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Abstract

In 1990 Ramaswami proved that, given a Markov renewal process of M/G/1–

type, one can construct a Markov renewal process of GI/M/1–type such that

the matrix transforms G(z, s) for the M/G/1–type process and R(z, s) for the

GI/M/1–type process satisfy a duality relationship. In his 1996 PhD thesis,

Bright used time reversal arguments to show that it is possible to define a

different dual for positive-recurrent and transient processes of M/G/1–type

and GI/M/1–type.

Here we compare the properties of the Ramaswami and Bright dual processes

and show that the Bright dual has desirable properties that can be exploited

in the design of algorithms for the analysis of Markov chains of GI/M/1–type

and M/G/1–type.
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1. Introduction.

Markov chains of GI/M/1–type and M/G/1–type were first defined and studied by

Neuts [23, 24, 25]. Since that time, they have proved to be versatile classes of models
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finding wide application to the solution of problems in queueing theory and applied

probability more generally.

In 1990, Ramaswami [27] showed that, given an M/G/1–type process, one can

construct a GI/M/1–type process such that the matrix G for the M/G/1–type process

and the matrix R for the GI/M/1–type process satisfy a duality relationship. He

called the GI/M/1–type process so constructed the dual process. A similar dual can be

defined when the original chain is of GI/M/1–type. Ramaswami’s duality relationship

has proved to be useful in that it has enabled results for one of the classes to be

extended to the other. This relationship has, for example, been implemented in the

SMCSolver tool [7] in such a way that GI/M/1–type Markov chains are analysed by

converting them into dual M/G/1–type chains and performing the analysis within that

framework.

Asmussen and Ramaswami [3] quickly followed Ramaswami’s original paper with an

alternative interpretation of the dual process that appealed to time reversal arguments.

This gave insight into the physical meaning of the matrices involved. In his 1996 PhD

thesis [8], Bright provided a different time reversed interpretation of Ramaswami’s dual

process and showed that, for positive-recurrent GI/M/1–type processes and transient

M/G/1–type processes, it is possible to define a second dual process. It is also possible

to define a second dual for a large class of transient GI/M/1–type processes and

positive-recurrent M/G/1–type processes.

This second dual, which has not previously been discussed in the open literature,

is of intrinsic interest in its own right. More recently, we have observed that, if we

use the Bright dual instead of the Ramaswami dual to convert a positive-recurrent

GI/M/1–type Markov chain into an M/G/1–type Markov chain, there is a significant

improvement in the efficiency of the implementation of the cyclic reduction algorithm

that is used to calculate G in the SMCSolver tool [7]. Furthermore, by combining

both duals, we can transform a transient M/G/1–type Markov chain into a positive

recurrent M/G/1–type Markov chain, again allowing for a more efficient computation of

the G matrix. This has motivated us to write this paper, which presents and extends

the duality results of [8] and then explains why they can lead to efficiency gains in

algorithmic analysis.

Following the example of Ramaswami, Bright defined his dual in the Markov renewal
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process context. He also considered level-dependent processes. For ease of presentation,

we have decided to work within the context of level-independent continuous-time

Markov chains, recognising that the analysis can easily be reformulated in a discrete-

time setting, and extended in a relatively straightforward manner to level-dependent

Markov renewal processes.

This paper is organised as follows. In Section 2, we start with definitions of GI/M/1–

type and M/G/1–type Markov chains, give a brief summary of the role of the matrices

R and G in their analysis and finish with a discussion of the Ramaswami dual, together

with its properties and probabilistic interpretation in terms of time reversed processes.

Included is a new interpretation in terms of the time reversal of a doubly-infinite

extension of the original chain. This leads naturally, in Section 3, to the definition of

the Bright dual process, which has different properties. Section 4 discusses the role of

both duals in the implementation of algorithms for the derivation of R and G, while

some numerical examples are given in Section 5.

2. GI/M/1–type and M/G/1–type Markov chains.

Level-independent Markov chains of GI/M/1 and M/G/1 type have two-dimensional

state spaces of the form {0, 1, . . . , } × {1, . . . , m}, with m considered here to be finite,

and block lower-Hessenberg and block upper-Hessenberg generator matrices of the form

PGI =























B0 A0 0 0 · · ·

B1 A1 A0 0 · · ·

B2 A2 A1 A0 · · ·

B3 A3 A2 A1 · · ·
...

...
...

...
. . .























(2.1)

and

PM =























B0 B1 B2 B3 · · ·

A0 A1 A2 A3 · · ·

0 A0 A1 A2 · · ·

0 0 A0 A1 · · ·

...
...

...
...

. . .























(2.2)
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respectively. The class of level-independent quasi-birth-and-death processes (QBDs)

can be considered either as processes of M/G/1–type or as processes of GI/M/1–type.

They have generator matrices of the form (2.1) and (2.2), but the only non-zero blocks

are on the diagonal and upper and lower diagonals.

In Neuts [24, 25] it was shown that the matrices R and G, which are the minimal

nonnegative solutions to the equations

0 =

∞
∑

ℓ=0

RℓAℓ, (2.3)

and

0 =

∞
∑

ℓ=0

AℓG
ℓ (2.4)

play a crucial role in the derivation of performance measures for Markov chains with

generator matrices of the form (2.1) and (2.2) respectively.

For a GI/M/1–type Markov chain, the (i, j)th entry of the matrix R is the ratio of

the expected total sojourn time in phase j of level k + 1 before first return to level k,

conditional on the process starting in state (k, i), to the expected sojourn time in state

(k, i). The matrix R is nonnegative, with spectral radius less than or equal to one, and

the GI/M/1–type Markov chain is positive recurrent if and only if the spectral radius of

R is strictly less than one. In this case, the stationary distribution x = (x0, x1, x2, . . .)

of the chain has the well-known matrix-geometric form, given by

xk = x0Rk. (2.5)

The (i, j)th entry of the matrix G is the probability that the M/G/1–type Markov

chain will first enter level k in phase j given that it starts in phase i of level k + 1.

