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ABSTRACT 
We consider a two echelon supply chain where a single retailer holds an inventory of finished 
goods to satisfy an i.i.d. customer demand, and a single manufacturer produces the retailer’s 
replenishment orders on a make-to-order basis. The objective of this paper is to analyse the 
impact of the retailer’s replenishment policy on total supply chain performance. We consider 
two strategies with regard to the production capacity. In a flexible capacity strategy, the 
manufacturer invests in excess capacity to guarantee constant lead times in order to keep 
inventories low. The amount of investment depends on the retailer’s order pattern. In an 
inflexible capacity strategy, the capacity is limited and independent of the retailer’s 
replenishment decision. This results in stochastic lead times, thereby inflating the retailer’s 
inventory requirements. We treat the variability of the order rate of the retailer as the primary 
decision variable to minimise total supply chain costs. The objective is to find the value of the 
replenishment parameter β (parameter to tune the order variability) that minimises total 
supply chain costs in a flexible and inflexible capacity scenario. 
 
Keywords: production and inventory control, supply chain performance, bullwhip, queueing, 
capacity-inventory trade-off 
 
 
1. INTRODUCTION 
 
We consider a two echelon supply chain with a single retailer and a single manufacturer. 
Every period, the retailer observes customer demand. If there is enough on-hand inventory 
available, the demand is immediately satisfied. If not, the shortage is backlogged. To maintain 
an appropriate amount of on-hand inventory, the retailer places a replenishment order with the 
manufacturer at the end of every period. 
The manufacturer does not hold a finished goods inventory but produces the retailer's orders 
on a make-to-order basis. The manufacturer's production system is characterized by a single 
server queueing model that sequentially processes the ordered units one by one on a first-
come-first-served basis. When the production is busy, the orders join a queue of unprocessed 
orders. Once the complete replenishment order is produced, it replenishes the retailer's 
inventory. The time from the moment an order is placed to the moment that it replenishes the 
retailer's inventory, is the replenishment lead time, Tp. The production process at the 
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manufacturer implies that the retailer's replenishment lead times are stochastic and correlated 
with the order quantity. 
We examine two important problems in the two echelon system described above. First, we 
examine the order variability at the retailer (dampening or amplification). Second we examine 
the capacity strategy of the manufacturer (flexible or inflexible). It is clear that both 
subsystems interact through the stochastic nature of the lead times and consequently impacts 
the customer service of the retailer. The major contribution of this paper is the simultaneous 
treatment of both subsystems so that total supply chain costs are minimised. 
Let’s briefly introduce the two problems mentioned above.  
 
First we have the order variability at the retailer level. Lee et al. (1997) describe a problem 
frequently encountered in supply chains, called the bullwhip effect: demand variability 
increases as one moves up the supply chain. This amplified order variability can have large 
upstream cost repercussions. Balakrishnan et al. (2004) emphasize the opportunities to reduce 
supply chain costs by dampening order variability. However, despite the fact that the 
manufacturer benefits from smooth production, retailers, driven by the goal of reducing 
inventory costs, prefer to use replenishment policies that chase demand rather than dampen 
customer demand variability. Dampening variability in orders may have a negative impact on 
the retailer's customer service due to inventory variance increases (Disney and Towill 2003). 
In this paper we analyse the impact of order variability amplification vs. dampening on the 
performance of a two-echelon supply chain. 
 
Second we have the capacity structure of the manufacturer. The retailer’s replenishment 
orders load the manufacturer’s production system. We consider two strategies with regard to 
the production capacity. The first is a flexible capacity strategy. This means that the 
manufacturer invests in excess capacity in order to produce each order within the period after 
it was placed. It is clear that when the orders fluctuate wildly, the capacity investments will be 
larger compared to the situation where the order pattern is flat. At the same time the inventory 
costs for the retailer are in this scenario low since every order is replenished in the period after 
it was placed (zero lead times). 

The second strategy is an inflexible capacity strategy, i.e., the manufacturer’s capacity 
remains at a fixed level, irrespective of the retailer’s order pattern. The manufacturer’s 
capacity level may be lower than the maximum possible order quantity. As a result, when the 
available capacity in a period is insufficient to complete production of an order, then the next 
period’s capacity is used to continue production of this order. The manufacturer delivers the 
retailer’s orders as soon as the total order is produced, implying that lead times are variable 
and can be strictly positive. Moreover, when the retailer sends a volatile order pattern to the 
production queue, production (and delivery) lead times will be longer and more variable than 
when the retailer sends a constant order pattern to production. This in turn affects the 
retailer’s inventory requirements. 
 
In this paper we treat the variability of the order rate of the retailer as the primary decision 
variable to minimise total supply chain costs. The paper is organized as follows. In the 
remainder of this section we introduce an example, we give a legend of variables/parameters 
used in the text and we provide a summary of the assumptions of the model. In section 2, we 
discuss in greater detail the flexible/inflexible capacity scenarios. Section 3 is devoted to the 
downstream inventory policy and its impact on order variance. In section 4 we examine the 
lead time distribution and the net stock distribution. Section 5 describes the trade off by 
means of a total cost function, which we illustrate with a numerical example in section 6. 
Section 7 concludes. 
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1.1. An example 

The primary purpose of this paper is to offer managerial insight into a supply chain 
coordination problem. The situation we have in mind is in the fast moving consumer goods 
industry. We focus on products requiring short lead times from the manufacturer because of 
the short life time of the product. Boute et al. (2008) describe the case of a bakery company 
focusing on authentic specialties in the biscuit and cake market. We have retailers on the one 
hand and an industrial bakery on the other hand. Given the specific packaging requirements of 
retailers, the bakery employs a make-to-order policy. For new product introductions (e.g. 
biscuit pasta) the bakery has to install new machinery and has to decide on the capacity level. 
We are interested in the interaction between capacity, lead-time distribution, replenishment 
rules and customer service. This situation does not only arise in the fast moving consumer 
goods industry but is quite common in many other industrial settings especially when capacity 
expansion decisions have to be made because of new product introductions. There are many 
examples of incorrect estimation of the capacity to be installed for new product introductions. 
 

