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Abstract—The successive interference cancellation tree algo-
rithm with first success (SICTA/FS) was specifically designed as
a random access protocol over noisy collision channels. Given
J users with an infinite buffer and subject to Poisson arrivals,
SICTA/FS achieves throughputs as high as 0.6 if packet losses are
allowed (up to 20%), while without packet losses its throughput
quickly degrades as the number of users J increases.

In this paper we indicate that SICTA/FS may remain stable for
a considerable amount of time before becoming unstable when
the arrival rate exceeds the maximum stable throughput. More
importantly, we also study the ALOHA-SICTA/FS algorithm and
show that it can achieve throughputs of 0.6 or above without
packet loss. Additionally, we provide an accurate estimation of
the mean packet delay under ALOHA-SICTA/FS using a simple
queueing model with vacations. Finally, we indicate that ALOHA-
SICTA/FS suffers from hardly any throughput reduction when
the access point stores the last two collision signals only.

Index Terms—Random access, tree algorithms, interference
cancellation, SICTA/FS, ALOHA-SICTA/FS, AWGN channel

I. INTRODUCTION

Conventional tree algorithms (TAs) are known for their good
stability properties both under finite and infinite populations
[1], [2]. More recently, the SICTA tree algorithm was intro-
duced that combines conventional TAs with a successive inter-
ference cancellation (SIC) mechanism [3]. Basically, SICTA
may recover a packet from an otherwise lost slot (i.e., collision
slot) by canceling out a number of earlier decoded packets.
Assuming a perfect channel with errorless cancellation and an
infinite number of users, SICTA achieves a maximum stable
throughput (MST) of 0.693 under Poisson arrivals.

In order to apply SICTA in a wireless channel, the
SICTA/FS algorithm was introduced in [4]. SICTA/FS is also
a blocked access algorithm like SICTA, but instead of going
through the entire conflict resolution tree, it terminates the
conflict resolution interval (CRI) as soon as the first successful
transmission occurs (and recovers as many other packets as
possible by means of the SIC mechanism). As such SICTA/FS
avoids the potential deadlock due to cancellation errors present
in SICTA. Moreover, as the end of a CRI is now identified by
a success, SICTA/FS is a limited sensing algorithm, allowing
new users to join in easily. The downside of SICTA/FS is
that occasionally some of the packets taking part in a CRI are
not received successfully. Hence, these packets must either be
retransmitted or are considered lost. The model introduced in

[4] considers a finite population consisting of J users each
having an infinite buffer fed by a Poisson process and an
additive white Gaussian noise channel (AWGN). It provides
a good approximation for the throughput and mean delay
assuming that packets that are unsuccessful in a CRI are lost
(the loss is about 20% for throughputs of 0.6).

SICTA/FS was also combined with the binary exponential
backoff (BEB) algorithm in [5] in an 802.16 setting. The focus
in this paper was mainly on the saturation throughput (that
is, the throughput that can be achieved assuming all J users
have packets ready for transmission at all times). Clearly, the
saturation throughput remains identical irrespective of whether
unsuccessful packets are retransmitted by means of the BEB
algorithm. Furthermore, [5] also indicated that the saturation
throughput of SICTA/FS degrades quickly as the number
of users increases, while BEB-SICTA/FS still achieves high
throughputs.

In this paper, we revisit the SICTA/FS protocol in the same
setting as in [4], but demand that packets that are unsuccessful
during a CRI are retransmitted. In contrast to the case where
the packets are lost, we show that the high throughput of
SICTA/FS quickly vanishes as the number of users J grows
(as also indicated in [5]). We also show that there exists a value
λ∗max > λmax, such that for arrival rates λ ∈ (λmax, λ

∗
max),

the queue lengths remain small for a considerable amount of
time (e.g., millions of CRIs) before growing to infinity. In
other words, instability may occur after a considerable amount
of time only (for λ > λ∗max the queues start growing without
bound from time 0 onwards).

More importantly, we also analyze the ALOHA-SICTA/FS
algorithm and demonstrate that high throughputs can be at-
tained even when the unsuccessful packets in a CRI are
retransmitted. These throughputs are comparable to the ones
achieved by (C)BEB-SICTA/FS and reported in [5], which
demonstrates that the less involved ALOHA algorithm suffices
to get high throughputs. We also introduce a simple queueing
model with vacations to get an accurate estimation of the mean
packet delay when λ is below the MST. We should also stress
that the CBEB-SICTA/FS algorithm of [5], where only the
saturation throughput was studied analytically, behaves very
similar to the ALOHA-SICTA/FS scheme as all the users use
the same backoff window. Finally, we also indicate that the
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MST of ALOHA-SICTA/FS hardly diminishes when the ac-
cess point stores the last two collision signals only, indicating
that ALOHA-SICTA/FS has a low memory complexity.

