
A multiaccess tree algorithm with free access,

interference cancellation and single signal

memory requirements

G. T. Peeters, B. Van Houdt, C. Blondia

University of Antwerp, Department of Mathematics and Computer Science,
Performance Analysis of Telecommunication Systems Research Group - IBBT,

Middelheimlaan 1, B-2020 Antwerp, Belgium

Abstract

Tree algorithms are a well studied class of collision resolution algorithms for solving
multiple access control problems. Successive interference cancellation, which allows
one to recover additional information from otherwise lost collision signals, has re-
cently been combined with tree algorithms with blocked access (Yu and Giannakis,
Infocom 2005, pp. 1908-1916), providing a substantially higher maximum stable
throughput (MST): 0.693 for Poisson arrivals, given an infinite number of memory
locations for storing signals. We propose a novel tree algorithm for a similar prob-
lem, but with two relaxed model assumptions: free access is supported and a single
signal memory location suffices. A study of the maximal stable throughput of this
algorithm is provided using matrix analytic methods; as a result, an MST of 0.5698
for Poisson arrivals is achieved. Our methodology also allows us to investigate the
MST when the multiple access channel is subject to Markovian arrival processes.

Key words: multiple access, tree algorithm, successive interference cancellation

1 Introduction

Multiple access channels have been used as key components in the design
of various access network technologies. For instance, random access schemes
are used to share the available bandwidth in 802.11 networks as well as in
10 and 100Mbit Ethernet systems (in combination with carrier-sense and/or
collision-detection mechanisms). In point-to-multipoint access networks, such
as hybrid-fiber-coaxial (HFC) networks (i.e., DOCSIS networks) and DVB-
RCS satellite networks, random access channels are supported such that end-
users can specify their uplink bandwidth requirements to the network via fixed

Preprint submitted to Elsevier 19 June 2007



length control messages in a multiple access manner. Although all these ran-
dom access channels rely on the well known binary exponential backoff (BEB)
algorithm (or a simple ALOHA scheme), tree algorithms have been recog-
nized as important (if not, superior) contenders during the development of
the 802.14 standard [6,5] for HFC networks (however, the 802.14 standardiza-
tion process was prematurely terminated by the introduction of the DOCSIS
standard).

Tree algorithms also strongly outperform the class of backoff algorithms (in-
cluding the BEB) in terms of their maximum stable throughput (MST) [1].
In the standard information theoretical setting, the MST is defined as the
highest possible (Poisson) input rate for which a packet has a finite delay with
probability one. The first tree algorithms were independently developed in the
late 1970s by Capetanakis [3] and Tsybakov, Mikhailov and Vvedenskaya [12].
As such one often refers to this first class of tree algorithms as the CTMV al-
gorithms. These algorithms were the first to have a provable MST above zero.
Afterwards new tree algorithms were developed with MSTs as high as 0.4878
using the standard information theoretical multiple access model [1,4,11].

A random access protocol consists of two components: the channel access pro-
tocol (CAP) and the collision resolution algorithm (CRA). The CAP specifies
the rules that users need to follow when transmitting a new packet for the
first time. The CRA informs the users about the algorithm used to resolve
collisions (i.e., simultaneous transmissions). The easiest CAP is free access,
meaning new packets may be transmitted without further delay. Other im-
portant CAPs include blocked (or gated) and windowed (or grouped) access.
In both these cases (some of) the ongoing conflicts on the channel need to
be resolved before new packets are allowed to access the channel, implying
that some channel monitoring is required even when users are inactive. All
known algorithms with an MST close to 0.4878 require some form of channel
monitoring, while the highest known MST for a free access algorithm is only
0.4076.

Meanwhile, the 0.4878 MST realized under the standard information theoret-
ical model, has been exceeded in various manners by introducing additional
mechanisms not available under the standard model, such as energy measure-
ment techniques to determine the collision multiplicity [8] and an additional
control field/bit with separate feedback [7]. Recently, the SICTA algorithm
which uses successive interference cancellation (SIC) mechanisms, was de-
signed and was shown to achieve an MST as high as 0.693 [16]. SICTA uses
a blocked access CAP and requires a (theoretically) unbounded amount of
memory for storing signals.

In this paper we introduce a novel tree algorithm using SIC for the more
difficult free access CAP. Moreover, our algorithm stores at most one signal at

2



a time, achieving minimal memory requirements. To determine the MST of our
algorithm, we rely on matrix analytic methods. More specifically, as in [13,14]
for the standard CTMV algorithms, we develop a tree-like process [2] such that
this process is ergodic if and only if the algorithm is stable under the specified
arrival process. Using a bisection algorithm, we subsequently determine the
MST for various Markovian arrival processes (and not just the Poisson process
for which an MST of 0.5698 is realized). Using the approach taken in [13],
the novel algorithm does not naturally result in a tree-like process and some
additional steps are required (as in [14] for some of the more advanced CTMV
members). The originality of the modeling approach lies exactly in these steps
as a more efficient approach is taken that does not require us to expand the
state space (as was done in [14]).