1.2. Legend of frequently used variables and parameters 
• D : random variable describing the customer demand, with fD(·) the corresponding 

discrete probability function, E(D) the long term average demand, and Dmin and Dmax 
the resp. minimum and maximum demand size 

• Ch : inventory holding cost per unit, per period; Cb : per unit shortage cost 
• C(K) : the linear capital expenditure function; K the size of the capacity investment 
• C0 : the fixed capacity investment cost; CK : marginal capacity investment cost; CP : 

cost per unit overtime production  
• M : the production time per unit 
• ρ : average utilisation rate of the manufacturer’s production system 
• Tp : the replenishment lead time 
• β : smoothing parameter in the replenishment rule 
• Ot : order quantity placed at the end of period t 
• NSt : on hand inventory at the end of period t 
• IPt : inventory position at the end of period t  
• SS : safety stock 
• DIP : desired inventory position 
• S : base-stock level 

 
1.3. Assumptions 

� The sequence of events in a period is as follows. First receive goods from the upstream 
partner, then observe and satisfy demand and finally place a replenishment order. 

� Customer demand D is independently and identically distributed (i.i.d.) over time with an 
arbitrary, finite, discrete probability distribution function fD(·). 

� If the inventory on hand at the end of the period is positive (NSt > 0), a holding cost Ch 
per unit is incurred to carry inventory to the next period. If the inventory on hand is 
negative (NSt < 0), a backlog cost Cb per unit shortage is incurred. 

� The production (“service”) time M of a single unit is deterministic. To ensure stability (of 
the queue), we assume that the utilization of the production facility (average batch 
production time divided by average batch interarrival time) is strictly smaller than one. 

� Define the capacity K as the number of units that can be produced in a period. The 
capacity investment cost function is given by C(K) = C0 + CK ·K, where C0 represents the 
fixed capacity investment cost and CK is a constant, marginal capacity investment cost. 
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When the installed capacity is insufficient, a unit can be produced in overtime capacity at 
extra cost CP. We assume that CK < CP, otherwise it would never be optimal to invest in 
capacity. The capital expenditure function will be discussed in detail in section 2. 

� The manufacturer operates a make-to-order policy and does not incur a setup time or cost. 
We assume highly automated equipment where setup times are non-existing. This 
assumption eliminates the batching decision at the manufacturing level.  

 
In Fig. 1 we graphically represent the cost functions. 
 

 
Figure 1: Cost structure of our model 

 
 
2. FLEXIBLE / INFLEXIBLE CAPACITY 

In this section, we will discuss the capacity scenarios in greater detail. In our model a key 
role is played by the capital expenditure function C(K) = C0 + CK ·K. A good summary of the 
consequences of this function can be found in Van Mieghem (2008). This cost function 
allows us to model economies of scale; this means that costs grow sub-linearly, either due to 
the presence of a fixed cost component or due to decreasing marginal costs. We use the fixed 
cost model in this paper. An extension to the decreasing marginal cost model (by using power 
functions) is straightforward. As is indicated by Van Mieghem (2008), C0 refers to all costs 
independent of the size of the capacity (costs of planning a capacity expansion, the selection 
process, real estate, administrative overhead,…). CK refers to the marginal cost or the cost to 
add one unit of capacity. In our bakery example the marginal cost depends on the size of the 
oven and/or packaging machines. The capacity unit may be expressed in tons per time unit in 
our example.  
 

2.1. Flexible Capacity – impact on capacity investment 
Suppose the retailer wants the manufacturer to deliver the replenishment orders within the 
period after the order was placed (i.e., Tp = 0), then the production capacity has to be large 
enough to complete the production of each replenishment order within one time period. A key 
trade-off in capacity strategy is balancing the marginal cost of installed capacity CK with the 
cost of capacity shortage (Van Mieghem 2008). In our case a capacity shortage implies a unit 
production in overtime capacity at cost CP. 

The installed capacity K is the number of units that can be produced in a period, and M is 
the production time of a single unit, expressed as a fraction of a period, or K = M-1. The 
capacity shortfall in a given period measures how much of the period’s order quantity 
exceeds available capacity, or equivalently, the number of units that are produced in overtime 
in that period. 

When the installed capacity is equal to the average order quantity, K = E(O), the 
manufacturer experiences capacity shortfalls half of the time, resulting in frequent production 
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in overtime if the order pattern is volatile. Therefore, it may be worth to invest in extra 
capacity above the average order quantity, in order to counter the negative impact of 
volatility. The purpose of the “excess” capacity is to provide a safety capacity to capture 
higher-than-expected orders. When the order volatility increases, the expected capacity 
shortfall will increase, but an investment in safety capacity can strongly reduce this capacity 
shortfall (Van Mieghem 2008). 

