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We consider a supply chain in which orders and lead times are linked endogenously, as opposed

to assuming lead times are exogenous. This assumption is relevant when a retailer’s orders are

produced by a supplier with finite capacity and replenished when the order is completed. The

retailer faces demands that are correlated over time – either positively or negatively – which may,

for example, be induced by a pricing or promotion policy. The auto-correlation in demand affects

the order stream placed by the retailer onto the supplier, and this in turn influences the resulting

lead times seen by the retailer. Since these lead times also determine the retailer’s orders and its

safety stocks (which the retailer must set to cover lead time demand), there is a mutual dependency

between orders and lead times. The inclusion of endogenous lead times and autocorrelated demand

represents a better fit with real-life situations. However, it poses some additional methodological

issues, compared to assuming exogenous lead times or stationary demand processes that are inde-

pendent over time. By means of a Markov chain analysis and matrix analytic methods, we develop

a procedure to determine the distribution of lead times and inventories, that takes into account

the correlation between orders and lead times. Our analysis shows that negative autocorrelation

in demand, although more erratic, improves both lead time and inventory performance relative to

IID demand. Positive correlation makes matters worse than IID demand. Due to the endogeneity

of lead times, these effects are much more pronounced and substantial error may be incurred if this

endogeneity is ignored.
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1. Introduction

In this paper we study the issue of coordinating the retailer’s inventory decisions and the supplier’s

lead times. It is commonly known that supplier lead times have a direct impact on the retailer’s
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safety stocks: longer and more variable lead times require higher safety stocks. But in a make-to-

order setting there is also an impact in the opposite direction: the lead times vary according to

the order stream of the retailer and its variability. Complicating matters is the assumption that

the retailer may be facing orders that are correlated over time. The degree of autocorrelation (and

whether it is positive or negative) greatly impacts the level of fluctuations in the order stream,

influencing in turn the lead time distribution. In addition we will show that, due to this autocorre-

lation, the order stream becomes dependent upon the lead time distribution. The objective of this

paper is to study the interplay between the correlation in demand, the retailer’s order policy (and

its safety stocks) and the supplier’s lead times. This interplay has, to the best of our knowledge,

not been dealt with in the literature before. The resulting production/inventory system poses some

challenging methodological issues.

Coordinating lead times and safety stocks is imperative in a supply chain where the supplier

produces the retailer’s orders on a make-to-order basis. Several reasons may motivate a make-

to-order approach, ranging from a limited shelf life to frequent upgrades or customer’s specific

packaging requirements. In such an environment the supplier may opt to not hold inventory, but the

retailer does hold safety stocks to satisfy immediate consumer demand. We have encountered several

examples where a make-to-order policy is employed for customized products, and where the insights

obtained in this paper can be applied. For instance, an industrial bakery, producing authentic

specialities in the biscuit and cake world, employs a make-to-order policy for a major retailer due

to specific packaging requirements with the retailer’s label on the product, sometimes combined

with a specific, temporary promotion. As the products have a limited shelf life and the retailer’s

orders fluctuate every period, a make-to-stock policy is not suitable for these products. Another

example is a supplier of feminine-care and baby-care products (diapers, baby wipes, tampons, etc.)

who manufactures retailer brands. In their quest to compete with A-brands, they rely heavy on

promotions. Due to the high fluctuations in demand, in combination with the retailer-specific

requirements, the supplier does not keep any stock, instead he produces to order. The retailer

however holds the product in inventory to ensure immediate availability to the consumer.

The only abstraction we make from these practical settings is the fact that we apply our method-

ology to a single item; however our insights can be generalized to a multi-item setting, where a

safety stock is held per item. Our model is also capable of representing a firm that replenishes

its finished goods inventories from its own production facilities. This firm must plan releases into

the production system in such a manner as to maintain safety stocks at its inventory points facing

customers.

In such a make-to-order setting the nature of the order stream (variability in inter-arrival time

and order sizes) affects the sojourn times within the supplier’s queue, and thus the lead times

observed by the retailer. By modeling a two-echelon (retailer-manufacturer) supply chain as a
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production/inventory system, we treat lead times as endogenous variables; this means that we do

not merely assume the replenishment lead time to be a fixed or random exogenous variable. Instead

we include the impact of a replenishment decision on the production lead times and use these lead

times in our inventory model. We use an iterative procedure to cope with this interaction effect.

The inclusion of autocorrelation (or time-correlation) in demand, as opposed to assuming IID

demand, is valid in many high-tech and consumer goods industries (see e.g. Dong and Lee, 2003).

In these industries, consumers are typically highly sensitive to marketing actions. We analysed

a large number of consumer demand patterns (weekly POS data) for consumer packaged non-

food products, both branded products and private label products. For the regular ’turn’ business,

positively autocorrelated demand patterns seem to dominate. This is confirmed by Erkip et al.

(1990) and Disney et al. (2006) who also find that positively correlated consumer demand was

most commonly observed. However, in the presence of recurring weekly promotions, a retailer may

observe negative autocorrelation as well; this is due to consumers stockpiling during the promotion

period and cannibalising demand before (and after) the promotion. In the marketing literature, this

is referred to as pre- and post-promotion dips (Macé and Neslin, 2004). This promotion strategy

may create negative period-to-period correlation in demand.

We show that correlation in demand has an important impact on the performance of the supply

chain in terms of safety stocks and lead times. The inclusion of autocorrelation in demand illustrates

that price control mechanisms can be used to manage supply chains, reinforcing once more the

importance of coordinating marketing and operations decisions along the chain. Note that in

this paper we focus on the impact of autocorrelation, rather than on the overall variability in

demand, which can also be influenced by price promotions. We refer to Raju (1992) who relates

the promotional activity in a product category to its variability in sales and Boute et al. (2007)

who study the operational impact of demand variability on lead times and safety stocks.

The remainder of this paper is organized as follows. The next section presents an overview of

the related literature. Section 3 describes our research model and derives expressions for the orders

generated by the retailer. Section 4 develops an iterative procedure to determine the endogenous

supply lead times and Section 5 is devoted to the analysis of the safety stocks in the combined

production/inventory system. Section 6 provides a numerical experiment and Section 7 concludes.

2. Literature review

This paper studies the interplay between autocorrelation in demand, the retailer’s inventory policy

(facing the autocorrelated demand), and the supplier’s lead times (producing the retailer’s orders).

In the literature inventory models are discussed with either autocorrelated demand, but assuming

exogenous lead times; or production/inventory models with endogenous lead times, assuming IID
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demand. In the following we review the literature on both streams of research. Finally we briefly

discuss the literature on our methodology used.

Several papers discuss supply chains with autocorrelated demand and constant (exogenous) lead

times. Fotopoulos et al. (1988) provide an upper bound for the safety stock when daily demands are

autocorrelated and lead times follow an arbitrary distribution. Erkip et al. (1990) derive optimal

stocking levels as a function of the autocorrelation coefficient. Dong and Lee (2003) develop a

lower bound for the optimal stocking levels in serial multi-echelon systems under time-correlated

demand. Kahn (1987) and Lee et al. (1997) demonstrate the existence of variance amplification

upstream in the chain (aka the bullwhip effect) when the retailer follows a base-stock policy and

demand is positively correlated. Zhang (2004b) studies the role of forecasting for AR(1) demands

and concludes that the minimum Mean Squared Error (MSE) forecasting method minimises the

variance of the forecasting error among all linear forecasting methods, and therefore leads to the

lowest inventory costs. Alwan et al. (2003) employ this optimal MSE forecasting scheme and

determine the underlying time-series model of the resulting order process. They show that when

consumer demand is negatively correlated (with AR demand), the variability in orders is dampened

with respect to the observed demand. This result is of great importance for our paper.