ABCDEF BCF BCF C BF F B ADE

ADE BCF

ADE

Users with cc=1:

Users with cc=2:

ADE A D

E

DE

ADE ADEBF

ADE

B

ADE

ADE DE

E

ABCDEF BCF C BF F B ADE ADE A DDE E-

ABCDEF BCF C - F - ADE ADE A D- -- -

ABCDEF BCF C - F - ADE- A D- -- -

Modified

Basic

SICTA

Free Access SIC

ABCDEF

BCF

BCF

C BF

F B

ADE

ADE

A DE

D E

Fig. 1. Illustration of the basic tree algorithm, where the collision of six users A, B,
C, D, E and F transmitting simultaneously in the first slot, is resolved. This process
is often visualized using a tree, providing an overview of the splitting decisions;
a depth-first, left-to-right traversal of this tree corresponds with the transmission
sequence. The modified, SICTA and our proposed free access algorithm allow us to
skip some slots, as indicated with a -. For our proposed free access solution, the tree
can be considered as a free access scenario where no other arrivals occur during the
first 9 or more slots.

Tree algorithms form a class of CRAs. The idea behind the basic binary tree
algorithm is that each time a collision occurs, the colliding terminals split
themselves into two groups using random numbers: a terminal chooses the
first group with probability p and the second group with probability 1 − p,

3



which may be regarded as flipping a (biased) coin. Typically, fair coins are
considered, i.e., p = 0.5; however, in some cases biased coins can provide a
slightly higher MST. In the next slot, the terminals of the first set retransmit,
while the second set has to defer transmission until the first set is completely
resolved. In case more than one terminal selected the first subset, the next slot
holds another collision and the first subset splits again into two groups. This
recursive procedure is repeated until all conflicts are solved, after which new
packets may be transmitted in case of blocked access. Note, for free access,
new arrivals may occur during this process and thus extend the resolution
period. The operation of the basic binary CTMV algorithm is illustrated by
Figure 1. Here, we see that it suffices for each terminal to keep track of a single
counter that indicates the number of sets that remain to be resolved before
it may retransmit. Users whose counter equals zero transmit, other users in-
or decrease their counter by one, depending on whether there is a collision or
not.

In order to improve the MST, the basic tree algorithm can be slightly modified.
This modification, also proposed by Massey [9], consists of skipping doomed
slots. These doomed slots occur when a conflict is followed by an empty slot,
in which case the following slot will certainly contain another collision. Succes-
sive interference cancellation allows us to skip even more slots, which further
improves the throughput, as demonstrated by SICTA [16]. When two signals
A and B occur in the same slot, interference cancellation only requires the
retransmission of signal A in order to recover signal B from the joint sig-
nal (where signal A and B each consist of one or multiple messages). Due
to the blocked access CAP, SICTA allows us to skip every right child in the
contention tree, since the “subtraction” of the signal of its sibling from the
previous conflict (its parent) provides its contents anyway. Free access prevents
us from assuming that every second subset can be skipped, thus requiring a
very different approach.

We start this paper by discussing all the multiple access model assumptions,
which characterize a free access medium, capable of successive interference
cancellation with limited signal memory. Based on this model, we continue
the description of the novel random access algorithm, which is analyzed using
matrix analytical methods in the following section. Finally, we provide numer-
ical results, indicating the MST for a variety of Markovian arrival processes.

2 Slotted Multiaccess Model Assumptions

The proposed algorithm and its analysis are based on the following assump-
tions, describing a multiaccess model with interference cancellation. The first
series of assumptions (S1 to S4) are standard assumptions that have been

4



used by a multitude of authors (for a detailed treatment of these assumptions
we refer to [4,11,1]).

S1. Slotted system: the channel is divided in fixed length time slots; each user is
allowed only to start transmitting at the beginning of a time slot; all packets
have the same length equal to one time slot.

S2. Error-free reception by the receiver: a slot is either received as an idle,
success or a collision slot, depending on whether zero, one or more packets
are transmitted.

S3. Infinite population: there is an infinite set of users, generating packets that
are assumed to be unique. Notice, infinite populations provide a pessimistic
estimation for finite systems by considering each packet as a virtual station.

S4. Immediate, error-free feedback: at the end of each slot, the receiver is as-
sumed to provide immediately feedback to the transmitters.

Note that we do not restrict ourselves to default Poisson (or Bernoulli) ar-
rivals, as our analysis technique will allow us to study any discrete-time batch
Markovian arrival process (D-BMAP)[13].

The assumptions (I1 to I3) specific to the interference cancellation mechanism
follow now. Consider two signals a and b, where b contains the combination of
signals B1, . . . , Bn. We denote a− b as the interference cancellation operation,
which only results in a valid signal if a consists of B1, . . . , Bn, A1, . . . , Am, and
has A1, . . . , Am as a result.

I1. Analogue to Yu and Giannakis [16], interference cancellation, operating on
two signals a and b allows the receiver to distinguish between the following
four scenarios:

(1) a−b contains one signal. In this case, a−b contains the transmitted signal
of one terminal.

(2) The reverse case of scenario 1: b − a contains one signal, which is also
successfully received.

(3) a is identical to b, in which case no additional transmissions can be de-
coded.

(4) Neither of the other scenarios applies.
I2. The receiver is able to store a single signal ss, which is either a received

signal, or the result of an interference cancellation operation a−b (provided
that this contains a meaningful signal). Note that this condition is far less
restrictive than the assumption made in [16], where an (in principle) infinite
amount of memory is required to store intermediate signals.

