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Abstract—In this paper we study a broad class of semi-
Markovian queues introduced by Sengupta. This class contains
many classical queues such as the GI/M/1 queue, SM/MAP/1
queue and others, as well as queues with correlated inter-
arrival and service times. Queues belonging to this class are
characterized by a set of matrices of size m and Sengupta
showed that its waiting time distribution can be represented as
a phase-type distribution of order m. For the special case of the
SM/MAP/1 queue without correlated service and inter-arrival
times the queue length distribution was also shown to be phase-
type of order m, but no derivation for the queue length was
provided in the general case.

This paper introduces an order m2 phase-type representation
(κ,K) for the queue length distribution in the general case.
Moreover, we prove that the order m2 of the distribution cannot
be further reduced in general. Examples for which the order is
between m and m2 are also identified. We derive these results in
both discrete and continuous time and also discuss the numerical
procedure to compute (κ,K). Moreover, by combining a result
of Sengupta and Ozawa, we provide a simple formula to compute
the order m phase-type representation of the waiting time in a
MAP/MAP/1 queue without correlated service and inter-arrival
times, using the R matrix of a Quasi-Birth-Death Markov chain.

I. INTRODUCTION

In this paper we consider a broad class of semi-Markovian
(SM) queues that have been used extensively to assess the per-
formance of various communication (and manufacturing) sys-
tems (e.g., [1], [2], [3]). Characteristic of these queues is that
they support correlated arrival processes, correlation between
successive service times, as well as correlation between the
service and inter-arrival times. Denote T1 < T2 < T3 < . . .,
with T1 = 0 as the customer arrival times, In+1 = Tn+1−Tn,
for n ≥ 1, as the inter-arrival times and Sn, for n ≥ 1,
as the service time of the n-th customer. Let {Yn, n ≥ 1}
be an irreducible aperiodic Markov chain with a finite state
space {1, . . . ,m}. Then, a single server queue is termed semi-
Markovian [4] provided that

P [In+1 ≤ x, Sn ≤ y, Yn+1 = j|Y1, . . . , Yn, S1, . . . , Sn−1

I1, . . . , In] = P [In+1 ≤ x, Sn ≤ y, Yn+1 = j|Yn] (1)

where the latter probability does not depend on n. In other
words, given the state Yn of the Markov chain, the service time
of customer n and the inter-arrival time between customer n

and n+ 1 are independent of all prior service times and inter-
arrival times. Notice however that given Yn the service time
Sn and inter-arrival time In+1 can be correlated.

Many traditional queues with independent inter-arrival times
and service times belong to the above-mentioned class, such
as the GI/PH/1 queue [5, Section 3], the SM/PH/1 queue [6,
Section 4.2], the MAP/MAP/1 queue and the more general
SM/MAP/1 queue [1], as well as queues with general and
semi-Markovian service times. More importantly the class
also contains various queues with correlated service and inter-
arrival times (see Section II), such as the MMAP[K]/PH[K]/1
[7], [8], SM[K]/PH[K]/1 [9], [10] multi-type queues, the D-
MAP/PH/1 queue [2] and the M/SM/1 queue [11].

The main performance measures of this class of queues,
such as their queue length and waiting time distribution, their
transforms and moments, have only been obtained for special
cases. For instance, in [11] the inter-arrival times In+1 are
assumed to be exponential, but can still be correlated with the
semi-Markovian service times. In this case transforms for both
distributions were obtained as well as recursive formulas for
their moments. Sengupta [1] considered a very broad subclass
by assuming that the service times Sn are phase-type (but
still correlated). More specifically, denoting Ȳn as the phase
in which the service of customer n is started and En as the
phase in which customer n ends service, Sengupta demanded
that

P [In+1 ≤ x, Sn ≤ y, Ȳn+1 = j, En = v|Ȳ1, . . . , Ȳn,

S1, . . . , Sn−1, I1, . . . , In] = P [Sn ≤ y,En = v|Ȳn]
P [In+1 ≤ x, Ȳn+1 = j|En = v], (2)

where the latter two probabilities are again independent of
n. Notice, Ȳn assumes the role of Yn in Equation (1) and Ȳn

determines Ȳn+1, Sn and In+1 as follows. First Ȳn determines
the service time Sn and end phase En. Next, the inter-arrival
time In+1 and initial phase Ȳn+1 are determined by En,
meaning they are independent of Sn given En. The service
and inter-arrival times can of course still be correlated via En.
Furthermore, Sengupta also assumed that given that customer
n starts his service in phase i, his service time is phase-type
(PH) with characterization (ei, S) for some m×m matrix S,
where ei is a vector with a 1 in position i and 0 elsewhere.
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In this paper we will consider the same subclass of semi-
Markovian queues as Sengputa in both continuous and discrete
time. In continuous time (ei, S) is a continuous-time PH
(CPH) distribution, that is, the probability that the service
has a duration of length y or more is given by ei exp(Sy)e
(with e a vector of ones), and the inter-arrival time can be
discrete, continuous or a mixture of the two. In the discrete-
time setting, time is slotted and the service time is a discrete-
time PH (DPH) distribution such that all the service times are
multiples of one time slot and the probability that the service
lasts at least y time slots can be expressed by eiS

y−1e. The
inter-arrival times are also general, but discrete, meaning all
the inter-arrival times are multiples of the length of a time slot
as well. It is important to stress once more that the service and
inter-arrival times are correlated.

Sengupta [1] showed (for the continuous time case), using
the age process (see Sections III and IV) and the theory of
Markov processes with a matrix exponential distribution [5],
that the waiting time distribution in such a queueing system
has a phase-type representation of order m. Moreover, for the
special case of the SM/MAP/1 queue without dependencies
between the service and inter-arrival times, the queue length
distribution was also shown to be phase-type of order m
(though the numerical procedure to compute it converges only
linearly). However, no results on the queue length distribution
were provided for the general case considered in [1].

