A phase-type representation for the queue length distribution of a semi-Markovian queue

Benny Van Houdt
Performance Analysis of Telecommunication Systems Research Group
Department of Mathematics and Computer Science
University of Antwerp - IBBT
Middelheimlaan 1, B-2020 Antwerp, Belgium
Email:benny.vanhoudt@ua.ac.be

Abstract

In this paper we study a broad class of semiMarkovian queues introduced by Sengupta. This class contains many classical queues such as the GI/M/1 queue, SM/MAP/1 queue and others, as well as queues with correlated interarrival and service times. Queues belonging to this class are characterized by a set of matrices of size m and Sengupta showed that its waiting time distribution can be represented as a phase-type distribution of order m. For the special case of the SM/MAP/1 queue without correlated service and inter-arrival times the queue length distribution was also shown to be phasetype of order m, but no derivation for the queue length was provided in the general case.

This paper introduces an order m^{2} phase-type representation (κ, K) for the queue length distribution in the general case. Moreover, we prove that the order m^{2} of the distribution cannot be further reduced in general. Examples for which the order is between m and m^{2} are also identified. We derive these results in both discrete and continuous time and also discuss the numerical procedure to compute (κ, K). Moreover, by combining a result of Sengupta and Ozawa, we provide a simple formula to compute the order m phase-type representation of the waiting time in a MAP/MAP/1 queue without correlated service and inter-arrival times, using the R matrix of a Quasi-Birth-Death Markov chain.

I. Introduction

In this paper we consider a broad class of semi-Markovian (SM) queues that have been used extensively to assess the performance of various communication (and manufacturing) systems (e.g., [1], [2], [3]). Characteristic of these queues is that they support correlated arrival processes, correlation between successive service times, as well as correlation between the service and inter-arrival times. Denote $T_{1}<T_{2}<T_{3}<\ldots$, with $T_{1}=0$ as the customer arrival times, $I_{n+1}=T_{n+1}-T_{n}$, for $n \geq 1$, as the inter-arrival times and S_{n}, for $n \geq 1$, as the service time of the n-th customer. Let $\left\{Y_{n}, n \geq 1\right\}$ be an irreducible aperiodic Markov chain with a finite state space $\{1, \ldots, m\}$. Then, a single server queue is termed semiMarkovian [4] provided that

$$
\begin{gathered}
P\left[I_{n+1} \leq x, S_{n} \leq y, Y_{n+1}=j \mid Y_{1}, \ldots, Y_{n}, S_{1}, \ldots, S_{n-1}\right. \\
\left.I_{1}, \ldots, I_{n}\right]=P\left[I_{n+1} \leq x, S_{n} \leq y, Y_{n+1}=j \mid Y_{n}\right]
\end{gathered}
$$

where the latter probability does not depend on n. In other words, given the state Y_{n} of the Markov chain, the service time of customer n and the inter-arrival time between customer n
and $n+1$ are independent of all prior service times and interarrival times. Notice however that given Y_{n} the service time S_{n} and inter-arrival time I_{n+1} can be correlated.

Many traditional queues with independent inter-arrival times and service times belong to the above-mentioned class, such as the $\mathrm{GI} / \mathrm{PH} / 1$ queue [5, Section 3], the $\mathrm{SM} / \mathrm{PH} / 1$ queue [6, Section 4.2], the MAP/MAP/1 queue and the more general SM/MAP/1 queue [1], as well as queues with general and semi-Markovian service times. More importantly the class also contains various queues with correlated service and interarrival times (see Section II), such as the MMAP $[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ [7], [8], SM[K]/PH[K]/1 [9], [10] multi-type queues, the DMAP/PH/1 queue [2] and the M/SM/1 queue [11].

The main performance measures of this class of queues, such as their queue length and waiting time distribution, their transforms and moments, have only been obtained for special cases. For instance, in [11] the inter-arrival times I_{n+1} are assumed to be exponential, but can still be correlated with the semi-Markovian service times. In this case transforms for both distributions were obtained as well as recursive formulas for their moments. Sengupta [1] considered a very broad subclass by assuming that the service times S_{n} are phase-type (but still correlated). More specifically, denoting \bar{Y}_{n} as the phase in which the service of customer n is started and E_{n} as the phase in which customer n ends service, Sengupta demanded that

$$
\begin{align*}
& P\left[I_{n+1} \leq x, S_{n} \leq y, \bar{Y}_{n+1}=j, E_{n}=v \mid \bar{Y}_{1}, \ldots, \bar{Y}_{n}\right. \\
& \left.\quad S_{1}, \ldots, S_{n-1}, I_{1}, \ldots, I_{n}\right]=P\left[S_{n} \leq y, E_{n}=v \mid \bar{Y}_{n}\right] \\
& \quad P\left[I_{n+1} \leq x, \bar{Y}_{n+1}=j \mid E_{n}=v\right] \tag{2}
\end{align*}
$$

where the latter two probabilities are again independent of n. Notice, \bar{Y}_{n} assumes the role of Y_{n} in Equation (1) and \bar{Y}_{n} determines \bar{Y}_{n+1}, S_{n} and I_{n+1} as follows. First \bar{Y}_{n} determines the service time S_{n} and end phase E_{n}. Next, the inter-arrival time I_{n+1} and initial phase \bar{Y}_{n+1} are determined by E_{n}, meaning they are independent of S_{n} given E_{n}. The service and inter-arrival times can of course still be correlated via E_{n}. Furthermore, Sengupta also assumed that given that customer n starts his service in phase i, his service time is phase-type (PH) with characterization $\left(e_{i}, S\right)$ for some $m \times m$ matrix S, where e_{i} is a vector with a 1 in position i and 0 elsewhere.

In this paper we will consider the same subclass of semiMarkovian queues as Sengputa in both continuous and discrete time. In continuous time $\left(e_{i}, S\right)$ is a continuous-time PH (CPH) distribution, that is, the probability that the service has a duration of length y or more is given by $e_{i} \exp (S y) e$ (with e a vector of ones), and the inter-arrival time can be discrete, continuous or a mixture of the two. In the discretetime setting, time is slotted and the service time is a discretetime PH (DPH) distribution such that all the service times are multiples of one time slot and the probability that the service lasts at least y time slots can be expressed by $e_{i} S^{y-1} e$. The inter-arrival times are also general, but discrete, meaning all the inter-arrival times are multiples of the length of a time slot as well. It is important to stress once more that the service and inter-arrival times are correlated.

Sengupta [1] showed (for the continuous time case), using the age process (see Sections III and IV) and the theory of Markov processes with a matrix exponential distribution [5], that the waiting time distribution in such a queueing system has a phase-type representation of order m. Moreover, for the special case of the SM/MAP/1 queue without dependencies between the service and inter-arrival times, the queue length distribution was also shown to be phase-type of order m (though the numerical procedure to compute it converges only linearly). However, no results on the queue length distribution were provided for the general case considered in [1].

In this paper we derive a phase-type representation of order m^{2} for the queue length distribution in the general case (in both discrete and continuous time) and show that in general this representation cannot be reduced in order. The derivation is based on the Markov chain that captures the age of the customer in service and relies on a simple observation made by Ozawa in [12]. Of course, for various subclasses such as the SM/MAP/1 queue without correlation between the service and inter-arrival times (and thus also the MAP/MAP/1 queue) this representation is redundant as a smaller, order m representation is known to exist. An example (with correlated inter-arrival and service times) for which the minimal order lies between m and m^{2} is also provided. We also discuss the numerical issues related to the computation of this order m^{2} phase-type representation. Furthermore, we also indicate that by combining some of the results of Sengupta [1] with those of Ozawa [12], the order m waiting time distribution of the traditional MAP/MAP/1 queue can be computed without hardly an effort from the R-matrix of the Quasi-Birth-Death Markov chain that describes the evolution of the queue length [13].

