
On the Necessity of Hot and Cold Data Identification
to Reduce the Write Amplification in Flash-based SSDs

B. Van Houdt

Department of Mathematics and Computer Science
University of Antwerp - iMinds

Abstract

The write performance and life span of a solid state drive is greatly influenced
by the garbage collection algorithm. This algorithm selects the data blocks to
be erased which can be subsequently used for storing new data. Any valid data
left on a selected block needs to be written elsewhere before the block can be
erased and contributes to the so-called write amplification.

As all of the data on a solid state drive is not accessed equally often, data
identification techniques have been proposed that identify the more frequently
accessed, called hot, from the less frequently accessed, termed cold, data. These
data identification techniques have been shown to be quite effective in reducing
the write amplification essentially by using different blocks to store the hot and
cold data, but they also contribute to the complexity of the device.

Write approaches that use different blocks for writes triggered by the op-
erating system and writes triggered by the garbage collection algorithm have
also been proposed. These approaches do not require a data identification tech-
nique and thus simplify the design of the device, while also reducing the write
amplification.

In this paper we compare the performance of such a write approach with
write approaches that do rely on data identification using both mean field mod-
els and simulation experiments. The main finding is that the added gain of
identifying hot and cold data is quite limited, especially as the hot data gets
hotter. Moreover, the write approaches relying on hot and cold data identifica-
tion may even become inferior if either the fraction of data labeled hot is not
ideally chosen or if the probability of having false positives or negatives when
identifying data is substantial (e.g. 5%).

1. Introduction

Data on a solid state drive (SSD) is partitioned in blocks that each contain
a fixed number of fixed size pages (e.g., 64 pages of 2 Kbyte each) and the unit

Email address: benny.vanhoudt@uantwerpen.be (B. Van Houdt)

Preprint submitted to Elsevier September 12, 2014

of data exchange is a single page. In order to write data on a page, it must
be in the erase state first. However, pages cannot be erased individually, only
entire blocks can be erased. As erasing an entire block and restoring all the data
on the block for each page update would make the device very slow, SSDs use
out-of-place writes: whenever data is written to a page, the old data is simply
marked as invalid and the new data is written elsewhere and marked as valid.
Hence, any page is either in the erase, valid or invalid state at any point in time
[6].

The garbage collection (GC) algorithm is responsible for selecting the blocks
that are erased and subsequently used to store new data. More specifically, when
activated the GC algorithm selects a block (in some algorithm specific manner),
copies the valid pages from the selected block to RAM, erases the entire block
and writes the valid pages back, leaving the remaining pages in the erase state.
The additional write operations caused by the GC algorithm contribute to the
so-called write amplification, defined as the ratio of the total number of physical
writes performed by the SSD divided by the number of logical writes requested
by the operating system.

The write amplification can be quite high if the logical storage capacity is
(nearly) fully used, as any block selected by the GC algorithm is packed with
valid data. As such SSDs rely on over-provisioning, meaning the physical storage
capacity of the device, say N blocks, exceeds the logical capacity, say U blocks,
such that at least a fraction Sf = 1 − U/N (e.g., 0.1), called the spare factor,
of the total number of pages is not in the valid state.

The write amplification can be further reduced by making sure that some
blocks contain a small number of valid pages, while others contain many valid
pages, as this creates opportunities for the GC algorithm to select blocks with a
small number of valid pages. One way to achieve this exists in implementing a
hot and cold data identification technique (e.g.,[5, 11, 7, 23]). Such a technique
attempts to identify the more frequently accessed logical pages, called the hot
pages, and uses different blocks to store hot and cold pages (where any pages
that is not hot is termed cold). This helps to reduce the write amplification as
blocks packed with hot valid pages are invalidated more quickly and therefore
tend to create blocks with a small number of valid pages.