Negative correlation may occur, for instance, due to consumers stockpiling during the promotion

period and deceleration before and after the promotion. Stockpiling is the propensity of consumers

to increase their inventories above normal levels either by purchasing the category earlier, or by

purchasing greater-than-normal quantities (Neslin et al., 1985). Deceleration is the willingness of

consumers to deplete their inventories below normal levels by ’holding out’ for an anticipated pro-

motion (Mela et al., 1998). The impact of promotions on consumer demand behavior is extensively

discussed in the marketing literature as they may influence profitability (Blattberg and Neslin,

1993; Hendel and Nevo, 2006). Macé and Neslin (2004) empirically studied the relationships be-

tween pre- and post-promotion dips in weekly store data, and find that these dips are stronger for

high-priced, frequently promoted, mature, high-market-share products.

The interaction between inventory policies and lead times is generally studied in produc-

tion/inventory systems with endogenous lead times. Graves (1988) provides an excellent review and

critique of the research literature on safety stocks for manufacturing systems, and proposes a model

to include consideration of the flexibility of the production stage in planning safety stocks. Base-

stock controlled production/inventory systems in continuous time with exponential (single unit)

demand processes have been studied widely, among many others, by Gavish and Graves (1980,

1981), Song and Zipkin (1996), Sox et al. (1997) and Jemäı and Karaesmen (2005). Ettl et al.

(2000) and Liu et al. (2004) model a supply network with multiple storage locations by means of an

inventory-queue model assuming Poisson demand. Boute et al. (2007) propose a solution method

for production/inventory systems in discrete time with a random IID integer consumer demand.
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However, none of these papers consider autocorrelation in demand. The interaction between order

release models and lead times is also related to this problem. Pahl et al. (2005) provide an overview

of the literature on production planning models with load dependent lead times (see also Orcun

et al. (2009)). They consider lead times to be dependent on the current load in the system, and

make use of clearing functions to incorporate this dependency. Selcuk et al. (2009) discuss a lead

time syndrome, which may arise in this setting: the cyclic interaction between planned lead times

and order sizes may result in uncontrolled order release patterns.

Our methodology is based on Markov chains of the GI/M/1 type (Neuts, 1981), phase type

(PH) distributions (see e.g. O’Cinneide (1990)) and matrix analytic methods (Latouche and Ra-

maswami, 1999). The domain of matrix analytic techniques was advocated by Neuts (1981, 1989).

These methods are popular as modeling tools because they can be used to construct and analyse

a wide class of stochastic models. They are applied in several areas, of which the performance

analysis of telecommunication systems is one of the most notable. We refer to Bini et al. (2005)

for an overview of recent algorithmic developments. Software tools both in Fortran and MAT-

LAB were made available by Bini et al. (2006). The use of matrix analytic techniques in the

production/inventory models is fairly scarce. Riaño (2002) uses matrix analytic methods and PH

distributions to accomplish analysis similar to our paper. Here, they model the transient behavior

of multi-class queueing networks with load-dependent lead times.

This paper contributes to the existing literature in three ways. First, we set up a four-

dimensional Markov chain that is able to compute the lead time distribution in a setting where

production orders are generated by a periodic review base-stock policy with a correlated AR(1)

demand process and MSE forecasting with known parameters. Second, we use this lead time dis-

tribution to generate orders, thereby tackling the mutual dependency that arises in this context

(orders are dependent on the lead time distribution and vice versa). Third, we determine the in-

ventory distribution and the safety stock requirements of the corresponding production/inventory

system, taking into account the correlation between orders and lead times. These contributions are

made via the application of matrix analytic methods. We generate insights into the effects of the

endogeneity of lead times and the correlation in demand on supply chain performance.

3. Model description

We consider a two-echelon supply chain consisting of one retailer and one supplier. Consumer

demand, Dt, is observed at the beginning of a time period t, but need not be fulfilled until the end

of the period. Unfilled demand is backordered. Retailer’s inventory levels are reviewed after demand

is satisfied, and an order Ot is placed with the supplier. The supplier does not hold a finished goods

inventory, but produces on a make-to-order basis. The supplier’s capacity is finite and operates

like a discrete time queuing system. A single server sequentially processes items one at the time on

5



a first-come-first-served basis. When the server is busy, the order joins the queue of unprocessed

orders. Orders are only shipped when completed. Let Tp denote the discrete distribution function of

the replenishment lead time variable (i.e. the time from the period an order is placed to the period

it replenishes the inventory). The supply process implies that lead times are endogenous, and thus

correlated with the current load of the queue and the actual order size (larger orders increase the

batch production time). Randomness in the suppliers production process, combined with batch

ordering and delivery, lead to difficulty in characterising the production and replenishment lead

times.

In the following, we describe in more detail the consumer demand process, its forecast and we

derive an expression for the order process placed with the supplier.

3.1 Consumer demand process

There are a number of potential stochastic processes that can be assumed to model consumer

demand, ranging from simple IID to non-stationary processes. One industrially relevant, flexible,

correlative demand process that has often been studied in the supply chain literature is the first-

order autoregressive or AR(1) model. Traditionally, an AR(1) demand is given by

Dt = µ+ ϕDt−1 + εt, |ϕ| < 1, (1)

where Dt is the demand observed in period t, ϕ the first-order autocorrelation coefficient, µ a

constant, and εt an IID random error with mean 0 and variance σ2. The assumption of |ϕ| < 1

assures that the demand process is covariance stationary. Sometimes Eq. (1) is re-written as a

mean-centered demand pattern, Dt = E(D)+ϕ (Dt−1 − E (D))+ εt, which omits the parameter µ.

For the purpose of this paper, we use a slightly different notation, but there is no fundamental

difference to (1). We assume consumer demand follows the correlated process

Dt = ϕ Dt−1 + (1− ϕ)Gt, (2)

with Gt = (µ + εt)/(1 − ϕ) a random IID term with mean E(G) = µ/(1 − ϕ) > 0 and variance

V ar(G) = σ2/(1 − ϕ)2. In this notation the error term is given by (1− ϕ)Gt. With the initial

condition D0 = G0, the average demand under this notation equals E(D) = E(G) for t ≥ 0, and

its long run variance V ar(D) = 1−ϕ
1+ϕ V ar(G) for t → ∞. Observe as well that under this notation

the demand variance decreases as ϕ increases towards 1.

As we will discuss later in this paper, this notation yields some elegant formulations and re-

markable similarities between the demand pattern and the order pattern when demand is forecasted

using the MSE forecasting technique. This reduces the complexity of the queueing analysis, which

is used to compute the lead time distribution in our model.
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When 0 ≤ ϕ < 1, the minimum and maximum demand are given by the minimum and maximum

values of G, or dmin = gmin and dmax = gmax. When −1 < ϕ ≤ 0, the minimum and maximum

demand are given by dmin = (gmin + ϕ gmax)/(1 + ϕ) and dmax = (gmax + ϕ gmin)/(1 + ϕ). We use

these relations to set conditions on gmin, gmax and ϕ to avoid negative demand.

For −1 < ϕ < 0, the demand process is negatively correlated and will exhibit period-to-period

oscillatory behavior. For 0 < ϕ < 1, the demand process is positively correlated, characterised by

a wandering or meandering sequence of observations. One can view ϕ as a marketing parameter

related to the impact of promotion on demand. A negative value for ϕ could mean that the

consumer’s buying behavior is highly influenced by a promotion in the sense that consumers increase

their purchases in the promotion week, and decelerate before and after the promotion. A positive

ϕ value denotes a less aggressive reaction to the promotion: product demand is related to previous

period’s demand, rather than influenced by a price promotion. Note that an AR(1) process means

that the demand autocorrelation is one period apart. This is different from, for example, correlations

lasting for several periods. That is, a period of high demand due to forward buying by consumers

who buy several periods worth of product, leading to low demand for several following periods. In

that case we may need an AR(p) process.