The results presented in this paper also resemble the ones obtained by Ozawa [12] for the class of queues that are defined by a general Quasi-Birth-Death (QBD) process. This class also supports queues with correlated service and arrival times and also includes the MAP/MAP/1 queues without such correlation. Actually, the latter queues seem to be the only ones that reside in the intersection of the queues considered in this paper and the ones considered by Ozawa. In [12] Ozawa derived an order m^{2} phase-type distribution for the
sojourn time, while the order m phase-type representation for the queue length of such a queue is immediate from Neuts [6]. Hence, there seems to be some form of duality present between our results and the ones presented in [12]. The minimality of the order m^{2} representation was not proven by Ozawa for the general case. However, it is not hard to develop examples for which the order m^{2} sojourn time distribution is minimal.

In the next section we start by discussing a number of examples that fit within the subclass of semi-Markovian queues considered in this paper. In Section III we will present our main results for the discrete-time case, whereas Section IV covers the somewhat more involved continuous-time setting. We conclude in Section V by providing some numerical examples.

II. DEFINITIONS AND EXAMPLES

This section is mostly devoted to providing examples of well-known queueing systems that fit within the subclass of queues studied in this paper. The first two examples are queues without correlation between the service and inter-arrival time, these were also discussed in [1]. Recall from the previous section, and more specifically from Equation (2), that the semiMarkovian queues considered in this paper are characterized by two sets of probabilities. The first set holds the probabilities

$$
P\left[S_{n} \leq y, E_{n}=v \mid \bar{Y}_{n}=i\right]
$$

that determine the probability that the service time is smaller than or equal to y and the service ends in phase v, given that the service started in phase i. The second set is formed by

$$
P\left[I_{n+1} \leq x, \bar{Y}_{n+1}=j \mid E_{n}=v\right]
$$

holding the probability that the inter-arrival time is smaller than or equal to x and the next customer starts service in phase j, provided that the current service ended in phase v. The first set of probabilities is denoted as $V_{i, v}(y)$, meaning $V(y)$ are $m \times m$ matrices for $y \geq 0$. Due to the assumption on the phase-type service characterized by $\left(e_{i}, S\right)$, we have in the continuous-time case

$$
\begin{equation*}
V(y)=\int_{z=0}^{y} \exp (S z) S^{*} d z=\left(I_{m}-\exp (S y)\right)(-S)^{-1} S^{*} \tag{3}
\end{equation*}
$$

where I_{m} is the order m identity matrix, S^{*} is a diagonal matrix with $S^{*} e=-S e$ and e is vector of ones. In discrete time on the other hand we find

$$
\begin{equation*}
V(y)=\sum_{k=0}^{y-1} S^{k} S^{*}=\left(I_{m}-S^{y}\right)(I-S)^{-1} S^{*} \tag{4}
\end{equation*}
$$

where S^{*} is a diagonal matrix with $S^{*} e=(I-S) e$. The second set of matrices is denoted as $P_{v, j}(x)$, where $P(x)$ is also a square matrix of order m. Throughout the paper we assume that $S+S^{*} \int_{x=0}^{\infty} d P(x)$ is irreducible and that $P(0)=$ 0 , meaning there are no batch arrivals. Next, we provide a number of examples for which we will specify both $V(y)$ (i.e., S) and $P(x)$.
a) The GI/PH/l queue: Consider a queue where the arrivals form a renewal process with inter-arrival time distribution given by $H(t)$ and assume the service is independent of the inter-arrival times and follows an order $m \mathrm{PH}$ distribution given by (α, S). This implies that $P(x)=H(x) e \alpha$ and $V(y)$ is determined by S as indicated in (3). This queue was studied by Sengupta in [5], where an order m representation for both the queue length and waiting time distribution was given.
b) The $S M / M A P / 1$ queue: Consider the queue with semiMarkovian arrivals, i.e., the arrival process is a Markov renewal process, and Markovian services. Let the entries $H_{i, j}(t)$ hold the probability of having an inter-arrival time smaller than or equal to t, while the state of the Markov renewal process changes from i to j (for $i, j \in\left\{1, \ldots, m_{a}\right\}$). Similarly let the size m_{s} matrices S_{0} and S_{1} characterize the Markovian service, meaning the service time of a customer starting in phase i is an order $m_{s} \mathrm{PH}$ distribution characterized by $\left(e_{i}, S_{0}\right)$, while $\left(S_{1}\right)_{i, j}$ holds the probability that customer $n+1$ starts service in phase j given that customer n ended his service in phase i. In this case a semi-Markovian queue is obtained by setting $P(x)=H(x) \otimes S_{1}$, while the matrix S in (3) is given by $I_{m_{a}} \otimes S_{0}$, with \otimes denoting the matrix Kronecker product. An order $m=m_{a} m_{s}$ PH representation for both the queue length and waiting time distribution was provided by Sengupta in [1]. The popular MAP/MAP/1 queue clearly belongs to the set of SM/MAP/1 queues and we will provide a much faster way to compute Sengupta's order m representation for its waiting time distribution. Finally, Neuts studied the special case of the $\mathrm{SM} / \mathrm{PH} / 1$ queue in [6, Section 4.2].
c) The $S M[K] / P H[K] / 1$ queue: The $S M[K]$ arrival process is a multi-type Markov renewal process characterized by the $m_{a} \times m_{a}$ matrices $H^{(k)}(t)$, for $k=1, \ldots, K$. Entry $H_{i, j}^{(k)}(t)$ holds the probability of having an inter-arrival time smaller than or equal to t, while the state of the Markov renewal process changes from i to j and the type of the arriving customer is k. The $\mathrm{PH}[\mathrm{K}]$ service process indicates that type k customers follow an order $m_{s}^{(k)}$ phase-type distribution with parameters $\left(\alpha_{k}, S_{k}\right)$, for $k=1, \ldots, K$. Notice, consecutive service times are correlated via the correlation between the customer types and as such there is also correlation between the service and inter-arrival times. To represent this queue as a semi-Markovian queue with $m=m_{a} \sum_{k} m_{s}^{(k)}$, it suffices to set

$$
S=\left[\begin{array}{cccc}
S_{1} & 0 & \ldots & 0 \\
0 & S_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & S_{K}
\end{array}\right] \otimes I_{m_{a}}
$$

and
$P(x)=\left(e \otimes I_{m_{a}}\right)\left[\begin{array}{lll}\alpha_{1} \otimes H^{(1)}(x) & \ldots & \alpha_{K} \otimes H^{(K)}(x)\end{array}\right]$.
Examples 5, 6 and 7 given in [1] are a special case of an $\mathrm{SM}[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ queue in continuous time. HE [9], [10] analyzed the $\mathrm{SM}[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ queue in discrete and continuous
time and provided an order $m \mathrm{PH}$ representation for the overall and per type waiting time distributions. In the discrete-time paper [9] no results were provided for the queue length, while in continuous time a recursive algorithm was provided that required the solution of a Sylvester matrix equation during each step in the special case of MMAP[K] arrivals. Thus, no phase-type representation for the overall (or per type) queue length distribution was given. In [7], [8] the special case of the MMAP $[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ queue in discrete time was considered.

We establish an order $m^{2} \mathrm{PH}$ representation for the overall queue length in an $\mathrm{SM}[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ queue as it is a special case of our main result.
d) The D-MAP/PH/l queue with correlated service and inter-arrival times: The discrete-time Markovian arrival process (MAP) is characterized by the order m_{a} matrices D_{0} and D_{1}, while a customer starting service requires an order m_{s} DPH distributed amount of service characterized by $\left(e_{i}, T\right)$. Customer $n+1$ will start service in phase i according to the probability vector α_{l} provided that the inter-arrival time between customer n and $n+1$ is equal to l, meaning the service time and inter-arrival time are clearly correlated. In [2] it was shown that this queue is equally general as assuming that the service time of customer $n+1$ is DPH with characterization $\left(\alpha_{l}, T_{l}\right)$, for some matrices T_{l}. This queue can be represented as a semi-Markovian queue by setting $S=T \otimes I_{m_{a}}$, while

$$
P(x)=\sum_{l=1}^{x} e \alpha_{l} \otimes\left(D_{0}^{l-1} D_{1}\right)
$$

for $x=1,2, \ldots$. This queue was studied in [2] where the more general $\mathrm{SM} / \mathrm{PH} / 1$ with correlated service and inter-arrival times was also discussed. This more general model is also a semi-Markovian queue (simply replace $D_{0}^{l-1} D_{1}$ by H_{l} in the expression for $P(x)$). Although the queue length distribution was computed using some recursive computations in [2], no phase-type representation was found (see also Section III-C).