The paper is structured as follows. In Section II we present
the main assumptions with regard to the random access
channel under consideration. Afterward, in Section III we
discuss the operation of SICTA/FS and ALOHA-SICTA/FS.
The performance of these algorithms is analyzed in Section
IV, while numerical results and comparisons can be found in
Section V. Finally, some concluding remarks are presented in
Section VI.

II. MODEL ASSUMPTIONS

We consider a wireless channel with nearly identical prop-
erties as in [4]:

1) A finite number of J users is considered each having
an infinite capacity buffer. Each user generates fixed
length packets according to a Poisson process with the
same rate λ (i.e., the system is homogeneous). The users
transmit over a single slotted channel to a common
access point (AP), the slot length of which is equal to
one packet.

2) Three types of immediate feedback are provided (at the
end of each slot): 0, k(k > 0) or e. A “0” indicates that
the slot was idle, a “k” is used to indicate that k packets
have been decoded successfully (that is, a successful
transmission occurred and k − 1 more packets were
recovered via SIC) and “e” corresponds to an erroneous
packet reception.

3) We consider a noisy collision channel which implies
that any collision results in an erroneous reception and
additionally even if only one user transmits, that packet
might be corrupted due to channel noise. The noise
model under consideration is the additive white Gaussian
noise model (AWGN) discussed below.

Whenever a success occurs (meaning we get k > 0 feedback),
we state that a new conflict resolution interval starts. In other
words if the k-th success takes place in slot nk, the k-th CRI
consists of the slots nk−1+1 up to and including slot nk (with
n0 = 0). There is one exception to this rule: when a success
is followed by a number of idle slots, each of these idle slots
forms a separate CRI.

With regard to the assumptions above, only the feedback
differs from [4], where the “k” feedback is replaced by a
simple “1” feedback to identify a success. We however require
the k feedback at the end of a CRI as each user taking part
in the CRI needs to know whether retransmission is required.
In [4] this is not necessary as the unsuccessful packets are not
retransmitted, but dropped. So, all users that took part in the
CRI remove the packet from their queue. The k feedback is
also used by SICTA in [3].

Finally, let us discuss the noisy collision channel. As-
sume BPSK modulation and let Eb/N0 be the signal to
noise ratio (SNR) per bit (that is, 10 log10(Eb/N0) is the
SNR in decibels). For the AWGN channel the bit error
rate (BER) is given by P

(0)
b = erfc(

√
Eb/N0)/2, where

erfc(x) = 2
∫∞

x
e−t2/2dt/

√
π is the complementary error

function. Therefore, a packet of length L has a packet error
probability of P (0)

error = 1 − (1 − P (0)
b )L. As there is noise

on the channel, there is also a probability that a cancellation
operation fails. Let P (i)

error be the probability that cancellation
fails given that the collision consists of i + 1 packets and
i of them have already been decoded correctly. Assuming
identical Eb for each user and N1 the induced noise density
per cancellation (i.e., SIC is imperfect and induces Gaussian
noise with variance N1), we have

P (i)
error = 1− (1− P (i)

b )L,

with P (i)
b = erfc(

√
Eb/(N0 + iN1))/2. As soon as the first

cancellation fails, no more packets can be decoded within the
current CRI. Throughout the paper we set N1 = 0.1N0 (as in
[4]).

III. ALGORITHMS

A. SICTA/FS

Under SICTA/FS all users that have a packet ready for
transmission at the start of a CRI take part in the CRI. When
there are no users taking part in the CRI, the idle 0 feedback
is provided and the CRI ends immediately. Otherwise, each
time the error feedback e is provided (meaning at least one
user transmitted), the users who just transmitted split into two
groups, that is, each user joins the first group with probability
p and the second group with probability 1− p, independently
of the other users (typically, p = 1/2). The users that selected
the first group retransmit in the next time slot. If there is at
least one user in the first group, meaning the next time slot
has feedback k or e, the users in the second group refrain
from retransmitting their packet in the current CRI. Notice, if
the second group consists of one user only, his packet might
still be decoded correctly via SIC. If the first group is empty
on the other hand, the users in the second group immediately
split again into two groups and continue applying the same
procedure.