The matrix G is stochastic if and only if the chain is recurrent. Otherwise, G is

substochastic, with spectral radius strictly less than one.

Because it is very rarely possible to evaluate either R or G analytically, a great deal

of attention has been paid to iterative algorithms that can be shown to converge to

the desired matrix; see, for example, [23, 24, 25, 18, 21, 19, 5, 1, 22, 4, 6]. Notable

amongst these algorithms are the logarithmic reduction algorithm of Latouche and

Ramaswami [21], which was designed for QBDs, and the cyclic reduction algorithm of

Bini and Meini [5], which was designed for processes of M/G/1–type. These algorithms
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are quadratically convergent and represent the current state of the art for efficiently

analysing these processes. Together with various advanced features, which we shall

explain in Section 4, these algorithms have been implemented in the SMCSolver tool

[7], to which the second author of the current paper has been a major contributor.

One feature of this tool is that it analyses GI/M/1–type Markov chains by using

Ramaswami’s duality result to convert them into M/G/1–type Markov chains and

then employing the cyclic reduction algorithm to calculate G.

As the Bℓ matrices in (2.1) and (2.2) do not affect the R and G matrices, respectively,

we will refer to the GI/M/1–type Markov chain of (2.1) as GI(Aℓ) and use M(Aℓ) to

denote the M/G/1–type Markov chain characterized by (2.2).

Theorem 1 below includes the special case of the duality result obtained by Ra-

maswami [27] for level-independent M/G/1–type continuous-time Markov chains, as

well as its analogous result for GI/M/1–type Markov chains. This special case is

equivalent to Corollary 5.1 in Asmussen [2], which was derived using Wiener-Hopf

factorisation methods. Here and elsewhere we use X ′ to denote the transpose of a

matrix X .

Theorem 1. Assume that A =
∑∞

ℓ=0 Aℓ is an irreducible generator matrix. Let a be

the invariant probability vector of A, ∆(r) = diag(a), R be the minimal nonnegative

solution to equation (2.3) and G be the minimal nonnegative solution to equation (2.4).

Then, with A
(r)
ℓ defined by

A
(r)
ℓ = (∆(r))−1A′

ℓ(∆
(r)) ℓ ≥ 0, (2.6)

the matrix A(r) =
∑∞

ℓ=0 A
(r)
ℓ is an irreducible generator matrix and the R and G

matrices of GI(A
(r)
ℓ ) and M(A

(r)
ℓ ), denoted by R(r) and G(r), are given by

R(r) = (∆(r))−1G′(∆(r)) (2.7)

and

G(r) = (∆(r))−1R′(∆(r)), (2.8)

respectively.

The Ramaswami dual of the M/G/1–type process M(Aℓ) is the GI/M/1–type

process GI(A
(r)
ℓ ) with A

(r)
ℓ given by (2.6). Similarly the dual of GI(Aℓ) is M(A

(r)
ℓ ).
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It is straightforward to show that taking the dual of the dual results in the original

process.

It follows from Theorem 1 that the matrices R(r) and G have the same eigenvalues.

Thus, the spectral radius of G is equal to one if and only the spectral radius of R(r)

is equal to one, which tells us that the dual process of a recurrent level-independent

M/G/1–type process is either transient or null recurrent and the dual process of a

transient level-independent M/G/1–type process is positive recurrent. Similarly, it

follows that the matrices G(r) and R have the same eigenvalues, and so the dual

process of a positive recurrent level-independent GI/M/1–type process is transient and

the dual process of a transient or null recurrent level-independent GI/M/1–type process

is recurrent. Furthermore, one can also prove that the dual is null recurrent if and only

if the original process is.

Ramaswami originally established his duality result via algebraic means. In [3]

Asmussen and Ramaswami gave an alternative proof in terms of time reversal of sample

paths. Below we give a brief outline of their arguments applied to the dual of an

M/G/1–type process. The discussion can be easily extended to the dual of a GI/M/1–

type process.

Consider a continuous-time Markov chain X̃M (t) = (LM (t), JM (t)) on the state

space {(ℓ, j) : ℓ = ±1,±2, . . . , 1 ≤ j ≤ m} with generator matrix of the form

QM =





























. . .
...

...
...

...

. . . A1 A2 A3 A4 · · ·

. . . A0 A1 A2 A3 · · ·

. . . 0 A0 A1 A2 · · ·

. . . 0 0 A0 A1 · · ·
...

...
...

...
. . .





























(2.9)

where the matrix A =
∑∞

ℓ=0 Aℓ is irreducible and aperiodic. Because of the structure

of the state space, we refer to the process with generator matrix (2.9) as a “doubly-

infinite” M/G/1–type process.

Asmussen and Ramaswami defined a second doubly-infinite process, X̃GI(t) =
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(LGI(t), JGI(t)) on the same state space as that above, with generator matrix given by

QGI =





























. . .
...

...
...

...

. . . A
(r)
1 A

(r)
0 0 0 . . .

. . . A
(r)
2 A

(r)
1 A

(r)
0 0 . . .

. . . A
(r)
3 A

(r)
2 A

(r)
1 A

(r)
0 . . .

. . . A
(r)
4 A

(r)
3 A

(r)
2 A

(r)
1 . . .

...
...

...
...

. . .





