Several techniques are available to forecast lead time demand. The moving average (MA) and

exponential smoothing (ES) forecast methods are widely employed because of their simplicity and

ease of implementation. However, knowing that demand follows an AR(1) process, the minimum

Mean Squared Error (MSE) forecasting method is the preferred forecasting scheme as it minimises

the forecast error (Zhang, 2004b). It explicitly takes the correlated demand structure into account,

which is not the case with the non-optimal ES and MA forecasts. Any other forecast method will

lead to an increased forecast error and hence higher inventory costs. Therefore we will proceed

using the MSE forecasting procedure. This forecasting technique assumes that the underlying

parameters of the demand model are constant and known or that a suitable amount of demand

data is available to estimate these parameters accurately. The MSE forecast is the conditional

expectation of future demand, given current and previous demand observations (Box et al., 1994).

Hence, for our assumed demand process in (2), the i-period ahead demand forecast is given by

D̂t+i = ϕiDt +
(
1− ϕi

)
· E(G). (3)

3.2 Retailer’s order stream

We adopt the standard periodic review base-stock policy. This policy is optimal for the retailer in

absence of a fixed ordering cost and when holding and shortage costs are convex and proportional

to the volume of on-hand inventory or shortage (Nahmias, 1997; Zipkin, 2000). Let St be the base-

stock level, which equals the inventory position after placing the order in period t. The base-stock
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level is also the sum of the forecasted lead time demand and the safety stock. Lead time demand is

here defined as the demand during the risk period l, with the risk period l = 1+ tp (review period

plus replenishment lead time), or

Dl
t =

l∑
i=1

Dt+i. (4)

Let D̂l
t =

∑l
i=1 D̂t+i denote the lead time demand forecast, and Is the safety stock required to

achieve a desired service level. Then, St = D̂l
t + Is.

The base-stock level St is adaptive over time in the sense that we update the demand forecast

when a new demand realisation occurs, since the current demand holds information about the

future demands during the replenishment lead time. One could also adapt the value of l every

period. Indeed, the current workload in the queue contains information on the time it takes to

replenish the placed order. However, this excessive adaptivity might lead to instability: when for

instance the queue is highly congested, the replenishment time will be long, which inflates the order

size; this inflated order increases the workload in the queue even more (and so does its time to

replenish), inflating the order even further, and so on. This instability is known as the lead time

syndrome and is to be avoided (Selcuk et al., 2009). Therefore, instead of updating the lead time

every period, we use its steady state variable L = 1 + Tp in our decision rule to generate orders:

St = D̂L
t + Is. (5)

Observe that even under this assumption we obtain a mutual dependency: the base-stock level (5)

assumes a lead time distribution Tp. But Tp is determined by the order stream, loading the queue,

which is generated by the base-stock level (5). We cope with this mutual dependency by assuming

an initial lead time distribution Tn
p to generate orders, and we compute the lead time distribution

Tn+1
p according to this order stream. This new lead time distribution is then used to update the

base-stock level, and we continue this procedure until the lead time distribution converges. We

discuss this iterative procedure in section 4.

We also assume the safety stock Is to be stationary over time. We do take into account that a

larger order involves a longer supply time and as such we include the correlation between orders and

lead time in determining the inventory distribution (see section 5). However, we do not periodically

adapt the safety stock depending on the most recent demand or lead time observation. This is in

line with inventory literature, where typically the base-stock level is periodically adjusted as the

demand forecast changes, but the safety stock is assumed to be stationary over time (see e.g. Erkip

et al., 1990; Fotopoulos et al., 1988; Graves, 1999; Zhang, 2004a,b). Moreover, we believe the

problem becomes mathematically intractable with non-stationary safety stocks.
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The timing of events (first receive goods from supplier, then satisfy demand and finally place

the order) and the conservation of flow implies that

Ot = St − St−1 +Dt

= Dt +
(
D̂L

t − D̂L
t−1

)
. (6)

Observe that L is a random variable, so D̂L
t =

∑∞
l=1 Pr(L = l)D̂l

t. Then, using (3-4) we find

D̂L
t =

∞∑
l=1

Pr(L = l)

(
l∑

i=1

ϕiDt +
l∑

i=1

(1− ϕi)E(G)

)

=
∞∑
l=1

Pr(L = l)

(
ϕ(1− ϕl)

1− ϕ
Dt +

(
l − ϕ(1− ϕl)

1− ϕ

)
E(G)

)
=

ϕ(1− E(ϕL))

1− ϕ
Dt +

(
E(L)− ϕ(1−E(ϕL))

1− ϕ

)
E(G), (7)

with E(ϕL) =
∑∞

l=1 Pr(L = l)ϕl. Substituting (7) into (6) returns the retailer’s order process:

Ot =
1− E

(
ϕL+1

)
1− ϕ

Dt −
ϕ
(
1− E

(
ϕL
))

1− ϕ
Dt−1. (8)

The retailer’s order quantity is a linear combination of the observed demand in the current period

and the previous period. Substituting (2) into (8) provides

Ot = E
(
ϕL+1

)
·Dt−1 +

(
1− E

(
ϕL+1

))
·Gt, (9)

which is very similar to the expression of the demand process (Eq. (2)). This order process actually

has an ARMA(1,1) structure, similar but different to the AR(1) process (Zhang, 2004a). Observe

that this order stream is dependent on the lead time distribution L.

As these orders are sent to the supplier’s production queue, it is worthwhile analysing some

characteristics of this process. First, the order size has the same bounds as the demand size.

Amongst others, this implies that if we provide a condition on G and ϕ to avoid negative demand,

this automatically precludes negative order sizes. Next, from (9) we find that the variance in the

order stream is given by

V ar(O) =
(
E
(
ϕL+1

))2
V ar(D) +

(1 + ϕ)
(
1− E

(
ϕL+1

))2
1− ϕ

V ar(D)

=

[
1 +

2ϕ
(
1− E

(
ϕL
)) (

1− E
(
ϕL+1

))
1− ϕ

]
V ar(D). (10)

Using (10), we derive that the order variance is amplified with respect to the demand variance when
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there is positive correlation in demand. This phenomenon is referred to as the bullwhip effect:

V ar(O) > V ar(D) ⇔ 1 +
2ϕ
(
1− E

(
ϕL
)) (

1− E
(
ϕL+1

))
1− ϕ

> 1

⇔ 2ϕ
(
1− E

(
ϕL
)) (

1− E
(
ϕL+1

))
> 0

⇔ ϕ > 0. (11)

Analogous to (11), we find that when the autocorrelation coefficient is negative, there is an anti-

bullwhip, or de-whip effect, which means that the orders are smoothed compared to the demand:

V ar(O) < V ar(D) ⇔ ϕ < 0. (12)

This result contrasts with the traditional, non-optimal, MA and ES forecasting techniques,

which always produce bullwhip, independent of the assumed demand (Dejonckheere et al., 2003).

A similar conclusion was obtained by Alwan et al. (2003). This is important for our analysis. The

sign of the correlation coefficient determines whether orders are amplified in variability towards the

supplier, or not. In case of no autocorrelation, consumer demand is IID and we obtain orders equal

to demand, i.e., no amplification nor dampening. Since the supplier produces on a make-to-order

basis, this will impact the lead time distribution. Positively correlated demand amplifies variability

in orders, with increasing average supply lead times as a consequence. Negative period-to-period

correlation in demand dampens the order variability, resulting in shorter lead times on average.

We establish and analyse the supplier’s queueing process, and therefore, the lead time distribution

seen by the retailer, in the following section.

4. Computation of the lead time distribution

The supplier’s operation acts as a discrete time queueing system. The replenishment orders de-

scribed by (9) load the production queue. This means that the arrival process at the queue consists

of batch arrivals (equal to the size of the replenishment orders) and deterministic inter-arrival times

(equal to one review period). A single server sequentially processes single items with stochastic

service times. An order is shipped only when the production of the order is completed. Thus,

larger orders increase the batch production time. In addition, the lead time is also a function of

the current load (work in process) of the queue. Hence, to compute the lead time distribution, we

need to set up a queueing model taking these considerations into account.

4.1 Lead time dependency

The nature of the order stream, loading the queue, determines the distribution of the lead times.

At the same time, from (9) we know that the order stream itself is dependent on the lead time
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distribution. In other words, we have a mutual dependency between the order process and the lead

time distribution.