An approach discussed in [28] exists in using different blocks for writes re-
quested by the operating system and for writes triggered by the GC algorithm.
Thus, instead of separating hot and cold pages, this approach separates inter-
nally and externally requested writes. Numerical results in [28] indicate that
this approach also reduces the write amplification, basically because the major-
ity of the externally requested writes go, by definition, to the hotter data. In
other words, this approach also achieves a form of hot and cold data separation,
but without the need to identify the hot pages.

The main objective of this paper is to compare the write amplification of the
approach of [28] with approaches that rely on a data identification technique to
see how much additional gain such an identification technique offers, that is, we
wish to examine whether the added complexity of implementing a data identifi-
cation technique is worth the trouble when focusing on the write amplification.

2

The main contributions and findings of the paper can be listed as follows:

1. We compare the write amplification of write approaches relying on a data
identification technique with [28] using both synthetic and trace-based
workloads. To derive results for the synthetic workload model we rely
on the mean field model of [28] as well as on a new mean field model
developed and validated in Section 3. For the trace-based workloads we
make use of a customized simulation program.

2. For the synthetic workloads we show that the added gain of implementing
a hot and cold data identification technique diminishes as the hot data
gets hotter. Furthermore if the number of false positives (i.e., a cold
page that is identified as hot) and negatives (i.e., a hot pages that is
marked as cold) is substantial (e.g., +5%), the approaches based on data
identification may even become inferior. The synthetic workload consists
of the so-called Rosenblum model for hot and cold data, which partitions
the pages in two classes such that all the pages within a class are accessed
equally often. As such one class of pages corresponds to the hot pages and
the other to the cold pages.

3. The trace-based workloads correspond to real life I/O traces. In this case
drawing a line between the hot and cold data is less obvious and the
optimal fraction of the data that should be marked as hot to minimize the
write amplification is workload dependent. The main finding indicates
that the write approaches using data identification do not always provide
much additional gain compared to the write approach of [28] and may
even become inferior if the fraction of the data that is labeled hot is not
properly chosen.

It is important to note that the conclusions drawn in this paper apply to any
hot and cold data identification technique, in the sense that we do not focus on
a specific technique, but instead assume some data identification technique is in
place that either works perfectly or has a specific false positive and/or negative
probability.

Before proceeding there are a few more issues that are worth addressing.
To support out-of-place writes the SSD must maintain a mapping between the
logical and physical page numbers, which is stored in the flash translation layer
(FTL) [8, 10]. In this paper we focus on a page-mapped FTL, meaning any
logical page can be mapped to any physical page at the expense of requiring
as many entries in the map as there are logical pages on the SSD. Many flash-
based devices rely on a hybrid-mapped FTL (e.g., [14, 16, 13, 15, 18]) as this
reduces the size of the FTL map. We note that some of these solutions were
designed specifically for mobile embedded systems (e.g., MP3 and PDAs) and
are not very suitable for the workloads with a substantial fraction of random
writes encountered in general-purpose computing.

Another relevant issue of an SDD is that a block can only be erased a limited
number of times [20]. A reduced write amplification helps in this regard as
overall the GC algorithm needs to perform fewer erase operations. However, the
approaches studied in this paper erase blocks used to store hot pages far more

3

Symbol Meaning
b Number of pages in a block
d Number of choices in d-choices GC algorithm
f Fraction of the pages that are hot in the Rosenblum model

fp/fn Probability of a false positive/negative
p Fraction of Sf assigned to hot partition in the STAT approach
r Probability that a hot page is requested in the Rosenblum model
N Number of physical blocks on the SSD
Sf Spare factor defined as 1− U/N
U Number of logical blocks on the SSD
ρ Ratio of the number of logical to physical blocks (U/N)

Table 1: Table of notations.

often. As such the approaches presented in this paper need to be complemented
with a wear-leveling mechanism such that the number of erase operations on
each block is approximately the same.