As soon as a single transmission is received without error
the CRI ends and the AP recovers as many packets as possible
using SIC. It does this by first canceling the success from the
last collision. If this succeeds, a second packet is decoded and
the AP cancels both packets from the last but one collision, in
an effort to recover a third packet. This procedure is repeated
until either a cancellation fails or all the collisions in the CRI
have been used successfully. Notice, cancellation always fails
if the second group corresponding to a collision held more than
2 users, e.g., 3 users split into 1 and 2. Even if there is only
one user in the second group, cancellation is not guaranteed
to succeed due to the noise. Recall, as opposed to [4], we
demand that all users participating in the CRI without success
retransmit their packet. Also note that it suffices for the AP to
announce the number of decoded packets k, as a user knows
whether he transmitted in the k − 1-th collision from the last
collision.
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B. ALOHA-SICTA/FS

The ALOHA-SICTA/FS differs from SICTA/FS only in
the manner in which a user decides to take part in a CRI.
With SICTA/FS any user with a nonempty queue at the start
of a CRI takes part, with ALOHA-SICTA/FS users with a
nonempty queue only take part with probability pA, where pA

is a system parameter. Notice, if a user takes part in a CRI,
but fails to transmit his packet successfully, it will still only
participate in the next CRI with probability pA.

IV. PERFORMANCE ANALYSIS

In order to assess the performance of both the SICTA/FS
and ALOHA-SICTA/FS algorithm, we define a Markov chain
that keeps track of the joint queue length at the start of each
CRI. Stability of the algorithm thus corresponds to the positive
recurrence of this multi-dimensional Markov chain.

Applying a similar generating function approach as in [6],
[4], [7], we can establish the following relationship provided
that the multi-dimensional Markov chain is positive recurrent:

λ =
PspA(1− Pe)

PeE[CRI0] + (1− Pe)E[CRI1]
, (1)

where Pe is the stationary probability that a tagged user has an
empty queue at the start of a CRI, Ps is the probability that a
tagged user taking part in a CRI does not need to retransmit his
packet, while E[CRI0] (E[CRI1]) denotes the mean length of
a CRI given that the tagged user does not (does) participate in
the CRI. Notice, for SICTA/FS the parameter pA equals one.

Next, as in [6], [4], [7], we rely on the following decoupling
assumption to reduce the multi-dimensional Markov chain to a
one-dimensional chain: at the start of any CRI we assume that
the queue length distributions of the J users are independent.
In other words, the number of users participating in a CRI is
Binomially distributed with parameters (J, (1− Pe)pA).

This independence assumption may seem rather strong and
implies that our model is no longer exact. However, we will
show that the MST can still be determined exactly, while a
simple M/G/1 queueing system with vacations will suffice to
get a good approximation for the mean delay of ALOHA-
SICTA/FS (when pA is not poorly chosen), especially when
the number of users J increases (e.g., for J = 20). This
perhaps somewhat unexpected accuracy might be in part
explained by the decoupling result proven in [8] for the
simple ALOHA scheme. For the SICTA/FS algorithm, where
pA = 1, the probability of having an empty queue is still quite
accurately captured using the decoupling assumption, but the
distribution of the number of users participating in a CRI does
not match well with a Binomial distribution, causing severe
errors for the estimation of the mean packet delay when λ
approaches the MST.
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Figure 1. λJ as a function of Pe for J = 5 and 20 users for different SNRs
for SICTA/FS.

Using the decoupling assumption, we have

Ps =
J−1∑
k=0

Bk
J−1,(1−Pe)pA

S(k + 1)/(k + 1),

E[CRI0] =
J−1∑
k=0

Bk
J−1,(1−Pe)pA

EL(k),

E[CRI1] =
J−1∑
k=0

Bk
J−1,(1−Pe)pA

EL(k + 1)

where Bi
n,p =

(
n
i

)
pi(1− p)n−i, EL(k) is the mean length of

a CRI with k participants and S(k) is the mean number of
correctly decoded packets in a CRI with k participants. Both
S(k) and EL(k) can be computed easily in a recursive manner
as indicated in [4], for completeness we added expressions for
both in the Appendix B. In other words, under the decoupling
assumption Eqn. (1) provides us with a nonlinear equation for
Pe, the stationary probability that a user has an empty queue
at the start of a CRI.