An alternative strategy is to set the capacity equal to the maximum order quantity, K = 
Omax, so that the capacity shortfall is zero and there is no production in overtime. This would 
be a plausible strategy when the cost of production in overtime is extremely large or when no 
overtime capacity is available. However, if for instance the order quantity reaches its 
maximum only occasionally, it may turn out cheaper to install a capacity K < Omax and 
occasionally produce in overtime capacity at cost CP.  

It is clear that the decision to determine the optimal capacity size K* depends both on the 
relative cost of invested capacity versus the cost of overtime production, and the distribution 
of the replenishment orders placed by the retailer. 

 
2.2. Inflexible Capacity – impact on lead times 

The situation is totally different in the inflexible capacity scenario; when the available 
capacity in a period is insufficient to complete production of an order, then the next period’s 
capacity is used to continue the production of this order. There is no production in overtime 
and the production of an order may be spread over several periods, so that lead times are 
variable and can be strictly positive. 

As the retailer’s replenishment orders load the manufacturer’s production, the nature of 
this loading process relative to the available capacity and the variability it creates determine 
the (production/replenishment) lead times. We actually extend a pure inventory system with 
exogenous lead times to a production-inventory system with endogenous lead times. The 
retailer’s inventory replenishment lead times are “endogenously” determined by the 
manufacturer’s production with limited capacity. 
 

 
Figure 2: Interaction between retailer's inventory and manufacturer's production 

 
In Fig. 2 the interaction between the retailer’s replenishment policy and the manufacturer's 

production system is illustrated: the replenishment policy generates orders that define the 
arrival process at the manufacturer’s queue. The time until the order is produced (the sojourn 
time in the queueing system), is the time to replenish the order. Hence, when the retailer 
amplifies the order variability, this implies a more variable arrival pattern at the production 
queue, leading to longer and more variable lead times according to the laws of factory physics 
(Hopp and Spearman 2001). Dampening the variability in the order pattern results in shorter 
and less variable lead times. This replenishment lead time is a prime determinant in setting the 
safety stock requirements for the retailer. 

 
 

Sojourn time in queueing system  
= replenishment lead time 

Manufacturer’s 
queueing system 

Order quantity 

Safety stock 

 
Retailer’s 
Inventory 

control 
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3. DOWNSTREAM INVENTORY POLICY 
 

3.1. Replenishment rule 
Given the common practice in retailing to replenish inventories frequently (e.g. daily) and the 
tendency of manufacturers to produce to demand, we focus on periodic review, base-stock or 
order-up-to replenishment policies. 

The standard periodic review base-stock replenishment policy is the (R,S) policy. At the 
end of every review period R, the retailer tracks his inventory position IPt, which is the sum of 
the inventory on hand (that is, items immediately available to meet demand) and the inventory 
on order (that is, items ordered but not yet arrived due to the lead time) minus the backlog 
(that is, demand that could not be fulfilled and still has to be delivered). A replenishment 
order is then placed to raise the inventory position to an “order-up-to” or “base-stock” level S, 
which determines the retailer’s order quantity in period t: 
 
 Ot

 = S – IPt.          (1) 
 

The base-stock level S is the inventory required to ensure a given customer service level. 
Orders are placed every R periods and after an order is placed, it takes Tp periods for the 
replenishment to arrive. Hence the risk period (the time between placing a replenishment 
order until receiving the subsequent replenishment order) is equal to the review period plus 
the replenishment lead time R + Tp. Since customer demand is i.i.d., the best estimate of all 
future demands is simply the long term average demand, E(D). Consequently, the base-stock 
level equals 
 
 S = [E(Tp) + R] · E(D) + SS,        (2) 
 
with SS denoting the retailer’s safety stock. 

In the remainder of this paper we assume that the review period R is one base period, i.e., 
we place an order at the end of every period, similar to the standard Beer Game setup 
(Sterman 1989). Substituting (2) into (1) we obtain 
 
    Ot

  = E(D) + E(Tp) · E(D) + SS – IPt 
         = E(D) + [DIP – IPt],        (3) 
 
where E(Tp) · E(D) + SS can be seen as the desired inventory position DIP, which is the sum 
of the desired pipeline stock and desired net stock. The difference between the desired and 
actual inventory position [DIP – IPt]  is denoted as the inventory position deficit. 
 
    Magee (1958) and Forrester (1961) introduce a proportional controller β into the inventory 
deficit, resulting in the following generalised order-up-to policy: 
 

Ot
  = E(D) + β · [DIP – IPt],        (4) 

 
with 0 < β < 2. Forrester (1961) refers to 1/β as the "adjustment time". When β < 1 he 
explicitly acknowledges that the deficit recovery should be spread out over time, whereas β>1 
implies an overreaction to the inventory deficit. This replenishment rule is particularly 
powerful (Disney and Towill 2002) as it encompasses e.g. the way people play the Beer 
Game (Sterman 1989, Naim and Towill 1995), a general case of order-up-to policies and 
many variants of it (Dejonckheere et al. 2003), and with fine tuning it can reflect Materials 
Requirements Planning (Disney 2001).  This “proportional order-up-to” policy is also 



 7 

equivalent to the “full-state order-to-up” policy (Gaalman and Disney, 2006), assuming, as we 
do, an i.i.d. demand process. 
 