III. Semi-Markovian Queue in Discrete time

In this section we consider the discrete-time semiMarkovian queue, which implies that S is a substochastic matrix and $P(x)$ is a step function with steps at $x=1,2, \ldots$. Denote $Q(x)=P(x)-P(x-1)$, i.e., the matrix holding the phase changes when the inter-arrival time equals x. We will derive an order m^{2} phase-type representation (κ, K) for its queue length distribution, that is, we determine a stochastic vector κ of size m^{2} and a substochastic matrix K such that the probability of having i or more customers in the queue (provided that it is busy) equals $\kappa K^{i-1} e$. We will also show that in general this order m^{2} representation cannot be reduced, eventhough special cases are known for which a smaller representation exists, e.g., the SM/MAP/1 queue without correlation between the service and inter-arrival times.

To obtain the order m^{2} representation, we will rely on the discrete-time version of the age process used by Sengupta in [1] and we will make use of a simple lemma by Ozawa [12]. The age process of the discrete-time semi-Markovian queue is
characterized by a GI/M/1-type Markov chain with transition matrix:

$$
P=\left[\begin{array}{cccccc}
C_{0} & A_{0} & 0 & 0 & 0 & \ldots \tag{5}\\
C_{1} & A_{1} & A_{0} & 0 & 0 & \ldots \\
C_{2} & A_{2} & A_{1} & A_{0} & 0 & \ldots \\
C_{3} & A_{3} & A_{2} & A_{1} & A_{0} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right]
$$

where $C_{i}=\sum_{s>i} A_{s}$. The $m \times m$ matrices A_{s}, for $s \geq 1$, are said to decrease the level of the chain by $s-1$, while A_{0} increases the level by one. Entry (i, j) of A_{s} is said to change the phase of the chain from i to j. The semi-Markovian queue will be observed by this chain whenever the server is busy and the level will represent the age of the customer in service, while the phase maintains the current phase of the DPH service process. The age a of a customer is defined as the number of time slots between the current time epoch t and its arrival time $t-a$. We assume that we observe the system just prior to time t, meaning the age of a customer, while the server is busy, is at least one.

Thus, the matrix A_{0} holds the probabilities that the server continues to serve the same customer (age increases by one), while A_{s} holds the probability that a service completion occurs and the next customer arrives s time units later (meaning the age at the next point of observation decreases by $s-1$). In other words,

$$
\begin{aligned}
& A_{0}=S \\
& A_{s}=S^{*} Q(s)
\end{aligned}
$$

for $s=1,2, \ldots$ with S^{*} the diagonal matrix such that $S^{*} e=$ $\left(I_{m}-S\right) e$. The matrices C_{s}, for $s \geq 0$ capture the case where the server becomes idle after the service completion (assuming arrivals occur after any possible service completions at time t). As we only observe the queue when the system is busy, the age a during the very first next point of observation must be one.

Due to Neuts [6], this chain is positive recurrent if and only if $\theta \sum_{s=1}^{\infty} s A_{s} e>1$, with θ the invariant vector of $A=$ $\sum_{s=0}^{\infty} A_{s}$ (notice, A is irreducible as $S+S^{*} \int_{0}^{\infty} d P(x)=S+$ $S^{*} \sum_{s=1}^{\infty} Q(s)$ was assumed to be irreducible). Its stationary distribution $\pi=(\pi(1), \pi(2), \ldots)$, with $\pi(i)$ a $1 \times m$ vector, has a matrix geometric form, that is, $\pi(n)=\pi(1) R^{n-1}$, with R the smallest non-negative solution to

$$
R=\sum_{s=0}^{\infty} R^{s} A_{s}=S+\sum_{s=1}^{\infty} R^{s} S^{*} Q(s)
$$

Notice, this R-matrix is the discrete-time analogue of the T matrix of Sengupta [1]. Also remark that we cannot simply set up a Markov chain that has the number of customers in the queue as the level of the chain, except for special cases like the MAP/MAP/1 queue and others, because in general the phase at the end of the service of customer n influences the inter-arrival time between customer n and $n+1$.

A. Order m^{2} representation

To obtain the order m^{2} representation, we will make use of the following lemma by Ozawa [12] that can be proven by direct verification. Let

$$
\xi=\left[\begin{array}{c}
e_{1}^{T} \\
e_{2}^{T} \\
\vdots \\
e_{m}^{T}
\end{array}\right]
$$

and let a and b be two arbitrary $1 \times m$ vectors, then

$$
(a \otimes b) \xi=a b^{T}=b a^{T}
$$

where ${ }^{T}$ denotes the transposed vector.
Let N_{b} be the random variable representing the number of customers in the queue provided that it is busy (otherwise, the number is zero), that is, $P\left[N_{b}=n\right]$ is the probability that the queue holds n customers (including the one in service) at an arbitrary point in time given that the server is busy.

Theorem 1. The queue length distribution N_{b} has a phasetype representation (κ, K) of order m^{2} given by

$$
\begin{equation*}
\kappa=\xi^{T}(I \otimes \Delta(\theta)) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
K=\sum_{s \geq 1}\left(\bar{A}_{s} \otimes G^{s}\right) \tag{7}
\end{equation*}
$$

where $\bar{A}_{s}=\left(I-A_{0}\right)^{-1} A_{s}, G=\Delta^{-1}(\theta) R^{T} \Delta(\theta)$ and $\Delta(x)$ denotes a diagonal matrix such that $\Delta(x) e=x^{T}$.

Proof: Define $\bar{A}_{s}=\left(I-A_{0}\right)^{-1} A_{s}$ and $\bar{C}_{i}=(I-$ $\left.A_{0}\right)^{-1} C_{i}$ (this inverse exists as $A_{0}=S$ is a strictly substochastic matrix). Via the stationary probability vector π of the age process we can express $P\left[N_{b}=n\right]$ as

$$
\begin{equation*}
P\left[N_{b}=n\right]=\sum_{i=1}^{\infty} \pi(i) P_{n-1}(i-1) e \tag{8}
\end{equation*}
$$

with $P_{n}(i)$ an $m \times m$ matrix with entry $\left(j, j^{\prime}\right)$ equal to the probability that n arrivals occur on the time epochs $t=1$ to i, while the phase is j^{\prime} when the first arrival at time $t \geq i$ occurs, given an arrival occurred in phase j at time 0 . Notice, we make use of the probabilities $P_{n-1}(i-1)$ instead of $P_{n-1}(i)$ (or $P_{n}(i)$) as we are observing the system just prior to any possible arrivals or service completions, hence arrivals and service completions occurring at time t are not part of the system state at time t.