(2.10)

with A
(r)
ℓ given by (2.6). This process has the skip-free upward property and hence we

refer to it as a doubly-infinite GI/M/1–type process.

In order to obtain a relationship that could be used to derive Ramaswami’s duality

result, Asmussen and Ramaswami considered the discrete time processes KM
n , n ≥

0 and KGI
n , n ≥ 0 defined to be the processes of changes in levels at each state

transition for XM (t) and XGI(t) respectively. The processes KM
n and KGI

n are such

that KM
n ≥ −1, n ≥ 0 and KGI

n ≤ 1, n ≥ 0 and so reside in singly-infinite state spaces.

Using this property, Asmussen and Ramaswami derived a time reversal result; in the

transformation from X̃M (t) to X̃GI(t) we reverse the original order of the phases and

we reverse the order and the direction of the jump sizes between levels.

The need for Asmussen and Ramaswami to consider the processes KM
n and KGI

n

arose essentially because the doubly-infinite Markov chains X̃M (t) and X̃GI(t) are

transient or null recurrent, and Asmussen and Ramaswami did not use the concept of

a time reversal for such processes. However, as Bright explained in his thesis [8], it is

possible to construct and interpret a time reversed process for transient continuous-

time Markov chains. When we do this, a simpler time reversed interpretation of the

dual emerges.

Suppose m = (. . . m−1, m0, m1, . . .) is a positive vector satisfying

∞
∑

ℓ=0

mν−ℓAℓ = 0 ν ∈ Z. (2.11)

Then, from an adaptation of the theorem in Section 3 of Kelly [16], m is an invariant

measure for X̃M (t) if the Markov process with generator matrix given by

qR
M ((k, j), (ℓ, m)) =

[mℓ]m
[mk]j

qM ((ℓ, m), (k, j)) (2.12)
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is regular, that is non-explosive. It was shown in [8][page 153] that this is always the

case.

Now, putting m = (. . . a, a, a, . . .), we see that

∞
∑

ℓ=0

mν−ℓAℓ =

∞
∑

ℓ=0

aAℓ

= aA

= 0

and hence m = (. . . a, a, a, . . .) is an invariant measure for the doubly-infinite M/G/1–

type process XM (t). The time reversal of X̃M (t) with respect to this invariant measure

is X̃GI(t). Hence, we see that Ramaswami’s dual of X̃M (t) is the time reversal of X̃M (t)

with respect to the invariant measure m = (. . . a, a, a, . . .).

For the doubly-infinite M/G/1–type process X̃M (t), we can define the matrix G

in the same way as we did for the singly-infinite process with generator PM . This

matrix will still be the minimal nonnegative solution to equation (2.4). Similarly, for

the doubly-infinite GI/M/1–type process X̃GI(t), we can define the matrix R(r) in the

same way as we did for the singly-infinite process with generator PGI and R(r) will

still be the minimum nonnegative solution to equation (2.3). Having defined G and

R(r), the same algebraic arguments as those used in the proof of Theorem 1 give us

the fact that

R(r) = (∆(r))−1G′(∆(r)). (2.13)

3. An alternative dual process

In the previous section we saw that the Ramaswami dual of a doubly-infinite M/G/1–

type process is the time reversal with respect to a particular invariant measure. This

observation suggests that if we take the time reversal with respect to a different

invariant measure then we may obtain a different dual process. In this section, we

summarise the results of [8] to derive an alternative dual process in this fashion.

For the matrix sequence {Aℓ} that characterizes the M/G/1–type process M(Aℓ)

and the GI/M/1–type process GI(Aℓ), assume that the matrix A =
∑∞

ℓ=0 Aℓ is an
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irreducible m × m generator matrix. Let A(z) =
∑∞

ℓ=0 Aℓz
ℓ, a(z) = det(A(z)) and

µ = a

∞
∑

ℓ=0

(ℓ − 1)Aℓe, (3.1)

where a is defined in Theorem 1 and e is a column vector of ones. Neuts [24], showed

that M(Aℓ) is positive recurrent, null recurrent and transient if and only if µ < 0,

µ = 0 and µ > 0, respectively, while GI(Aℓ) is positive recurrent, null recurrent and

transient if and only if µ > 0, µ = 0 and µ < 0, respectively.

3.1. Case 1: µ > 0

As is shown in [12], if µ > 0, a(z) has exactly m zeros in the open unit disk and we

can define

η = max{|z| : |z| < 1, a(z) = 0}. (3.2)

Furthermore, these m zeros were shown to be the m eigenvalues of the R and G matrices

of GI(Aℓ) and M(Aℓ) respectively [11]. It follows that η is the dominant eigenvalue of

both R and G, implying that η is the asymptotic decay rate of the stationary vector π

of the positive recurrent GI(Aℓ), as well as the spectral radius of the G matrix of the

transient M(Aℓ). Finally, Neuts also showed that A(η) has spectral radius equal to

zero [25]. Hence there exists a positive vector wη, normalised so that wηe = 1, such

that

wη

(

∞
∑

ℓ=0

Aℓη
ℓ

)

= 0. (3.3)

Now, consider a doubly-infinite level-independent M/G/1–type Markov chain. We

observed in the previous section that a positive vector m = (. . . m−1, m0, m1, . . .) is

an invariant measure for this process if it is a solution to equation (2.11).

If we put mk = wηη−k, k ∈ Z, then

∞
∑

ℓ=0

mν−ℓAℓ (3.4)

=

∞
∑

ℓ=0

wηηℓ−νAℓ (3.5)

= η−ν
wη

(

∞
∑

ℓ=0

Aℓη
ℓ

)

(3.6)

= 0, (3.7)
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where the last equation follows from equation (3.3). Hence mk = wηη−k, k ∈ Z, is

an invariant measure for the doubly-infinite M/G/1–type process. By an analogous

argument, the vector mk = wηηk, k ∈ Z, is an invariant measure for the doubly-

infinite GI/M/1–type process.

