(w) = J + 3 and
Nk+1(w) = (3+, r − 1,Mn+1(w)).

1c. For Xn(w) = ∅0 and (Xn+1(w), Sn+1(w), Qn+1(w)) = (J + 3r, 1, 0) for
some r > 0, we define Xk+1(w) = ∅1 and Nk+1(w) = (3+, r,Mn+1(w)).

2a. If Xn(w) = J + 23r and (Xn+1(w), Sn+1(w)) = (J, 2) for some r > 0,
then define Xk+1(w) = J + 23r−1 and Nk+1(w) = (2−,max(Qn(w)+ 1+
a,K),Mn+1(w)), where a is the number of class-3 job arrivals at time n.

2b. For Xn(w) = 3r and (Xn+1(w), Sn+1(w)) = (∅0, 3) for some r ≥ 1, set
Xk+1(w) = 3r−1 (i.e., ∅1 if r = 1) and Nk+1(w) = (2−,max(Qn(w)+ 1+
a,K),Mn+1(w)).

3. In all other cases set (Xk+1(w),Nk+1(w)) = (Xn+1(w), Nn+1(w))

Next, increment both n and k by one.
(B) Sk(w) = 2−: Xk(w) can be written as ∅1, J + 2 or J + 3 for some string
J .

1. For Xk(w) = J+2, set Xk+1(w) = J = Xn(w) and Nk+1(w) = (2,Qk(w),
Mk(w)) = Nn(w). Notice, n was incremented by one in (A).

2. While for Xk(w) = J + 3, set Xk+1(w) = J and Nk+1(w) = (2−,
max(Qk(w) + 1,K), Mk(w)).

3. Finally, when Xk(w) = ∅1, let Xk+1(w) = ∅0 = Xn(w) and Nk+1(w) =
(3,Qk(w) − 1, Mk(w)) = Nn(w).

Next, increase k by one and do not alter the value of n.
(C) Sk(w) = 3+: Qk(w) is either equal to or larger than 1 (due to (A1)).

1. For Qk(w) = 1, set Xk+1(w) = Xk(w)+3 = Xn(w) and Nk+1(w) = (1, 0,
Mk(w)) = Nn(w).

2. When Qk(w) > 1, set Xk+1(w) = Xk + 3 and Nk+1(w) = (3+,Qk(w) −
1,Mk(w)).
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Increase k by one and do not alter the value of n.
We are now in a position to characterize the nonzero transition probabili-

ties of the expanded MC, i.e., the tree-process (Xk,Nk). The transitions from
node ∅0 to ∅0 are identical to those of the MC (Xn, Nn) and given by Eq. (1).
Similarly, the transitions from a node J 6= ∅0 to itself remain unaltered and are
characterized by Eq. (4-5), meaning that for s = 2− or 3+, the string Xk = J
either increases or decreases in length. Looking at the transition rules, in par-
ticular at case (B3), we see that we need to add the following line to Eq. (3)
in order to capture all transitions from ∅1 to ∅0:

P∅1,∅0
((s, q), (s′, q′)) =

{

Im s = 2−, s′ = 3, q = q′ + 1 > 0, (10)

with Im the m × m identity matrix. By rule (A1c), we know that apart from
the transitions from ∅0 to ∅1 given by Eq. (2) we need to add the following
lines

P∅0,∅1
((s, q), (s′, q′)) =







p3D1 s = 3, s′ = 3+, 0 < q = q′ < K,
p̄3D1 s = 3, s′ = 3+, q = q′ − 1 < K,
D1 s = 3, s′ = 3+, q = q′ = K.

(11)

Notice, at time k + 1 we are either in node ∅0 or ∅1 if Xk = ∅0. Let us now
consider the case Xk = J and Xk+1 = J + 3. From Eq. (6) and rules (A1b),
(A3) and (C) we find (for J 6= ∅0)

PJ,J+3((s, q) → (s′, q′)) =






































p1D3 s = s′ = 1, q = q′ + 1 > 0,
p̄1D3 s = s′ = 1, q = q′,
p2D1 s = 2, s′ = 1, q = 1, q′ = 0,

or s = 2, s′ = 3+, q = q′ + 1 > 1,
Im s = 3+, s′ = 1, q = 1, q′ = 0,

or s = s′ = 3+, q = q′ + 1 > 1,
0 otherwise.

(12)

Similarly, by Eq. (7) and rules (A1a) and (A3), we have (for J 6= ∅0)

PJ,J+2((s, q) → (s′, q′)) =






















p1D2 s = s′ = 1, q = q′ + 1 > 0,
p̄sD2 s = s′ = 1 or 2, q = q′,
p̄2D1 s = 2, s′ = 1, q = q′ = 0,

or s = 2, s′ = 3+, q = q′ > 0,
0 otherwise.