Using the matrix geometric form of π and the abovementioned lemma of Ozawa with $a=P_{n-1}(i) e$ and $b=$ $\pi(1) R^{i}$, we find

$$
\begin{aligned}
P\left[N_{b}=n\right] & =\sum_{i \geq 0} \pi(1) R^{i} P_{n-1}(i) e \\
& =\left(e^{T} \otimes \pi(1)\right) \sum_{i \geq 0}\left(P_{n-1}^{T}(i) \otimes R^{i}\right) \xi
\end{aligned}
$$

Clearly, the matrices $P_{n}(0)=0$ for $n>0$ and $P_{0}(0)=I$, while

$$
\begin{align*}
& P_{0}(i)=\sum_{s>i}\left(I-A_{0}\right)^{-1} A_{s}=\bar{C}_{i} \\
& P_{n}(i)=\sum_{s=1}^{i} \bar{A}_{s} P_{n-1}(i-s) \tag{9}
\end{align*}
$$

for $i>0$ and $n \geq 1$. This implies for $n>0$

$$
P_{n}^{T}(i) \otimes R^{i}=\sum_{s=1}^{i}\left(P_{n-1}^{T}(i-s) \otimes R^{i-s}\right)\left(\bar{A}_{s}^{T} \otimes R^{s}\right)
$$

yielding

$$
\begin{aligned}
\sum_{i \geq 0} & \left(P_{n}^{T}(i) \otimes R^{i}\right) \\
& =\sum_{i \geq 0} \sum_{s=1}^{i}\left(P_{n-1}^{T}(i-s) \otimes R^{i-s}\right)\left(\bar{A}_{s}^{T} \otimes R^{s}\right) \\
& =\left(\sum_{i \geq 0}\left(P_{n-1}^{T}(i) \otimes R^{i}\right)\right)\left(\sum_{s \geq 1}\left(\bar{A}_{s}^{T} \otimes R^{s}\right)\right)
\end{aligned}
$$

Furthermore, we have

$$
\sum_{i \geq 0}\left(P_{0}^{T}(i) \otimes R^{i}\right)=\sum_{i \geq 0}\left(\bar{C}_{i}^{T} \otimes R^{i}\right)
$$

which allows us to conclude that N_{b} has a matrix geometric form of order m^{2} as

$$
P\left[N_{b}=n\right]=\alpha\left(\sum_{s \geq 1}\left(\bar{A}_{s}^{T} \otimes R^{s}\right)\right)^{n-1} \xi
$$

with

$$
\alpha=\sum_{i \geq 0}\left(\left(\bar{C}_{i} e\right)^{T} \otimes \pi(1) R^{i}\right)
$$

By expanding \bar{C}_{i} and switching the order of the sums, we can rewrite α as

$$
\alpha=\sum_{s \geq 1}\left(e^{T} \bar{A}_{s}^{T} \otimes \pi(1)\right) \sum_{i=0}^{s-1}\left(I \otimes R^{i}\right)
$$

which leads to

$$
\alpha=\left(e^{T} \otimes \pi(1)(I-R)^{-1}\right)\left(I-\sum_{s \geq 1}\left(\bar{A}_{s}^{T} \otimes R^{s}\right)\right)
$$

and due to the form of $C_{i}, \pi(1)(I-R)^{-1}$ is readily recognized as the unique stochastic invariant vector of $A=\sum_{s>0} A_{s}$, which we denoted earlier on as θ. Thus, if we denote \bar{M} as

$$
M=\sum_{s \geq 1}\left(\bar{A}_{s}^{T} \otimes R^{s}\right)
$$

then $P\left[N_{b}=n\right]$ can be written as $\alpha M^{n-1} \xi$, with $\alpha=\left(e^{T} \otimes\right.$ $\theta)(I-M)$.

Moreover, $P\left[N_{b} \geq n\right]=\left(e^{T} \otimes \theta\right) M^{n-1} \xi$, meaning N_{b} has a matrix geometric representation $\left(e^{T} \otimes \theta, M, \xi\right)$ of order m^{2}.

If $\theta>0$, which holds due to the irreducibility assumption on $A, P\left[N_{b} \geq n\right]$ can be rewritten as

$$
\begin{aligned}
& P\left[N_{b} \geq n\right]=\left(e^{T} \otimes \theta\right) \\
& \quad\left(I \otimes \Delta^{-1}(\theta)\right)\left((I \otimes \Delta(\theta)) M\left(I \otimes \Delta^{-1}(\theta)\right)\right)^{n-1} \\
& \quad(I \otimes \Delta(\theta)) \xi=e^{T}\left(K^{T}\right)^{n-1} \kappa^{T}
\end{aligned}
$$

This proves the theorem provided that κ is stochastic and $K=\sum_{s \geq 1}\left(\bar{A}_{s} \otimes G^{s}\right)$ is strictly substochastic. The matrix $G=\Delta^{-1}(\theta) R^{T} \Delta(\theta)$ is recognized as the G-matrix of the Ramaswami dual of the GI/M/1-type Markov chain characterized by P [14]. As P is positive recurrent, its dual process is a transient M/G/1-type Markov chain and therefore G is strictly substochastic [15]. As a result K is strictly substochastic due to $\sum_{s \geq 1} \bar{A}_{s} e=e$. The vector κ is clearly stochastic.

B. Redundancy of the representation

In this section we provide an example of a semi-Markovian queue with $m=2$ such that its order $m^{2}=4$ phase-type representation (κ, K) cannot be represented by a phase-type (or matrix geometric) distribution with an order below four. This implies that the m^{2} order cannot be reduced in general. Examples with $m>2$ can be constructed in a similar manner.

We consider a queue with 2 types of customers, both customer types require a geometric amount of service. Type 1 customers have a mean service time of $1 /(1-s)$ time slots, while the type 2 customers require a mean service of $1 /(1-r)$ time slots. The arrival process is periodic in the sense that at times $3 t$, for $t=0,1,2, \ldots$ there is a type 1 arrival and at times $3 t+1$, for $t=0,1, \ldots$ we have a type 2 arrival. There is no need to consider a process with periodic arrivals, one can also easily generate examples for which the arrival process is aperiodic, neither does the type of the customer need to alternate between type 1 and type 2 . Thus, the queue under consideration has

$$
S=\left[\begin{array}{ll}
s & 0 \\
0 & r
\end{array}\right]
$$

and

$$
Q(1)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad Q(2)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

As A_{2} is of rank 1, the positive recurrent GI/M/1-type Markov chain is actually a Quasi-Birth-Death Markov chain and its G matrix is equal to

$$
G=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

As a result, $R=A_{0}\left(I_{m}-A_{1}-A_{0} G\right)^{-1}$ is the rational matrix

$$
R=\frac{1}{(1-r)(1-s)}\left[\begin{array}{cc}
s & s(1-s) \\
r^{2} & r(1-s)
\end{array}\right]
$$

and the phase-type representation (κ, K) is found as

$$
\kappa=\left(\frac{1-r}{2-r-s}, 0,0, \frac{1-s}{2-r-s}\right)
$$

and

$$
\begin{aligned}
K & =\frac{1}{(1-r)(1-s)} \\
& {\left[\begin{array}{cccc}
0 & 0 & s & r^{2} \frac{1-s}{1-r} \\
0 & 0 & s(1-r) & r(1-s) \\
\frac{s\left(r^{2}+s-r^{2} s\right)}{(1-r)(1-s)} & \frac{r^{2}(r+s-r s)}{(1-r)^{2}} & 0 & 0 \\
\frac{s(r+s-r s)}{1-s} & \frac{r^{2}}{1-r} & 0 & 0
\end{array}\right] . }
\end{aligned}
$$

The matrix K is periodic due to the periodicity of the arrival process. Examples where K is aperiodic are also easy to find. In order to prove that a DPH representation (β, T) of order n is minimal, one needs to compute the first $2 n-1$ moments $m_{k}=\beta\left(I_{n}-T\right)^{-k} e$ for $k=0, \ldots, 2 n-2$ and check whether the Hankel matrix defined by these $2 n-1$ moments has a determinant different from zero [16], [17], [18]. Actually, the results in [16], [17], [18] are for continuous-time phase-type (CPH) distributions, but can be used directly in discrete time by remarking that any order n DPH characterized by (β, T) can be transformed into a CPH characterized by $\left(\beta, T-I_{n}\right)$ that has the same set of moments. As such, a smaller order representation exists for the DPH if and only if it exists for the CPH . We also remark that in general the minimal order does not coincide with the number of distinct eigenvalues of T as examples can be given where the minimal order is smaller.