In this paper we derive a phase-type representation of order
m2 for the queue length distribution in the general case (in
both discrete and continuous time) and show that in general
this representation cannot be reduced in order. The derivation
is based on the Markov chain that captures the age of the
customer in service and relies on a simple observation made
by Ozawa in [12]. Of course, for various subclasses such
as the SM/MAP/1 queue without correlation between the
service and inter-arrival times (and thus also the MAP/MAP/1
queue) this representation is redundant as a smaller, order m
representation is known to exist. An example (with correlated
inter-arrival and service times) for which the minimal order
lies between m and m2 is also provided. We also discuss
the numerical issues related to the computation of this order
m2 phase-type representation. Furthermore, we also indicate
that by combining some of the results of Sengupta [1] with
those of Ozawa [12], the order m waiting time distribution of
the traditional MAP/MAP/1 queue can be computed without
hardly an effort from the R-matrix of the Quasi-Birth-Death
Markov chain that describes the evolution of the queue length
[13].

The results presented in this paper also resemble the ones
obtained by Ozawa [12] for the class of queues that are
defined by a general Quasi-Birth-Death (QBD) process. This
class also supports queues with correlated service and arrival
times and also includes the MAP/MAP/1 queues without such
correlation. Actually, the latter queues seem to be the only
ones that reside in the intersection of the queues considered
in this paper and the ones considered by Ozawa. In [12]
Ozawa derived an order m2 phase-type distribution for the

sojourn time, while the order m phase-type representation for
the queue length of such a queue is immediate from Neuts [6].
Hence, there seems to be some form of duality present between
our results and the ones presented in [12]. The minimality of
the order m2 representation was not proven by Ozawa for the
general case. However, it is not hard to develop examples for
which the order m2 sojourn time distribution is minimal.

In the next section we start by discussing a number of ex-
amples that fit within the subclass of semi-Markovian queues
considered in this paper. In Section III we will present our
main results for the discrete-time case, whereas Section IV
covers the somewhat more involved continuous-time setting.
We conclude in Section V by providing some numerical
examples.

II. DEFINITIONS AND EXAMPLES

This section is mostly devoted to providing examples of
well-known queueing systems that fit within the subclass of
queues studied in this paper. The first two examples are queues
without correlation between the service and inter-arrival time,
these were also discussed in [1]. Recall from the previous
section, and more specifically from Equation (2), that the semi-
Markovian queues considered in this paper are characterized
by two sets of probabilities. The first set holds the probabilities

P [Sn ≤ y,En = v|Ȳn = i],

that determine the probability that the service time is smaller
than or equal to y and the service ends in phase v, given that
the service started in phase i. The second set is formed by

P [In+1 ≤ x, Ȳn+1 = j|En = v],

holding the probability that the inter-arrival time is smaller
than or equal to x and the next customer starts service in
phase j, provided that the current service ended in phase v.
The first set of probabilities is denoted as Vi,v(y), meaning
V (y) are m ×m matrices for y ≥ 0. Due to the assumption
on the phase-type service characterized by (ei, S), we have in
the continuous-time case

V (y) =
∫ y

z=0

exp(Sz)S∗dz = (Im − exp(Sy))(−S)−1S∗,

(3)
where Im is the order m identity matrix, S∗ is a diagonal
matrix with S∗e = −Se and e is vector of ones. In discrete
time on the other hand we find

V (y) =
y−1∑
k=0

SkS∗ = (Im − Sy)(I − S)−1S∗, (4)

where S∗ is a diagonal matrix with S∗e = (I − S)e. The
second set of matrices is denoted as Pv,j(x), where P (x) is
also a square matrix of order m. Throughout the paper we
assume that S+S∗

∫∞
x=0

dP (x) is irreducible and that P (0) =
0, meaning there are no batch arrivals. Next, we provide a
number of examples for which we will specify both V (y)
(i.e., S) and P (x).
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a) The GI/PH/1 queue: Consider a queue where the
arrivals form a renewal process with inter-arrival time distribu-
tion given by H(t) and assume the service is independent of
the inter-arrival times and follows an order m PH distribution
given by (α, S). This implies that P (x) = H(x)eα and V (y)
is determined by S as indicated in (3). This queue was studied
by Sengupta in [5], where an order m representation for both
the queue length and waiting time distribution was given.

b) The SM/MAP/1 queue: Consider the queue with semi-
Markovian arrivals, i.e., the arrival process is a Markov re-
newal process, and Markovian services. Let the entries Hi,j(t)
hold the probability of having an inter-arrival time smaller than
or equal to t, while the state of the Markov renewal process
changes from i to j (for i, j ∈ {1, . . . ,ma}). Similarly let
the size ms matrices S0 and S1 characterize the Markovian
service, meaning the service time of a customer starting in
phase i is an order ms PH distribution characterized by
(ei, S0), while (S1)i,j holds the probability that customer n+1
starts service in phase j given that customer n ended his
service in phase i. In this case a semi-Markovian queue is
obtained by setting P (x) = H(x) ⊗ S1, while the matrix
S in (3) is given by Ima ⊗ S0, with ⊗ denoting the matrix
Kronecker product. An order m = mams PH representation
for both the queue length and waiting time distribution was
provided by Sengupta in [1]. The popular MAP/MAP/1 queue
clearly belongs to the set of SM/MAP/1 queues and we will
provide a much faster way to compute Sengupta’s order m
representation for its waiting time distribution. Finally, Neuts
studied the special case of the SM/PH/1 queue in [6, Section
4.2].

c) The SM[K]/PH[K]/1 queue: The SM[K] arrival pro-
cess is a multi-type Markov renewal process characterized
by the ma ×ma matrices H(k)(t), for k = 1, . . . ,K. Entry
H

(k)
i,j (t) holds the probability of having an inter-arrival time

smaller than or equal to t, while the state of the Markov re-
newal process changes from i to j and the type of the arriving
customer is k. The PH[K] service process indicates that type k
customers follow an order m(k)

s phase-type distribution with
parameters (αk, Sk), for k = 1, . . . ,K. Notice, consecutive
service times are correlated via the correlation between the
customer types and as such there is also correlation between
the service and inter-arrival times. To represent this queue as
a semi-Markovian queue with m = ma

∑
k m

(k)
s , it suffices

to set

S =


S1 0 . . . 0

0 S2
. . .

...
...

. . . . . . 0
0 . . . 0 SK

⊗ Ima ,

and

P (x) = (e⊗ Ima
)
[
α1 ⊗H(1)(x) . . . αK ⊗H(K)(x)

]
.