Finally, many modern SSDs and operating systems support the so-called
TRIM command which allows a file system to inform the SSD which pages
can be marked as invalid whenever a file is deleted. Without this command
information regarding file deletions is not passed down to the SSD and the
fraction of pages in the valid state will therefore become and remain equal to
one minus the spare factor (i.e., U/N) when the drive has been operational for
a sufficiently long time. In this paper we assume that the TRIM command is
not supported.

The paper is structured as follows. In Section 2 we introduce four different
write approaches, two of which rely on a hot/cold data identification technique,
and discuss the GC algorithms used. In Section 3 a mean field model is intro-
duced and validated to determine the write amplification of one of the write
approaches relying on data identification under a synthetic workload model.
Sections 4 and 5 compare the different approaches using synthetic and trace-
based workloads, respectively. Conclusions are drawn in Section 6

2. System operation

2.1. Write approaches

We start by introducing two write approaches that do not rely on a hot and
cold data identification technique, being the Single Write Frontier approach,
studied in [24, 19, 12, 4, 9, 27], and the Double Write Frontier discussed in [28].
Denote b as the number of pages in a block.

Single Write Frontier (SWF). A single block is labeled the write frontier (WF)
at all times and new data is written sequentially to the WF. When the WF
becomes full, the GC algorithm selects a block, temporarily removes the valid
data from this block, erases all of its pages, places the removed valid data back

4

and labels the block as the new WF. Thus, if the selected block contained j
valid pages, b− j pages of the WF are in the erase state when the GC algorithm
is finished.

Double Write Frontier (DWF). One block is labeled the external write frontier
(WFE) and another the internal write frontier (WFI) at all times. New data
is sequentially written to the WFE. When the WFE becomes full, the GC
algorithm selects a block. Assume the selected block contains j valid pages,
while the WFI has k pages in the erase state when the GC algorithm is activated.

• If k ≥ j, the j valid pages of the selected block are copied to the WFI,
the selected block is erased and becomes the new WFE (with b pages in
the erase state).

• Otherwise, k of the j valid pages are copied to the WFI, the remaining
j−k pages are copied back to the selected block after all of its pages have
been erased and the selected block becomes the new WFI.

In the latter case the GC algorithm is immediately reactivated in search of a
new WFE.

It should be noted that the DWF approach bears some resemblance to the
second chance policy discussed in [18] as this policy also copies valid pages part
of the block selected for erasure to a separate block, but as opposed to the DWF
approach this policy uses different blocks depending on whether a valid page
already received a so-called second change.

Our main objective is to compare the write amplification of the DWF ap-
proach with the following two approaches that both rely on a hot and cold data
identification technique. The first approach is closely related to [5] in the sense
that it also uses a separate write frontier for the cold and hot pages:

Hot/Cold Write Frontier (HCWF). One block is labeled the hot write frontier
(HWF) and another the cold write frontier (CWF) at all times. New hot (cold)
data is sequentially written to the HWF (CWF). All the remaining blocks are
marked as either hot or cold at all times, depending on whether the block was
last used as a HWF or CWF. The initial marking of the blocks (when the drive
is empty) is irrelevant. If the HWF becomes full the GC algorithm selects a
block. Assume the selected block contains j valid pages, while the CWF has k
pages in the erase state when the GC is activated.

• If the selected block was marked hot, the j valid pages are copied back to
the selected block after its pages have been erased and the selected block
becomes the HWF.

• If the selected block was marked cold and k ≥ j, the j valid pages are
copied to the CWF and the selected block becomes the new HWF (which
contains b pages in the erase state) and is labeled hot. Otherwise if k < j,
k of the j valid pages are copied to the CWF, the remaining j − k pages

5

are written back to the selected block after its pages have been erased and
the selected block becomes the new CWF.

In the latter case (i.e., the selected block is marked cold and k < j), the GC
algorithm is immediately reactivated in search of a new HWF. Finally, when
the CWF becomes full, instead of the HWF, the system operates as above if
we exchange the terms hot and cold.