3.2. Order variance amplification/dampening 
When customer demand is i.i.d., the generalised replenishment policy generates an auto-
correlated order pattern (see appendix A), given by  
 
 Ot = (1 – β) · Ot-1 + β · Dt .         (5) 
 

From this order “path” over time we can derive the steady state distribution of the order 
quantities given the finite, discrete demand distribution fD(·). Let us denote the order 
distribution by fO(·) and its corresponding cumulative order distribution by FO(·). 

Observe that when β > 1, the order pattern is negatively correlated and the generalised 
order-up-to policy may generate negative order quantities. Since in our model it is not 
possible to send negative orders to production, we have to preclude the possibility of negative 
orders. The following restriction on beta given the minimum and maximum demand ensures 
that Ot ≥ 1 (see appendix B): 

 
 Dmin + (1 – β) · Dmax ≥ 2 – β.         (6) 
 
To examine the variability in orders created by the generalised order-up-to policy, we look 

at the ratio of the variance of the orders over the variance of demand (in the literature this 
variance ratio is commonly used as a measure for the bullwhip effect). This can be easily 
derived from Eqn. (5): 

 

β
β
−

=
2)(

)(

DVar

OVar
.          (7) 

 
Hence, if we do not smooth, i.e. if β = 1, these expressions reduce to the standard base-

stock policy, where Ot = Dt : we chase sales and thus there is no variance amplification. For 
1< β < 2 we create bullwhip (variance amplification) and for 0 < β < 1 we generate a smooth 
replenishment pattern (dampening order variability). 

 
 

4. DETERMINATION OF LEAD TIMES AND INVENTORY 
 

4.1. Determination of lead time distribution 
The replenishment orders loading the production system are characterised by Eqn. (5). By 
analysing the characteristics of these replenishment orders, we implicitly analyse the 
characteristics of the production orders that arrive at the manufacturer's production system. As 
we can see from Eqn. (5), the generalised order-up-to policy generates batch arrivals with a 
fixed interarrival time (equal to the review period, R = 1) and with variable (auto-correlated) 
batch sizes. 

Based on matrix analytic methods (Neuts 1981, Latouche and Ramaswami 1999), Boute et 
al. (2006) developed a discrete time queueing model to estimate the lead time distribution 
given a batch arrival process with a fixed interarrival time and positively correlated batch 
sizes. In their queueing model, production times are phase type (PH) distributed. We can use 
their methodology to find the lead time distribution in our production model, since a PH 
distribution can also be used to model deterministic production times, as we assume here. In 
addition we extend their model for negatively correlated batch sizes, which is the case when 
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β>1 (see Eqn. (5)). We do take restriction (6) into account in order to avoid negative batch 
sizes.  

This queueing analysis returns the lead time distribution fTp(·) for each value of β. In other 
words, we use the methodology for determining the lead time distribution, described in Boute 
et al. (2006), and we use this result to incorporate it in a supply chain coordination mechanism 
in a flexible or inflexible capacity scenario. 
 

4.2. Determination of inventory distribution 
When demand is probabilistic, there is a definite chance of not being able to satisfy some of 
the demand directly out of stock. Therefore, a buffer or safety stock is required to meet 
unexpected fluctuations in demand. We characterize the retailer’s inventory random variable 
and use it to find its safety stock requirements. Due to the production process, lead times are 
stochastic and as a consequence we do not know exactly when a replenishment occurs. 

We monitor the inventory on hand at the end of every period, after customer demand is 
observed and after a replenishment order has been placed. At the end of period t, there may be 
k ≥ 0 orders waiting in the production queue and there is always 1 order in service (since the 
observation moment is immediately after an order placement) which is placed k periods ago 
(Ot-k). Note that k is a function of t, but we write k as opposed to k(t) to simplify the notation. 
In appendix C we show that the net stock distribution can then be written as 

 
NSt = SS – Zt.          (8) 

with ( ) ( ))(1)()(
11

0

DEDDETEDZ it

t

ki

ki
p

k

i
itt −⋅−+⋅−= −

−

=

−
−

=
− ∑∑ β .   (9) 

 
The evolution of Zt determines the evolution of the net stock NSt. Since E(Z) = 0, 

E(NS)=SS. By means of the Markov process of the above mentioned queueing model, Boute 
et al. (2006) develop an algorithm to find the steady state distribution of Zt, denoted by fZ(·). 
The exact analysis is not straightforward due to the correlation between the different terms 
that make up Zt. The value of Dt-k influences the age k of the current order in service: the 
larger the demand size, the larger the order size and consequently the longer it takes to 
produce the order. Moreover, since the order quantity is also affected by previously realised 
demand terms (see Eqn. (5)), the demand terms Dt-i, i ≥ k + 1 also influence the order’s age, k. 

Given the distribution of Z, the amount of safety stock SS determines the corresponding 
inventory distribution fNS(·). The value of SS is a decision variable and depends on the cost 
structure and the distribution of Z (see section 5). Since Z is function of β, SS is also impacted 
by the value of β. 

In the flexible capacity scenario each replenishment order is produced within the period 
after it is placed, so that the production queue is always empty when an order is sent to 
production, or k = 0 in Eqn. (9). Moreover, since the lead time Tp = 0, Zt simplifies to 
 

 ( ) ( )∑
−

=
− −−=

1

0

)(1
t

i
it

i
t DEDZ β ,                  (10) 

 
and its steady state distribution fZ(·) can be found from the compound demand distribution. 
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5. SUPPLY CHAIN PERFORMANCE 
 
In this section we measure the impact of the retailer’s order decision (order variance 
amplification/dampening) on total supply chain performance. We consider the inventory costs 
at the retailer and the capacity costs at the manufacturer, and search for the value of the 
replenishment parameter β that minimises total supply chain costs for the flexible and 
inflexible capacity scenarios. In the next section we illustrate our analysis with a numerical 
example. 
 