The time reversal with respect to the invariant measure mk of the doubly-infinite

M/G/1–type process and doubly-infinite GI/M/1–type process characterized by Aℓ is

given by

A
(b)
ℓ = ηℓ−1(∆(b))−1A′

ℓ(∆
(b)) ℓ ≥ 0 (3.8)

with ∆(b) = diag(wη). This discussion suggests that the matrices R(b) and G(b),

derived for the level-independent GI/M/1–type and M/G/1–type processes character-

ized by A
(b)
ℓ and the matrices G and R for the original M/G/1–type and GI/M/1–type

process may satisfy a duality relationship similar to equations (2.7) and (2.8). In the

following proposition, we see that such a relationship does hold.

Proposition 1. Let {Aℓ} be such that A =
∑∞

ℓ=0 Aℓ is an irreducible generator matrix

with µ > 0 as defined by (3.1). Then, the matrices R(b) and G(b) derived for the

processes GI(A
(b)
ℓ ) and M(A

(b)
ℓ ) respectively, are given by

R(b) = η−1(∆(b))−1G′(∆(b)) (3.9)

and

G(b) = η−1(∆(b))−1R′(∆(b)). (3.10)

Proof. The matrix R(b) of GI(A
(b)
ℓ ) satisfies the equation

0 =

∞
∑

ℓ=0

(R(b))ℓηℓ−1(∆(b))−1A′
ℓ(∆

(b)). (3.11)

Pre-multiplying (3.11) by η∆(b), post-multiplying by (∆(b))−1 and taking transposes

of both sides, we see that

0 =

∞
∑

ℓ=0

Aℓ(η(∆(b))−1(R(b))′(∆(b)))ℓ. (3.12)

Thus η(∆(b))−1(R(b))′(∆(b)) is a nonnegative solution to (2.4) and, since G is the

minimal nonnegative solution to (2.4), it must be the case that

η(∆(b))−1(R(b))′(∆(b)) ≥ G (3.13)
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which, since wη is positive, implies that

R(b) ≥ η−1(∆(b))−1G′(∆(b)). (3.14)

Now observe that

∞
∑

ℓ=0

(η−1(∆(b))−1G′(∆(b)))ℓηℓ−1(∆(b))−1A′
ℓ(∆

(b)) = η−1(∆(b))−1

(

∞
∑

ℓ=0

AℓG
ℓ

)′

(∆(b))

= 0 (3.15)

where the last equation follows from equation (2.4). Thus η−1(∆(b))−1G′(∆(b)) is a

nonnegative solution to (3.11) and hence, since R(b) is the minimal nonnegative solution

to this equation, it follows that

η−1(∆(b))−1G′(∆(b)) ≥ R(b). (3.16)

Inequalities (3.14) and (3.16) together imply that (3.9) holds. An analogous argument

establishes (3.10).

The GI/M/1–type process GI(A
(b)
ℓ ) can be thought of as an alternative dual process

to Ramaswami’s dual GI(A
(r)
ℓ ). We shall call this process the Bright dual of M(Aℓ). It

is clear from equation (3.9) that, denoting the eigenvalues of G by τ1, . . . , τm = η < 1,

the eigenvalues of R(b) are τi/η. Thus, the spectral radius η(b) of R(b) is always equal

to one and and it follows that the Bright dual is either transient or null recurrent.

Moreover, as det(A(b)(z)) has exactly m zeros in the closed unit disk and any null

recurrent process has at least m+1 such zeros [12], the Bright dual must be transient.

Similarly, we can define an M/G/1–type Bright dual M(A
(b)
ℓ ) of a positive-recurrent

GI(Aℓ) and by considering the eigenvalues of G(b), we see that M(A
(b)
ℓ ) is always

positive recurrent.

So far, we have defined an alternative dual process when the drift µ > 0. Even

though this will turn out to be the most relevant case from a numerical point of view

(see Section 4), we can, in most cases, also construct an alternative dual when µ < 0.

In the construction of Proposition 1, we defined η by equation (3.2) and used the fact

that η and wη satisfy equation (3.3) to prove the proposition. The algebra would go

through identically for any other positive scalar and vector that satisfy equation (3.3).

In the context of GI/M/1–type Markov chains, Gail, Hantler and Taylor [13] consid-

ered the properties of solutions to equations such as (3.3). In the discussion following
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Proposition 7 of [13], they showed that there can be at most two nonnegative real

values of η such that the equation has a positive solution wη. In terms of the drift µ,

their results show that, when µ > 0, there are exactly two nonnegative real values of

η (one equal to and one strictly less than one) for which a positive solution exists to

(3.3), and, for µ = 0 exactly one such value of η (equal to one). Hence, for µ > 0 the

Ramaswami and Bright duals are the only duals that can be constructed in this way,

while the Ramaswami dual is unique when µ = 0.

When µ < 0, there can be either one or two real values of η for which a solution to

(3.3) exists. There is only one such η when

• the matrix series A(z) has radius of convergence one, or

• A(z) has a finite radius of convergence η∗ > 1, if A(η∗) converges and if the

dominant eigenvalue of A(η∗) is less than zero.

There are two values of η in all other cases, including the important cases where A(z)

is a finite series, an entire function or a rational function, in which case the values of

η for which a solution exists are one and strictly greater than one. Examples of chains

exhibiting both types of behaviour are given after Theorem 5 of [13] (see also Figure 1

of the same paper).