A key feature of the HCWF solution is that it dynamically distributes the
spare fraction Sf among the hot and cold data partition (formed by the hot/cold
block markings) and blocks can move from one partition to the other. Recall,
without the TRIM command the fraction of pages in the valid state equals 1−Sf
if the drive has been operational sufficiently long. The next approach, discussed
in [9], also separates the hot and cold pages in two partitions, but the spare
space is distributed in a static offline manner among the two partitions, while
the SWF approach is used within each partition.

Static Drive Partitioning (STAT). The blocks are partitioned in two sets in a
static manner: one for the hot pages and one for the cold pages. Let fhot be
the fraction of the pages marked as hot by the data identification algorithm and
rhot be the probability that a random request updates a hot page. The size of
the hot partition is defined as

fhot(1− Sf) + pSf ,

while the cold partition has size

(1− fhot)(1− Sf) + (1− p)Sf .

In other words, we assign a fraction p of the spare factor Sf to the hot partition
and a fraction 1− p of Sf to the cold partition. Within each partition the SWF
approach is used. The basic idea is to let p exceed fhot such that the write
amplification of the hot partition (Whot) decreases at the expense of the write
amplification on the cold partition (Wcold). As the overall write amplification
is given by

rhotWhot + (1− rhot)Wcold,

this may result in an overall reduction of the write amplification. The param-
eter p is determined (numerically) such that the overall write amplification is
minimized, as such the STAT scheme corresponds to the optimal static drive
partitioning.

It is worth noting that the STAT approach basically creates two isolated
SSDs that each operate using the SWF approach: one for hot and one for
cold pages. As such this approach cannot be used directly if the id of the hot
pages changes over time, as is often the case in practice. In order to cope with
dynamic hot data, the fraction p of the spare space has to be determined in an
online manner and the blocks cleaned by the GC algorithm should be assigned

6

dynamically. An online mechanism for dynamically calculating the fraction p
was presented in [9]. The other approaches do not require any changes if the
id and amount of hot data changes over time. For the numerical experiments
reported in Sections 4 and 5, we limit ourselves to settings where the hot pages
remain hot at all times.

2.2. Garbage Collection Algorithms

In the previous section we specified four different write approaches that each
rely on a GC algorithm without discussing which GC algorithm is used to select
a block. The following GC algorithms were introduced and analyzed in a number
of earlier studies (using a page mapped FTL and without the TRIM command):

• The FIFO GC algorithm [24, 19, 30, 9] selects the blocks in a cyclic order.

• The Greedy GC algorithm [4, 9] selects the block containing the fewest
number of valid pages among all the blocks.

• The d-choices GC algorithm [27, 17, 28, 26] selects the block with the
fewest number of valid pages out of a set of d randomly chosen blocks.

• The Windowed GC algorithm [12] maintains a window containing the w
least recently selected blocks and selects the block with the fewest number
of valid pages in the current window.

Most of the above studies consider uniform random writes and focus on the
SWF approach (while N tends to infinity). Under such a setting the Greedy
algorithm is believed to be optimal, while the FIFO algorithm often has the
highest write amplification. Both the d-choices and the Windowed algorithm
provide a trade-off between the simplicity of FIFO and the performance of the
Greedy algorithm. The d-choices GC algorithm however provides a much better
trade-off than the Windowed algorithm as small values of d suffice, e.g., d = 10,
to achieve a write amplification close to that of the Greedy algorithm (see [27]
for details).

The performance of the FIFO and Greedy algorithm in the presence of hot
and cold data was analyzed in [9] for a system using the SWF approach. These
results indicated that the write amplification worsens significantly as the hot
data gets hotter, especially for the FIFO GC algorithm. Similar results for the
SWF approach were provided in [28] for the d-choices GC algorithm, while with
the DWF approach the write amplification was shown to decrease as the hot
data gets hotter. Further, under the DWF approach the Greedy algorithm is
not optimal, instead there exists an optimal value for d. In this paper we make
use of either the d-choices or Greedy GC algorithm depending on the write
approach used (see Section 3–5 for more details).