To cope with this mutual dependency, we develop an iterative procedure. We start with an

initial guess for the lead time distribution T 0
p (typically, we select T 0

p deterministically, equal to 0

periods). Next, for n > 0, we make use of Tn−1
p to determine the order process in (9). Given this

order stream, we determine the new lead time distribution Tn
p and repeat this procedure. We have

carried out extensive numerical experiments, and we find that the lead time distribution converges

towards the actual lead time distribution when |ϕ| < 1. This assumption is not restrictive as |ϕ| < 1

also assures that the demand process is covariance stationary1.

Since the Markov chain analysis used to find the lead time distribution is based on a numerical

procedure, we do not have a formal proof that an equilibrium distribution Tp exists. However,

assuming it does exist, we note that the coupling between the order process and the lead time

depends only on the scalar E
(
ϕTp+1

)
. If 0 ≤ ϕ < 1, E

(
ϕTp+1

)
takes values in [0, 1] for any distri-

bution Tp (on the positive integers). If we define x = E
(
ϕTp+1

)
, with Tp an arbitrary distribution,

and compute the lead time distribution T ∗
p based on the corresponding order stream, we can define

f(x) = E
(
ϕT ∗

p+1
)
. In other words, we have a mapping f from [0, 1] to [0, 1]. Thus, if we can

show that f is continuous, there must be a fixed point for f in [0, 1] (due to Brouwer’s fixed-point

theorem) and thus an equilibrium distribution. Although the continuity of f seems intuitively ob-

vious, it is hard to prove formally as f relies on a numerical procedure. For −1 < ϕ < 0 a similar

argument can be given except that f takes values in [−1, 1].

It is noteworthy to re-emphasize that, if we would use the transient value of tp, instead of its

steady state distribution Tp to generate orders, convergence would not be guaranteed due to the

lead time syndrome discussed earlier.

4.2 Assumptions of the queueing model

To estimate the lead time distribution at iteration n, we develop the following discrete time queueing

model. The retailer’s base-stock policy, assuming AR(1) demand and MSE forecasting, generates

batch arrivals with a fixed inter-arrival time (equal to the review period, i.e. 1 period) and with

variable batch sizes, which are correlated (see (9)). The service times of a single item, denoted by

M , are stochastic and IID according to a phase type (PH) distribution2.

1The convergence was numerically studied for several hundred randomly generated systems. For each of these
systems we used five different randomly chosen starting values for E(ϕTp+1) and found that convergence occurred to
the same fixed point in each case.

2The key idea behind PH distributions is to exploit the Markovian structure of the distribution to simplify the
queueing analysis. Moreover, any general discrete distribution can be approximated in sufficient detail by means of a
PH distribution (O’Cinneide, 1990), since the class of discrete PH distributions is a versatile set that is dense within
the set of all discrete distributions on the nonnegative integers (Bobbio et al., 2003; Latouche and Ramaswami, 1999;
Neuts, 1989).
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The computational complexity of our queueing algorithm increases with the number of phases

of the PH distributed service process. We use the moment matching procedure described by Boute

et al. (2007) to match the first two moments of the single unit service times to a discrete PH

distribution with a minimal number of phases (including more moments leads to a higher number

of phases). Since the lead time is expressed as an integer number of periods and the inter-arrival

time of orders is equal to one base period, we have the freedom to choose the time unit U of the

queueing system as desired (Bobbio et al., 2004). When the time unit U is chosen as half the mean

service time of a single item, i.e., U = E(M)/2, it is possible to match the first two moments of

the single unit service times by means of a PH distribution with only 2 phases, characterised by

the pair (T, α):

α = (β, 1− β) , T =

[
1− β β

0 0

]
, with β =

1

1 + 2cv2(M)
, (13)

and cv2(M) the squared coefficient of variation of the single unit service times (Boute et al., 2007).

When U is the time unit of our queueing system, orders placed every period arrive at the queue

at times 0, e, 2e, . . ., where e× U = 1 period. The order sizes are driven by an underlying Markov

process with state space {dmin, dmin + 1, ..., dmax}, where dmin and dmax are respectively the min

and max demand size as defined in section 3.1. Indeed, according to (9), the order placed in period

t, or equivalently, at time te if expressed in the time unit U , is determined by

Ote = E
(
ϕL+1

)
D(t−1)e +

(
1−E

(
ϕL+1

))
Gte, (14)

where the demand process itself evolves as

Dte = ϕD(t−1)e + (1− ϕ)Gte, (15)

which has a Markovian nature. Using induction on t we find that E (O) = E (D) = E (G).

Hence, if we know the value of D(t−1)e, we can define the transition to both Dte and Ote (and their

respective probabilities) based on Gte (and its probability function). This reduces the complexity of

the Markov analysis considerably as we only need to keep track of the demand D(t−1)e to determine

the transition probabilities to both the demand Dte and order size Ote in the subsequent period.

The demand and order size resulting from (14) and (15) can be a real number. As it is more

natural to have demands of integer size, the actual demand (determining the order size) is stochas-
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tically rounded3 to have size D∗
te:

D∗
te =


Dte if Dte ∈ N,
⌈Dte⌉ with probability Dte − ⌊Dte⌋ if Dte ̸∈ N,
⌊Dte⌋ with probability ⌈Dte⌉ −Dte if Dte ̸∈ N.

(16)

Analogously, because only an integer number of items can be produced, the batch size passed

to the manufacturer at time t is also stochastically rounded to size O∗
te:

O∗
te =


O+

te if O+
te ∈ N,

⌈O+
te⌉ with probability O+

te − ⌊O+
te⌋ if O+

te ̸∈ N,
⌊O+

te⌋ with probability ⌈O+
te⌉ −O+

te if O+
te ̸∈ N,

(17)

where O+
te is found by (14) when replacing D(t−1)e by D∗

(t−1)e. In order to simplify the notation,

however, we will use respectively Dte and Ote instead of D∗
te and O∗

te, and assume in the remainder

of this section thatDte and Ote are rounded according to (16) and (17) respectively. Discretising the

range of the demand and order sizes on the integer values is not only more natural, but also helps

in computing the lead time distribution in an efficient manner. That is, it allows us to construct

a Markov chain that has a considerably smaller state space, leading to less demanding time and

memory requirements for the numerical procedure involved.

Let p(g)(k, k′) denote the transition probabilities characterising the Markovian demand process,

defined by (15), so that p(g)(k, k′) = Pr(Gte = g,Dte = k′|D(t−1)e = k) for k, k′ in {dmin, dmin +

1, ..., dmax} and g in {1, . . . , gmax}. Then, due to the stochastic rounding to integer demand values

(Eq. (16)), these conditional probabilities are given by:

p(g)(k, k′) = Pr(G = g) ·
{
1{k′−1<ϕk+ϕ̄g<k′}

(
(ϕk + ϕ̄g)− ⌊ϕk + ϕ̄g⌋

)
+

1{ϕk+ϕ̄g=k′} + 1{k′<ϕk+ϕ̄g<k′+1}
(
⌈(ϕk + ϕ̄g)⌉ − (ϕk + ϕ̄g)

)}
, (18)

where we denote ϕ̄ = (1 − ϕ) and the indicator function 1{A} is 1 if the event A is true and 0

otherwise. Similarly, we can derive the transition probabilities characterising the order process,

defined by (14). Let p[q](k, k
′) denote the conditional probabilities Pr(Ote = q,Dte = k′|D(t−1)e =

k). Then, (18) combined with (17) leads to

p[q](k, k
′) =

gmax∑
g=1

p(g)(k, k′) ·
{
1{q−1<γk+γ̄g<q} ((γk + γ̄g)− ⌊γk + γ̄g⌋)+

1{γk+γ̄g=q} + 1{q<γk+γ̄g<q+1} (⌈(γk + γ̄g)⌉ − (γk + γ̄g))
}
, (19)

3For instance suppose that the demand process generates a demand of size 5.8. We round this to 5 units with
a probability of 0.20 and to 6 units with a probability of 0.80. This (integer) demand size is used to determine the
batch order that is sent to the queue. This rounding does not affect the expected value, E(D∗

te) = E(Dte) = E(D).
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where we denote γ = E(ϕL+1) and γ̄ = (1− γ).