A. SICTA/FS

In Figure 1 we have plotted λJ for the SICTA/FS algorithm
as a function of Pe for Pe ∈ [0, 1] with J = 5 and 20 users and
various SNRs (similar curves are found for other J values).
This figure indicates that there exists a λ1 and λ2 such that
Pe has a unique solution for Eqn. (1) if λ < λ1, has two
solutions for λ ∈ [λ1, λ2) and no solutions for λ > λ2, where
λ1 is found by setting Pe = 0 in (1), that is, λ1 is the saturation
throughput.

As we are dealing with a homogeneous system, meaning
all the users have the same arrival rate λ and they all
participate in a CRI when their buffer is nonempty (or with
the same probability pA in case of ALOHA-SICTA/FS), the
MST of SICTA/FS λmax can be proven to coincide with
the saturation throughput λ1, as shown in the Appendix A.
Basically, this result holds because all the queues become
saturated simultaneously at the stability limit, instead of just
some of the queues. If we permitted a different arrival rate
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Figure 2. Simulation of the number of empty queues for J = 20 users,
SNR = ∞ dB and various λ values (with λmax = 0.31868) for SICTA/FS.

for each user, this result would no longer hold and dominant
systems can be used to bound the stability region as in [9],
[10]. Thus, looking at Figure 1, we numerically find that there
exists a single solution for Pe via (1) whenever the system is
stable. Remark, for SICTA/FS Pe does not decrease to zero as
λ approaches λmax, instead it jumps to zero when λ becomes
λmax.

Using Figure 1, let us give some intuition as to what
implications the existence of the two solutions, denoted as
P

(1)
e and P

(2)
e with P

(1)
e < P

(2)
e , for λ ∈ [λmax, λ2] might

have. If at some point in time t, the fraction of empty queues
Pe(t) is above P (2)

e , we see that the λ-value that corresponds
to Pe(t) is below λ, therefore on average more queues will
become nonempty and Pe(t) is expected to decrease. Similarly,
one finds that if Pe(t) is between P (1)

e and P (2)
e it will tend to

grow, while for Pe(t) below P
(1)
e it tends to decrease again.

In other words, there is a drift toward P
(2)
e on the interval

(P (1)
e , 1] and a drift toward zero on [0, P (1)

e ).
Thus, if we start with an empty system (Pe(0) = 1), the

fraction of empty queues might stay in the neighborhood of
P

(2)
e for quite a while, but given that it drops a sufficient

number of times below P
(2)
e , which it is guaranteed to do

because of the Poisson arrivals, it will get stuck in Pe(t) =
0 eventually. This is exactly what is happening in Figure 2
where we depict the number of empty queues during a typical
simulation run for J = 20 users for various λ’s in [λmax, λ2]
(where P (2)

e J varies between 19.52 and 19.62). Each point on
this figure represents the mean number of empty queues over
250 consecutive CRIs. The simulation was stopped when all
of the queues exceeded a length of a few thousand. Similar
results were obtained for J = 5 users, though the length of
the stable period is much shorter for j = 5 even when λ is
only a fraction above λmax, this is mainly because the drift
toward P (2)

e is not as large as for J = 20 (see Figure 1).

B. ALOHA-SICTA/FS

In Figure 3 we depict the same curves as in Figure 1, but
now for the ALOHA-SICTA/FS algorithm, where pA was set
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Figure 3. λJ as a function of Pe for J = 5 and 20 users for different SNRs
for ALOHA-SICTA/FS with pA = 1.5/J .

to 1.5/J , such that when all the queues are nonempty 1.5 users
take part in a CRI on average. We observe that this choice of
pA results in a much higher saturation throughput compared
to SICTA/FS.

Having obtained Pe numerically as the unique solution of
Eqn. (1) when λ is below the MST, we will rely on the
decoupling assumption to obtain an approximation for the
mean delay of ALOHA-SICTA/FS. For this purpose, we will
rely on an M/G/1 queueing system with server vacations
as in [4]. However, as unsuccessful packets now require
retransmission (that is, they are no longer dropped as in [4])
and users with a nonempty buffer only participate in a CRI
with probability pA, the analysis is somewhat more involved.