3.2. Case 2: µ < 0

A second solution to (3.3) exists if a(z) has zeros outside the unit circle and then

this solution has η given by

ξ = min{|z| : |z| > 1, a(z) = 0}. (3.17)

In this case, we can define the vector wξ by equation (3.3), and a second dual process,

in exactly the same manner as we did in Proposition 1. Using reasoning similar to

that used there, the process GI(Aℓ) and its alternative dual M(A
(b)
ℓ ) will be both

transient, while the process M(Aℓ) and its alternative dual GI(A
(b)
ℓ ) will be both

positive recurrent. It is worth noting that the asymptotic decay rate of the stationary

vector π of M(Aℓ) equals ξ−1 [10]. We summarise this discussion, together with the

results of Proposition 1 in the following theorem.

Theorem 2. Let {Aℓ} be such that A =
∑∞

ℓ=0 Aℓ is an irreducible generator matrix
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such that µ 6= 0. Let τ = η if µ > 0, and τ = ξ if µ < 0 and a(z) has zeros outside the

closed unit disk. Define A
(b)
ℓ = τ ℓ−1(∆(b))−1A′

ℓ(∆
(b)), with ∆(b) = diag(wτ ).

Then, the matrices R(b) and G(b) of GI(A
(b)
ℓ ) and M(A

(b)
ℓ ) are given by

R(b) = τ−1(∆(b))−1G′(∆(b)) (3.18)

and

G(b) = τ−1(∆(b))−1R′(∆(b)), (3.19)

respectively.

4. Computational Properties of both duals for M/G/1– and GI/M/1–type

Markov chains

In order to identify the possible benefits of the Bright dual, we start by taking a

closer look at the inner workings of the Cyclic Reduction algorithm.

4.1. Computational Aspects of Cyclic Reduction

The Cyclic Reduction (CR) algorithm [4] computes the matrix G of a continuous-

time M/G/1–type Markov chain M(Aℓ), by first transforming it to a discrete time

Markov chain M(Dℓ) via a simple uniformization. Hence, the matrices Aℓ for ℓ ≥ 0

are first replaced by Dℓ = −Aℓ/λ for ℓ 6= 1 and by D1 = I −A1/λ, where λ < 0 is the

smallest value on the diagonal of A1 and I is the identity matrix. Afterwards, the CR

algorithm constructs a sequence of matrix power series D̂(n)(z) =
∑∞

ℓ=0 D̂
(n)
ℓ+1z

ℓ and

D(n)(z) =
∑∞

ℓ=0 D
(n)
ℓ zℓ, with D̂

(0)
ℓ = D

(0)
ℓ = Dℓ, for ℓ ≥ 1, and D

(0)
0 = D0 and







D̂(n+1)(z) = D̂
(n)
even(z) + D̂

(n)

odd(z)(I − D
(n)

odd(z))−1D
(n)
even(z),

D(n+1)(z) = zD
(n)

odd(z) + D
(n)
even(z)(I − D

(n)

odd(z))−1D
(n)
even(z),

where Feven(z) =
∑∞

ℓ=0 F2ℓz
ℓ and Fodd(z) =

∑∞

ℓ=0 F2ℓ+1z
ℓ, with F (z) =

∑∞

ℓ=0 Fℓz
ℓ.

The point-wise version of the CR algorithm computes D̂(n+1)(z) and D(n+1)(z) by

• taking the Fast Fourier Transform (FFT) of each of the power series on the right

hand side, that is we evaluate the series for z = exp(2πik/r) for k = 0, . . . , r − 1

with r a power of 2,

• computing the matrix inverses and products on the right hand side for each

z = exp(2πik/r) to obtain D̂(n+1)(exp(2πik/r)) and D(n+1)(exp(2πik/r)), and
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• applying an inverse FFT to retrieve D̂(n+1)(z) and D(n+1)(z).

An important property of this procedure is that, as the degree of D̂(n+1)(z) and

D(n+1)(z) increases, we need to increase the number of roots required by the FFT

and inverse FFT in order to get an accurate approximation. The CR algorithm starts

with a (small) number of roots determined by the degree of D̂
(n)
even(z) and D

(n)

odd(z) and

continues doubling the number of roots until the required accuracy is reached. Thus,

the computation time per iteration very much depends on the degree of the power

series D̂(n+1)(z) and D(n+1)(z), with smaller degrees resulting in faster computation

times.

The matrix G can be expressed via the series D̂(n)(z) as

G = (I −

∞
∑

ℓ=0

D̂
(n)
ℓ+1G

ℓ2n

)−1D0.

If the M/G/1–type Markov chain is positive recurrent (that is, µ < 0), the spectral

radius of G is equal to one, and so the powers Gℓ2n

are also stochastic matrices. On the

other hand, the degree of D̂(n)(z) and D(n)(z) decrease to zero and one [4, Theorem

7.13] respectively, since for some positive constant γ and ℓ ≥ 2,

||D̂
(n+1)
ℓ || ≤ γ(ξ − ǫ)−ℓ2n

,

||D
(n+1)
ℓ || ≤ γ(ξ − ǫ)−ℓ2n

,

where ǫ > 0 is small and ξ is defined in equation (3.17). Furthermore, the matrices

D̂
(n)
1 converge to some D̂

(∞)
1 (with a spectral radius less than one), such that

||D̂
(n)
1 − D̂

(∞)
1 || ≤ γξ2n

(ξ − ǫ)−2n+1

.