4.3 Markov chain analysis

To create a Markov chain that is able to find the lead time distribution, we define the following

random variables:

• tn : the time of the n-th observation point, which we define as the n-th time epoch during

which the server is busy,

• a(n) : the arrival time of the order that is in service at time tn,

• Vn : the age of the order that is in service at time tn. This is defined as the duration of the

time interval [a(n), tn), expressed in the time unit of the queueing model, i.e., U ,

• Cn : the number of items of the order that is in service, which still need to either start or

complete service at time tn,

• Sn : the service phase at time tn (as defined by the PH distributed service process).

We assume that all events (e.g., order arrival, service start and service completion) occur imme-

diately after the discrete time epochs of the Markov chain. This implies that the age of any order

in service at an arbitrary epoch tn is at least 1 time unit. Then, (Vn, Da(n), Cn, Sn) forms a Markov

chain on the state space N0×{x : x = dmin, dmin+1, ..., dmax}×{c ∈ {1, 2, . . . , dmax}}×{1, 2}, as:
Vn is a positive integer; Da(n) (the demand size in the period when the order in service was placed)

is an integer between dmin and dmax; Cn an integer between 1 and dmax; and the PH service has

two phases.

The Markov chain (Vn, Da(n), Cn, Sn) evolves as follows. At each transition step, there are three

possibilities. First, the current serviced item remains in service and the phase of the service process

may change. Second, the current serviced item completes its service, and a new item of the same

batch starts service. Third, the current serviced item completes its service and when this is the

last item of the batch, it means that the complete batch is produced and a new order starts service

with batch size given by p[q](k, k
′) according to (19). Let (P )(a,k,r,s),(a′,k′,r′,s′) denote the transition

probabilities of the Markov chain (Vn, Da(n), Cn, Sn). Based on the evolution of this Markov chain,

these probabilities are then given by

(P )(a,k,r,s),(a′,k′,r′,s′) =


Ts,s′ a′ = a+ 1, k′ = k, r′ = r,

T ∗
s αs′ a′ = a+ 1, k′ = k, r′ = r − 1 ≥ 1,

T ∗
s αs′p[q](k, k

′) a′ = max(a− e+ 1, 1), r′ = q, r = 1,

0 otherwise,

(20)
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with T ∗ = (e− Te) denoting the probability that the current serviced item completes its service.

We obtain the following form for the transition matrix P of (Vn, Da(n), Cn, Sn):

P =



Ae A0 0 . . . 0 0 . . .

Ae 0 A0 . . . 0 0 . . .
...

...
. . .

. . .
...

...
. . .

Ae 0 0 . . . A0 0 . . .

0 Ae 0 . . . 0 A0
. . .

...
...

. . .
. . .

...
. . .

. . .


, (21)

where A0 and Ae are square matrices of dimension mtot = 2(dmax − dmin + 1)dmax. The matrix

A0 represents the probabilities that the service of the batch continues and is given by the first two

equations in (20), while the matrix Ae represents the probabilities that the service of the batch is

completed and is given by the 3rd equation in (20).

The MC characterised by (21) is of the GI/M/1 type (Neuts, 1981). The queueing system is

stable if and only if its utilization ρ is strictly smaller than one (a system with load ρ > 1 leads to

infinite lead times). This means that the average service time of a batch order should be strictly

smaller than the average inter-arrival time of a batch order. Since we have chosen the time unit

of our queueing model such that the average service time of a single item equals 2, and since the

average batch order size equals the average demand E(D), the average service time of a batch order

is 2E(D). The time between two order arrivals is one (review) period, or, when we express it in

the time unit of our queueing model, equal to e time units. Hence the stability condition can be

rephrased as 2E(D) < e.

For an ergodic MC of the GI/M/1 type, the steady state vector of P , denoted by π, i.e., πP = π

and π1 = 1, is computed as follows:

π1 = π1(I −Re)(I −R)−1Ae, (22)

πi = π1R
i−1, (23)

where π = (π1, π2, . . .) and πi is a 1 × mtot vector, for all i > 0. The vector π1 is normalized as

π1(I − R)−11 = 1 and the mtot × mtot rate matrix R is the smallest nonnegative solution to the

matrix equation R = A0+ReAe and can be numerically solved with a variety of algorithms, Neuts

(1981), Ramaswami (1988), Alfa et al. (2002).

Once the steady state vector π = (π1, π2, . . .) is obtained, we can find the response (or sojourn)

time in our queueing system by making the following observation: the probability that an order has

a response time of a time units is equivalent to the expected number of orders of age a that complete

service at an arbitrary time instant, divided by the expected number of orders that complete service
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Figure 1: Sequence of events within a period: 1. receive produced orders, 2. satisfy demand, 3.
place order

during an arbitrary time instant, irrespective of their age (which is 1/e for a queue with ρ < 1). This

number is obtained by observing the state of the Markov chain only at the service completion times.

Let Tr denote the response time variable and let πa(k, r, s) represent the steady state probability

of being in state (a, k, r, s). Then,

Pr(Tr = a) = eρ
∑
k,s

πa(k, 1, s) (T
∗)s. (24)

Eq. (24) is derived as follows: a batch order can only complete its service if the current serviced

item is the last one in the batch that needs to be serviced (i.e., r = 1). The term (T ∗)s originates

from the PH distributed service times, and denotes the probability that the current serviced item

completes its service when in phase s. Finally, we need to multiply with the average load ρ since

the Markov chain is only defined when the server is busy.

Note that the response time tr resulting from the queueing analysis, is expressed in the time

unit U (defined as U = E(M)/2) and is not necessarily an integer number of periods. Since in our

inventory model events occur on a discrete time basis with a time unit equal to one period, the

replenishment lead time tp is expressed in an integer number of periods. We derive the replenishment

lead time, tp, from the response time, tr, by relying on the sequence of events in a period: the

demand need not be fulfilled until the end of the period, i.e., after the receipt of produced items in

inventory, and an order is placed only after demand is satisfied (see Fig. 1). Therefore, rounding

the response time down to the nearest integer (i.e., setting tp = ⌊tr⌋) leads to the (discrete)

replenishment lead time. For instance, an order placed at the end of period t with response time

tr = 0.7 periods is added to inventory in the next period and can be used to satisfy demand in this

period; thus the 0.7 period response time corresponds to a replenishment lead time tp = 0.

Pr(Tp = i) =
∑
j

Pr(Tr = j) · 1{⌈j/e⌉=i}. (25)

This lead time distribution, Tp, is then used to start a new iteration.
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5. Characterisation of inventory distribution and safety stocks

The stationarity of the lead time distribution Tp does not necessarily imply that there is no cor-

relation between lead times. On the contrary, the endogeneity of lead times implies that it takes

a longer time to produce (and consequently replenish) a larger order, which means that the order

quantity and its replenishment lead time are correlated. The lead time for an order is also affected

by the current load of the queue, which is dependent on the previously placed orders. Hence, since

orders are correlated over time, it is fair to assume that lead times are also autocorrelated. There-

fore, if we want to characterise the inventory distribution and determine the safety stock levels in an

appropriate way, we need to take this endogeneity into account. In this section we first characterise

the transient evolution of the net inventory and then derive its steady state distribution. Based on

this inventory distribution the safety stock is then defined to ensure a desired fill rate.

5.1 Transient evolution of the net inventory

Let It denote the retailer’s net inventory at the end of period t, after demand Dt is satisfied. If we

monitor the system after the replenishment order Ot has been placed, there may be l ≥ 0 orders

in the queue and the order Ot−l is in service (since the observation moment is immediately after

an order placement). Note that l is a function of t, but we write l as opposed to l(t) to simplify

notation. Let the initial inventory level I0 be the control variable (which includes the safety stock

Is), then

It = I0 +
t∑

i=l+1

Ot−i −
t∑

i=0

Dt−i.