I3. Each message is accompanied with a single bit, indicating whether the mes-
sage is transmitted for the first time. In case of a successful slot, this allows
the receiver to distinguish between a new transmission and a retransmis-
sion. The field carrying this bit is not used by the interference cancellation
operation; otherwise, a retransmitted signal would differ from the first trans-

5



mission attempt.

A similar control bit/field (or mini-slot) as in assumption I3 was proposed in
[7]— resulting in six possible slot outcomes—to realize a throughput above
the celebrated 0.4878 FCFS algorithm [1].

Finally, we will consider a random access algorithm with free access, meaning
terminals that generate a new packet are allowed to access the channel imme-
diately. This is important to emphasize, because although a windowed access
0.4878 algorithm has been devised under the standard assumptions S1 to S4
(and Poisson arrivals), the highest achieved throughput under free access is,
to the best of our knowledge, only 0.4076 [11].

3 Algorithm

The basic approach of our proposed algorithm consists of performing a stan-
dard tree algorithm. As in SICTA, some slots are skipped if enough information
can be derived from the previous slots and the signal memory. Determining
slots that can be skipped is straightforward in the case of SICTA, since ev-
ery right child is retrieved by subtracting the signal of its (left) sibling from
their common parent. With free access however, this does not hold in general,
since new arrivals may render the subtracted signal meaningless. As such, we
will skip a right slot only if the interference cancellation guarantees sufficient
knowledge about the contents of this slot.

A second difference with SICTA occurs when the resolution of one conflict
requires us to solve another conflict first. Here, the limited memory prevents
us from storing both conflict signals. Therefore, we only skip a right child of a
collision slot, if we are certain of its content and its left sibling is successful or
idle. In Figure 1, this is why the first ADE slot cannot be skipped, as opposed
to SICTA.

In the original CTMV algorithm [3,12], it suffices for each user to store a single
counter cc ≥ 0. This integer counter represents the number of sets that still
require resolution until he is allowed to retransmit. However, the use of the
control bit/field in our algorithm also requires the use of a single flag first
per user, indicating whether the current message has been transmitted once,
or more than once.

The individual counters cc are updated on the receipt of channel feedback,
provided by a receiver. In our algorithm, this feedback can attain five possible
values: ·/ · /·, ·/Co/·, ·/ · /Sc, Sr/Co/· and Sr/ · /·. The mnemonics here
will further on be associated with “skip right” (Sr), “collision” (Co) and “skip

6



collision” (Sc).

In a sense, this feedback can be related with the binary and ternary feedback of
the basic and modified binary CTMV algorithm. In case of the basic CTMV,
the feedback generated by the receiver indicates whether there was a collision.
Thus, the feedback would either be ·/Co/· or ·/ · /·: collision or no collision
(note, an idle slot is not considered a collision).

The modified CTMV algorithm improves the basic protocol, but requires an
additional feedback value to indicate the occurrence of an idle slot. An idle
slot appearing immediately after a collision indicates that the next slot is
guaranteed to hold a collision, meaning, it can be skipped. In the modified
CTMV algorithm the terminal decides to skip slots based on the feedback value
idle. Alternatively, our proposed feedback ·/ · /Sc would move this decision to
the receiver side.

The receiver side

The receiver side behavior can be summarized in ten rules (R1 to R10), which
will provide the appropriate feedback to the users, based on the content of
the current slot cs and a single memory location ss, potentially holding a
saved signal. In this process, the receiver will store at most one signal at a
time, being in ss, to serve as a reference for interference cancellation. Notice,
the control bit/field is only used to distinguish between rules R7 and R8. If
the current node is a left branch of the resolution tree, the memory location
ss will contain the joint signal of all the users who selected this node or its
corresponding right branch. Otherwise (i.e., for right branches and the root
node), the location ss should be empty, that is, ss = ∅.

In Table 1, all receiver rules are summarized. Indeed, if the receiver recovers a
single message from either ss− cs or cs−ss, this message is correctly received
and the feedback flag Sr is used. In the first case (R2), the right node only
contained the already correctly recovered message, while in the second (R3),
all conflicting users selected the left node (and a single new transmission took
place).

When ss 6= ∅, an idle slot (R9) or a success without successful interference
cancellation (R7 and R8), both indicate that the right set (i.e., the next slot)
is certainly in conflict; therefore, the feedback Sc is provided. Recall, when
ss 6= ∅, the current slot is necessarily a left node in the conflict resolution
tree. If a success also causes the recovery of a second message via ss−cs (R5),
the right node must hold a single message (which we just recovered) and can
be skipped.

7



Rule Conditions Actions

Current slot IC Feedback Saved signal

R1 Collision ss = cs Sr/Co/ · ss′ = cs

R2 Collision ss− cs valid Sr/Co/ · ss′ = cs

R3 Collision cs− ss valid Sr/Co/ · ss′ = ss

R4 Collision otherwise · /Co/ · ss′ = cs

R5 Success ss− cs valid Sr/ · / · ss′ = ∅

R6 Success ss = ∅ · / · / · ss′ = ∅

R7 Success and new otherwise · / · /Sc ss′ = ss

R8 Success and old otherwise · / · /Sc ss′ = ss− cs

R9 Idle ss 6= ∅ · / · /Sc ss′ = ss

R10 Idle ss = ∅ · / · / · ss′ = ∅
Table 1
All possible scenarios a receiver may encounter; depending on each state, different
feedback is provided to the users, while updating the saved signal.