Examples 5, 6 and 7 given in [1] are a special case of
an SM[K]/PH[K]/1 queue in continuous time. HE [9], [10]
analyzed the SM[K]/PH[K]/1 queue in discrete and continuous

time and provided an order m PH representation for the overall
and per type waiting time distributions. In the discrete-time
paper [9] no results were provided for the queue length, while
in continuous time a recursive algorithm was provided that
required the solution of a Sylvester matrix equation during
each step in the special case of MMAP[K] arrivals. Thus, no
phase-type representation for the overall (or per type) queue
length distribution was given. In [7], [8] the special case of the
MMAP[K]/PH[K]/1 queue in discrete time was considered.

We establish an order m2 PH representation for the overall
queue length in an SM[K]/PH[K]/1 queue as it is a special
case of our main result.

d) The D-MAP/PH/1 queue with correlated service and
inter-arrival times: The discrete-time Markovian arrival pro-
cess (MAP) is characterized by the order ma matrices D0 and
D1, while a customer starting service requires an order ms

DPH distributed amount of service characterized by (ei, T ).
Customer n + 1 will start service in phase i according to
the probability vector αl provided that the inter-arrival time
between customer n and n+1 is equal to l, meaning the service
time and inter-arrival time are clearly correlated. In [2] it was
shown that this queue is equally general as assuming that the
service time of customer n + 1 is DPH with characterization
(αl, Tl), for some matrices Tl. This queue can be represented
as a semi-Markovian queue by setting S = T ⊗ Ima , while

P (x) =
x∑

l=1

eαl ⊗ (Dl−1
0 D1),

for x = 1, 2, . . .. This queue was studied in [2] where the
more general SM/PH/1 with correlated service and inter-arrival
times was also discussed. This more general model is also a
semi-Markovian queue (simply replace Dl−1

0 D1 by Hl in the
expression for P (x)). Although the queue length distribution
was computed using some recursive computations in [2], no
phase-type representation was found (see also Section III-C).

III. SEMI-MARKOVIAN QUEUE IN DISCRETE TIME

In this section we consider the discrete-time semi-
Markovian queue, which implies that S is a substochastic
matrix and P (x) is a step function with steps at x = 1, 2, . . ..
Denote Q(x) = P (x)−P (x− 1), i.e., the matrix holding the
phase changes when the inter-arrival time equals x. We will
derive an order m2 phase-type representation (κ,K) for its
queue length distribution, that is, we determine a stochastic
vector κ of size m2 and a substochastic matrix K such
that the probability of having i or more customers in the
queue (provided that it is busy) equals κKi−1e. We will
also show that in general this order m2 representation cannot
be reduced, eventhough special cases are known for which
a smaller representation exists, e.g., the SM/MAP/1 queue
without correlation between the service and inter-arrival times.

To obtain the order m2 representation, we will rely on the
discrete-time version of the age process used by Sengupta in
[1] and we will make use of a simple lemma by Ozawa [12].
The age process of the discrete-time semi-Markovian queue is



4

characterized by a GI/M/1-type Markov chain with transition
matrix:

P =


C0 A0 0 0 0 . . .
C1 A1 A0 0 0 . . .
C2 A2 A1 A0 0 . . .
C3 A3 A2 A1 A0 . . .
...

...
...

. . . . . . . . .

 , (5)

where Ci =
∑

s>iAs. The m ×m matrices As, for s ≥ 1,
are said to decrease the level of the chain by s − 1, while
A0 increases the level by one. Entry (i, j) of As is said to
change the phase of the chain from i to j. The semi-Markovian
queue will be observed by this chain whenever the server is
busy and the level will represent the age of the customer in
service, while the phase maintains the current phase of the
DPH service process. The age a of a customer is defined as
the number of time slots between the current time epoch t and
its arrival time t− a. We assume that we observe the system
just prior to time t, meaning the age of a customer, while the
server is busy, is at least one.

Thus, the matrix A0 holds the probabilities that the server
continues to serve the same customer (age increases by one),
while As holds the probability that a service completion occurs
and the next customer arrives s time units later (meaning the
age at the next point of observation decreases by s − 1). In
other words,

A0 = S,

As = S∗Q(s),

for s = 1, 2, . . . with S∗ the diagonal matrix such that S∗e =
(Im−S)e. The matrices Cs, for s ≥ 0 capture the case where
the server becomes idle after the service completion (assuming
arrivals occur after any possible service completions at time
t). As we only observe the queue when the system is busy,
the age a during the very first next point of observation must
be one.

Due to Neuts [6], this chain is positive recurrent if and
only if θ

∑∞
s=1 sAse > 1, with θ the invariant vector of A =∑∞

s=0As (notice, A is irreducible as S+S∗
∫∞
0
dP (x) = S+

S∗
∑∞

s=1Q(s) was assumed to be irreducible). Its stationary
distribution π = (π(1), π(2), . . .), with π(i) a 1 ×m vector,
has a matrix geometric form, that is, π(n) = π(1)Rn−1, with
R the smallest non-negative solution to

R =
∞∑

s=0

RsAs = S +
∞∑

s=1

RsS∗Q(s).

Notice, this R-matrix is the discrete-time analogue of the T -
matrix of Sengupta [1]. Also remark that we cannot simply
set up a Markov chain that has the number of customers in
the queue as the level of the chain, except for special cases
like the MAP/MAP/1 queue and others, because in general the
phase at the end of the service of customer n influences the
inter-arrival time between customer n and n+ 1.

A. Order m2 representation

To obtain the order m2 representation, we will make use
of the following lemma by Ozawa [12] that can be proven by
direct verification. Let

ξ =


eT
1

eT
2
...
eT
m

 ,
and let a and b be two arbitrary 1×m vectors, then

(a⊗ b)ξ = abT = baT ,

where T denotes the transposed vector.
Let Nb be the random variable representing the number of

customers in the queue provided that it is busy (otherwise, the
number is zero), that is, P [Nb = n] is the probability that the
queue holds n customers (including the one in service) at an
arbitrary point in time given that the server is busy.

Theorem 1. The queue length distribution Nb has a phase-
type representation (κ,K) of order m2 given by

κ = ξT (I ⊗∆(θ)), (6)

and
K =

∑
s≥1

(Ās ⊗Gs), (7)

where Ās = (I − A0)−1As, G = ∆−1(θ)RT ∆(θ) and ∆(x)
denotes a diagonal matrix such that ∆(x)e = xT .