According to (8), the order process Ot = τ1Dt − τ2Dt−1 with τ1 =
1−E(ϕL+1)

1−ϕ and τ2 =

ϕ(1−E(ϕL))
1−ϕ . Then,

It = I0 +
t∑

i=l+1

(τ1Dt−i − τ2Dt−i−1)−
t∑

i=0

Dt−i

= I0 +
t∑

i=l+2

(τ1 − τ2 − 1)Dt−i + τ1Dt−l−1 −
l+1∑
i=0

Dt−i

= I0 + τ2Dt−l−1 −
l∑

i=0

Dt−i, (26)

as τ1 − τ2 = 1. Note that I0 = Is + (E(Tp) + 1− τ2)E(D) to satisfy E(I) = Is.
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5.2 Steady state distribution of the net inventory

We focus our analysis on the evolution of Zt = −τ2Dt−l−1 +
∑l

i=0Dt−i, as it determines the

evolution of It (as It = I0−Zt). Due to the autoregressive nature ofDt, the termsDt−i in
∑l

i=0Dt−i

are correlated. To avoid this correlation, we recursively substitute Dt−i = (ϕDt−i−1 + (1−ϕ)Gt−i)

to obtain

l∑
i=0

Dt−i = ϕ
1− ϕl+1

1− ϕ
Dt−l−1 +

l∑
i=0

(1− ϕi+1)Gt−i, (27)

which is a function of Dt−l−1, the demand that was observed in the period before the order which

is currently in service, was placed, and a sum of independent error terms Gt−i. This gives

Zt =
ϕ

1− ϕ

(
E
(
ϕL
)
− ϕl+1

)
Dt−(l+1) +

l∑
i=0

(
1− ϕi+1

)
Gt−i, (28)

where Gt−i are IID random variables. Let Z be the steady state distribution of Zt. Some care

must be taken when evaluating Z, since there is still correlation between the terms that make

up Zt. From (9) we know that the terms Gt−l and Dt−(l+1) determine the order size Ot−l. This

means that these terms also affect the time that this order spends in production, and thus, the

number of batches that have joined the queue after this order. Since a new order joins the queue

every period, there must be l orders in the queue when order Ot−l is in service. We can take

this correlation into account by tracking the joint probability of having an order in service with

age l at the end-of-period, while Gt−l = g and Dt−(l+1) = k. We denote these probabilities as

Pr
(
B̂ = l, Ĝ = g, D̂ = k

)
, with B̂ the limiting distribution of l(t) as t goes to infinity.

In order to find these joint probabilities, we could extend the 4-dimensional Markov chain

(Vn, Da(n), Cn, Sn), created to find our lead time distribution, to a 6-dimensional Markov chain

(Vn, Da(n)−e, Da(n), Ga(n), Cn, Sn), which additionally tracks the error term Ga(n) and the demand

Da(n)−e (remember that our Markov analysis works with a time unit U , where e×U = 1). However,

doing so will increase the dimensions of the block matrices of the transition matrix (21) with a factor

gmax(dmax−dmin+1). This increases the time and memory requirements of the numerical procedure

to find the steady state probabilities of the corresponding Markov chain.

Instead, we derive these joint probabilities from the (known) steady state vector π of the pre-

viously used Markov chain (Vn, Da(n), Cn, Sn) in a number of steps. We first determine the system

state probabilities at the start of service of the n+ 1’th order, by observing the Markov chain just

before the service completion of the preceding order. In the transition to the start of service of

order n + 1, we keep track of the error term G(n + 1), the order quantity O(n + 1) and the value

of D(n). This defines Lemma 1. Then, we observe the system at an arbitrary busy moment and

derive its steady state vector. This is nearly identical to the steady state vector π, but additionally
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contains the values of G(n + 1) and D(n). This results in Lemma 2. In the last step, we restrict

our observation moment to arrival instants only, which corresponds to the end of a period. This

allows us to determine the end-of-period probabilities Pr
(
B̂ = l, Ĝ = g, D̂ = k

)
, enabling us to find

the distribution of the net inventory (Theorem 1). We refer to the Appendix for the derivation of

Lemma 1 and Lemma 2.

Lemma 1 defines the system state probabilities at the start of service. Let π̄a′(g, k, r) denote

the probability that immediately after we start serving an order (say at time t), we observe an

order with age a′, an order size equal to r, while Gt−ea′ = g and Dt−(a′+1)e = k. Then,

Lemma 1 π̄a′(g, k, r) = eρ
∑

a,s πa(k, 1, s) (T
∗)s 1{a′=[a−e]+} p

(g)
[r] (k), where [x]+ = max(0, x).

Given the system state probabilities at the start of service, Lemma 2 establishes an expression

for the probability vector of the system at an arbitrary busy moment. Denote π̃a(g, k, r
′, s) as

the probability of having an order in service with age a, with r′ items of the order still remaining

to be served, and with service phase s, provided that the system is busy (say at time t), while

Gt−ea = g and Dt−(a+1)e = k. Observe that π̃a(g, k, r
′, s) and πa(k

′, r′, s) have a nearly identical

interpretation, except that k′ is the demand in the period the order in service was placed (Dt−ea),

while k is the demand in the preceding period (Dt−(a+1)e), and g reflects the realisation of Gt−ea.

Lemma 2 π̃a′(g, k, r
′, s) = 1

2E(G)

∑
u,a,r π̄a(g, k, r) p⟨s⟩(u, r, r

′) 1{a′=a+u}.

Given Lemma 1 and 2, we are in a position to compute the probabilities at arrival instants by

observing that all time epochs, where the age of the customer is a multiple of e, correspond to an

arrival instant. This results in the following Theorem.

Theorem 1

For l > 0, Pr
(
B̂ = l, Ĝ = g, D̂ = k

)
= ρe

∑
r,s

π̃el(g, k, r, s),

and Pr
(
B̂ = 0, Ĝ = g, D̂ = k

)
= ρe

(∑
s

e−1∑
a=1

πa(k, 1, s)(T
∗)s

)
Pr (G = g) .

Observe that when B̂ = 0, we use the steady state vector π of our original Markov chain instead

of π̃. When an order arrives at an empty queue, the demand corresponding to the previous order

is in fact the demand corresponding to the order that just finished service. This demand value can

be derived from the steady state vector π.

Using Theorem 1 and Eqs. (26-28) we can find the steady state distribution of Z and the

end-of-period net inventory distribution I.

19



Corollary 1

Pr (Z = z) = lim
t→∞

Pr (Zt = z)

=

∞∑
b=0

∑
gb,k

Pr
(
B̂ = b, Ĝ = gb, D̂ = k

)
·

∑
g0,g1,...,gb−1

b−1∏
j=0

Pr(G = gj)


· 1{∑b

i=0(1−ϕi+1)gi+ϕk(E(ϕL)−ϕb)/(1−ϕ)=z}.

Corollary 2 Pr(I = i) = Pr(Z = I0 − i), with I0 = Is + (E(Tp) + 1− τ2)E(D).

5.3 Determination of safety stocks

To measure customer service, we use the P2 fill rate measure, which measures the proportion of

demand that can be immediately fulfilled from the inventory on hand (Zipkin, 2000). Although

this is only an approximation, it is rather accurate near 100 percent fill rate (Sobel, 2004).

Fill rate =
E (I)+

E(D)
. (29)

The safety stock level Is that provides a target fill rate can be found using Corollary 2.

6. Numerical experiment

In this section we use our procedure to numerically investigate the impact of autocorrelation in

demand on lead times and its resulting effect on safety stocks. In the first two experiments we

demonstrate how including or not including the impact of the order stream on lead times yields

different results. In a third experiment we contrast the use of exogenous lead times with the use

of endogenous lead times, i.e., with exogenous lead times, a lead time is arbitrarily assigned to an

order; with endogenous lead times, an order’s supply lead time is explicitly related with its order

size and the current load of the system.