·/ · /· ·/Co/· ·/ · /Sc Sr/ · /· Sr/Co/·

cc = 0 −1 0/1 −1 −1 −1∗ or 0/1

cc = 1 0 2 0/1 −1 −1

cc ≥ 2 cc− 1 cc + 1 cc cc− 2 cc

Table 2
Actions for each user, depending on the feedback. ∗ applies only if the current packet
was sent for the first time. A coin flip distinguishes between 0 and 1, in case of 0/1,
respectively for choosing the left or right branch.

When experiencing a conflict with ss = cs, an empty right node is detected
and the feedback flag Sr is used (R1). The remaining three rules (R4, R6 and
R10) correspond to the standard CTMV behavior.

The transmitter side

The transmitter part of the algorithm consists of updating the counter value
cc. Based on this value, a user may (re)transmit a message (cc = 0), postpone
its transmission (cc > 0), or consider the transmission successful (cc < 0).
Updates on this value are based on both the current value of the counter, and
the feedback provided by the receiver. A summary is given in Table 2. We will
discuss each feedback signal separately.

8



Feedback ·/ · /· In this case, we proceed similar to the idle or success case
in the basic CTMV. As such, all counter values cc can be decremented by one.
If a user transmitted, the counter value of which must have equaled 0, it will
decrease cc to −1, indicating a successful transmission.

Feedback ·/Co/· This scenario is also identical to the operation in the basic
CTMV, when a slot holds a collision. As such, all counter levels have to be
incremented by one, except those that transmitted in the previous slot, having
0 as their counter value. For these users, a random decision has to be made
to determine whether they join either the first branch (cc becomes 0), or the
second (cc becomes 1).

Feedback ·/ · /Sc With this feedback, the receiver signals that the slot was
successful or idle, and that he has enough information to skip the next slot,
being a collision. As such, all users which were not involved in either of these
slots (cc ≥ 2) keep their counter value fixed (as the number of unresolved sets
remains identical). The possible user that was successful (cc = 0) becomes
inactive, while the users of the right branch (cc = 1) have to make a random
decision.

Feedback Sr/ · /· Here, the receiver signals that the slot holds a successful
transmission and enough information is available to skip the next slot, which
holds a single message. As such, all users which are not involved in either of
these slots (cc ≥ 2) can decrease their counter by 2, while the two users that
are in the current and next slots (cc = 0 or 1) may regard their messages as
successfully transmitted.

Feedback Sr/Co/· In this final case, the receiver reports that the slot was
unsuccessful, but he has enough information to detect either a single or no
message in the right branch. The possible user of the right branch (cc = 1) can
consider himself as successful; while the users who transmitted in the previous
slot have to make a splitting decision, except for a user who transmitted for
the first time; he can also consider his message as successfully received. As
such, all users who are not involved in either of these branches (cc ≥ 2) do
not alter their counter value.

9



4 Analysis through Matrix Analytic Methods

In [13,14] it was shown that the dynamics of the basic and modified CTMV
algorithms under D-BMAP arrivals, can be captured using tree-like processes
[2], which are equivalent to the class of tree-structured Quasi-Birth-Death
Markov chains (QBD MC) [15]. For each algorithm, a tree-like process was
constructed such that the Markov chain was positive recurrent if and only if
the CTMV algorithm is stable for the D-BMAP process under consideration,
which allowed us to determine the maximum stable throughput (MST) for a
variety of arrival processes (including Poisson).

In this section we construct a similar tree-like process to determine the MST
for the algorithm introduced in the previous section. The construction is how-
ever far less obvious as for the basic CTMV algorithm due to the complications
caused by the interference cancellation features. We start by briefly describing
the main properties of tree-like QBD MCs.

A tree-like process is a discrete-time bivariate Markov chain {(Xt, Nt), t ≥ 0},
where Xt takes values on a d + 1-ary tree (and is termed the node variable)
and Nt takes integer values between 1 and h (and is termed the auxiliary
variable). A d+1-ary tree is a tree where each node (including the root node)
has exactly d+1 children labeled 0 to d. As such, each node in a d+1-ary tree
is uniquely represented by a string of integers J = j1j2 . . . jn, with 0 ≤ jk ≤ d
and k ≤ n, via the path one needs to follow to descend from the root node,
denoted as ∅, to the node J . Strings of integers are written in upper case, while
an individual integer is represented in lower case. As a concatenation operator,
we will use the + symbol, so that if J denotes j1 . . . jn, J + k represents the
string j1 . . . jnk.