First, when a packet sees an empty queue upon arrival,
it must wait until the current CRI ends, this time interval
represents the residual lifetime of the vacation period. In
other words, the distribution of the vacation period is equal
to the duration of a CRI in which the tagged user does
not participate. The number of participants in such a CRI
is Binomial with parameters (J − 1, pA(1 − Pe)) due to the
decoupling assumption. As the first two moments of a CRI
with k participants, denoted as EL(k) and EL2(k) are easy
to compute recursively (see [4] and Appendix B), the first two
moments of the vacation length E[V ] and E[V 2] are readily
found.

When a packet arrives in a nonempty queue, it must wait
until all previously arrived packets have been transmitted. This
time interval represents the waiting time. When the packet
becomes the head-of-line packet, we state that its service
time starts. Its service will consist of several CRIs, in some
of these CRIs the packet might not participate, in others
it might, but its transmission fails, while in the last CRI
part of its service time, it participates successfully. If we
assume independence between the lengths of all these CRIs
and neglect the correlation between the length of a CRI and
whether a packet is successful, we can approximate the service
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Figure 4. Analytical vs simulation results for Pe, the probability of having
an empty queue, for SNR = ∞ dB for SICTA/FS

time distribution, with generating function S(z), as follows:

S(z) =
PsR(z)

1− (1− Ps)R(z)
,

where R(z) can be expressed as

R(z) =
pAQ1(z)

1− (1− pA)Q0(z)
,

where Q0(z) (Q1(z)) denotes the generating function of
the CRI length given that the tagged user does not (does)
participate in the CRI. Using the decoupling assumption, we
can compute the first two factorial moments of Q0(z) and
Q1(z) easily (which we denote as Q′0(1), Q′1(1), Q′′0(1) and
Q′′1(1)). Using these we can express the first two moments of
the service time as

E[S] =
Q′1(1) +Q′0(1)(1− pA)/pA

Ps
,

and

E[S2] = E[S] +
Q′′0(1)(1− pA) +Q′′1(1)pA

PspA
+

2Q′0(1)Q′1(1)(1− pA)(2− Ps)
pAP 2

s

+

2
P 2

s

(
Q′0(1)2(1− pA)2

p2
A

+Q′1(1)2(1− Ps)
)
.

We can now rely on the well-known expression for the mean
delay in an M/G/1 queue with server vacations [11]

E[D] = E[S] +
λE[S2]

2(1− λE[S])
+
E[V 2]
2E[V ]

.

Thus, we neglect the correlation between the length of consec-
utive service times as well as the correlation with the vacation
length.

V. NUMERICAL RESULTS

Unless otherwise stated, p was chosen as 1/2 and N1 =
0.1N0. We should note that somewhat larger values for p
typically slightly improve the performance. The packet length
was set equal to 424 bits. When the SNR equals ∞, the
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Figure 5. Analytical vs simulation results for Pe, the probability of having
an empty queue, for SNR = ∞, 8 or 7 dB for ALOHA-SICTA/FS
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packet length has no impact on the performance. For ALOHA-
SICTA/FS the transmit probability pA was chosen as 1.5/J ,
again slightly modifying this value further optimizes the MST.
Finally, in all the simulation results conducted we simulated
the system for 1, 000, 000 CRIs.

A. Decoupling assumption validation

We start by validating the decoupling assumption, more
precisely we first compare the unique solution of Eqn. (1)
under the decoupling assumption (full lines) with the proba-
bility of having an empty queue during simulation (squares).
The results, shown in Figure 4, indicate that we get fairly
accurate results for SICTA/FS except when λ is close to the
saturation throughput and the number of users J is low. When
we simulated the system with λ slightly above λmax the
system became unstable and Pe was equal to zero. Figure
5 presents a similar figure for ALOHA-SICTA/FS, showing a
good agreement between the model and simulation. In this
case we used a different SNR for J = 5 and 10, as the
difference between these curves is small when using the same
SNR.
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Figure 7. Throughput comparison of SICTA/FS and ALOHA-SICTA/FS
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However, an accurate value for Pe does not guarantee that
the decoupling assumption will provide accurate results. To
get a better idea of the accuracy of the decoupling assumption,
Figure 6 compares the simulated and analytical distribution for
the number of users participating in an arbitrary CRI for both
SICTA/FS and ALOHA/SICTA-FS for J = 20 users and SNR
=∞ dB. These results indicate that the decoupling assumption
only matches the first few probabilities for SICTA/FS, while
for ALOHA-SICTA/FS the decoupling assumption provides a
good match for the entire distribution. This is probably because
ALOHA-SICTA/FS tends to reduce the correlation between
the number of users in consecutive CRIs, which results in the
proper tail behavior. Similar results were obtained for other
arrival rates λ. The accuracy of the decoupling assumption for
ALOHA-SICTA/FS is also further validated by the comparison
of the mean packet delay, though we must note that an
additional approximation is introduced by the M/G/1 vacation
queue.