We consider a daily autoregressive demand, given byDAR
t = ϕDt−1+(1−ϕ)Gt, withG uniformly

distributed between 6 and 15, so that Pr(G = g) = 0.1 for g ∈ {6, 7, ..., 15} and Pr(G = g) = 0,

else. The production load at the supplier is 84%, i.e., it is available 10 hours per day and it takes

on average 48 minutes to produce a single unit, with a coefficient of variation equal to 1. Orders

arrive at the queue every day, or, setting the time unit of the queuing model to U = 24 mins, this

is equivalent to an arrival every 10·60
24 = 25 time units. Single unit service times, expressed in time

unit U , are then on average 2 time units (with a standard deviation of 2). The PH distribution

matching these first two moments is represented by α = (1/3, 2/3) and T =

[
2/3 1/3

0 0

]
, see
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Eq. (13).

In order to study the effect of the autocorrelation, we compare the AR demand with its cor-

responding IID demand, i.e., the stationary distribution of DAR
t . Previous studies have shown

that inventory stocking levels are increasing with more positive autocorrelation in demand, and

decreasing when there is more negative correlation in demand, given a random lead time indepen-

dent of the order stream. In our first experiment we numerically confirm these studies. We take a

random lead time distribution, e.g. the lead time distribution corresponding to a demand process

Gt (which is equivalent to setting ϕ = 0 in the above demand processes), and we treat this lead

time distribution exogenously, independent of the order stream. This is, we use standard inventory

theory and determine stocking levels based on the convolution of demand during the random lead

time. Table 1 reports the safety stock requirements to provide a 98% fill rate, for the AR demand

(IAR
S ) and the equivalent IID demand (IIIDS ) for different values of ϕ, together with the difference

between both (∆). Indeed, more negative correlation leads to lower safety stocks compared to

the corresponding uncorrelated (IID) demand. Positive correlation requires higher safety stocks

compared to the corresponding IID demand. We do observe, however, that in this example the

difference in safety stocks is decreasing again as ϕ approaches one. Note that for both demand

processes, safety stocks go down as the value of ϕ increases, which is due to the decrease in demand

variance as ϕ goes to one.

ϕ -0.3 -0.15 0 0.15 0.30 0.45 0.60 0.75

IAR
S 14.82 14.67 14.52 14.35 14.13 13.86 13.53 13.19

IIIDS 16.02 15.13 14.52 14.14 13.79 13.50 13.29 13.12

∆ -1.20 -0.46 0 0.21 0.34 0.36 0.24 0.07

Table 1: Impact of serial demand correlation on safety stocks (excluding the lead time impact)

We discussed earlier in this paper (section 3.2) that in a make-to-order setting, positive cor-

relation in demand amplifies the variability in the order stream, resulting in more variability at

the production queue and hence we expect longer lead times on average. Negative correlation, on

the other hand, dampens the order variability, leading to shorter lead times on the average. In

contrast, the order stream under an uncorrelated, IID demand, is neither amplified, nor dampened,

in variability; its orders equal the demand stream. That is why this policy is sometimes called a

chase sales policy. In Table 2 we report the average lead time, E(Tp), which corresponds to both the

AR and IID demand process for different values of ϕ, together with their difference (∆). We only

display the average lead times, but the entire distribution is found using the procedure described

in section 4 (Eqs. 22-25). The results confirm our expectations: lead times are on average shorter

for AR demand compared to IID when there is negative correlation due to the dampening effect in

its orders. The inverse is true for more positive correlation. In that case, the amplification in the
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order stream due to the autocorrelation increases average lead times compared to IID.

ϕ -0.3 -0.15 0 0.15 0.30 0.45 0.60 0.75

E(Tp)
AR 0.5702 0.5719 0.5727 0.5714 0.5656 0.5514 0.5273 0.4949

E(Tp)
IID 0.7038 0.6291 0.5727 0.5352 0.5037 0.4785 0.4583 0.4426

∆ -0.1336 -0.0572 0 0.0326 0.0619 0.0729 0.0688 0.0523

Table 2: Impact of serial demand correlation on average lead times

In our second experiment we take this lead time distribution, corresponding to respectively the

AR and IID demand for each value of ϕ, and use it to find the safety stock requirements. Similar

to our first experiment, we use the lead times exogenously, i.e., stocking levels are based on the

convoluted demand during the random lead time, but here we use the lead time that results from

the effective order stream that is sent to the queue. We observe the same trends as before, i.e.

more positive correlation leads to higher inventories compared to its IID equivalent, and vice versa,

more negative correlation now leads to much lower safety stocks than its IID equivalent due to its

dampening effect on lead times. However, the difference is now much more significant, due to the

reinforcing effect of the lead times. Table 3 summarizes the safety stock results when we include the

lead time impact. Hence, although the same conclusions as before are still valid, we clearly observe

that the lead time effect is strong and important in determining the safety stock requirements in the

presence of correlation. This emphasizes that when the impact on lead times is included, ignoring

the autocorrelation in demand can seriously underestimate safety stocks in the presence of positive

correlation, and overestimate inventories in the presence of negative correlation.

ϕ -0.3 -0.15 0 0.15 0.30 0.45 0.60 0.75

IAR
S 14.86 14.68 14.52 14.35 14.11 13.67 13.03 12.23

IIIDS 20.61 17.09 14.52 12.84 11.45 10.28 9.25 8.34

∆ -5.75 -2.41 0 1.51 2.66 3.39 3.78 3.89

Table 3: Impact of serial demand correlation on safety stocks, including its effect on lead times

In both these experiments we used the lead time as a random, exogenous, distribution in our

safety stock calculations, meaning that a given lead time realisation is arbitrarily assigned to an

order and we can use the convolution of demand during the random lead time. This is actually

incomplete in a true make-to-order setting, where lead times are to be treated as endogenous

variables. This means that an order’s supply time depends on its size and on the current load in

the system at the moment it is placed. Also, in the presence of correlation in demand, it is fair

to assume that its lead times also have correlation within it. In a third experiment we calculate

safety stocks when we take this endogeneity of the lead times into account, using the extensive

procedure described in section 5 to calculate the inventory distribution and corresponding safety
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stocks (IendoS ), and we compare these results with the safety stocks when lead times are assumed to

be exogenous, as we did in our previous experiment (IexoS ). Table 4 reports the results for the AR

demand (similar results are obtained for the IID demand). Clearly, the relaxation of the endogenous

lead time assumption consistently underestimates safety stocks and consequently degrades fill rates

and customer service (∆ denotes the difference between the use of exogenous and endogenous lead

times), and a substantial error is incurred when this endogeneity is ignored.

ϕ -0.3 -0.15 0 0.15 0.30 0.45 0.60 0.75

IexoS 14.86 14.68 14.52 14.35 14.11 13.67 13.03 12.23
IendoS 16.46 16.28 16.12 15.94 15.68 15.22 14.50 13.57

∆ -1.6 -1.6 -1.6 -1.59 -1.57 -1.55 -1.47 -1.34

Table 4: Safety stock comparison for AR demand with exogenous vs. endogenous lead times

7. Concluding remarks

Much of the management science literature separates the questions of production and inventory

control. However, inventory influences production by initiating orders, and production influences

inventory by completing and delivering orders to inventory. Modeling a two-echelon supply chain

(retailer-manufacturer) as a production/inventory system complies with this research question and

explicitly analyses the interaction between the retailer’s inventory and the manufacturer’s produc-

tion management. This results in new insights. For instance, Boute et al. (2007) have shown that

an increased demand variability has a double impact on supply chain performance: it not only

increases inventory variability (thereby inflating safety stocks), lead times go up as well due to the

increased order variability, which reinforces the increase in safety stocks. Therefore, decoupling

the inventory and production systems, thereby treating lead times as (exogenous) IID variables,

underestimates the required safety stocks and consequently results in lower fill rates.