Proof: Define Ās = (I − A0)−1As and C̄i = (I −
A0)−1Ci (this inverse exists as A0 = S is a strictly sub-
stochastic matrix). Via the stationary probability vector π of
the age process we can express P [Nb = n] as

P [Nb = n] =
∞∑

i=1

π(i)Pn−1(i− 1)e, (8)

with Pn(i) an m × m matrix with entry (j, j′) equal to the
probability that n arrivals occur on the time epochs t = 1 to i,
while the phase is j′ when the first arrival at time t ≥ i occurs,
given an arrival occurred in phase j at time 0. Notice, we
make use of the probabilities Pn−1(i− 1) instead of Pn−1(i)
(or Pn(i)) as we are observing the system just prior to any
possible arrivals or service completions, hence arrivals and
service completions occurring at time t are not part of the
system state at time t.

Using the matrix geometric form of π and the above-
mentioned lemma of Ozawa with a = Pn−1(i)e and b =
π(1)Ri, we find

P [Nb = n] =
∑
i≥0

π(1)RiPn−1(i)e

= (eT ⊗ π(1))
∑
i≥0

(
PT

n−1(i)⊗Ri
)
ξ.
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Clearly, the matrices Pn(0) = 0 for n > 0 and P0(0) = I ,
while

P0(i) =
∑
s>i

(I −A0)−1As = C̄i

Pn(i) =
i∑

s=1

ĀsPn−1(i− s) (9)

for i > 0 and n ≥ 1. This implies for n > 0

PT
n (i)⊗Ri =

i∑
s=1

(PT
n−1(i− s)⊗Ri−s)(ĀT

s ⊗Rs),

yielding∑
i≥0

(
PT

n (i)⊗Ri
)

=
∑
i≥0

i∑
s=1

(PT
n−1(i− s)⊗Ri−s)(ĀT

s ⊗Rs)

=

∑
i≥0

(PT
n−1(i)⊗Ri)

∑
s≥1

(ĀT
s ⊗Rs)

 .

Furthermore, we have∑
i≥0

(
PT

0 (i)⊗Ri
)

=
∑
i≥0

(C̄T
i ⊗Ri),

which allows us to conclude that Nb has a matrix geometric
form of order m2 as

P [Nb = n] = α

∑
s≥1

(ĀT
s ⊗Rs)

n−1

ξ,

with
α =

∑
i≥0

((C̄ie)T ⊗ π(1)Ri).

By expanding C̄i and switching the order of the sums, we can
rewrite α as

α =
∑
s≥1

(eT ĀT
s ⊗ π(1))

s−1∑
i=0

(I ⊗Ri),

which leads to

α = (eT ⊗ π(1)(I −R)−1)

I −∑
s≥1

(ĀT
s ⊗Rs)

 ,

and due to the form of Ci, π(1)(I−R)−1 is readily recognized
as the unique stochastic invariant vector of A =

∑
s≥0As,

which we denoted earlier on as θ. Thus, if we denote M as

M =
∑
s≥1

(ĀT
s ⊗Rs),

then P [Nb = n] can be written as αMn−1ξ, with α = (eT ⊗
θ)(I −M).

Moreover, P [Nb ≥ n] = (eT ⊗ θ)Mn−1ξ, meaning Nb has
a matrix geometric representation (eT ⊗θ,M, ξ) of order m2.

If θ > 0, which holds due to the irreducibility assumption on
A, P [Nb ≥ n] can be rewritten as

P [Nb ≥ n] = (eT ⊗ θ)(
I ⊗∆−1(θ))((I ⊗∆(θ))M(I ⊗∆−1(θ))

)n−1

(I ⊗∆(θ))ξ = eT (KT )n−1κT .

This proves the theorem provided that κ is stochastic and
K =

∑
s≥1(Ās ⊗ Gs) is strictly substochastic. The matrix

G = ∆−1(θ)RT ∆(θ) is recognized as the G-matrix of the
Ramaswami dual of the GI/M/1-type Markov chain character-
ized by P [14]. As P is positive recurrent, its dual process is a
transient M/G/1-type Markov chain and therefore G is strictly
substochastic [15]. As a result K is strictly substochastic due
to
∑

s≥1 Āse = e. The vector κ is clearly stochastic.

B. Redundancy of the representation

In this section we provide an example of a semi-Markovian
queue with m = 2 such that its order m2 = 4 phase-type
representation (κ,K) cannot be represented by a phase-type
(or matrix geometric) distribution with an order below four.
This implies that the m2 order cannot be reduced in general.
Examples with m > 2 can be constructed in a similar manner.

We consider a queue with 2 types of customers, both
customer types require a geometric amount of service. Type 1
customers have a mean service time of 1/(1 − s) time slots,
while the type 2 customers require a mean service of 1/(1−r)
time slots. The arrival process is periodic in the sense that at
times 3t, for t = 0, 1, 2, . . . there is a type 1 arrival and at
times 3t+1, for t = 0, 1, . . . we have a type 2 arrival. There is
no need to consider a process with periodic arrivals, one can
also easily generate examples for which the arrival process
is aperiodic, neither does the type of the customer need to
alternate between type 1 and type 2. Thus, the queue under
consideration has

S =
[
s 0
0 r

]
,

and

Q(1) =
[

0 1
0 0

]
, Q(2) =

[
0 0
1 0

]
.

As A2 is of rank 1, the positive recurrent GI/M/1-type Markov
chain is actually a Quasi-Birth-Death Markov chain and its G
matrix is equal to

G =
[

1 0
1 0

]
.

As a result, R = A0(Im−A1−A0G)−1 is the rational matrix

R =
1

(1− r)(1− s)

[
s s(1− s)
r2 r(1− s)

]
and the phase-type representation (κ,K) is found as

κ = (
1− r

2− r − s
, 0, 0,

1− s
2− r − s

),
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and

K =
1

(1− r)(1− s)
0 0 s r2 1−s

1−r

0 0 s(1− r) r(1− s)
s(r2+s−r2s)
(1−r)(1−s)

r2(r+s−rs)
(1−r)2 0 0

s(r+s−rs)
1−s

r2

1−r 0 0

 .
The matrix K is periodic due to the periodicity of the arrival
process. Examples where K is aperiodic are also easy to find.
In order to prove that a DPH representation (β, T ) of order n
is minimal, one needs to compute the first 2n − 1 moments
mk = β(In−T )−ke for k = 0, . . . , 2n−2 and check whether
the Hankel matrix defined by these 2n − 1 moments has a
determinant different from zero [16], [17], [18]. Actually, the
results in [16], [17], [18] are for continuous-time phase-type
(CPH) distributions, but can be used directly in discrete time
by remarking that any order n DPH characterized by (β, T )
can be transformed into a CPH characterized by (β, T − In)
that has the same set of moments. As such, a smaller order
representation exists for the DPH if and only if it exists for the
CPH. We also remark that in general the minimal order does
not coincide with the number of distinct eigenvalues of T as
examples can be given where the minimal order is smaller.