7

3. Mean field model for HCWF

3.1. Model description

In this section we introduce a mean field model for the d-choices GC algo-
rithm when combined with the HCWF approach and a perfect data identifica-
tion technique. As in [9, 28], we consider non-uniform random writes modeled
by the hot/cold data model of Rosenblum [25]. In this simple model a fraction
f of the logical address space is termed hot and the remaining pages are termed
cold, while the ids of consecutive write requests are independent and the prob-
ability that a hot page is requested equals r. Typical case studies with hot and
cold data assume that f ≤ 0.2 and r ≥ 0.8, meaning more than 80% of the
writes are to less than 20% of the data [9].

As the ids of the hot pages do not change over time in this model and we
assume that the data identification technique identifies all the hot and cold pages
as such (i.e., there are no false positives or negatives), the HCWF approach never
mixes hot and cold pages within a block. Thus, at all times any block contains
either hot or cold valid data only and can be labeled as hot or cold. In fact,
even a block with no valid data at all can be classified as hot/cold depending
on whether it was last used as a HWF or CWF. As opposed to [27, 28], we will
observe the system not only just prior to any call to the GC algorithm, but also
just prior to any write request. Let XN

n (t) ∈ S = {0, . . . , b} denote the number
of valid pages in block n and Y Nn (t) ∈ {h, c} reflect whether this block is labeled
hot (h) or cold (c) at the t-th point of observation (i.e., the t-th time the GC
algorithm is activated or a write request is received).

Let MN (t) be the occupancy measure of XN
n (t) and Y Nn (t), that is, MN (t) =

{MN
z,i(t)|z ∈ {h, c}, i ∈ S}, while

MN
z,i(t) =

1

N

N∑
n=1

1[XN
n (t) = i, Y Nn (t) = z],

for z ∈ {h, c} and i ∈ S. In other words, MN
h,i(t) (MN

c,i(t)) is the fraction of the
total number of blocks N that are labeled hot (cold) and contain i valid pages.
To ease the notation we will refer to such blocks as type (z, i) blocks. Further
let JN (t) ∈ Ω = {(k, l)|0 ≤ k, l ≤ b}\{(b, b)} represent the number of pages
written so far in the HWF and CWF. Note the GC algorithm is executed at the
t-th point of observation if J(t) is of the form (b, l) or (k, b).

It is easy to see that {(MN (t), JN (t)), t ∈ N} is a Markov chain. However,
it clearly suffers from the curse of dimensionality for practical values of N (e.g.,
N = 10, 000) and we therefore introduce a mean field model by defining M̄N (τ)
as the re-scaled process such that M̄N (t/N) = MN (t), for t ∈ N and M̄N (t)
affine in [t/N, (t + 1)/N]. Similarly, define J̄N (τ) as the re-scaled process of
JN (t). We will argue that the limit process of (M̄N (t), J̄N (t)) as N tends to
infinity is a deterministic process ~µ(t), the evolution of which is captured by
the set of ODEs given by (1). In other words, for N large and finite t, we
can approximate MN (t) by ~µ(t/N), which is the unique solution of (1) with
~µ(0) = MN (0).

8

The mean field model is defined by means of the deterministic process ~µ(t) =
{µz,i(t)|z ∈ {h, c}, i ∈ S}, the evolution of which is given by the following set of
ODEs:

d~µ(t)

dt
= ~F (~µ(t)), (1)

with

~F (~m) =
∑

(k,l)∈Ω

πk,l(~m)~f(~m, k, l)

where the drift ~f(~m, k, l) = {f(z,i)(~m, k, l)|z ∈ {h, c}, i ∈ S} is defined below
and ~π(~m) = {πk,l(~m)|(k, l) ∈ Ω} is the invariant probability vector of K(~m),
where (K(~m))i,j = P [J(t + 1) = i|J(t) = j,M(t) = ~m], with i, j ∈ Ω. The
entries of K(~m) are described in detail further on.