As K is in rational form, we can compute its first 6 moments in rational form and perform an exact computation of its determinant, which is a rational function of r and s. If we now fix $r=1 / 4$ (this value was chosen arbitrarily), we obtain a rational function of s for the determinant. This function has three real zeros: $s=0,1 / 4$ and 1 . Thus, for all s values different from these three the queue length distribution N_{b} does not have a phase-type (or matrix geometric) representation with an order below 4 . For $s=1$, the system is unstable, while for $s=1 / 4$, the service time of all customers is geometric with mean $4 / 3$, meaning the service time and inter-arrival times are independent and an order 2 phase-type representation is known to exist as the queue reduces to an SM/M/1 queue. The last case $s=0$ is rather interesting: type 1 customers require a deterministic service and type two a geometric one. Also, there is still correlation between the service and inter-arrival times and it turns out that the rank of its Hankel matrix is 3 , with $m<3<m^{2}$. Hence, examples exist for which the minimal order lies between m and m^{2}. Even for any $0<r<1$ and $s=0$, the minimal phase-type representation of the queue length distribution is of order 3 and can be represented by $\kappa=((1-r) /(2-r), 0,1 /(1-r))$ and

$$
K=\left[\begin{array}{ccc}
0 & 0 & \frac{r^{2}}{(1-r)^{2}} \\
0 & 0 & \frac{r}{1-r} \\
0 & \frac{r^{2}}{(1-r)^{2}} & 0
\end{array}\right]
$$

C. Computation of the queue length distribution

To compute the representation (κ, K), one first computes θ, the invariant vector of $\sum_{s} A_{s}$, from which κ is obtained via Equation (6). Next, the matrices $A_{s}^{(r)}$ that characterize the

Ramaswami dual of P are computed as

$$
A_{s}^{(r)}=\Delta^{-1}(\theta) A_{s}^{T} \Delta(\theta)
$$

for $s=0,1, \ldots$ These matrices characterize a transient M/G/1-type Markov chain and its G matrix is the smallest non-negative solution to

$$
G=\sum_{s \geq 0} A_{s}^{(r)} G^{s}
$$

This nonlinear equation can be solved using the cyclic reduction algorithm [19] which converges quadratically. Finally, K is computed from G using Equation (7). The probabilities $P\left[N_{b} \geq n\right]$ can now be computed as $\kappa K^{n-1} e$.

If m is large, the construction of K can be avoided by noting that K is a sum of Kronecker products and the required multiplications can be performed using the shuffle algorithm [20]. It might also be beneficial to compute the probabilities $P\left[N_{b}=n\right]$ directly from Equation (8) by first computing the necessary $P_{n}(i)$ matrices recursively using the relation in (9) (unless the spectral radius of R is close to one). This approach was used in [2] to compute the queue length distribution for the discrete-time $\mathrm{D}-\mathrm{MAP} / \mathrm{PH} / 1$ queue with correlated service and inter-arrival times. In the continuous-time setting such a direct approach seems less attractive due to the numerical integrations involved. Furthermore, if we are only interested in the first few moments of the queue length distribution, we can compute these from (κ, K) directly, avoiding the need to compute the entire distribution.

Next, we consider a special case for which we can compute K using a Quasi-Birth-Death process with blocks of size $2 m$, which results in an even better time and memory complexity.
e) Markovian inter-arrival times: Assume $Q(u)$ can be written as $Q(u)=\bar{D}_{0}^{u-1} \bar{D}_{1}$ for some $m \times m$ matrices \bar{D}_{0} and \bar{D}_{1}, such that $\left(\bar{D}_{0}, \bar{D}_{1}\right)$ characterizes a discrete-time MAP process. Notice, apart from \bar{D}_{0} and \bar{D}_{1}, the service process influences the arrival process as well via the matrix S, meaning in general the arrival process is not the MAP characterized by $\left(\bar{D}_{0}, \bar{D}_{1}\right)$. In this case we can define a Quasi-Birth-Death process characterized by the size $2 m$ matrices \hat{A}_{0}, \hat{A}_{1} and \hat{A}_{2} (where \hat{A}_{0} captures the upward transitions and \hat{A}_{2} the downward transitions)
$\hat{A}_{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & S\end{array}\right], \hat{A}_{1}=\left[\begin{array}{cc}0 & \bar{D}_{1} \\ 0 & S^{*} \bar{D}_{1}\end{array}\right], \hat{A}_{0}=\left[\begin{array}{cc}\bar{D}_{0} & 0 \\ S^{*} \bar{D}_{0} & 0\end{array}\right]$.
Let the $2 m \times 2 m$ matrix \hat{R} be the smallest non-negative solution to

$$
\hat{R}=\hat{A}_{0}+\hat{R} \hat{A}_{1}+\hat{R}^{2} \hat{A}_{2}
$$

which can be computed using the cyclic (or logarithmic) reduction algorithm with quadratic convergence [19]. Looking at the probabilistic interpretation of the matrices R and \hat{R} (see [6]), we find that R is identical to the size m lower right corner of \hat{R}. Thus, having computed \hat{R}, we can retrieve R, compute G and determine K. The idea of the Quasi-BirthDeath reduction introduced above is a further generalization of the method first developed in [8] for the MMAP[K]/PH[K]/1
and later generalized to the $\mathrm{SM}[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ queue in [9], where the reductions in computation time were illustrated by various examples.

IV. Semi-Markovian queue in Continuous time

Let us now consider the continuous-time case. As indicated in Section II, the continuous-time semi-Markovian queues considered in this paper are characterized by an order m rate matrix S (i.e., the diagonal entries of S are negative, the remaining elements are non-negative and the row sums are non-positive) and a set of matrices $P(u)$, for $u>0$. The matrix S describes the evolution of the phase while a customer remains in service, while entry (i, j) of $P(u)$ held the probability of having an inter-arrival time smaller than or equal to u, while a customer ended his service in phase i and the next customer starts service in phase j. Recall that S^{*} was defined as a diagonal matrix such that $S^{*} e=-S e$, i.e., it contains the rates at which a service completion occurs and define $A(u)=S^{*} P(u)$ as the rate of having a service completion followed by an inter-arrival time smaller than or equal to u. Denote $d A(u)$ as the rate of having a service completion and an inter-arrival time between u and $u+d u$. For later use, define $d \bar{A}(u)=(-S)^{-1} d A(u)$.

As in [1], we consider the age process that observes the queue during the busy periods and that keeps track of the age of the customer in service and the current phase of the server. Thus, the age of the customer in service increases linearly while the phase evolves as S until a service completion occurs that causes the chain to jump down by u according to $d A(u)$. In other words, this age process is a Markov process with a matrix-exponential steady state distribution, provided that it is positive recurrent [5]. Notice, such a process is similar to the GI/M/1-type Markov chains introduced by Neuts [6], but the level is a continuous variable that takes values in $[0, \infty)$. This irreducible Markov process is positive recurrent if and only if $\theta S^{*} \int_{0}^{\infty} u d P(u) e>1$, where θ is the unique invariant vector of $S+S^{*} \int_{0}^{\infty} d P(u)$ [1].

Let $\pi_{i}(x)$ denote the density of having a customer of age x in service in phase i at an arbitrary moment in time provided that the server is busy. Due to Sengupta, $\pi(x)$ has a matrix exponential form, meaning $\pi(x)=\pi(0) \exp (T x)$ for some size m matrix T and $\pi(0)=-\theta T$. The matrix T is the minimal solution to the nonlinear integral equation

$$
\begin{equation*}
T=S+\int_{0}^{\infty} \exp (T u) d A(u) \tag{10}
\end{equation*}
$$

A. An order m^{2} representation

Theorem 2. The queue length distribution N_{b} has a phasetype representation (κ, K) of order m^{2} given by

$$
\begin{equation*}
\kappa=\xi^{T}(I \otimes \Delta(\theta)) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
K=\int_{x=0}^{\infty}(d \bar{A}(x) \otimes \exp (Q x)) \tag{12}
\end{equation*}
$$

where $d \bar{A}(u)=(-S)^{-1} d A(u)$ and $Q=\Delta(\theta)^{-1} T^{T} \Delta(\theta)$.