In this paper we studied the autocorrelation in demand, rather than its variability. The inclusion

of autocorrelation in demand poses some additional methodological issues, compared to assuming

IID demand processes. The order stream becomes dependent on the lead time distribution. Since

the lead time distribution itself depends on the order stream (in a make-to-order environment),

we encounter a mutual dependency problem, which we tackle through an iterative procedure. The

lead time distribution at each iteration is found via a four-dimensional Markov chain, which we

solve using matrix analytic methods. To determine optimal stocking levels, we explicitly take the

correlation between orders and lead times into account, making use of the same Markov chain

analysis. This is the methodological contribution of this paper.

Empirically, time-correlated demands are commonly observed (e.g., see Disney et al. (2006);

Erkip et al. (1990)). It is a better match with real-life demand patterns in many high-tech and
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consumer goods industries and it is indeed used in many recent supply chain management research

studies (Dong and Lee, 2003). Autocorrelated demand behavior can for instance be impacted

by marketing promotions. For example, negative autocorrelation can be caused when consumers

increase their purchases in a promotion period, and strongly decrease their demand in the periods

preceding and subsequent to a promotion period, resulting in erratic sales. Positive autocorrelation,

on the other hand, denotes a wandering, meandering sales pattern.

This paper illustrates that price control mechanisms can be used to manage inventories. Our

analysis shows that when we consider the demand variance to be the same, the erratic, negatively

correlated demand results in an improved supply chain performance compared to stationary inde-

pendent demand, both in terms of lead times and safety stocks, whereas meandering, positively

correlated sales makes performance even worse than IID. When there is positive autocorrelation

in demand, the order variance is amplified compared to consumer demand, which implies that in

a make-to-order environment, this increased order variance will on average result in longer supply

lead times. This in turn inflates the safety stock requirements downstream in the chain. The in-

verse is true when demand is negatively autocorrelated. In that case there is a natural smoothing in

the replenishment orders when the optimal MSE forecasting scheme is employed, with on average

shorter lead times as a consequence, decreasing the safety stock requirements compared to IID. In

other words, the endogeneity of lead times reinforces the impact of autocorrelation in demand on

stocking levels. Ignoring this endogeneity may result in substantial errors.

This sheds new light on Sales & Operations Planning (S&OP) meetings, where sales and market-

ing managers decide, amongst others, on pricing their products, and link it with required inventories

and production lead times, which is the responsibility of operations managers. Typically, opera-

tions managers tend to constrain the pricing flexibility for sales managers since they may create

vexing ripple effects in operations. However, as we show in this paper, we need to consider both

the variability and the autocorrelation in demand caused by promotions, since they both have an

impact on the operational performance of the supply chain. Given the same variability, a price

promotion policy leading to negatively autocorrelated demand provides better performance. It is

important to note that the demand correlation as defined in this paper, is one period apart and

recurring. In other words, an AR(1) demand process. The story is different when the correlation

lasts for several periods, which is represented by an AR(p) process. In that case, the long peri-

ods of low demand following the promotions contribute to increased variability in addition to the

autocorrelation, violating the assumptions of the paper.

Retailers can influence the level of autocorrelation in its demand stream through pricing and

promotion incentives. Chen et al. (2010), e.g., discuss inventory-based dynamic pricing strategies

and their impact on the demand properties. Care should be taken, however, that the pricing

policy is designed in such a way that it primarily influences the level of serial correlation, rather

24



than increasing the overall variability in demand. It happens all too often that price promotions

increase the level of variability in demand, so that the overall effect on the supply chain is negative.

Upasani and Uzsoy (2008) provide an overview on integrative production/marketing models and

discuss the value of information sharing between marketing and production, a specific example of

which is demand management through price promotions to attain smooth production plans.

In terms of further work it may be interesting to look at other methods for smoothing the orders

placed on the manufacturing. For example, deliberate demand process mis-specification (Hosoda

and Disney, 2009) have shown to be an effective smoothing mechanism. However this rather un-

orthodox approach changes the structure of the demand process placed on the manufacturer from

ARMA(1,1) to ARMA(1,2). The proportional feedback controller approach as exemplified by

Hosoda and Disney (2006) is also an interesting smoothing mechanism, however here the AR(1)

demand is transformed into an ARMA(1,∞) process. It is hard to predict what the precise conse-

quences of these structural changes are as the correlation in the order process has a strong effect of

the behavior of the manufacturer’s queue. Another smoothing mechanism that is interesting to in-

vestigate is constraints at the retailer to perhaps reflect transport capacity (Schoenmeyr and Graves,

2009). These capacity constraints would effectively produce a smoothed response, although the dif-

ference equation approach we use here to characterise the retailer’s order stream would present

serious difficulties – a Markovian approach may be much more insightful. Finally, Baganha and

Cohen (1998) show that reduction of demand variability is possible at the plant level when it is

passed through a distribution center compared to when it is received directly from replenishment

orders issued by retailers. In this paper we didn’t introduce a distribution center – we require

retailers to smooth demand variance through the replenishment and forecasting tools we propose

– but it is an interesting thought for further research.

Appendix: Derivation of Lemma 1 and Lemma 2

Lemma 1 π̄a′(g, k, r) = eρ
∑

a,s πa(k, 1, s) (T
∗)s 1{a′=[a−e]+} p

(g)
[r] (k), where [x]+ = max(0, x).

Lemma 1 can be explained as follows.
∑

a,s πa(k, 1, s) (T ∗)s provides the expected number of

orders that complete service, with a demand k. Dividing this by the expected number of orders

that start (or complete) service during an arbitrary time instant – that is, 1/e for a queue with

ρ < 1 – returns the probability that the previous order has a demand k.

After service completion, the subsequent order starting service has age a′. This order has age

a′ = 0 when the previous order completes service before the next order arrival at the queue, or,

equivalently, when a is smaller than the inter-arrival time e. This is because the Markov chain is

only defined at time slots when the server is busy. When a > e, the next order was in the queue

for a− e time instants before starting service, and consequently a′ = a− e.
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The term p
(g)
[r] (k) defines the probability that the new order in service has size r and the error

term equals g, given previous demand k, or p
(g)
[r] (k) = Pr

(
Ote = r,Gte = g|D(t−1)e = k

)
. These

probabilities look similar to (18), but in this case we are not interested in the next period’s demand

size k′, but in the next period’s order quantity r. These probabilities can be found from

p
(g)
[r] (k) = Pr (G = g) ·

{
1{r−1<γk+γ̄g<r} ((γk + γ̄g)− ⌊γk + γ̄g⌋)+

1{γk+γ̄g=r} + 1{r<γk+γ̄g<r+1} (⌈(γk + γ̄g)⌉ − (γk + γ̄g))
}
.

Finally, multiplying these probabilities by the average load ρ, shifts from busy time slots to all

time slots.

Lemma 2 π̃a′(g, k, r
′, s) = 1

2E(G)

∑
u,a,r π̄a(g, k, r) p⟨s⟩(u, r, r

′) 1{a′=a+u}.

π̄a(g, k, r) defines the system state probabilities at the start of service of an order with size r.

Then, if we observe the system at an arbitrary busy moment tb, the probability that tb falls within

the service of an order of size r, is given by∑
v Pr (O = r) Pr (M r∗ = v) v

E (O)E (M)
=

Pr (O = r) r

E (G)
,

where
∑

v Pr (M
r∗ = v) v defines the expected service time of a batch of size r, which is equal to

E(M) · r, and E(O) = E(G).

The probability that tb is located in the u-th time epoch of a length v interval, is 1/v. Thus, the

probability of observing the system during the u-th time slot after starting service of an order of

size r, means that the service has to last for at least u time slots, which implies that this probability

is given by

Pr (O = r) r

E (G)

∑
v≥u

Pr (M r∗ = v) v

E (M r∗)
(1/v)

 =
Pr (O = r) Pr (M r∗ ≥ u)

2E (G)
.

The term p⟨s⟩(u, r, r
′) denotes the probability that an order of size r requires at least u time

slots to complete, r′ equals the number of remaining items that require service completion and s is

the service phase after u time units. These probabilities are computed from the matrix T and α.
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