Hence, the sum
∑∞

ℓ=0 D̂
(n)
ℓ+1G

ℓ2n

converges to D̂
(∞)
1 and

||G − G(n)|| ≤ γξ2n

(ξ − ǫ)−2n+1

,

with G(n) = (I − D̂
(n)
1 )−1D0. For the transient case [4, Theorem 7.14], the degrees of

D̂(n)(z) and D(n)(z) do not decrease to zero and one in general. However, the spectral

radius η of G is less than one and therefore the powers Gℓ2n

decrease to zero, that is,

||Gℓ2n

|| ≤ γ′(η + ǫ)2
n

for some constant γ′ > 0, and so

||G − G(n)|| ≤ γ′(η + ǫ)2
n

.
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In short, for a positive recurrent continuous-time M/G/1–type Markov chain, the

speed of convergence of the point-wise CR algorithm is determined by ξ and the amount

of work required at each iteration tends to decrease as the degrees of D̂(n)(z) and

D(n)(z) converge to zero and one, respectively. For a transient Markov chain, we

find that the speed of convergence is determined by η, while the computation time in

general does not decrease with each iteration. As such, provided that 1/ξ and η, which

determine the speed of convergence, are (nearly) identical, there is a computational

advantage in having a positive recurrent chain.

4.2. Which dual is best?

We are now in a position to identify the possible computational advantage of the

Bright dual when computing the R matrix of a GI/M/1–type Markov chain character-

ized by (Aℓ)ℓ≥0.

Positive Recurrent Case (µ > 0): We start with GI(Aℓ) positive recurrent,

implying that η is the dominant eigenvalue of R. As discussed in Section 2, its

Ramaswami dual M(A
(r)
ℓ ) is a transient M/G/1–type Markov chain. As such, the

speed of convergence is determined by η, while there is typically no reduction in the

computation time of successive iterations. For the Bright dual M(A
(b)
ℓ ) on the other

hand, all the zeros of det(A(b)(z)) are identical to those of a(z) divided by η < 1. In

other words, ξ(b) = min{|z| : |z| > 1, det(A(b)(z)) = 0} = 1/η. Therefore, running

the CR algorithm on M(A
(b)
ℓ ) results in the same asymptotic speed of convergence as

the Ramaswami dual, however, as M(A
(b)
ℓ ) is a positive recurrent Markov chain, the

degrees of the series (D̂(b))(n)(z) and (D(b))(n)(z) now do converge to zero and one,

resulting in a significant reduction in the runtime of the CR algorithm.

Transient case (µ < 0): If the original chain GI(Aℓ) is transient, the situation is

reversed. We would still find the speed of convergence to be determined by ξ, but

now (D̂(r))(n)(z) and (D(r))(n)(z) would converge to degree zero and one polynomi-

als respectively. Therefore, the Ramaswami dual is superior whenever the chain is

transient.
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4.3. Combining the Bright and Ramaswami dual

Taking the dual of the dual typically results in the original Markov chain, however,

looking at the properties on the recurrence or transience of both duals, the Bright dual

of the Ramaswami dual cannot correspond to the original Markov chain. In this section,

we take a closer look at the resulting Markov chain and investigate its usefulness in

computing the G matrix of an M/G/1–type Markov chain.

Transient case (µ > 0): Assume we wish to compute the G matrix of a transient

M/G/1–type Markov chain M(Aℓ). This can be done directly using the CR algorithm,

the convergence speed of which is determined by η. As the chain is transient, the

degrees of the series D̂(n)(z) and D(n)(z) do not converge to zero and one, respectively.

If we first take the Ramaswami dual of this chain, to obtain a positive recurrent

GI/M/1–type Markov chain GI(A
(r)
ℓ ) and subsequently take the Bright dual of the

Ramaswami dual, we end up with a positive recurrent M/G/1–type Markov chain

M(A
(rb)
ℓ ) with

A
(rb)
ℓ = (∆(rb))−1(∆(r))Aℓ(∆

(r))−1(∆(rb))ηℓ−1,

whose G matrix, denoted as G(rb), is related to G by

G = (∆(r))−1(∆(rb))G(rb)(∆(rb))−1(∆(r))η,

where ∆(rb) = diag(w(r)) with w(r)A(r)(η) = 0 and η the spectral radius of G.

It is readily verified that w(r) is proportional to (∆(r)v)′, with v such that A(η)v =

0, as the transpose of (∆(r)v)′A(r)(η) can be written as

∞
∑

ℓ=0

(∆(r))Aℓη
ℓ(∆(r))−1(∆(r)

v) = (∆(r))

(

∞
∑

ℓ=0

Aℓη
ℓ

)

v = 0.

This simplifies the above expressions to

A
(rb)
ℓ = diag(v)−1 Aℓ diag(v)ηℓ−1, (4.1)

and

G = diag(v) G(rb) diag(v)−1η. (4.2)

The zeros of det(A(rb)(z)) are identical to those of det(A(z)) divided by η < 1, implying

ξ(rb) = min{|z| : |z| > 1, det(A(rb)(z)) = 0} = 1/η. Hence, the speeds of convergence
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of the transient chain M(Aℓ) and the positive recurrent chain M(A
(rb)
ℓ ) are the

same. However, the series (D̂(rb))(n)(z) and (D(rb))(n)(z) in the positive recurrent

case converge to degree zero and one polynomials, resulting in a substantial gain in the

computation time of each iteration.

It is also possible to use the reverse order, that is, by starting with the Bright dual

and subsequently taking the Ramaswami dual. This affects the equations somewhat

as

A
(br)
ℓ = (∆(br))−1(∆(b))Aℓ(∆

(b))−1(∆(br))ηℓ−1,

and

G = (∆(b))−1(∆(br))G(br)(∆(br))−1(∆(b))η.

where ∆(b) = diag(wη) with wηA(η) = 0, ∆(rb) = diag(a(b)) with a(b)A(b) = 0 and

η the spectral radius of G. By checking that a(b) is proportional to (∆(b)v)′, these

equations reduce to (4.1) and (4.2), and so both orders are equivalent.