As K is in rational form, we can compute its first 6 moments
in rational form and perform an exact computation of its
determinant, which is a rational function of r and s. If we
now fix r = 1/4 (this value was chosen arbitrarily), we obtain
a rational function of s for the determinant. This function has
three real zeros: s = 0, 1/4 and 1. Thus, for all s values differ-
ent from these three the queue length distribution Nb does not
have a phase-type (or matrix geometric) representation with
an order below 4. For s = 1, the system is unstable, while for
s = 1/4, the service time of all customers is geometric with
mean 4/3, meaning the service time and inter-arrival times
are independent and an order 2 phase-type representation is
known to exist as the queue reduces to an SM/M/1 queue. The
last case s = 0 is rather interesting: type 1 customers require a
deterministic service and type two a geometric one. Also, there
is still correlation between the service and inter-arrival times
and it turns out that the rank of its Hankel matrix is 3, with
m < 3 < m2. Hence, examples exist for which the minimal
order lies between m and m2. Even for any 0 < r < 1 and
s = 0, the minimal phase-type representation of the queue
length distribution is of order 3 and can be represented by
κ = ((1− r)/(2− r), 0, 1/(1− r)) and

K =

 0 0 r2

(1−r)2

0 0 r
1−r

0 r2

(1−r)2 0

 .
C. Computation of the queue length distribution

To compute the representation (κ,K), one first computes
θ, the invariant vector of

∑
sAs, from which κ is obtained

via Equation (6). Next, the matrices A(r)
s that characterize the

Ramaswami dual of P are computed as

A(r)
s = ∆−1(θ)AT

s ∆(θ),

for s = 0, 1, . . .. These matrices characterize a transient
M/G/1-type Markov chain and its G matrix is the smallest
non-negative solution to

G =
∑
s≥0

A(r)
s Gs.

This nonlinear equation can be solved using the cyclic re-
duction algorithm [19] which converges quadratically. Finally,
K is computed from G using Equation (7). The probabilities
P [Nb ≥ n] can now be computed as κKn−1e.

If m is large, the construction of K can be avoided by
noting that K is a sum of Kronecker products and the required
multiplications can be performed using the shuffle algorithm
[20]. It might also be beneficial to compute the probabilities
P [Nb = n] directly from Equation (8) by first computing the
necessary Pn(i) matrices recursively using the relation in (9)
(unless the spectral radius of R is close to one). This approach
was used in [2] to compute the queue length distribution for
the discrete-time D-MAP/PH/1 queue with correlated service
and inter-arrival times. In the continuous-time setting such
a direct approach seems less attractive due to the numerical
integrations involved. Furthermore, if we are only interested
in the first few moments of the queue length distribution, we
can compute these from (κ,K) directly, avoiding the need to
compute the entire distribution.

Next, we consider a special case for which we can compute
K using a Quasi-Birth-Death process with blocks of size 2m,
which results in an even better time and memory complexity.

e) Markovian inter-arrival times: Assume Q(u) can be
written as Q(u) = D̄u−1

0 D̄1 for some m × m matrices D̄0

and D̄1, such that (D̄0, D̄1) characterizes a discrete-time MAP
process. Notice, apart from D̄0 and D̄1, the service process
influences the arrival process as well via the matrix S, meaning
in general the arrival process is not the MAP characterized
by (D̄0, D̄1). In this case we can define a Quasi-Birth-Death
process characterized by the size 2m matrices Â0, Â1 and
Â2 (where Â0 captures the upward transitions and Â2 the
downward transitions)

Â0 =
[

0 0
0 S

]
, Â1 =

[
0 D̄1

0 S∗D̄1

]
, Â0 =

[
D̄0 0
S∗D̄0 0

]
.

Let the 2m × 2m matrix R̂ be the smallest non-negative
solution to

R̂ = Â0 + R̂Â1 + R̂2Â2,

which can be computed using the cyclic (or logarithmic)
reduction algorithm with quadratic convergence [19]. Looking
at the probabilistic interpretation of the matrices R and R̂
(see [6]), we find that R is identical to the size m lower right
corner of R̂. Thus, having computed R̂, we can retrieve R,
compute G and determine K. The idea of the Quasi-Birth-
Death reduction introduced above is a further generalization of
the method first developed in [8] for the MMAP[K]/PH[K]/1
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and later generalized to the SM[K]/PH[K]/1 queue in [9],
where the reductions in computation time were illustrated by
various examples.

IV. SEMI-MARKOVIAN QUEUE IN CONTINUOUS TIME

Let us now consider the continuous-time case. As indicated
in Section II, the continuous-time semi-Markovian queues
considered in this paper are characterized by an order m
rate matrix S (i.e., the diagonal entries of S are negative,
the remaining elements are non-negative and the row sums
are non-positive) and a set of matrices P (u), for u > 0.
The matrix S describes the evolution of the phase while a
customer remains in service, while entry (i, j) of P (u) held
the probability of having an inter-arrival time smaller than or
equal to u, while a customer ended his service in phase i
and the next customer starts service in phase j. Recall that
S∗ was defined as a diagonal matrix such that S∗e = −Se,
i.e., it contains the rates at which a service completion occurs
and define A(u) = S∗P (u) as the rate of having a service
completion followed by an inter-arrival time smaller than or
equal to u. Denote dA(u) as the rate of having a service
completion and an inter-arrival time between u and u + du.
For later use, define dĀ(u) = (−S)−1dA(u).