For {(Xt, Nt), t ≥ 0} to be a tree-like QBD MC the following restrictions need
to apply. First of all, only transitions from a node to its parent, to the node
itself and to one of its children are allowed. Moreover, the probability of a
transition from a state of the form (Xt, Nt) = (J + k, i) may only depend on
i, except for transitions going to one of the parent states (J, i′), in which case
they may also depend on k. Or, more formally:

10



P [(Xt+1, Nt+1) = (J ′, i′)|(Xt, Nt) = (J, i)] = (1)

f i,i′ J ′ = J = ∅,

bi,i′ J ′ = J 6= ∅,

di,i′

k J 6= ∅, f(J, 1) = k, J ′ = J − f(J, 1),

ui,i′
s J ′ = J + s, s = 0, . . . , d,

0 otherwise,

(2)

where f(J, 1) denotes the last element of J , and J − f(J, 1) the deletion of

the last element of J . The probabilities f i,i′ , bi,i′ , di,i′

k and ui,i′
s are the (i, i′)th

elements of the h × h matrices F , B, Dk and Us respectively. These 2d + 4
matrices fully characterize the tree-like process and the matrices B + Dk +∑d

s=0 Us are stochastic for all k = 0, . . . , d.

The basic binary CTMV algorithm can be modeled using a tree-like QBD MC
as follows: the node variable Xt = j1, . . . , jn represents the string of backlogged
terminals with ji being the number of users whose counter cc equals i and the
auxiliary variable Nt = (Yt, Zt), with Yt the number of transmissions at slot
t and Zt the D-BMAP state at time epoch t (see [13] for details). Consider
the same stochastic process (Xt, Nt), but for the tree algorithm proposed in
the previous section. This stochastic process (Xt, Nt) is not Markovian, as
illustrated below.

Suppose that in slot t, Xt = J + 4 and Yt = 1. Consider the following two
scenarios for slot t− 1 :

• Xt−1 = J and Yt−1 = 5. Here, the receiver can deduce that slot t + 1 holds
a collision, causing this slot to be skipped. Thus, in case of a split of 4 into
2− 2, this give us Xt+1 = J + 2, and Yt+1 = 2.

• Xt−1 = J + 4 + 1 and Yt−1 = 1. In this case, the following slot is not known
to be a conflict (since there is no relevant saved signal), and thus will not
be skipped, resulting in Xt = J and Yt = 4 for t + 1.

Hence, simply keeping track of all the cc values is insufficient as we also need
some info about the feedback provided due to the stored signal ss. Also, even
if the process was Markovian, one finds that the process contains transitions to
sibling and grand-parent nodes, which are not allowed in the tree-like frame-
work.

To circumvent these difficulties we could extend the state space of the stochas-
tic process {(Xt, Nt), t ≥ 0} and insert some artificial time epochs to create a
tree-like process as was done in [14] for other CTMV variants. However, we
will use a more efficient technique, starting from the non-Markovian stochastic
process {(Xt, Nt), t ≥ 0} that requires no additional states. The idea behind

11



this technique is to replace “difficult” states with a different, existing state
which has exactly the same outgoing transition probabilities.

Intuitively, the resulting MC can be seen as an MC where each left branch
slot t, which causes us to skip the corresponding right branch node, is replaced
by a “fictive” slot t′. This technique will not only provide us a process that
is Markovian, but also eliminates transitions from a state to its grand-parent
(which would happen when a collision of two users splits into one and one) or
a sibling node, resulting in a tree-like QBD MC.

Assume a given realization {(Xt(w), (Yt(w), Zt(w))), t ≥ 0} of the stochastic
process {(Xt, (Yt, Zt)), t ≥ 0}. The chain {(Xt,Nt = (Yt, Zt)), t ≥ 0} is
constructed recursively, starting with the initial state t = 0, according to the
following rules (Ri refers to corresponding receiver action in Table 1). Also
notice that we continue making use of Zt, thus it suffices to discuss Xt and Yt.
Figure 2 illustrates this procedure.

Initial state
Set (X0(w),Y0(w)) := (X0(w), Y0(w))

Following states
(A) If ((Xt−1(w),Yt−1(w)) = (J, k) where k ≥ 2:

• Rules R1 to R3 and R5 cause us to skip the right branch. Therefore, there
is no need to add a 0 or 1 to Xt(w) as this 0 or 1 would be removed during
the next transition:

a. (Xt(w), Yt(w)) = (J + 0, k), then ((Xt(w),Yt(w)) = (J, k) (R1)
b. (Xt(w), Yt(w)) = (J + 1, (k − 1)), then set ((Xt(w),Yt(w)) = (J, (k − 1))

(R2, 5)
c. (Xt(w), Yt(w)) = (J + 0, (k + 1)), then ((Xt(w),Yt(w)) = (J, k) (R3)
• Rule R9 implies that we will skip the right collision as a collision is split

into an idle and a collision slot, therefore we simply store k in the auxiliary
variable Yt(w):

d. (Xt(w), Yt(w)) = (J + k, 0), then ((Xt(w),Yt(w)) = (J, k)
• If a single new arrival occurs, rule R7 may apply, in which case the 1 will

be removed during the next transition and the k would be split, therefore
we simply store k in Yt(w):

e. (Xt(w), Yt(w)) = (J + k, 1), then ((Xt(w),Yt(w)) = (J, k) (R7)

(B) If ((Xt−1(w),Yt−1(w)) = (J, k) where k ≥ 3 and (Xt(w), Yt(w)) = (J +
(k− 1), 1), then ((Xt(w),Yt(w)) = (J, (k− 1)) as the 1 is removed in the next
transition and k − 1 will be split (rule R8).

12



(C) Otherwise, rule R4, R6 or R10 applies and the standard CTMV behavior
is followed; hence, set (Xt(w),Yt(w)) = (Xt(w), Yt(w)).