Given that the GC algorithm is executed while M(t) = ~m, we denote the
probability that the GC algorithm selects a type (z, i) block as pz,i(~m). As we
rely on the d-choices GC algorithm, which simply selects the block with the
least number of valid pages among a set of d randomly selected blocks, we have

pz,i(~m) =

(b∑
s=i

ms

)d
−

(
b∑

s=i+1

ms

)d mz,i

mi
,

if mi > 0 (and zero otherwise), where mj = mh,j + mc,j for j ∈ S, as all the
selected blocks must contain at least i valid pages, but not all should contain i+1
and ties are broken randomly. For further use define pz,i+(~m) =

∑
s>i pz,s(~m).

The drift f(z,i)(~m, k, l) represents the expected change in the number of
type (z, i) blocks in between two points of observation given that the occupancy
measure equals ~m and the number of pages written to the HWF and CWF
respectively equal k and l at the first point of observation. As explained below,
this leads to (where mh,b+1 = mc,b+1 = 0 to ease the notation)

fh,i(~m, k, l) = (2)
r

(i+1)mh,i+1−imh,i

bρf k < b, l < b,

−ph,i(~m) i < b, k = b or l = b,
1− ph,b(~m)− pc,(b−l)+(~m) i = b, k = b,
ph,(b−k)+(~m)− ph,b(~m) i = b, l = b,

and

fc,i(~m, k, l) = (3)
(1− r) (i+1)mc,i+1−imc,i

bρ(1−f) k < b, l < b,

−pc,i(~m) i < b, k = b or l = b,
1− pc,b(~m)− ph,(b−k)+(~m) i = b, l = b,
pc,(b−l)+(~m)− pc,b(~m) i = b, k = b,

9

with ρ = 1− Sf . First, consider the cases with k, l < b, meaning the first point
of observation corresponds to a write request. If the request is for a page on a
block of type (z, i + 1), it invalidates one of its i + 1 pages and the number of
type (z, i) blocks increases by one. Similarly, the number of type (z, i) blocks
decreases by one if the request is for a page of type (z, i). As the fraction of
hot pages equals f at all times and the spare factor equals Sf = 1− ρ, we have∑b
j=1 jmh,j = bρf and

∑b
j=1 jmc,j = bρ(1− f). Hence, the probability that an

arbitrary request is for a page on a block labeled hot with j valid pages given
by

rjmh,j/bρf

and similarly for a page on a block labeled cold with j valid pages by

(1− r)jmc,j/bρ(1− f).

This explains the expressions for the drift if k, l < b.
When either k or l equals b and i < b, the number of type (z, i) blocks de-

creases by one when such a block is selected by the GC algorithm, which occurs
with probability pz,i(~m), otherwise the number of type (z, i) blocks remains the
same.

Let us now focus on the expected change in the number of (z, b) blocks when
k = b, meaning the HWF is full and the GC algorithm is executed. When a
full cold or hot block is selected (with probability ph,b(~m) + pc,b(~m)) there is
no change in the number of (z, b) blocks, while if a cold block with more than
l− b valid pages is selected (but not with b valid pages), the CWF becomes full
and an extra type (c, b) block is created. In all the other cases, the number of
type (h, b) blocks increases by one as the call to the GC algorithm creates a new
HWF. The same reasoning applies to the case when k = l and i = b.