5.1. Cost function 
The capacity costs include the capacity investment cost given by C(K), and the number of 
units that are produced in overtime in a period (which is zero in the inflexible capacity 
scenario). The inventory costs per period consist of a holding cost to keep a unit in inventory 
for a unit of time and a backlog cost for every unit of demand that can not be immediately 
fulfilled from the inventory on hand. Hence the inventory costs equal Ch · NS if NS ≥ 0, and 
Cb · (–NS) if NS < 0. It is however more elegant to write the net stock NS as a function of the 
safety stock SS and the distribution of Z: NS = SS – Z . Inventory and capacity costs are 
minimised by finding the optimal values for the safety stock SS* and the installed capacity K*: 

 
CINV (SS*, Z) = 

*SS
min { Ch · E[(SS* – Z )+]  +  Cb · E[(SS* – Z )–  ] }   (11) 

CCAP (K
*, O)  = 

*K
min { C(K*) + Cp · E[(O – K*)+] } when capacity is flexible, 

  = 
*K

min C(K*)     when capacity is inflexible. (12) 

 
The inventory and capacity costs depend on the distribution functions of resp. Z and O, 

which are both function of the replenishment parameter β. The cost-minimisation problem can 
then be formulated as finding the optimal value of β which minimises the sum of total 
inventory and capacity costs: 

 

β
min { CINV (SS*, Z) + CCAP (K

*, O) }.       (13) 

 
5.2. Flexible Capacity Strategy 
 

a) Optimal safety stock SS* that minimises inventory costs for a given β 
 
The inventory cost function 
 

CINV = Ch · E[(SS – Z)+] + Cb · E[(SS – Z)–]       (14) 
 
is minimised by the critical fractile value, which provides the optimal stock out probability 
(Zipkin 2000): 

 
Pr(NS < 0) = Ch / (Ch + Cb).                   (15) 

 
The safety stock that corresponds to this stock out probability minimises the inventory costs:  

 
Pr(Z ≤ SS*) = Cb / (Ch + Cb) 
 SS* = FZ

-1(Cb / (Ch + Cb)),       (16) 
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where FZ(·) denotes the cumulative distribution function of Z. Substituting SS* into Eqn. (14) 
provides the lowest inventory cost for a given value of β. 

 
Clearly, as Z becomes more volatile, the optimal safety stock value SS* increases, and the 

inventory costs increase as well. From the steady state distribution of Zt, given by Eqn. (10), 
we find that 
 

Var(Z) = Var(D) · 1 / β(2 – β) .                  (17) 
 

Hence, Z has a higher variance as we dampen the order pattern (β < 1) or as we amplify the 
orders (β > 1), compared to a pure chase sales policy (β = 1). As a result the inventory costs 
increase as we dampen or amplify the order variance, and are minimal when β = 1. 

 
b) Optimal capacity size K* that minimises capacity costs for a given β 
In order to produce each order within one time period, the manufacturer has to invest in 
capacity. The objective is to determine the installed capacity K, defined as the number of units 
that can be produced per period, which minimises the capacity cost function, given by 
 

CCAP = C0 + CK · K + CP · E[(O – K)+].      (18) 
 

The optimal capacity size K* that minimises this capacity cost function, satisfies a 
newsvendor solution. Van Mieghem (2008) shows that the optimal capacity sizing condition 
is given by: 

 
Pr(O > K*) = CK / CP,         (19) 

 
which in turn defines the optimal capacity size as 

 
K* = FO

-1((CP – CK) / CP),        (20) 
 

with FO(·) the cumulative order distribution function.  
 
When the order sizes fluctuate wildly, it is preferable to invest in more capacity since there is 
more need for production in overtime, which is much more expensive than a capacity 
investment itself. When the order pattern is flat, the optimal capacity size K* will be lower 
since there is less need to produce in overtime. The optimal capacity size therefore depends 
on the retailer’s ordering decision to amplify or dampen the order variance. Since the order 
pattern increases in variability as β increases, the optimal capacity investment K* and its 
corresponding capacity costs CCAP increase as β increases.  

 
c) Value of β that minimises total supply chain costs 
For a given value of the replenishment parameter β we described how to find the values of K* 
and SS* that minimise resp. the capacity and inventory costs. In order to find the value β that 
minimises total supply chain costs, we add up the inventory and capacity costs corresponding 
to the optimal values of K* and SS*. Note that there is no interaction between inventory and 
capacity costs. Changing the capacity investment has no impact on lead times in a flexible 
capacity strategy, since every order needs to be produced within the order after it was placed. 
Hence safety stocks are not affected by capacity investments and can be treated independent 
of capacity investment decisions. 
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If we add up capacity and inventory costs, we obtain the following dynamics in the total 
cost function. On the one hand, inventory costs show a U-shaped convex function of the 
parameter β with a minimum in β=1; both order variance amplification and dampening 
increase inventory costs compared to the chase sales policy. The capacity costs, on the other 
hand, increase as β increases; compared to the chase sales policy, the capacity costs are lower 
when order variance is dampened and higher when the order variance is amplified.  