Proof: The proof is analogue to the discrete-time case and as such presented in a more compact form. By making use of the age process, the probability of having n customers in the queue at an arbitrary busy time epoch is given by

$$
P\left[N_{b}=n\right]=\int_{x=0}^{\infty} \pi(x) P_{n-1}(x) e d x
$$

where the (i, j)-th element of $P_{n}(x)$ holds the probability of having n arrivals in an interval of length x that starts in phase i, while the phase after the first arrival at time $t \geq x$ is j. Expanding the matrix exponential $\exp (T x)$ and applying the aforementioned Lemma of Ozawa [12] with $a=P_{n-1}(x) e$ and $b=\pi(0) T^{k}$ eventually results in

$$
\begin{aligned}
& P\left[N_{b}=n\right] \\
& \quad=\left(e^{T} \otimes \pi(0)\right) \int_{x=0}^{\infty}\left(P_{n-1}^{T}(x) \otimes \exp (T x)\right) d x \xi
\end{aligned}
$$

By definition $P_{n}(0)=0$ for $n>0$ and $P_{0}(x)=\int_{u=x}^{\infty} d \bar{A}(u)$, implying

$$
P_{n}(x)=\int_{u=0}^{x} d \bar{A}(u) P_{n-1}(x-u)
$$

This allows us to rewrite

$$
\begin{aligned}
& \int_{x=0}^{\infty}\left(P_{n}^{T}(x) \otimes \exp (T x)\right) d x \\
&=\left(\int_{x=0}^{\infty}\left(P_{n-1}^{T}(x) \otimes \exp (T x)\right) d x\right) \\
& \quad\left(\int_{u=0}^{\infty}\left(d \bar{A}^{T}(u) \otimes \exp (T u)\right)\right)
\end{aligned}
$$

When combining this with the expression for $P\left[N_{b}=n\right]$ we find

$$
P\left[N_{b}=n\right]=\alpha\left(\int_{0}^{\infty}\left(d \bar{A}^{T}(u) \otimes \exp (T u)\right)\right)^{n-1} \xi
$$

with $\alpha=\int_{0}^{\infty}\left(\left(P_{0}(u) e\right)^{T} \otimes \pi(0) \exp (T u)\right) d u$. By expanding $P_{0}(x)$ and switching the order of the integrations, we can rewrite α as
$\alpha=\left(e^{T} \otimes \pi(0)(-T)^{-1}\right)\left(I-\int_{u=0}^{\infty}\left(d \bar{A}^{T}(u) \otimes \exp (T u)\right)\right)$,
and $-\pi(0) T^{-1}$ is the unique stochastic invariant vector of $\int_{u=0}^{\infty} d A(u)+S$, which we denoted as θ. In conclusion, if we denote M as

$$
M=\int_{x=0}^{\infty}\left(d \bar{A}^{T}(x) \otimes \exp (T x)\right)
$$

then $P\left[N_{b}=n\right]=\alpha M^{n-1} \xi$ with $\alpha=\left(e^{T} \otimes \theta\right)(I-M)$.
As in the discrete-time case this implies that N_{b} has a matrix geometric representation $\left(e^{T} \otimes \theta, M, \xi\right)$ of order m^{2}, which can be transformed into the phase-type representation (κ, K) as $\theta>0$ (due to the irreducibility assumption). K is substochastic as $Q=\Delta(\theta)^{-1} T^{T} \Delta(\theta)$ was shown to be the generator of a transient Markov chain by Sengupta and $\int_{x=0}^{\infty} d A(x) e=e$. The vector κ is clearly stochastic.

B. Redundancy of the representation

Proving that examples exist for which the queue length distribution has a minimal order of m^{2} is more difficult in continuous time. Mostly because we need to find an explicit expression for the phase-type representation (κ, K) and its first few moments, such that an exact evaluation of the determinant of its Hankel matrix can be performed. Thus, we need to specify the S and $P(u)$ matrices such that T and its matrix exponential can be expressed explicitly, where T was a solution to the integral equation (10). As opposed to the discrete-time setting, where examples can be constructed such that R is known explicitly, there is no continuous-time analogue for which T is known explicitly.

To construct such a rational T, we make use of a queue somewhat similar to the one considered in Section III-B, that is, we define $m=2, P(1)=Q(1)$ and $P(2)=Q(1)+$ $Q(2)$ and set $d P(u)=0$, for all $u \neq 1,2$. Notice, even for the continuous-time case $P(u)$ may be chosen as a discrete distribution, which implies that the Stieltjes integration in (10) is a simple summation. Denote the 2×2 rate matrix S as

$$
S=\left[\begin{array}{cc}
-x_{1} & x_{2} \\
x_{3} & -x_{4}
\end{array}\right]
$$

Next we determine S such that T is the rational matrix below

$$
T=\left[\begin{array}{cc}
-1 & 3 / 4 \\
1 / 3 & -1
\end{array}\right]
$$

with matrix exponential

$$
\exp (T)=\left[\begin{array}{ll}
\frac{1}{2} e^{\frac{-1}{2}}+\frac{1}{2} e^{\frac{-3}{2}} & \frac{3}{4} e^{\frac{-1}{2}}-\frac{3}{4} e^{\frac{-3}{2}} \\
\frac{1}{3} e^{\frac{-1}{2}}-\frac{1}{3} e^{\frac{-3}{2}} & \frac{1}{2} e^{\frac{-1}{2}}+\frac{1}{2} e^{\frac{-3}{2}}
\end{array}\right]
$$

Because of (10), it suffices to solve the linear system with 4 equations and 4 unknowns
$T=S+\exp (T)\left[\begin{array}{cc}0 & x_{1}-x_{2} \\ 0 & 0\end{array}\right]+\exp (2 T)\left[\begin{array}{cc}0 & 0 \\ x_{4}-x_{3} & 0\end{array}\right]$,
because of the form of the matrices $P(u)$. As T, $\exp (T)$ and its square $\exp (2 T)$ are known explicitly, the solution for x_{1}, x_{2}, x_{3} and x_{4} can be determined as

$$
\begin{aligned}
& x_{1}=\frac{16 q^{6}+8 q^{5}+24 q^{4}+5 q^{3}+21 q^{2}+5 q+5}{8 q^{2}\left(2 q^{4}+q^{3}+2 q^{2}+1\right)} \\
& x_{2}=\frac{12 q^{7}-8 q^{6}+6 q^{5}-19 q^{4}+6 q^{3}-16 q^{2}-5}{8 q^{2}\left(2 q^{5}-q^{4}+q^{3}-2 q^{2}+q-1\right)} \\
& x_{3}=\frac{8 q^{8}+4 q^{7}-8 q^{6}-9 q^{5}-9 q^{4}-12 q^{2}-5 q-5}{12 q^{2}\left(2 q^{6}+q^{5}-q^{3}-q^{2}-1\right)} \\
& x_{4}=\frac{24 q^{6}+14 q^{5}+26 q^{4}+5 q^{3}+17 q^{2}+5 q+5}{12 q^{2}\left(2 q^{4}+q^{3}+2 q^{2}+1\right),}
\end{aligned}
$$

with $q=e^{1 / 2}$ and S turns out to be a well-defined rate matrix. Using the expression for the exponential of T we can compute the phase-type representation (κ, K) in explicit form, as well as its corresponding Hankel matrix, allowing us to conclude that the order 4 representation is indeed minimal.