We end this section by discussing the entries of the transition probability
matrix K(~m). Let k and l denote the number of pages written to the HWF
and CWF respectively at time t and k′ and l′ at time t+ 1. If k and l are less
than b, the transition is caused by a write request and a single page is written
to the HWF (CWF) with probability r (1 − r). If k = b the HWF is full and
the transition corresponds to a call to the GC algorithm. If the block selected
by the GC algorithm is labeled hot and contains j valid pages, then k′ = j and
l′ = l. Otherwise, if the selected block is labeled cold with j valid pages, we
have two possibilities: either j ≤ b− l, in which case the valid pages are moved
to the CWF and the selected block becomes the new HWF (i.e., k′ = 0 and
l′ = l + j) or j > b − l, meaning b − l of the valid pages go to the CWF and
the selected block becomes the new CWF (i.e., k′ = b and l′ = j − (b − l)). A
similar argument for l = b leads to

K(~m)(k,l),(k′,l′) = (4)

10

r k < b, k′ = k + 1, l = l′ < b,
1− r l < b, l′ = l + 1, k = k′ < b,
ph,k′(~m) k = b, k′ < b, l = l′ < b,
pc,k′(~m) l = b, l′ < b, k = k′ < b,
pc,l′−l(~m) k = b, k′ = 0, b ≥ l′ ≥ l,
ph,k′−k(~m) l = b, l′ = 0, b ≥ k′ ≥ k,
pc,b−l+l′(~m) k = k′ = b, 0 < l′ < l,
ph,b−k+k′(~m) l = l′ = b, 0 < k′ < k,
ph,b(~m) + pc,b(~m) k = k′, l = l′, k or l = b,
0 otherwise.

3.2. Convergence and numerical solution

The process {(XN
n (t), Y Nn (t))n=1,...,N , J

N (t)), t ∈ N} is clearly a Markov
chain. A key feature of this Markov chain is that the state changes of (XN

n , Y
N
n),

for n = 1, . . . , N depend on (XN
k , Y

N
k), with k 6= n, only through the occupancy

measure MN (t) and JN (t). As such the model belongs to the class of mean
field interaction models studied in [3]. It is not hard to verify that the necessary
conditions (H1 to H5 in [3]) hold and therefore the following theorem follows
from Corollary 1 in [3]:

Theorem 1. If MN (0) → ~m in probability as N tends to infinity, then
sup0≤t≤T ||M̄N (t) − ~µ(t)|| → 0 in probability, where ~µ(t) is the unique solu-
tion of the ODE (1) with ~µ(0) = ~m.

In other words, for N large and finite t, we can approximate MN (t) by
~µ(t/N), which is the unique solution of the ODE (1) with ~µ(0) = MN (0).
As we are interested in the stationary regime of MN (t), the question remains
whether the convergence extends to the stationary regime. Corollary 2 in [3]
shows that it suffices to show that the ODE given by (1) has a unique fixed
point that is also a global attractor.

Proving the existence of a global attractor for the set of ODEs in (1) seems
problematic as the steady state probabilities πk,l(~m) do not appear to have a
closed form. Numerical experiments however indicate that there exists a unique
fixed point which is a global attractor. Obtaining a closed form expression for
this fixed point also appears unlikely (as for the models in [28]).

To generate numerical results we determine a fixed point ~ν = {νz,i|z ∈
{h, c}, i ∈ S} by solving the ODE numerically using Euler’s method. The write
amplification WA can subsequently be expressed as

WA =
b

b−
∑b
j=0 j(ph,j(~ν) + pc,j(~ν))

, (5)

as there are on average
∑b
j=0 j(ph,j(~ν) +pc,j(~ν)) valid pages on a block selected

by the GC algorithm and a new HWF or CWF is only selected when full. Euler’s
method is an iterative method that may require several thousand iterations.
During iteration i+ 1 we need to compute the drifts ~f(~m(i), k, l) for all (k, l) ∈

11

Ω, where ~m(i) is the occupancy vector after i iterations. Hence, we need to
determine the steady state probabilities πk,l(~m) for some vector ~m during each
iteration. As K(~m) is a b(b + 2) state Markov chain, this becomes very time
consuming for realistic values of b, e.g., b = 32 or 64. This computational issue
can be resolved as follows.