Hence, dampening the orders (β<1) may reduce total supply chain costs in case the 
decrease in capacity costs outweighs the increase in inventory costs. If dampening the orders 
leads to an increase in inventory costs, which is larger than the decrease in capacity costs, it is 
preferable not to dampen any further. In other words, the extent to which we should smooth 
the order pattern depends on the relative costs of capacity and inventory. Note that 
amplification,β >1, always leads to higher inventory and capacity costs, irrespective of the 
cost parameters. 

 
5.3. Inflexible Capacity Strategy 
 

a) Optimal safety stock SS* that minimises inventory costs for a given β 
Analogous to the flexible capacity strategy, the safety stock SS* that minimises inventory 

costs, is given by 
 

SS* = FZ
-1(Cb / (Ch + Cb)).      (21) 

 
In this case however, Z is the steady state distribution of Zt given by Eqn. (9), which 

has a more complex function than Eqn. (10). The distribution of Z is now affected by β in two 
ways. First, similar to the flexible capacity strategy, the order variance has an impact on the 
variance of Z. Fluctuations are minimal in a pure chase policy (β = 1), and variability 
increases when orders are dampened (β < 1) or amplified (β > 1). But in the inflexible 
capacity strategy there is also a second factor that impacts the distribution of Z. The value of β 
also affects the lead time distribution; lead times increase as β increases due to the increased 
variability in the order pattern. As a consequence, order variance dampening leads to lower 
and less variable lead times, exercising a compensating effect on the required safety stock. At 
the same time, order variance amplification increases the inventory variability ánd increases 
lead times, reinforcing the increased safety stock requirements. 

 
b) Optimal capacity size K* that minimises capacity costs for a given β 
The capacity level remains fixed in the inflexible capacity strategy, independent of the order 
decision. Since there is no production in overtime, the capacity cost function, reduced to 
 

CCAP = C0 + CK · K         (23) 
 
is minimised when the installed capacity K is as small as possible. However, in order to obtain 
a stable system, the capacity investment K has to be larger than the average order quantity 
E(O). This ensures that the average utilisation rate of the manufacturer’s production system, 
ρ, is smaller than one. 

 
 

c) Value of β that minimises total supply chain costs 
For a given value of the replenishment parameter β we described how to find the value SS* 
that minimises inventory costs. Capacity costs are minimised when the installed capacity is as 
small as possible, provided that it exceeds the average order quantity. However, in an 
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inflexible capacity strategy there is an interaction between the capacity investment and 
inventory costs. The installed capacity determines the production load, which has an impact 
on lead times. A large capacity investment reduces the production load, so that production 
(queueing) lead times are shorter. These lead times in turn determine safety stocks and 
corresponding inventory costs. 

Hence, in order to find the value of β that minimises total supply chain costs, we may not 
simply add up the inventory and capacity costs that correspond to K*  and SS*, due to the 
interaction between both. We need to trade-off capacity and waiting, which is in this case a 
capacity-inventory trade-off. For instance, as inventory costs are relatively cheap, it is 
preferable not to invest in too much capacity and instead hold more inventory. A high cost of 
inventory on the contrary increases the need for capacity investment in order to keep 
inventory holdings low. 

 
In order to seek the lowest total supply chain costs, we assume a capacity size K and 

measure the impact of β on the inventory costs. Order variance amplification increases 
inventory variability and lead times, blowing up the inventory costs. Order variance 
dampening result in shorter and less variable lead times compared to the chase sales policy, 
which may compensate the increase in inventory variability. Hence, depending on the lead 
time impact, inventory costs may be lowered by smoothing the replenishment orders to some 
extent. If we smooth too much however, the lead time reduction may not compensate the 
increase in inventory variability anymore. 

To trade-off the cost of capacity against the cost of inventory, we change the capacity level 
K and measure its impact on inventory costs. It is clear that lead times (and inventory costs) 
decrease as the capacity investment K increases, since this decreases the utilization rate. 
However, due to the complexity of our queueing model we cannot quantify the exact relation 
between the utilization rate and lead times analytically. Hence by means of a search procedure 
we determine the optimal capacity size K* that minimises total supply chain costs. Obviously, 
the value of K* depends on the relative costs of capacity and inventory. 

 
 

6. NUMERICAL EXAMPLE 
 
To illustrate our analysis, we consider the following numerical example. A retailer daily 
observes a customer demand which is randomly distributed between 21 and 40 units with an 
average of 30.5 units and a standard deviation of 7.5. The retailer replenishes his inventory 
with the generalised replenishment rule, i.e., he places orders at the end of every day equal to 
Ot

  = E(D) + β · [DIP – IPt]  (see Eqn. (4)). 
When the replenishment parameter β < 1, the retailer sends a smooth, positively correlated 

order pattern to the manufacturer (dampening scenario). When β > 1, the order pattern is 
negatively correlated with a larger variance than the observed customer demand (bullwhip 
scenario). In order to exclude the possibility of negative order quantities, we limit the 
replenishment parameter to β < 1.525 (larger values of β may theoretically generate negative 
order quantities, see Eqn. (6)). 