(13)
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According to Eq. (9) and rules (A3) and (B1), transitions from node J + 2 to
J are governed by

PJ+2,J((s, q) → (s′, q′)) =






































p1D0 s = 1, s′ = 2, q = q′ = 0,
p1D3 s = 1, s′ = 2, q = 0, q′ = 1,
p2D0 s = s′ = 2, q = q′ < K,
p2D3 s = s′ = 2, q = q′ − 1 < K,
p2(D0 + D3) s = s′ = 2, q = q′ = K,
Im s = 2−, s′ = 2, q = q′,
0 otherwise.

(14)

Finally, Eq. (9) and rules (A2), (A3) and (B2) give rise to5

PJ+3,J((s, q) → (s′, q′)) =






































p1D0 s = 1, s′ = 2−, q = 0, q′ = 1,
p1D3 s = 1, s′ = 2−, q = 0, q′ = 2,
p2D0 s = 2, s′ = 2−, q = q′ − 1 < K − 1,
p2D3 s = 2, s′ = 2−, q = q′ − 2 < K − 1,
p2(D0 + D3) s = 2, s′ = 2−, q = K − 1 or K, q′ = K,
Im s = 2−, s′ = 2−, q′ = min(q + 1,K),
0 otherwise.

(15)

We define the following set of matrices. Let F be the m(K + 2) × m(K + 2)
matrix holding the transition probabilities from node ∅0 to itself, F01 the
m(K + 2)× m(4K + 2) matrix characterizing the transitions from ∅0 to node
∅1, while F10 is the m(4K +2)×m(K +2) matrix containing the probabilities
of going from node ∅1 to ∅0. Moreover, let A and Uk, for k = 2, 3, represent
the square matrix of dimension m(4K+2), holding the transition probabilities
from a node J 6= ∅0 to itself and node J + k, respectively. Finally, define Dk,
for k = 2, 3, as the m(4K +2)×m(4K +2) matrix whose entries represent the
transition probabilities to go from a node J of the form J ′+k to J−f(J, 1) = J ′

(see Figure 2).

6 Steady state probabilities and performance mea-

sures

In this section we indicate how to compute the steady state probabilities π̃ of
the expanded MC (Xk,Nk), from which we derive the invariant measure π of
the MC (Xn, Nn) using a censoring argument. Several performance measures

5Some minor changes are needed if K = 1.
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Figure 2: Transition diagram for the top levels of the tree

are obtained from π̃ and π. Define

π̃J(s, q, j) = limk→∞ P [Xk = J,Nk = (s, q, j)],

π̃J(s, q) = (π̃J(s, q, 1), . . . , π̃J(s, q,m)),

π̃J(s) =















(π̃J(s, 0), . . . , π̃J(s,K)) s = 1, 2, J 6= ∅0

(π̃J(s, 1), . . . , π̃J(s,K)) s = 2−, 3+, J 6= ∅0

π̃J(s, 0) s = 0, J = ∅0

(π̃J(s, 0), . . . , π̃J(s,K)) s = 3, J = ∅0

π̃J =

{

((π̃J(1), π̃J (2), π̃J (2−), π̃J (3+)) J 6= ∅0,
((π̃J(0), π̃J (3)) J = ∅0

(16)

These probabilities exist provided that the MC (Xk,Nk) is ergodic. A simple
algorithmic test that allows us to check its ergodicity is presented further on.
From an operational point of view, it is clear that both the chains (Xk,Nk)
and (Xn, Nn) are stable if and only if λ1(1−p1,loss)/p1+λ2/p2 < 1, that is, the
offered load by the class-1 and class-2 jobs (minus the load of the lost class-1
jobs) should be less than one. This condition has been verified numerically for
several examples. However, establishing formal proofs on the stability of tree-
like processes is generally considered as hard [20], because no explicit stability
condition in terms of the transition matrices has been found (as opposed to
the classic QBD, M/G/1 and GI/M/1 type MCs [6, 10, 11]).

As a special case of [20, Theorem 1] it follows that the vectors π̃J can be

15



written as

(π̃∅0
, π̃∅1

) = (π̃∅0
, π̃∅1

)

[

F F01

F10 A + R2D2 + R3D3

]

,

(π̃∅0
, π̃∅1

) =
(π̃∅0

,π̃∅1
)

(π̃∅0
em(K+2)+π̃∅1

(I−(R2+R3))−1em(4K+2))
,

π̃J+k = π̃JRk,

(17)

for J 6= ∅0. The matrices R2 and R3 are found as U2(I−V )−1 and U3(I−V )−1,
respectively, while V is the smallest non-negative solution to6

V = A + U2(I − V )−1D2 + U3(I − V )−1D3.

Several algorithms to iteratively solve a non-linear matrix equation of this
form can be used [3]. We will rely on the standard fixed-point iteration (FPI):
let V [0] = A and compute V [N + 1] as V [N + 1] = A + U2(I − V [N ])−1D2 +
U3(I − V [N ])−1D3. To speed up this iterative scheme we can make use of the
structure of the matrices A,Uk,Dk and V . For instance, from the probabilistic
interpretation of V one finds that V (and V [N ]) has the following form:

V =









V1,1 V1,2 V1,2− 0
V2,1 V2,2 V2,2− 0
0 0 0 0
0 0 V3+,2− 0









, (18)

where Vs,s′ are square m(K+1) matrices for s′ 6= 2−, Vs,2− is an m(K+1)×mK
matrix for s = 1, 2 and V3+,2− a square mK matrix. Having computed V , we
can check the ergodicity of the chain (Xk,Nk) by computing G2 = (I−V )−1D2

and G3 = (I − V )−1D3. The matrices G2 and G3 are both stochastic7 if and
only if the MC (Xk,Nk) is ergodic (see [19]).