ABCDE

ED

DEABC

ABC

BC

B C

Basic:

(φ, 5) .(2, 3).(21, 2).(212, 0).(21, 2).(211, 1).(21, 1).(2, 1).(φ, 2).(1, 1).(φ, 1)

(Xt, Yt):

(φ, 5) .(2, 3).(21, 2). (22, 0) . . (21, 1) . . .(φ, 2).(1, 1).

(Xt,Yt):

(φ, 5) .(2, 3). (2, 2) . (2, 2) . . (2, 1) . . .(φ, 2).(φ, 1).

Fig. 2. Illustration of the Markov chain associated with a collision tree. The cor-
responding MC for the basic tree algorithm is provided as reference. The final MC
(Xt,Yt) is constructed by translating the stochastic process (Xt, Yt) using the pro-
vided rules.

We note that this approach can also be applied for determining the MST of
the modified binary CTMV algorithm; allowing us to half the number of states
per node compared to the approach used in [14], causing some gain in the time
and memory complexity of the approach.

The tree-like QBD MC (Xt,Nt) still has one unresolved issue: each node has
infinitely many children as an infinite number of users might hold the same
cc value. Therefore, we introduce the MC (X d

t ,N d
t ), which only allows d users

with an identical cc value, causing each node to have exactly d+1 children. If
more than d users attain the same cc value, we simply drop some messages such
that only d users have this value. We can measure the impact of this operation
by calculating the rate of lost messages (we refer to the end of this section
for more details). We increase d (typically d between 10 to 20 suffices), until
this rate is negligible (< 10−6). For numerical evidence that this truncation
operation has no significant effect (for d large enough) we refer to [13] and
[14].

13



We can now proceed with the description of matrices Dk, Us and B (the matrix
F is not required to determine the stability of the chain) that characterize the
tree-like process.

The matrices Dk hold the transition probabilities that the chain (X d
t ,N d

t ) goes
from state (J + k, (i, j)) to state (J, (i′, j′)). From the previous discussion we
see that this only occurs if R6 or R10 apply, therefore, as in [13] we have

(Dk)(i,j),(i′,j′) =


(Ci′−k)j,j′ i ≤ 1, i′ ≥ k, i′ < d,∑
l≥d−k(Cl)j,j′ i ≤ 1, i′ ≥ k, i′ = d,

0 otherwise,

(3)

where the {Cn, n ≥ 0} matrices characterize the D-BMAP process and (Cn)j,j′

holds the probability that n new arrivals occur, while the underlying state
changes from state j to j′.

The matrices Us hold the transition probabilities that the chain (X d
t ,N d

t )
goes from state (J + k, (i, j)) to state (J + ks, (i′, j′)). The first five lines are
a consequence of the transitions a. to e. in (A), the fifth line also captures the
transitions in (B). The matrices U ′

s are identical to the ones specified in [13]
for the basic binary CTMV algorithm (case (C)). The presence of the sixth
line is necessitated by truncating the number of children in the tree to d + 1,
if d is large enough these transitions become irrelevant:

(Us)(i,j),(i′,j′) =



0 i′ = i, s = 0, i 6= d

0 i′ = i− 1, s = 1

0 i′ = i + 1, s = 0, i 6= d− 1

0 i′ = 0, s > 1

0 i′ = 1, s > 1

pi
0

∑
l≥2(Cl)j,j′ i ≥ d− 1, s = 0, i′ = d,

(U ′
s)(i,j),(i′,j′) otherwise,

(4)

where p0 = p, p1 = 1− p and (U ′
s)(i,j),(i′,j′) is defined by:

(U ′
s)(i,j),(i′,j′) =


N i

sp
i−s
0 ps

1(Ci′−(i−s))j,j′ i > 1, i ≥ s, i′ ≥ i− s, i′ < d,

N i
sp

i−s
0 ps

1

∑
l≥d−(i−s)(Cl)j,j′ i > 1, i ≥ s, i′ ≥ i− s, i′ = d,

0 otherwise,

(5)
where N i

s denotes the number of different possible combinations of s from i
different items.

14



The matrix B holds the transition probabilities that the chain (X d
t ,N d

t ) goes
from state (J, (i, j)) to state (J, (i′, j′)). The first line captures cases a, c, d
and e of (A), the second and third case b. of (A) and (B).

B(i,j),(i′,j′) =



(pi
0 + pi

1)((C0)j,j′ + (C1)j,j′) i′ = i, i > 1

i(pi−1
0 p1 + p0p

i−1
1 )(C0)j,j′ i′ = i− 1, i > 2

2p0p1(C0)j,j′ i′ = 1, i = 2

0 otherwise.

(6)

The key component to determine the stability of a tree-like process lies in the
computation of the h × h matrix V [15], which is the smallest nonnegative
solution to

V = B +
d∑

s=0

Us(I − V )−1Ds. (7)

One easily sees that the (u, v)th element of V represents the taboo probability
that the first visit to node J 6= ∅ is to state (J, v) starting from state (J, u)
under taboo of node J − f(J, 1), i.e., the parent node of node J .