We assume the following cost components. A holding cost Ch = 1 is incurred per unit per 
day and a backlog cost Cb = 20 is incurred per unit that cannot be immediately satisfied from 
the inventory on hand. There is a fixed capacity investment cost C0 = 2 and an additional cost 
per unit of installed capacity CK = 2. A unit can be produced in overtime capacity at extra cost 
CP = 5.  
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6.1. Flexible Capacity Strategy 
 
In Fig. 3 we plot the optimal safety stock SS* that is required to maintain a 95.24% 

customer service level (the optimal stock-out probability equals Ch/(Cb+Ch) = 0.0476)). We 
observe that the safety stock increases as the order variance is dampened (β < 1) or amplified 
(β > 1), and the minimal safety stock is found in a pure chase sales policy (β = 1). The 
corresponding inventory costs Cinv show a similar pattern. Overall, we observe that inventory 
costs are relatively low due to the zero lead times. 
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Figure 3 : Flexible capacity strategy: Impact of β on optimal safety stock SS*  

and corresponding inventory costs Cinv  
 
In Fig. 4 we present the impact of the replenishment parameter β on the capacity costs. As 

intuitively expected, capacity costs (CCAP) increase as the order pattern becomes more volatile 
(i.e., as β increases). When we look at the total supply chain costs (CINV + CCAP), we observe 
that order variance amplification (β > 1) clearly increases total supply chain costs due to the 
combined increase in inventory and capacity costs. When we smooth the orders (β < 1), the 
interplay between inventory and capacity reveals that dampening the orders to a certain extent 
decreases total supply chain costs, but if we dampen the order variance too much, the decrease 
in capacity costs cannot compensate for the increase in inventory costs, and total supply chain 
costs increase. The optimal value of β depends on the relative size of capacity and inventory 
costs. For our numerical example, the optimal value of β equals 0,6. 
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Figure 4: Flexible capacity strategy: Impact of β on capacity costs and total supply chain costs   

  
. 
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6.2. Inflexible Capacity Strategy 
 

Suppose we assume a daily capacity equal to 32.5 units (at a capacity cost of CCAP = 67). 
This implies an average production load of ρ = 30.5/32.5 = 0.9385. The impact of β on the 
average lead time E(Tp) and the optimal safety stock SS* is shown in Fig. 5. The optimal 
safety stock reveals a different trend compared to the flexible strategy (Fig. 3). This is due to 
the stochastic lead times, which depend on the arrival pattern at the production queue. We 
observe in Fig. 5 that lead times increase with β due to the increased variability in order sizes. 
This lead time effect has an impact on the optimal safety stock. The optimal safety stock 
increases as the order variance is amplified (β > 1), but decreases when the order variance is 
dampened to some degree, in this case up to β = 0.7. When the order variance is dampened to 
a large extent (β < 0.7), the decrease in lead times cannot compensate the increase in 
inventory variability and safety stocks increase sharply. 
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Figure 5: Inflexible capacity strategy: Impact of β on average lead time E(Tp)  

and optimal safety stock SS* 
 
The corresponding inventory costs show a similar trend (Fig. 6). Since capacity costs 

remain fixed, independent of β, total supply chain costs are obtained by adding the capacity 
cost of C(K)=67 to the inventory costs. 
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Figure 6: Inflexible capacity strategy: Impact of the replenishment parameter β on inventory costs and 

total supply chain costs when K = 32.5 (CCAP=67)  
 

 
Suppose we increase the installed capacity slightly to K = 33 (at a total capacity cost of 

CCAP = 68). This extra capacity investment decreases the average production load to ρ = 
30.5/33 = 0.9242, which in turn causes lead times to decrease. Since lead times determine the 
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optimal safety stocks, an investment in excess capacity will reduce the corresponding 
inventory costs.  
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Figure 7: Inflexible capacity strategy: Impact of the replenishment parameter β on inventory costs when 

K = 33 (CCAP=68) 
 

In Fig. 7 we plot the inventory costs when we increase the capacity to K = 33, and 
compare it with the case where K = 32,5. We observe that the inventory costs are indeed 
lower when we increase capacity. Moreover, adding the capacity cost of C(K)=68 to these 
inventory costs, we obtain lower total supply chain costs: the decrease in inventory costs 
compensates the increase in capacity costs. Hence, in this case, it is beneficial to increase 
capacity (at extra cost) since it improves total supply chain performance. 
 
 

6.3. Impact of the cost parameters on the replenishment policy 
 

As previously mentioned, the value of the replenishment parameter β that minimises total 
supply chain costs depends heavily on the relative costs of inventory and capacity. Consider 
in our numerical example a higher capacity costs of CK = 4 for a unit produced with the 
installed capacity and CP = 10 for a unit produced in overtime capacity.  

In case capacity is flexible, we obtain total capacity costs as shown in Fig. 8. As capacity 
costs are more expensive, it is preferable to dampen the orders to a larger extent. In the 
considered numerical example, it is optimal to smooth orders with a value of β=0,4. 
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Figure 8: Flexible capacity strategy: Impact of the replenishment parameter β on total supply chain costs 

with increased capacity costs  
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In case capacity is inflexible, the curve of the total cost function will remain unchanged as 

capacity is fixed, independent of the replenishment parameter. Obviously, total costs will be 
higher as capacity is more expensive (see Fig. 9). 
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
170

175

180

185

190

195

200

β

C
to

t

 

 

K=32.5

K=33

 
Figure 9: Inflexible capacity strategy: Impact of the replenishment parameter β on total supply chain 

costs with increased capacity costs  
 
 

6.4. Summary 
This numerical example well illustrates the dynamics resulting from the retailer’s inventory 
decision and the manufacturer’s strategy of a flexible or an inflexible capacity. Both in the 
flexible and inflexible capacity scenarios, order variance amplification increases total supply 
chain costs, and order variance dampening may lead to lower supply chain costs. 
Consequently, order smoothing is preferable. The degree to which we should smooth, 
depends on the observed customer demand pattern and the cost components in the supply 
chain.  
 