B. MST and mean delay of ALOHA-SICTA/FS

We start by evaluating the maximum stable throughput of
SICTA/FS and ALOHA-SICTA/FS as a function of the num-
ber user J for different SNR values in Figure 7. It confirms
that the throughput quickly degrades with J for SICTA/FS,
while the ALOHA-SICTA/FS provides similar throughputs
over the entire range of J . We should note that the SICTA/FS
throughputs for SNR = 7 and 8 dB are lower than the ones
reported in [5], as we have packets of length 424 bits and use
BPSK, while in [5] packets are request packets with a length
of 80 bits only and QPSK is used, resulting in lower error
rates.

In Figure 8 we compare the mean packet delay as computed
by the M/G/1 vacation queue (solid lines) with simulation
results (markings) for SNR =∞. The estimation matches well
with the simulation results and tends to improve as the number
of users J increases. The agreement is also best for either
low to medium arrival rates or rates close to the maximum
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Figure 8. Comparison of the simulated and analytical mean packet delay
for ALOHA-SICTA/FS (with pA = 1.5/J) on an AWGN channel with SNR
=∞ and J = 5, 10, 20 and 40 users.

stable throughput. Similar results can be obtained for other
SNR values.

C. Memory requirements of ALOHA-SICTA/FS

In principle the access point (AP) needs to store the signals
of the last J − 1 collisions in a CRI as up to J − 1 successful
cancellations may occur at the end of a CRI. In this section we
investigate the effect on the MST when reducing the number
of stored collision signals to ms, with ms ≥ 1. In order
to compute the throughput when the AP stores the last ms

collision signals only, it suffices to set P (i)
error = 1, for i > ms.

From Figure 9 we may conclude that having only one
memory location reduces the MST somewhat, but as soon as
the last two collision signals are stored by the AP, throughputs
close to those with J − 1 memory locations are obtained,
especially when there is some noise on the channel. This result
is mostly due to the low average number of participants within
a CRI. Further even if this average was larger, most of the
throughput gained by the SIC mechanism is caught with a
limited number of memory locations as shown in [12] for the
SICTA algorithm.

D. MST and mean delay of ALOHA-MTA/FS

In this section we look at the effect of the SIC mechanism
by determining the MST and mean packet delay when the
SIC mechanism is not available at the physical layer. In
this case the SICTA/FS algorithm reduces to the so-called
MTA/FS algorithm, where MTA is the well-known modified
tree algorithm [2]. The MTA/FS algorithm thus works in
exactly the same manner as SICTA/FS, except that when the
first success in a CRI occurs, no efforts are made to recover
additional packets via SIC. We can combine MTA/FS with
ALOHA in exactly the same manner to obtain the ALOHA-
MTA/FS algorithm. To assess its performance we may rely on
exactly the same model as for ALOHA-SICTA/FS, by setting
P

(i)
error = 1 for i > 0 (as not trying to recover packets via

SIC is equivalent to applying SIC when the probability of a
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Figure 9. Throughput of ALOHA-SICTA/FS with ms memory locations
(with pA = 1.5/J) on an AWGN channel for SNR = ∞ and 8 dB, fixed
length packets of size 424 bits and BPSK modulation.
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Figure 10. Throughput comparison of ALOHA-MTA/FS (with pA = 1.5/J)
and ALOHA (with pA = 1/J) on an AWGN channel for various SNRs, fixed
length packets of size 424 bits and BPSK modulation.

successful cancellation is zero) or by setting S(k) = 1 for
k > 0.