Positive recurrent case (µ < 0): Suppose that M(Aℓ) is a positive recurrent

M/G/1–type Markov chain and we wish to determine the matrix G. This can be done

directly using the CR algorithm, the convergence speed of which is determined by ξ.

As the chain is positive recurrent, the degrees of the series D̂(n)(z) and D(n)(z) now

converge to zero and one respectively.

As in the transient case, the combination of both duals can be simplified to

A
(rb)
ℓ = diag(v)−1 Aℓ diag(v)ξℓ−1, (4.3)

and

G = diag(v) G(rb) diag(v)−1ξ. (4.4)

with v such that A(ξ)v = 0. The zeros of det(A(rb)(z)) are identical to those of a(z)

divided by ξ > 1, implying that η(rb) = max{|z| : |z| < 1, det(A(rb)(z)) = 0} =

1/ξ. Hence, the speeds of convergence of the positive recurrent chain M(Aℓ) and

the transient chain M(A
(rb)
ℓ ) are the same. However, the series (D̂(rb))(n)(z) and

(D(rb))(n)(z) do not converge to degree zero and one polynomials. In this case, it is

better to compute G directly as opposed to via G(rb).
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Remark: The transformation given in (4.3) was also used in [6] to transform a

positive recurrent M/G/1-type Markov chain into a transient chain (though it was not

identified as a combined Bright/Ramaswami dual). As shown in [6], this transformation

greatly simplifies the proof of convergence of the cyclic reduction algorithm as well as

the convergence of some of the matrix series involved to a matrix polynomial of degree

at most one, when the chain is positive recurrent. Thus, when proving theorems, it is

easier to work with a transient chain, while from a computational point of view the

reverse is true.

4.4. Impact of the Shift Technique

The shift technique [4, Section 8.2] allows one to accelerate the speed of convergence

of the CR algorithm discussed in Section 4.1 as applied to chains of M/G/1-type.

Without going into detail, a new sequence of matrices (D̃ℓ)ℓ≥0 is constructed from

(Dℓ)ℓ≥0 such that all the zeros of det zI −D(z) and det zI − D̃(z) coincide, except for

one, say z = ν, which is shifted to zero or infinity (depending on whether the chain

is transient or recurrent). In principle any zero can be shifted, however to construct

(D̃ℓ)ℓ≥0, we need to determine ν accurately (and in an efficient manner). The most

obvious candidate for ν is ν = 1 as D(1)e = e. Depending on the value of the drift µ

we can also easily determine:

• µ < 0: the asymptotic decay rate ξ−1 of the stationary distribution, using a

bisection algorithm on (1,∞) to find ξ,

• µ > 0: the spectral radius η of the G matrix, using a bisection algorithm on

(0, 1).

In other words, apart from ν = 1, we can also shift the zero z = τ as defined in Theorem

2. Moreover, shifting both zeros, that is, a double (dbl) shift, causes the strongest

convergence acceleration. Figure 1 lists the impact of the various shift operations on

the speed of convergence of G(n) to G, as well as the rate at which ˆ̃D(n)(z) and D̃(n)(z)

converge to degree zero and one polynomials (if appropriate), with ξ2 = min{|z| : |z| >

ξ, a(z) = 0} and η2 = max{|z| : |z| < η, a(z) = 0}. For the ‘one’ shift the result

holds for µ 6= 0. It is important to note that the results in Figure 1 apply only if

a(z) has no other zeros with modulus 1 and ξ (for µ < 0) and modulus 1 and η (for
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Operation ||G(n) − G|| || ˆ̃D
(n)
ℓ ||, ||D̃

(n)
ℓ ||, ℓ ≥ 2

No shift, µ < 0 ≤ γ1ξ
2n

(ξ − ǫ)−2n+1

≤ γ1ξ
2n

(ξ − ǫ)−(ℓ+1)2n

No shift, µ > 0 ≤ γ2(η + ǫ)2
n

-

Shift z = 1 ≤ γ3

(

η+ǫ
ξ−ǫ

)2n

≤ cℓ(ξ − ǫ)−ℓ2n

Shift z = τ , µ < 0 ≤ γ4ξ
2n

2 (ξ2 − ǫ)−2n+1

≤ dℓξ
2n

2 (ξ2 − ǫ)−(ℓ+1)2n

Shift z = τ , µ > 0 ≤ γ5(η2 + ǫ)2
n

-

Double shift, µ < 0 ≤ γ6

(

η+ǫ
ξ2−ǫ

)2n

≤ eℓ(ξ2 − ǫ)−ℓ2n

Double shift, µ > 0 ≤ γ7

(

η2+ǫ
ξ−ǫ

)2n

≤ fℓ(ξ − ǫ)−ℓ2n

Figure 1: Impact of the various shift operations

µ > 0). Otherwise the shift operation will be less effective. By Remark 4.25 in [4], for

the first of these cases, it suffices that the doubly infinite M/G/1–type Markov chain

characterized by (2.9) has only one final class and all other states are on a path to

the final class. This condition is also sufficient for µ > 0 case, as all the zeros within

the unit disk are eigenvalues of the nonnegative matrices R and G. By Theorem 4.21

of [4] this condition is somewhat stronger than demanding that A has only one final

class (which is clearly the case for A irreducible). Next, we argue that the conclusions

drawn in Sections 4.2 and 4.3 still hold irrespective of the type of shifting performed.