C. Computation of the queue length distribution

The main step in computing the representation (κ, K) via (12) is to determine the matrix $Q=\Delta(\theta)^{-1} T^{T} \Delta(\theta)$, where T^{T} is the transposed matrix of T. As indicated in [5], the matrix T can be computed by setting $T_{0}=S$ and letting

$$
\begin{equation*}
T_{n+1}=S+\int_{0}^{\infty} \exp \left(T_{n} u\right) d A(u) \tag{13}
\end{equation*}
$$

for $n \geq 0$ until $\left|T_{n+1}-T_{n}\right|$ is below some predefined parameter ϵ (e.g., $\epsilon=10^{-10}$). One could also compute Q directly by defining a dual process. Indeed, if we extend the Ramaswami dual [14] to M/G/1- and GI/M/1-type Markov chains with a continuous level, the dual of our age process becomes an M/G/1-type Markov chain with a continuous level as introduced by Takine [21]. As opposed to the discrete-time case, there is however no gain in doing so, as the iterative algorithm to compute Q is such that Q_{n}, the matrix obtained after n steps, can be written as $\Delta(\theta)^{-1} T_{n}^{T} \Delta(\theta)$. Next we consider some special cases where the numerical integration in (13) and (12) can be avoided.
f) Markovian inter-arrival times: Assume $d P(u)$ can be written as $d P(u)=\exp \left(\bar{D}_{0} u\right) \bar{D}_{1} d u$ for some $m \times m$ matrices \bar{D}_{0} and \bar{D}_{1}, such that $\left(\bar{D}_{0}, \bar{D}_{1}\right)$ characterizes a MAP process. Notice, the actual arrival process of the semi-Markovian queue is not the MAP characterized by $\left(\bar{D}_{0}, \bar{D}_{1}\right)$ as the service process affects the arrival process as well. In this case, we can express T_{n+1} as

$$
T_{n+1}=S+\int_{0}^{\infty} \exp \left(T_{n} u\right) S^{*} \exp \left(\bar{D}_{0} u\right) d u \bar{D}_{1}
$$

and by applying integration by parts we find that T_{n+1} can be written as $S+X_{n} \bar{D}_{1}$, where X_{n} is the solution to the linear system

$$
X_{n} \bar{D}_{0}+T_{n} X_{n}=-S^{*}
$$

The equation for X_{n} is a Sylvester matrix equation that can be solved in $O\left(m^{3}\right)$ time [22]. This approach is a generalization of the method used in [10] to compute T for the MMAP $[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ queue if we define $\bar{D}_{0}=\left(I \otimes D_{0}\right)$ and

$$
\bar{D}_{1}=\left[\begin{array}{lll}
\alpha_{1} \otimes D_{1} & \ldots & \alpha_{K} \otimes D_{K}
\end{array}\right]
$$

where $\left(D_{0}, D_{1}, \ldots, D_{K}\right)$ characterizes the MMAP $[\mathrm{K}]$ arrival process and the service of a type k customer is phase-type $\left(\alpha_{k}, S_{k}\right)$ (see also Section II(c)). Due to $\exp (A) \otimes \exp (B)=$ $\exp (A \oplus B)$, we can also simplify (12) to

$$
K=-\left((-S)^{-1} S^{*} \otimes I_{m}\right)\left(\bar{D}_{0} \oplus Q\right)^{-1}\left(\bar{D}_{1} \otimes I_{m}\right)
$$

g) Discrete inter-arrival times: Assume $P(u)$ is a stepfunction with steps occuring at t_{1}, t_{2}, \ldots and define $Q\left(t_{1}\right)=$ $P\left(t_{1}\right)$ and $Q\left(t_{i}\right)=P\left(t_{i}\right)-P\left(t_{i-1}\right)$ for $i>1$, then (13) reduces to

$$
T_{n+1}=S+\sum_{i=1}^{\infty} \exp \left(T_{n} t_{i}\right) Q\left(t_{i}\right)
$$

as in the example in Section IV-B.
h) Some well-known functions $P_{i, j}(u)$: As explained in [1], [5] the integration in (13) can be avoided if

$$
\int_{0}^{\infty} \exp \left(T_{n} u\right) d P_{i, j}(u)
$$

can be expressed in terms of T_{n} for all $i, j \in\{1, \ldots, m\}$ with $P_{i, j}(u)$ the (i, j)-th entry of $P(u)$. Sengupta lists various examples for $P_{i, j}(u)$ such as the uniform distribution on $[a, b]$, the gamma distribution with parameters (n, α), etc.

D. Special case: MAP/MAP/1 queиe

For the special case of the continuous-time MAP/MAP/1 queue with $\left(D_{0}, D_{1}\right)$ characterizing the arrival process and $\left(S_{0}, S_{1}\right)$ the service process we have $S=I \otimes S_{0}$ and $d A(u)=$ $\exp \left(D_{0} u\right) D_{1} \otimes S_{1}$. Hence,

$$
d \bar{A}^{T}(u)=\left(D_{1} \otimes\left(-S_{0}\right)^{-1} S_{1}\right)^{T}\left(\exp \left(D_{0}^{T} u\right) \otimes I\right)
$$

and

$$
M=-\left(\left[D_{1} \otimes\left(-S_{0}\right)^{-1} S_{1}\right]^{T} \otimes I\right)\left(\left(D_{0}^{T} \otimes I\right) \oplus T\right)^{-1}
$$

By remarking that $P_{0}(x)=\int_{u=x}^{\infty} d \bar{A}(u)=\left(\exp \left(D_{0} x\right) \otimes\right.$ $I)\left(\left(-D_{0}\right)^{-1} D_{1} \otimes\left(-S_{0}\right)^{-1} S_{1}\right)$, we have

$$
\alpha=-\left(e^{T} \otimes \pi(0)\right)\left(\left(D_{0}^{T} \otimes I\right) \oplus T\right)^{-1}
$$

Recall, $\pi(0)$ equals $-\theta T$ and θ is the unique stationary vector of $\left(\left(-D_{0}\right)^{-1} D_{1} \otimes S_{1}\right)+\left(I \otimes S_{0}\right)$ for the MAP/MAP/1 queue. This order m^{2} representation is clearly redundant as an order m representation can be obtained directly from the R matrix of the Quasi-Birth-Death Markov chain where the level represents the number of customers in the queue, that is, R is the smallest non-negative solution to

$$
0=\left(D_{1} \otimes I\right)+R\left(D_{0} \oplus S_{0}\right)+R^{2}\left(I \otimes S_{1}\right)
$$

which can be computed using an algorithm with quadratic convergence (e.g., by cyclic or logarithmic reduction [19]). This is in contrast to the iterative algorithm used for the matrix T, as this converges only linearly. This also raises the question whether T could be computed from R. If so, this would result in a substantial gain when computing the order m waiting time distribution as it can be expressed directly in terms of T (see [1, Theorem 5]).

To express T via R for the MAP/MAP/1 queue, we first note that for the more general SM/MAP/1 queue Sengupta [1, Theorem 6 and Equation (15)] showed that

$$
T=\left(I \otimes S_{0}\right)+\tilde{R}\left(I \otimes S_{1}\right)
$$

where \tilde{R} is the R-matrix of the discrete-time GI/M/1-type Markov chain obtained by observing the queue length at arrival times only. Using Theorem 1 of Ozawa [12], we find that

$$
\tilde{R}=(-U)^{-1}\left(D_{1} \otimes I\right),
$$

with $U=\left(D_{0} \oplus S_{0}\right)+R\left(I \otimes S_{1}\right)=\left(D_{0} \oplus S_{0}\right)+\left(D_{1} \otimes I\right) G$. This allows us to conclude

$$
T=\left(I \otimes S_{0}\right)+(-U)^{-1}\left(D_{1} \otimes S_{1}\right),
$$

where U can be expressed via R as indicated above. Using this relation we can significantly outperform existing methods [23] to compute the order m phase-type distribution for the waiting time in a MAP/MAP/1 queue.

V. Numerical Examples

We conclude by presenting a number of numerical examples. We restrict ourselves to two continuous-time examples as these are slightly more challenging. Discrete-time examples can be generated as well and can be solved even faster as we can rely on algorithms with quadratic convergence (or even a Quasi-Birth-Death reduction).