Due to the construction of the expanded MC (Xk,Nk), the steady state
probability vectors πJ (defined in the obvious way analogue to Eq. (16)) asso-
ciated with the MC (Xn, Nn) can be expressed as

π∅0
=

π̃∅0

c
,

πJ =
(π̃J(1), π̃J (2))

c
,

for J 6= ∅0, with

c = 1 − π̃∅1
(I − (R2 + R3))

−1

[

0m(2K+2)

em2K

]

,

6I is the identity matrix of the appropriate dimension
7In practice, we consider the substochastic matrices Gk as stochastic if Gkem(4K+2) >

(1 − 10−12)em(4K+2). We cannot check whether the rows of Gk exactly sum to one, as
floating-point environments do not represent numbers in an exact manner.
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where 0x is a zero column vector of size x. To establish this result, we relied
on the identity

∑

J 6=∅0
(π̃J(2−), π̃J (3+))em2K = 1 − c.

In the remainder of this section we focus on the performance measures of
the class-3 jobs. Measures for the other two classes can be obtained as well.
However, as the class-3 jobs do not affect class-1 or class-2 jobs, these measures
can also be computed in a direct manner using more standard techniques for
queues with 2 priority classes. The loss probability of the class-3 jobs can be
computed as

p3,loss = 1 −
p3π∅0

(3)em(K+1)

λ3
, (19)

as the loss equals one minus the output rate of the completed class-3 jobs
divided by the class-3 input rate. To compute the probability P [W3 = i] of
having i the class-3 jobs waiting in the 3Q system, we start by defining the
following row vectors, for k = 0, . . . ,K − 1:

(νk(1), νk(2), νk(2−, 3+)) =

π̃∅1

(

(I − R2)
−1R3

)k
(I − R2)

−1(I4K+2 ⊗ em)/c,

where νk(1) and νk(2) are both 1 × (K + 1) vectors. The s-th entry of νk(1)
gives us the probability of having (i) a class-1 job is in progress, (ii) s−1 class-
1 jobs in the queue and (iii) k class-3 jobs on the stack in the S&Q model,
while the s-th entry of νk(2), denoted as (νk(2))s holds the same probability,
but with (i) a class-2 job in service and (ii) s − 1 class-3 jobs in the queue.
Therefore, we have for i = 0, 1, . . . ,K − 1

P [W3 = i] = π∅0
(0, 0)em1[i = 0] + π∅0

(3, i)em+

νi(1)eK+1 +

i
∑

s=0

(νi−s(2))s+1, (20)

where 1[w] = 1 if w is true and 0 otherwise. The class-3 queue in the 3Q
model has size K, therefore, P [W3 = K] = 1 −

∑K−1
i=0 P [W3 = i].

7 Numerical Examples

This section includes some numerical results to demonstrate the strength of our
approach. We consider buffer sizes K from 5 to 100. The computation time for
a K = 100 example is about 3 minutes on a 2GHz Pentium with 512Mb RAM,
the peak memory usage by the Matlab 7.0 (for Windows) session was less
than 145Mb as measured by the Windows task manager. The memory usage
can easily be further reduced when necessary. Some of the results presented
in this section were also validated my means of a simulation to check for
implementation errors. We consider the following arrival process:
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(b) Class-3 buffer occupation for K = 100

D =

[

1 − 1/500 1/500
1/250 1 − 1/250

]

,

D1 = (1/8, 1/30)D, D2 = (1/20, 1/15)D,

D3 = (1/20, 1/x)D, D0 = D − D1 − D2 − D3,

with x = 6, 8, 10, 12 and 15. The mean service time of a priority 1, 2 and 3
job is 3, 5 and 6 time units, respectively. Thus, the sum of the class-1 and
class-2 load ρ12 = 101/180. The total load ρ depends on the value of x as ρ =
137/180 + 2/x, which results in a load of 197/180, 182/180, 173/180, 167/180
and 161/180 for the x-values mentioned above. Notice, setting x = 6 or 8
creates an overloaded system.

Figure 3(a) depicts the class-3 loss probability p3,loss as a function of the
buffer size K for various x values. As expected, increasing the buffer capacity
K reduces the loss probability. However, for the two overload scenarios there
is little use in supporting a larger capacity. Figure 3(b) shows the class-3
buffer contents distribution (in the 3Q model) for K = 100. Except for the
two overload setups, the number of waiting type-3 jobs seems to decrease
exponentially. When ρ = 182/180 we get a distribution that is fairly close to
a uniform distribution which is intuitively what we expect as ρ is close to one,
while for ρ = 197/180 we tend to have a full class-3 buffer due to the strong
overload.
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