 
7. CONCLUSIONS 
In this paper we analyse the impact of the replenishment rule at the retailer on the 
performance of two-echelon retailer-manufacturer supply chain. We treat the variability of the 
order rate of the retailer as a primary decision variable to minimise total supply chain costs. 
The manufacturer prefers a dampened or smooth order pattern from his retailer, as this 
enables him to minimise his own capacity costs. The retailer, however, is not inclined to do so 
since a reduction in his order variance comes at the cost of an increased inventory. Both order 
variance amplification and dampening increase the retailer’s inventory variability, inflating 
his safety stock requirements. 

We propose a coordinative supply chain approach, thereby considering two strategies with 
regard to the capacity strategy. Both capacity scenarios reveal different dynamics with regard 
to the inventory and capacity costs in the supply chain. However, when considering a total 
supply chain perspective, we find that in both scenarios dampening the order variability at the 
retailer may lead to lower total supply chain costs. The degree to which we should smooth 
depends on the observed customer demand pattern and the cost components in the supply 
chain. At the same time we find that order variance amplification increases total supply chain 
costs, both in the flexible and inflexible capacity scenario. 
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APPENDIX A: ORDER PATTERN GENERATED BY THE GENERALI SED ORDER-
UP-TO POLICY 
 
In this appendix we show that the generalised order-up-to policy given by Eqn. (4) generates 
an auto-correlated order pattern given by 
 
 Ot = (1 – β) · Ot-1 + β · Dt . 
 
 
Proof.  The generalised order-up-to policy generated orders according to  
 
 Ot

  = E(D) + β · [DIP – IPt]. 
 
Then,  
 
 Ot – Ot-1 = E(D) + β · [DIP – IPt] – E(D) – β · [DIP – IPt-1] 
     = β · (IPt-1 – IPt).       (A1) 
 
The inventory position IPt is monitored after customer demand is satisfied and before a 
replenishment order Ot is placed. Hence 
 
           IPt = IPt-1 + Ot-1 – Dt 

 IPt-1 – IPt = Dt – Ot-1 .        (A2) 
 
Substituting (A2) into (A1) results in  
 
 Ot – Ot-1 = β · (Dt – Ot-1). 
           Ot = (1 – β) · Ot-1 + β · Dt .      ■ 
 

 

APPENDIX B: BOUNDS ON THE ORDER QUANTITIES GENERATE D BY THE 
GENERALISED OUT POLICY 
 
This section provides upper and lower bounds on the order quantities generated by the 
generalised order-up-to policy in Eqn. (4).  
When 0 < β < 1 the minimal and maximal order quantities are given by  
 
 Omin = Dmin 

 Omax = Dmax, 
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since the generated order quantity is a simple exponential smoothing from the observed 
customer demand. 
When 1 < β < 2 we prove that the theoretical minimum and maximum order quantities are 
respectively given by 
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Proof. Let the order quantity Ot reach its maximal value Omax in an arbitrary period t. Then, 
the order quantity in the next period t + 1 reaches its new minimum value Omin when the 
minimum demand realises, or 
 
 Ot+1 = β · Dmin + (1 – β) · Ot 

         = Omin . 
 
Subsequently, a new maximum Omax is reached in the following period when the maximum 
demand is realised, or 
 
 Ot+2 = β · Dmax + (1 – β) · Ot+1 

         = Omax . 
 
Suppose the order pattern successively reaches its new minimum and maximum order 
quantity. Then, O2n and O2n+1 are the respective minimum and maximum order quantities, 
given by 
 
 Omin = O2n    = β · Dmin + (1 – β) · O2n-1     (A3) 
 Omax = O2n+1 = β · Dmax + (1 – β) · O2n .      (A4) 
 
When 1 < β < 2, we find that the minimum and maximum order quantities are respectively 
given by  
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( )
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=        (A6) 

 
Indeed, substituting (A5 – A6) into (A3 – A4) returns (A5 – A6) again.   ■ 
 
Furthermore, using (A5), the restriction Omin ≥ 1 can then be translated as  
 
 Dmin + (1 – β) · Dmax ≥ 2 – β . 
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APPENDIX C: DISTRIBUTION OF THE NET STOCK 
 
In this section we derive an expression for the net stock distribution in function of the 
distribution of customer demand. 

The inventory on hand NSt at the end of period t is equal to the initial inventory on hand 
plus all replenishment orders received so far minus total observed customer demand. Since at 
the end of period t, the order Ot-k is in service, the orders placed more than k periods ago, i.e. 
Ot-i, i ≥ k+1, are already delivered in inventory, while customer demand is satisfied up to the 
current period t. For our purposes the initial inventory level is a control variable, equal to the 
safety stock SS, determining the retailer’s customer service. Since we assume that 
Ot=D t=E(D) for t ≤ 0, the net stock after satisfying demand in period t is equal to 
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Substituting the auto-correlated order pattern (5) into (A7) gives 
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Since Ot = Dt = E(D) for t ≤ 0, we find after backward substitution of Eqn. (5) that, for t > 0, 
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so that we obtain 
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