A number of iterative schemes can be used to determine V [2]. For the nu-
merical results we made use of the following basic iterative algorithm:

V [0] = B (8)

V [N + 1] = B +
d∑

s=0

Us(I − V [N ])−1Ds. (9)

The recursion is repeated until the infinity norm of V [N + 1]− V [N ] is suffi-
ciently small (i.e. < 10−8). The stability of the tree-like process is then verified
by checking whether the matrices

Gk = (I − V [N ])−1Dk

are (numerically) stochastic [15].

To compute the amount of dropped traffic due to truncating the number of
children of a node to d + 1, we can proceed as follows. First, define Rk =
Uk(I−V [N ])−1. Next, we continue by computing the 1×h steady state vector
π of the MC {(X d

t ,N d
t = (Yd

t , Zt)), t ≥ 0} when censored on the states of the
root node ∅. By noticing that F = D0+B, one establishes that π(D0+V ) = π,
with π a stochastic vector (as V = B+

∑d
s=0 Us(I−V )−1Ds). Due to the matrix

geometric form of the steady state vector of a tree-like process [15], the vector
π(I − (R0 + R1 + . . . + Rd))

−1 contains the probabilities that (Yd
t , Zt) equals

(i, j) at an arbitrary point in time t. Denoting these probabilities as zij, we

15



can count the number of successes λs per time epoch as follows:∑
j,j′

(
z1j+z2j2p0p1(C0)j,j′ +

∑
i>1

zij(pi
0+pi

1)(C1)j,j′ +
∑
i>2

ziji(pi−1
0 p1+p0p

i−1
1 )(C0)j,j′

)
.

The loss rate due to d is then found as λ − λs, where λ is the mean arrival
rate of the D-BMAP characterized by {Cn, n ≥ 0}.

5 Numerical Examples

Using the method described thus far, we determined the maximal stable
throughput for the following well known Markovian arrival processes: the Pois-
son process (abbreviated with PP (λ)), the Erlang process (ER(λ, k)) and the
Markov modulated Poisson process (M(λ1, λ2, e, f)), where e and f reflect
the mean sojourn time in state 1 and 2, respectively. The results are shown in
Table 3. We observe that for Poisson arrivals, a stable throughput of 0.5693 is
achieved using fair coins, while biased coins can slightly improve this result;
choosing p = 0.471 improves the MST up to 0.5698. Intuitively, for blocked
access instead of free access, our algorithm is expected to perform optimal
when p = 0.5 due to its symmetric operation. Some more formal evidence of
this property is given in the Appendix. The free access property however shifts
the optimal p value as only right branch nodes are skipped and therefore, on
average, the left branches receive slightly more new packets. As such, setting
p somewhat smaller causes a minor improvement.

For the other arrival processes, we can see the influence of the correlation
on both the throughput and optimal splitting probability p; higher bursti-
ness typically results in both a lower MST and a lower optimal p. Intuitively,
collisions will occur more often during the periods where the arrival process
generates traffic at a rate above average. For positive correlated traffic, se-
lecting the second group might therefore postpone some retransmissions for
periods where the arrival process is less active. More deterministic processes
on the other hand have an optimal p close to 0.5. The latter can be under-
stood by considering that in case of a collision, typically two users transmit
simultaneously; in which case each user should preferably choose a different
subset, which is most likely to happen if p = 0.5.

The computation time required to investigate the stability of the tree-like
process, rapidly increases as the arrival rate approaches the MST. For example,
on a Pentium-M 1.86GHz using MATLAB R2006b for Linux, in case of Poisson
arrivals with p = 0.5 and d = 12, the time to determine the stability of
0.56933 is 51s, while for 0.569 it only takes 3.6s. Also, as the correlation in the
input traffic increases, more iterations are required which further increases the

16



MST with p = 0.5 Optimal p MST with optimal p

M(0, λ, 300, 300) [.5352, .5357] .434 [.5381, .5386]

M(0, λ, 30, 30) [.5370, .5375] .439 [.5394, .5399]

PP (λ) [.56933, .56938] .471 [.56983, .56988]

ER(λ, 2) [.58670, .58675] .481 [.58685, .58690]

ER(λ, 3) [.59493, .59498] .488 [.59500, .59505]

ER(λ, 4) [.59915, .59920] .493 [.59920, .59925]

ER(λ, 5) [.60143, .60148] .496 [.60143, .60148]

ER(λ, 15) [.60303, .60308] .500 [.60303, .60308]
Table 3
The MST for the proposed tree algorithm, with various Markovian arrival processes.
For each case, an interval is given, where the first number indicates a rate for
which the chain was stable, while the second number indicates a rate resulting in
an unstable chain. The calculations were repeated with a (close-to) optimal splitting
probability p, indicating the benefits of using biased coins.

computation times. This is why we present the stability results in the form
of an interval, determining the stability up to 10 digits would be too time
consuming.

Apart from knowing whether the chain is stable, we can also compute its
upward drift, defined as the probability that a transition to the parent node
is made minus the probability that we make a transition to a child node, that
is

π(I − (R0 + . . . + Rd))
−1

(
Dke−

d∑
s=0

Use

)
,

where e is a column vector with all ones, and k any number between 0 and d,
since all Dke are equal. This drift value is also used to determine the optimal
p in case the stability interval of two p values overlaps.