In Figure 10 we see that most of the throughput gains in
comparison with a pure ALOHA scheme (with pA = 1/J)
disappear when the SIC mechanism is not available. We should
note that the ALOHA-MTA/FS throughput can be improved
somewhat (that is, by 0.01 to 0.015 depending on the number
of users J) by reducing pA to approximately 1.1/J . In Figure
11 we compare the simulated mean packet delay of ALOHA-
MTA/FS with pA = 1.1/J with the analytical results obtained
by setting S(k) = 1, for k > 0. As with ALOHA-SICTA/FS,
the accuracy improves as the number of users J increases,
while the delays are overall somewhat larger for ALOHA-
MTA/FS as expected.

VI. CONCLUSIONS

In this paper we studied a number of tree algorithms
designed to operate on a noisy collision channel. We indi-
cated that the SICTA/FS algorithm may remain stable for a
considerable amount of time when the arrival rate is (well)
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Figure 11. Comparison of the simulated and analytical mean packet delay
for ALOHA-MTA/FS (with pA = 1.1/J) on an AWGN channel with SNR
=∞ and J = 5, 10, 20 and 40 users.

above the maximum stable throughput. More importantly, we
analyzed both the throughput and delay of ALOHA-SICTA/FS
and demonstrated that throughputs of 0.6 can be achieved
without losses, as opposed to SICTA/FS, the throughput of
which degrades quickly with the number of users. The delay
estimation made use of a simple M/G/1 queueing model with
server vacations and was shown to be especially accurate as
the number of users J increases.

We further demonstrated that this queueing model is also
accurate for the ALOHA-MTA/FS scheme, which suggests
that the same approach can also be used for assessing the
mean delay of other algorithms like ALOHA-SICTA/F1 and
ALOHA-MTA. The MTA algorithm can also be used on a
noisy collision channel, but it is not a limited sensing algorithm
like MTA/FS. SICTA/F1 operates in the same manner as
SICTA/FS, but also terminates a CRI when an idle slot occurs.
It was designed for channels with fading, where idle slots
are sometimes recognized as collisions, causing SICTA/FS to
deadlock.

Finally, we indicated that the ALOHA-SICTA/FS algorithm
maintains its high throughput when the access point limits
itself to storing the last two collision signals only.

APPENDIX A
MAXIMUM STABLE THROUGHPUT

Assume that user i, for i = 1, . . . , J , is subject to a Poisson
arrival rate λi and assume that the users are labeled such that
λ1 ≤ λ2 ≤ . . . ≤ λJ . Let i < j and assume queue i is
unstable. Then, using a coupling argument as in [10], this
system is equivalent to the system with J users in which
user i is saturated, i.e., where user i is assumed to have a
nonempty buffer at all times. As user i now participates in all
the CRIs, the success rate of any other user must is bounded
by the success rate of user i (which is less than λi as user i
is unstable), because all k users have an equal probability of
being successful in a CRI with k participants under SICTA/FS.
As such user j, with an arrival rate λj ≥ λi, must be unstable
as well.
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In other words, if user i is unstable, then so are all the
users j > i. Hence, if all the users are subject to the same
Poisson arrival rate λ, they are all either stable or unstable
and the maximum stable throughput therefore coincides with
the saturation throughput. A similar argument can be used
for the ALOHA-SICTA/FS algorithm given that all the users
participate in a CRI with the same probability pA whenever
their buffer is nonempty.

APPENDIX B
CRI LENGTH AND NUMBER OF SUCCESSES

The mean duration EL(k) of a CRI with k participants and
the expected number of successes S(k) in such a CRI can be
computed as

EL(1) =
1− P (0)

error + P
(0)
error/p

1− P (0)
error

,

EL(k) =
1 +

∑k−1
i=1 B

i
k,pEL(i)

1− pk − (1− p)k
,

with EL(0) = 1 and

S(k) =

∑k−1
i=1 B

i
k,pS(i) +Bk−1

k,p C(k − 1)
1− pk − (1− p)k

,

with S(0) = 0, S(1) = 1 and

C(k) = (1− P (k)
error)

k∏
m=2

Bm−1
m,p (1− P (m−1)

error )
1− pm − (1− p)m

.

The second moment EL2(k) of the length of a CRI with k
participants obeys the following equations:

EL2(1) =
2(1− p)P (0)

error

p2(1− P (0)
error)

+

(
1 +

2P (0)
error

p(1− P (0)
error)

)
EL(1)

EL2(k) =
(1 + pk + (1− p)k)EL(k)

1− pk − (1− p)k
+∑k−1

i=1 B
i
k,p(EL

2(k) + EL(k))
1− pk − (1− p)k

,

with EL2(0) = 1
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