As in [1], we consider the age process that observes the
queue during the busy periods and that keeps track of the age
of the customer in service and the current phase of the server.
Thus, the age of the customer in service increases linearly
while the phase evolves as S until a service completion occurs
that causes the chain to jump down by u according to dA(u).
In other words, this age process is a Markov process with a
matrix-exponential steady state distribution, provided that it is
positive recurrent [5]. Notice, such a process is similar to the
GI/M/1-type Markov chains introduced by Neuts [6], but the
level is a continuous variable that takes values in [0,∞). This
irreducible Markov process is positive recurrent if and only if
θS∗

∫∞
0
udP (u)e > 1, where θ is the unique invariant vector

of S + S∗
∫∞
0
dP (u) [1].

Let πi(x) denote the density of having a customer of age x
in service in phase i at an arbitrary moment in time provided
that the server is busy. Due to Sengupta, π(x) has a matrix
exponential form, meaning π(x) = π(0) exp(Tx) for some
size m matrix T and π(0) = −θT . The matrix T is the
minimal solution to the nonlinear integral equation

T = S +
∫ ∞

0

exp(Tu)dA(u). (10)

A. An order m2 representation

Theorem 2. The queue length distribution Nb has a phase-
type representation (κ,K) of order m2 given by

κ = ξT (I ⊗∆(θ)), (11)

and

K =
∫ ∞

x=0

(dĀ(x)⊗ exp(Qx)), (12)

where dĀ(u) = (−S)−1dA(u) and Q = ∆(θ)−1TT ∆(θ).

Proof: The proof is analogue to the discrete-time case
and as such presented in a more compact form. By making
use of the age process, the probability of having n customers
in the queue at an arbitrary busy time epoch is given by

P [Nb = n] =
∫ ∞

x=0

π(x)Pn−1(x)edx,

where the (i, j)-th element of Pn(x) holds the probability of
having n arrivals in an interval of length x that starts in phase
i, while the phase after the first arrival at time t ≥ x is j.
Expanding the matrix exponential exp(Tx) and applying the
aforementioned Lemma of Ozawa [12] with a = Pn−1(x)e
and b = π(0)T k eventually results in

P [Nb = n]

= (eT ⊗ π(0))
∫ ∞

x=0

(
PT

n−1(x)⊗ exp(Tx)
)
dxξ.

By definition Pn(0) = 0 for n > 0 and P0(x) =
∫∞

u=x
dĀ(u),

implying

Pn(x) =
∫ x

u=0

dĀ(u)Pn−1(x− u).

This allows us to rewrite∫ ∞
x=0

(
PT

n (x)⊗ exp(Tx)
)
dx

=
(∫ ∞

x=0

(
PT

n−1(x)⊗ exp(Tx)
)
dx

)
(∫ ∞

u=0

(dĀT (u)⊗ exp(Tu))
)
.

When combining this with the expression for P [Nb = n] we
find

P [Nb = n] = α

(∫ ∞
0

(dĀT (u)⊗ exp(Tu))
)n−1

ξ,

with α =
∫∞
0

((P0(u)e)T ⊗ π(0) exp(Tu))du. By expanding
P0(x) and switching the order of the integrations, we can
rewrite α as

α = (eT ⊗ π(0)(−T )−1)
(
I −

∫ ∞
u=0

(dĀT (u)⊗ exp(Tu))
)
,

and −π(0)T−1 is the unique stochastic invariant vector of∫∞
u=0

dA(u) +S, which we denoted as θ. In conclusion, if we
denote M as

M =
∫ ∞

x=0

(dĀT (x)⊗ exp(Tx)),

then P [Nb = n] = αMn−1ξ with α = (eT ⊗ θ)(I −M).
As in the discrete-time case this implies that Nb has a

matrix geometric representation (eT ⊗ θ,M, ξ) of order m2,
which can be transformed into the phase-type representation
(κ,K) as θ > 0 (due to the irreducibility assumption). K
is substochastic as Q = ∆(θ)−1TT ∆(θ) was shown to be
the generator of a transient Markov chain by Sengupta and∫∞

x=0
dA(x)e = e. The vector κ is clearly stochastic.
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B. Redundancy of the representation

Proving that examples exist for which the queue length
distribution has a minimal order of m2 is more difficult in
continuous time. Mostly because we need to find an explicit
expression for the phase-type representation (κ,K) and its
first few moments, such that an exact evaluation of the
determinant of its Hankel matrix can be performed. Thus, we
need to specify the S and P (u) matrices such that T and
its matrix exponential can be expressed explicitly, where T
was a solution to the integral equation (10). As opposed to
the discrete-time setting, where examples can be constructed
such that R is known explicitly, there is no continuous-time
analogue for which T is known explicitly.

To construct such a rational T , we make use of a queue
somewhat similar to the one considered in Section III-B, that
is, we define m = 2, P (1) = Q(1) and P (2) = Q(1) +
Q(2) and set dP (u) = 0, for all u 6= 1, 2. Notice, even for
the continuous-time case P (u) may be chosen as a discrete
distribution, which implies that the Stieltjes integration in (10)
is a simple summation. Denote the 2× 2 rate matrix S as

S =
[
−x1 x2

x3 −x4

]
.

Next we determine S such that T is the rational matrix below

T =
[
−1 3/4
1/3 −1

]
,

with matrix exponential

exp(T ) =

[
1
2e

−1
2 + 1

2e
−3
2 3

4e
−1
2 − 3

4e
−3
2

1
3e

−1
2 − 1

3e
−3
2 1

2e
−1
2 + 1

2e
−3
2

]
.

Because of (10), it suffices to solve the linear system with 4
equations and 4 unknowns

T = S+exp(T )
[

0 x1 − x2

0 0

]
+exp(2T )

[
0 0

x4 − x3 0

]
,

because of the form of the matrices P (u). As T , exp(T )
and its square exp(2T ) are known explicitly, the solution for
x1, x2, x3 and x4 can be determined as

x1 =
16q6 + 8q5 + 24q4 + 5q3 + 21q2 + 5q + 5

8q2(2q4 + q3 + 2q2 + 1)

x2 =
12q7 − 8q6 + 6q5 − 19q4 + 6q3 − 16q2 − 5

8q2(2q5 − q4 + q3 − 2q2 + q − 1)

x3 =
8q8 + 4q7 − 8q6 − 9q5 − 9q4 − 12q2 − 5q − 5

12q2(2q6 + q5 − q3 − q2 − 1)

x4 =
24q6 + 14q5 + 26q4 + 5q3 + 17q2 + 5q + 5

12q2(2q4 + q3 + 2q2 + 1),

with q = e1/2 and S turns out to be a well-defined rate matrix.
Using the expression for the exponential of T we can compute
the phase-type representation (κ,K) in explicit form, as well
as its corresponding Hankel matrix, allowing us to conclude
that the order 4 representation is indeed minimal.