Which dual is best, revisited: In Section 4.2 we noted that the Bright dual

should be preferred when computing the R matrix of a positive recurrent GI/M/1–

type Markov chain, while in the transient case the Ramaswami dual is superior. Recall,

the zeros of det(A(r)(z)) are identical to those of a(z), while the zeros of det(A(b)(z))

are found by dividing the zeros of a(z) by τ . In the positive recurrent case the three

shift operations (one, tau and dbl) therefore achieve the following rates of convergence

(where we neglect the influence of ǫ small):

• Ramaswami dual (µ(r) > 0): η (no shift), η/ξ (one), η2 (tau) and η2/ξ (dbl).

• Bright dual (µ(b) < 0): 1/ξ(b) = 1/(1/η) = η (no shift), η(b)/ξ(b) = (η2/η)/(1/η) =

η2 (one), 1/(ξ2)
(b) = 1/(ξ/η) = η/ξ (tau) and η(b)/(ξ2)

(b) = (η2/η)/(ξ/η) = η2/ξ

(dbl).
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Hence, the asymptotic rate of convergence is the same for both duals, except that the

effect of shifting the zero in z = 1 and z = τ is reversed by both duals. The alternative

dual however has a computational advantage when we look at how quickly ˆ̃D(n)(z) and

D̃(n)(z) converge to degree zero and one polynomials:

• Ramaswami dual (µ(r) > 0): no convergence (no shift), 1/ξ (one), no convergence

(tau) and 1/ξ (dbl).

• Bright dual (µ(b) < 0): 1/ξ(b) = 1/(1/η) = η (no shift), 1/ξ(b) = 1/(1/η) = η

(one), 1/(ξ2)
(b) = 1/(ξ/η) = η/ξ (tau) and 1/(ξ2)

(b) = 1/(ξ/η) = η/ξ (dbl).

In other words, the Bright dual achieves a convergence acceleration, the magnitude of

which is determined by η < 1.

For a transient GI/M/1–type Markov chain we also observe the same rates of

convergence for both duals (where the z = 1 and z = τ shifts are reversed by both

duals), that is, 1/ξ (no shift), η/ξ (one(r)/tau(b)), 1/ξ2 (tau(r)/one(b)) and η/ξ2 (dbl).

However, this time ( ˆ̃D(b))(n)(z) and (D̃(b))(n)(z) only converge to degree zero and one

polynomials when performing the z = 1 and double shift and overall the Ramaswami

dual now achieves an acceleration determined by 1/ξ < 1.

Combining the Bright and Ramaswami dual, revisited: In Section 4.3 we

demonstrated that combining both duals allows one to transform a transient M/G/1–

type Markov chain into a positive recurrent one (and vice versa). This is useful as the

speed of convergence (mainly determining the number of iterations required) remained

identical, while positive recurrence implies that the degree of D(n)(z) and D̂(n)(z)

converges, resulting in a lower computational complexity per iteration. When either

the z = 1 or double shift operation is performed the degree of D̃(n)(z) and ˆ̃D(n)(z)

also converges, even if A(z) corresponds to a transient M/G/1–type Markov chain.

However, as in the previous paragraph, it is readily verified that G(n) and (G(rb))(n)

achieve the same rate of convergence for the various shift operations (again, with the

z = 1 and z = τ reversed), while for the convergence of D(n)(z) and D̂(n)(z) an

acceleration determined by η is realized.
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Figure 2: Graphical representation of the Bright versus Ramaswami performance for a

positive recurrent GI/M/1–type Markov chain

5. Numerical Examples

In order to perform these numerical experiments, we extended the functionality of

the SMCSolver tool [7] such that it supports the Bright and Ramaswami dual, as well

as the double (dbl) shift operation. Here we report the outcome of applying the various

algorithms to a randomly generated GI/M/1–type Markov chain characterized by 41

size 20 matrices A0, A1, . . . , A40 that exhibits the typical performance that we saw

when comparing both duals for a positive recurrent GI/M/1–type Markov chain. We

observed cases where the difference between both duals was more dramatic but we also

saw cases where the difference was less pronounced.

Figure 2 depicts the behavior of the CR algorithm for four types of shifting (no

shift, one shift, tau shift and dbl shift) and this for both the Ramaswami (r) and

Bright (b) dual. Each iteration is represented by a single bar, the height of which

corresponds to (the second logarithm of) the number of roots required to perform the

FFTs. The number of roots required typically decreases after each iteration, except

for the Ramaswami dual when the no shift or tau shift operation is selected, which

is in correspondence with our earlier discussions. The number of roots required per

iteration for the tau shift operation may be larger than when no shift is used, while
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the number of iterations drops from 7 to 5.

Instead of providing a machine dependent measurement of the required computation

time, we added an estimate for the number of flops needed to perform a single FFT of

the required size for each iteration (above the bars), where we estimated the number

of flops of a size N FFT as 3/2N log N (the exact number depends on the FFT-variant

selected and requires at least N log N multiplications). Thus, the ratio between two

such numbers indicates how much faster/slower the computation will be. For instance,

without shifting, the Ramaswami dual is about 45 times slower than the Bright dual, on

this particular example, which corresponds roughly to the observed computation time,

where the Ramaswami dual ran for about 20 seconds, while the Bright dual finished

in approximately 0.5 seconds. As we incorporate the shift operations (except for the

tau shift), this ratio decreases to about 12, meaning the difference is less pronounced,

but still very substantial.

For the case where the initial GI/M/1–type Markov chain is transient, we made

similar observations, but now the Ramaswami dual clearly outperformed the Bright

dual. Also, for transient M/G/1–type Markov chains, the combined Ramaswami and

Bright duals can also easily achieve performance improvements of a factor 10 or more.
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