We start with an example of an MMAP $[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ queue with three types of customers to validate our results with the more involved method in [10]. The first type of customers require an Erlang-2 amount of service with rate parameter $\lambda=1$, the second follow a size 3 Coxian distribution with $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(1 / 2,1 / 3,1 / 2)$ and the service time of the third class is exponential with rate $\lambda=1 / 5$. The MMAP $[\mathrm{K}]$ arrival process is characterized by

$$
\begin{array}{rlr}
D_{0}=\left[\begin{array}{cc}
-104 / 500 & 4 / 500 \\
6 / 700 & -106 / 700
\end{array}\right], & D_{1}=\left[\begin{array}{cc}
1 / 10 & 0 \\
0 & 0
\end{array}\right], \\
D_{2}=\left[\begin{array}{cc}
1 / 10 & 0 \\
0 & 1 / 14
\end{array}\right], & D_{3}=\left[\begin{array}{cc}
0 & 0 \\
0 & 1 / 14
\end{array}\right] .
\end{array}
$$

Hence, this queue has periods with arrivals of type-1 and type2 followed by periods with arrivals of type-2 and type-3 with a lower arrival rate. Furtermore, 30% of the customers are type$1,50 \%$ type- 2 and 20% type- 3 . As $m=12$ in this particular example, K is a size 144 matrix. The queue length distribution N_{b} is depicted in Figure 1 and is labeled Multi-type queue. These results are in perfect agreement with the method presented in [10] and implemented in [23]. The computation time required was less than 0.25 seconds using the approach discussed in IV-C(f). When we ignore the correlation between the customer types, the queue is reduces to a $\mathrm{MAP} / \mathrm{PH} / 1$ queue where the arrival process is the two state MAP characterized by $\left(D_{0}, D_{1}+D_{2}+D_{3}\right)$ and the phase-type service is of order 6. In Figure 1 we show the impact of neglecting the correlation in the customer types, where we labeled the results as Singletype queue. We clearly see that the queue length distribution is highly affected by the correlation between the service and inter-arrival times, even the mean queue length increases by more than 20%. The queue length increases because the MAP state with the highest arrival rate produces type-1 and type-2 customers (with equal probability), while the state with the lower rate created type-2 and type- 3 customers. The mean service time of the type- 3 customers is however 2.5 times as high as the type- 1 customers, meaning during the periods where the arrival rate is higher, the average amount of work per customer is less. Neglecting this results in longer queue lengths.

In the second example we consider a queue that does not belong to the $\mathrm{SM}[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ class with $m=2$. The matrices

Figure 1. Queue length distribution for an MMAP $[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ queue with and without correlation between the service and inter-arrival time
S and $P(\infty)=\int d P(u)$ are given by

$$
S=\left[\begin{array}{cc}
-1 / 14-1 / 4000 & 1 / 4000 \\
1 / 2000 & -1 / 27-1 / 2000
\end{array}\right]
$$

and

$$
P(\infty)=\left[\begin{array}{cc}
499 / 500 & 1 / 500 \\
1 / 600 & 599 / 600
\end{array}\right]
$$

Moreover, when the service of a customer ends in phase 1 (2), the inter-arrival time is uniform between 10 and 25 (between 20 and 35) and the phase after the arrival changes according to $P(\infty)$. Notice, this queue tends to have long periods with uniform inter-arrival times between 10 and 25 and exponential services with mean length 14 , typically followed by long periods of uniform inter-arrival times between 20 and 35 and exponential service times with mean 27 . Thus, it has periods with a load close to one and periods with a substantially lower load, such that the overall load is 86.6%. The queue length distribution can be computed in a fraction of a second and the results are shown in Figure 2 (labeled Semi-Markovian queиe). To compute T we made use of the method mentioned in Section IV-C(h). If we were to neglect all the types of correlation we end up with a GI/PH/1 queue that does not exhibit the behavior above and is therefore far too optimistic with respect to the queue length distribution (see Figure 2, labeled GI/PH/l queиe).

REFERENCES

[1] B. Sengupta, "The semi-Markovian queue: theory and applications," Stochastic Models, vol. 6, no. 3, pp. 383-413, 1990.
[2] J. Lambert, B. Van Houdt, and C. Blondia, "Queues with correlated service and inter-arrival times and their application to optical buffers," Stochastic Models, vol. 22, no. 2, pp. 233-251, 2006.
[3] -, "Queues in DOCSIS cable modem networks," Comput. Oper. Res., vol. 35, no. 8, pp. 2482-2496, 2008.
[4] J. H. A. Smit de, "The single server semi-Markov queue," Stochastic Processes and Their Applications, vol. 22, no. 1, pp. 37-50, 1986.
[5] B. Sengupta, "Markov processes whose steady state distribution is matrix exponential with an application to the GI/PH/1 queue," Adv. in Appl. Probab., vol. 21, pp. 159-180, 1989.
[6] M. Neuts, Matrix-Geometric Solutions in Stochastic Models, An Algorithmic Approach. John Hopkins University Press, 1981.

Figure 2. Queue length distribution for a semi-Markovian queue and its corresponding $\mathrm{GI} / \mathrm{PH} / 1$ queue
[7] B. Van Houdt and C. Blondia, "The delay distribution of a type k customer in a first come first served MMAP $[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ queue," J. of Appl. Probab., vol. 39, no. 1, pp. 213-222, 2002.
[8] \longrightarrow, "The waiting time distribution of a type k customer in a MMAP[K]/PH[K]/c (c=1,2) queue using QBDs," Stochastic Models, vol. 20, no. 1, pp. 55-69, 2004.
[9] Q. HE, "Age process, workload process, sojourn times, and waiting times in a discrete-time $\mathrm{SM}[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1 / \mathrm{FCFS}$ queue," Queueing Systems, vol. 49, pp. 363-403, 2005.
[10] ——, "Analysis of a continuous time $\mathrm{SM}[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1 / \mathrm{FCFS}$ queue: Age process, sojourn times, and queue lengths," Department of Industrial Engineering, Dalhousie University, Working paper 04-01, 2004.
[11] I. Adan and V. Kulkarni, "Single-server queue with Markov-dependent inter-arrival and service times," Queueing Systems and its Applications, vol. 45, pp. 113-134, 2003.
[12] T. Ozawa, "Sojourn time distributions in the queue defined by a general QBD process," Queueing Systems and its Applications, vol. 53, no. 4, pp. 203-211, 2006.
[13] A. Horváth, G. Horváth, and M. Telek, "A joint moments based analysis of networks of MAP/MAP/1 queues," in QEST '08: Proceedings of the 2008 Fifth International Conference on Quantitative Evaluation of Systems. IEEE Computer Society, 2008, pp. 125-134.
[14] V. Ramaswami, "A duality theorem for the matrix paradigms in queueing theory," Stochastic Models, vol. 6, no. 1, pp. 151-161, 1990.
[15] M. Neuts, Structured Stochastic Matrices of M/G/l type and their applications. New York and Basel: Marcel Dekker, Inc., 1989.
[16] Q. HE and H. Zhang, "On matrix exponential distributions," Adv. in Appl. Probab., vol. 39, no. 1, pp. 271-292, 2007.
[17] W. B. Gragg and A. Lindquist, "On the partial realization problem," Linear Algebra and its Applications, vol. 50, pp. 277-319, 1983.
[18] A. van de Liefvoort, "The moment problem for continuous distributions," University of Missouri, Tech. Rep., 1990.
$[19]$ D. A. Bini, B. Meini, S. Steffé, and B. Van Houdt, "Structured Markov chains solver: algorithms," in SMCtools Workshop. Pisa, Italy: ACM Press, 2006.
[20] P. Fernandes, B. Plateau, and W. J. Stewart, "Efficient descriptor-vector multiplications in stochastic automata networks," J. ACM, vol. 45, no. 3, pp. 381-414, 1998.
[21] T. Takine, "A continuous version of matrix-analytic methods with skipfree to the left property," Stochastic Models, vol. 12, no. 4, pp. 673-682, 1996.
[22] G. H. Golub, S. Nash, and C. Van Loan, "A Hessenberg-Schur method for the problem $\mathrm{AX}+\mathrm{XB}=\mathrm{C}$, , IEEE Transactions on Automatic Control, vol. 24, pp. 909-913, 1979.
[23] J. F. Pérez, J. Van Velthoven, and B. Van Houdt, "Q-MAM: a tool for solving infinite queues using matrix-analytic methods," in ValueTools '08: Proceedings of the 3rd International Conference on Performance Evaluation Methodologies and Tools, 2008, pp. 1-9.