A Blocked Access Analysis

Let us briefly repeat the operation of a blocked access random access algo-
rithm. After an initial collision of n nodes, all new arrivals postpone their first
transmission attempt until the n initial nodes have resolved their collision.
The time elapsed from the initial collision until the point where the n nodes
have transmitted successfully is called the collision resolution interval (CRI).
Suppose that m new packets are generated during the CRI. Then, a new CRI
starts (with m participants) when the previous CRI (with n nodes involved)
ends.

17



Notice, the control bit/field introduced in our algorithm is not required when
using blocked access. In this section we will establish a closed form expression
for the mean time LN required to resolve a conflict of size N . The methodology
used is analogue to the analysis of the basic and modified CTMV algorithm
by Mathys and Flajolet [10]. Clearly, L0 = L1 = 1 and LN obeys the following
recursion:

LN = 1 +
N∑

i=0

(
N

i

)
pi(1− p)N−i (Li + LN−i)− pN − (1− p)N

−Np(1− p)N−1 −NpN−1(1− p) + δN,2Np(1− p),

where δi,j is one if i = j and zero otherwise. Define L(z) =
∑∞

N=0 LNzN/N !,
then we find the following functional equation for L(z):

L(z) = eze−pzL(pz) + eze−(1−p)zL((1− p)z) + ez − 2(1 + z)

−(epz − 1− pz)− (e(1−p)z − 1− (1− p)z)− pz(e(1−p)z − 1)

−(1− p)z(epz − 1) + p(1− p)z2.

Setting L∗(z) =
∑∞

N=0 L∗NzN = e−zL(z), the above equation yields

L∗(z)− L∗(pz)− L∗((1− p)z) = 1− e−pz − e−(1−p)z

−(pze−pz + (1− p)ze−(1−p)z) + e−zp(1− p)z2.

Equating the coefficients of zk on both sides implies

L∗k(1− pk − (1− p)k) = (−1)k/k!(k − 1)
(
pk + (1− p)k + kp(1− p)

)
.

This finally results in

LN = 1 +
N∑

k=2

(
N

k

)
(−1)k(k − 1)

pk + (1− p)k + kp(1− p)

(1− pk − (1− p)k)
.

This expression is symmetric on (0, 1) around p = 1/2, meaning switching p
and 1 − p does not alter the value of LN . This implies that an extremum is
reached in p = 1/2.

References

[1] D. Bertsekas, R. Gallager, Data Networks, Prentice-Hall Int., Inc., 1992.

[2] D. Bini, G. Latouche, B. Meini, Solving nonlinear matrix equations arising in
tree-like stochastic processes, Linear Algebra Appl. 366 (2003) 39–64.

18



[3] J. Capetanakis, Tree algorithms for packet broadcast channels, IEEE Trans.
Inform. Theory 25 (5) (1979) 319–329.

[4] A. Ephremides, B. Hajek, Information theory and communication networks:
an unconsummated union, IEEE Transactions on Information Theory 44 (6)
(1998) 2416–2434.

[5] N. Golmie, F. Mouveaux, D. Su, A comparison of MAC protocols for hybrid
fiber/coax networks: IEEE 802.14 vs. MCNS, in: Proc. of the 16th Int. Conf.
on Comm., Vancouver, Canada, 1999.

[6] N. Golmie, Y. Saintillan, D. Su, A review of contention resolution algorithms
for IEEE 802.14 networks, IEEE Communication Surveys 2 (1).

[7] D. Kazakos, L. F. Merakos, H. Deliç, Random multiple access algorithms using
a control mini-slot., IEEE Trans. Computers 46 (4) (1997) 473–476.

[8] S. Khanna, S. Sarkar, I. Shin, An energy measurement based collision resolution
protocol, in: Proc. of the 18-th ITC conference, Berlin Germany, 2003.

[9] J. Massey, Collision resolution algorithms and random-access communication,
in: G. Longo (ed.), Multi-Users Communication Networks, CISM Courses and
Lectures No. 256, Springer Verlag, Wien-New York, 1981.

[10] P. Mathys, P. Flajolet, Q-ary collision resolution algorithms in random-access
systems with free or blocked channel access, IEEE Transactions on Information
Theory IT-31 (2) (1985) 217–243.

[11] G. Polyzos, Molle, Performance analysis of finite nonhomogeneous population
tree conflict resolution algorithms using constant size window access, IEEE
Transactions on Communications 35 (11) (1987) 1124–1138.

[12] B. S. Tsybakov, V. Mikhailov, Free synchronous packet access in a broadcast
channel with feedback, Problemy Peredachi Inform 14 (4) (1978) 32–59.

[13] B. Van Houdt, C. Blondia, Stability and performance of stack algorithms for
random access communication modeled as a tree structured QBD Markov chain,
Stochastic Models 17 (3) (2001) 247–270.

[14] B. Van Houdt, C. Blondia, Throughput of Q-ary splitting algorithms
for contention resolution in communication networks, Communications in
information and systems 4 (2) (2005) 135–164.

[15] R. Yeung, A. Alfa, The quasi-birth-death type Markov chain with a tree
structure, Stochastic Models 15 (4) (1999) 639–659.

[16] Y. Yu, G. B. Giannakis, SICTA: a 0.693 contention tree algorithm using
successive interference cancellation., in: INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies, Miami
(USA), 2005.

19