C. Computation of the queue length distribution

The main step in computing the representation (κ,K) via
(12) is to determine the matrix Q = ∆(θ)−1TT ∆(θ), where
TT is the transposed matrix of T . As indicated in [5], the
matrix T can be computed by setting T0 = S and letting

Tn+1 = S +
∫ ∞

0

exp(Tnu)dA(u), (13)

for n ≥ 0 until |Tn+1 − Tn| is below some predefined
parameter ε (e.g., ε = 10−10). One could also compute Q
directly by defining a dual process. Indeed, if we extend the
Ramaswami dual [14] to M/G/1- and GI/M/1-type Markov
chains with a continuous level, the dual of our age process
becomes an M/G/1-type Markov chain with a continuous level
as introduced by Takine [21]. As opposed to the discrete-time
case, there is however no gain in doing so, as the iterative
algorithm to compute Q is such that Qn, the matrix obtained
after n steps, can be written as ∆(θ)−1TT

n ∆(θ). Next we
consider some special cases where the numerical integration
in (13) and (12) can be avoided.

f) Markovian inter-arrival times: Assume dP (u) can be
written as dP (u) = exp(D̄0u)D̄1du for some m×m matrices
D̄0 and D̄1, such that (D̄0, D̄1) characterizes a MAP process.
Notice, the actual arrival process of the semi-Markovian queue
is not the MAP characterized by (D̄0, D̄1) as the service
process affects the arrival process as well. In this case, we
can express Tn+1 as

Tn+1 = S +
∫ ∞

0

exp(Tnu)S∗ exp(D̄0u)duD̄1,

and by applying integration by parts we find that Tn+1 can be
written as S +XnD̄1, where Xn is the solution to the linear
system

XnD̄0 + TnXn = −S∗.

The equation for Xn is a Sylvester matrix equation that can
be solved in O(m3) time [22]. This approach is a gener-
alization of the method used in [10] to compute T for the
MMAP[K]/PH[K]/1 queue if we define D̄0 = (I ⊗D0) and

D̄1 =
[
α1 ⊗D1 . . . αK ⊗DK

]
,

where (D0, D1, . . . , DK) characterizes the MMAP[K] arrival
process and the service of a type k customer is phase-type
(αk, Sk) (see also Section II(c)). Due to exp(A)⊗ exp(B) =
exp(A⊕B), we can also simplify (12) to

K = −((−S)−1S∗ ⊗ Im)(D̄0 ⊕Q)−1(D̄1 ⊗ Im).

g) Discrete inter-arrival times: Assume P (u) is a step-
function with steps occuring at t1, t2, . . . and define Q(t1) =
P (t1) and Q(ti) = P (ti) − P (ti−1) for i > 1, then (13)
reduces to

Tn+1 = S +
∞∑

i=1

exp(Tnti)Q(ti),

as in the example in Section IV-B.
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h) Some well-known functions Pi,j(u): As explained in
[1], [5] the integration in (13) can be avoided if∫ ∞

0

exp(Tnu)dPi,j(u)

can be expressed in terms of Tn for all i, j ∈ {1, . . . ,m}
with Pi,j(u) the (i, j)-th entry of P (u). Sengupta lists various
examples for Pi,j(u) such as the uniform distribution on [a, b],
the gamma distribution with parameters (n, α), etc.

D. Special case: MAP/MAP/1 queue

For the special case of the continuous-time MAP/MAP/1
queue with (D0, D1) characterizing the arrival process and
(S0, S1) the service process we have S = I⊗S0 and dA(u) =
exp(D0u)D1 ⊗ S1. Hence,

dĀT (u) = (D1 ⊗ (−S0)−1S1)T (exp(DT
0 u)⊗ I).

and

M = −(
[
D1 ⊗ (−S0)−1S1

]T ⊗ I)((DT
0 ⊗ I)⊕ T )−1.

By remarking that P0(x) =
∫∞

u=x
dĀ(u) = (exp(D0x) ⊗

I)((−D0)−1D1 ⊗ (−S0)−1S1), we have

α = −(eT ⊗ π(0))((DT
0 ⊗ I)⊕ T )−1.

Recall, π(0) equals −θT and θ is the unique stationary vector
of ((−D0)−1D1 ⊗ S1) + (I ⊗ S0) for the MAP/MAP/1
queue. This order m2 representation is clearly redundant as
an order m representation can be obtained directly from the
R matrix of the Quasi-Birth-Death Markov chain where the
level represents the number of customers in the queue, that is,
R is the smallest non-negative solution to

0 = (D1 ⊗ I) +R(D0 ⊕ S0) +R2(I ⊗ S1),

which can be computed using an algorithm with quadratic
convergence (e.g., by cyclic or logarithmic reduction [19]).
This is in contrast to the iterative algorithm used for the matrix
T , as this converges only linearly. This also raises the question
whether T could be computed from R. If so, this would result
in a substantial gain when computing the order m waiting time
distribution as it can be expressed directly in terms of T (see
[1, Theorem 5]).

To express T via R for the MAP/MAP/1 queue, we first
note that for the more general SM/MAP/1 queue Sengupta [1,
Theorem 6 and Equation (15)] showed that

T = (I ⊗ S0) + R̃(I ⊗ S1),

where R̃ is the R-matrix of the discrete-time GI/M/1-type
Markov chain obtained by observing the queue length at arrival
times only. Using Theorem 1 of Ozawa [12], we find that

R̃ = (−U)−1(D1 ⊗ I),

with U = (D0⊕S0) +R(I ⊗S1) = (D0⊕S0) + (D1⊗ I)G.
This allows us to conclude

T = (I ⊗ S0) + (−U)−1(D1 ⊗ S1),

where U can be expressed via R as indicated above. Using
this relation we can significantly outperform existing methods
[23] to compute the order m phase-type distribution for the
waiting time in a MAP/MAP/1 queue.

V. NUMERICAL EXAMPLES

We conclude by presenting a number of numerical exam-
ples. We restrict ourselves to two continuous-time examples
as these are slightly more challenging. Discrete-time examples
can be generated as well and can be solved even faster as we
can rely on algorithms with quadratic convergence (or even a
Quasi-Birth-Death reduction).

We start with an example of an MMAP[K]/PH[K]/1 queue
with three types of customers to validate our results with the
more involved method in [10]. The first type of customers
require an Erlang-2 amount of service with rate parameter
λ = 1, the second follow a size 3 Coxian distribution with
(λ1, λ2, λ3) = (1/2, 1/3, 1/2) and the service time of the third
class is exponential with rate λ = 1/5. The MMAP[K] arrival
process is characterized by

D0 =
[
−104/500 4/500

6/700 −106/700

]
, D1 =

[
1/10 0

0 0

]
,

D2 =
[

1/10 0
0 1/14

]
, D3 =

[
0 0
0 1/14

]
.

Hence, this queue has periods with arrivals of type-1 and type-
2 followed by periods with arrivals of type-2 and type-3 with a
lower arrival rate. Furtermore, 30% of the customers are type-
1, 50% type-2 and 20% type-3. As m = 12 in this particular
example, K is a size 144 matrix. The queue length distri-
bution Nb is depicted in Figure 1 and is labeled Multi-type
queue. These results are in perfect agreement with the method
presented in [10] and implemented in [23]. The computation
time required was less than 0.25 seconds using the approach
discussed in IV-C(f). When we ignore the correlation between
the customer types, the queue is reduces to a MAP/PH/1 queue
where the arrival process is the two state MAP characterized
by (D0, D1 +D2 +D3) and the phase-type service is of order
6. In Figure 1 we show the impact of neglecting the correlation
in the customer types, where we labeled the results as Single-
type queue. We clearly see that the queue length distribution
is highly affected by the correlation between the service and
inter-arrival times, even the mean queue length increases by
more than 20%. The queue length increases because the MAP
state with the highest arrival rate produces type-1 and type-2
customers (with equal probability), while the state with the
lower rate created type-2 and type-3 customers. The mean
service time of the type-3 customers is however 2.5 times
as high as the type-1 customers, meaning during the periods
where the arrival rate is higher, the average amount of work
per customer is less. Neglecting this results in longer queue
lengths.

In the second example we consider a queue that does not
belong to the SM[K]/PH[K]/1 class with m = 2. The matrices
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Figure 1. Queue length distribution for an MMAP[K]/PH[K]/1 queue with
and without correlation between the service and inter-arrival time

S and P (∞) =
∫
dP (u) are given by

S =
[
−1/14− 1/4000 1/4000

1/2000 −1/27− 1/2000

]
,

and

P (∞) =
[

499/500 1/500
1/600 599/600

]
.

Moreover, when the service of a customer ends in phase 1 (2),
the inter-arrival time is uniform between 10 and 25 (between
20 and 35) and the phase after the arrival changes according
to P (∞). Notice, this queue tends to have long periods with
uniform inter-arrival times between 10 and 25 and exponential
services with mean length 14, typically followed by long
periods of uniform inter-arrival times between 20 and 35 and
exponential service times with mean 27. Thus, it has periods
with a load close to one and periods with a substantially lower
load, such that the overall load is 86.6%. The queue length
distribution can be computed in a fraction of a second and
the results are shown in Figure 2 (labeled Semi-Markovian
queue). To compute T we made use of the method mentioned
in Section IV-C(h). If we were to neglect all the types of
correlation we end up with a GI/PH/1 queue that does not
exhibit the behavior above and is therefore far too optimistic
with respect to the queue length distribution (see Figure 2,
labeled GI/PH/1 queue).

REFERENCES

[1] B. Sengupta, “The semi-Markovian queue: theory and applications,”
Stochastic Models, vol. 6, no. 3, pp. 383–413, 1990.

[2] J. Lambert, B. Van Houdt, and C. Blondia, “Queues with correlated
service and inter-arrival times and their application to optical buffers,”
Stochastic Models, vol. 22, no. 2, pp. 233–251, 2006.

[3] ——, “Queues in DOCSIS cable modem networks,” Comput. Oper. Res.,
vol. 35, no. 8, pp. 2482–2496, 2008.

[4] J. H. A. Smit de, “The single server semi-Markov queue,” Stochastic
Processes and Their Applications, vol. 22, no. 1, pp. 37–50, 1986.

[5] B. Sengupta, “Markov processes whose steady state distribution is matrix
exponential with an application to the GI/PH/1 queue,” Adv. in Appl.
Probab., vol. 21, pp. 159–180, 1989.

[6] M. Neuts, Matrix-Geometric Solutions in Stochastic Models, An Algo-
rithmic Approach. John Hopkins University Press, 1981.

0 20 40 60 80 100 120 140
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Queue length n

P
[N

b =
 n

]

Semi−Markovian queue

GI/PH/1 queue

Figure 2. Queue length distribution for a semi-Markovian queue and its
corresponding GI/PH/1 queue

[7] B. Van Houdt and C. Blondia, “The delay distribution of a type k
customer in a first come first served MMAP[K]/PH[K]/1 queue,” J. of
Appl. Probab., vol. 39, no. 1, pp. 213–222, 2002.

[8] ——, “The waiting time distribution of a type k customer in a
MMAP[K]/PH[K]/c (c=1,2) queue using QBDs,” Stochastic Models,
vol. 20, no. 1, pp. 55–69, 2004.

[9] Q. HE, “Age process, workload process, sojourn times, and waiting times
in a discrete-time SM[K]/PH[K]/1/FCFS queue,” Queueing Systems,
vol. 49, pp. 363–403, 2005.

[10] ——, “Analysis of a continuous time SM[K]/PH[K]/1/FCFS queue: Age
process, sojourn times, and queue lengths,” Department of Industrial
Engineering, Dalhousie University, Working paper 04-01, 2004.

[11] I. Adan and V. Kulkarni, “Single-server queue with Markov-dependent
inter-arrival and service times,” Queueing Systems and its Applications,
vol. 45, pp. 113–134, 2003.

[12] T. Ozawa, “Sojourn time distributions in the queue defined by a general
QBD process,” Queueing Systems and its Applications, vol. 53, no. 4,
pp. 203–211, 2006.
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