Partition Ω as Ω<b ∪ Ω=b, where Ω<b contains all the states with k, l < b
and partition K(~m) accordingly

K(~m) =

[
K(~m)<b,<b K(~m)<b,=b
K(~m)=b,<b K(~m)=b,=b

]
.

First note that the drifts given by (2) and (3) do not depend on k, l whenever
(k, l) ∈ Ω<b and denote the drift with k, l < b as f(~m,< b). F (~m) can therefore
be written as

~F (~m) =
∑

(k,l)∈Ω=b

πk,l(~m)~f(~m, k, l)

+

1−
∑

(k,l)∈Ω=b

πk,l(~m)

 f(~m,< b),

and it suffices to compute the 2b steady state probabilities πk,l(~m) with (k, l) ∈
Ω=b.

Second, looking at (4), we note that the b2 rows of K(~m) corresponding
to (k, l) ∈ Ω<b do not depend on ~m. Thus, K<b,<b(~m) and K<b,=b(~m) are
independent of ~m and are denoted as K<b,<b and K<b,=b, respectively. The
transition matrix K=b(~m) of the Markov chain obtained by censoring K(~m) on
the states in Ω=b can therefore be written as

K=b(~m) = K(~m)=b,=b +K(~m)=b,<b(I −K<b,<b)
−1K<b,=b,

where the matrix (I −K<b,<b)
−1K<b,=b is independent of ~m and needs to be

computed only once. Note, the entries of the stochastic invariant vector π=b(~m)
of the size 2b matrix K=b(~m) are identical to πk,l(~m)/c with (k, l) ∈ Ω=b, where
c is a normalization constant equal to the fraction of time the Markov chain
K(~m) spends in Ω=b:

c =
1

1 + π=b(~m)K(~m)=b,<b(−K<b,<b)−1e
,

where the vector (−K<b,<b)
−1e is independent of ~m. Using this approach the

time complexity per iteration is reduced from O(b6) to O(b4), allowing us to
compute a fixed point within seconds for b = 32 pages per block.

3.3. Model validation and numerical results

To validate the mean field model, the write amplification for the HCWF
approach computed based on (5) is compared to the write amplification obtained

12

b Sf d r f ODE simul. (95% conf.)
64 0.15 4 0.96 0.24 2.5727 2.5727 ±0.0014
64 0.12 9 0.81 0.08 2.6607 2.6606 ±0.0019
64 0.09 12 0.94 0.02 1.8762 1.8756 ±0.0008
64 0.06 5 0.86 0.13 5.3424 5.3406 ±0.0034
32 0.15 15 0.8 0.07 2.1708 2.1711 ±0.0009
32 0.12 50 0.77 0.2 3.5902 3.5912 ±0.0008
32 0.09 3 0.92 0.12 4.4076 4.4043 ±0.0013
32 0.06 8 0.88 0.03 3.2717 3.2706 ±0.0032
16 0.15 4 0.8 0.05 2.4716 2.4717 ±0.0015
16 0.12 20 0.95 0.15 2.2152 2.2158 ±0.0011
16 0.09 6 0.7 0.2 4.1795 4.1791 ±0.0009
16 0.06 10 0.9 0.1 3.2594 3.2590 ±0.0003

Table 2: The write amplification for the HCWF approach: ODE-based results versus simula-
tion experiments for a system with Nρ = U = 10, 000 blocks for various parameter settings.
Relative errors are less than 0.1%.

by simulating the Markov chain {(XN
n (t), Y Nn (t))n=1,...,N , J

N (t)), t ∈ N}, with
10, 000 logical blocks (meaning, Nρ = 10, 000). Table 2 presents the results for
various choices of b, d, r, f and Sf , it shows an excellent agreement between
the mean field model and simulation with relative errors below 0.1%. The 95%
confidence intervals in Table 2 were computed based on 5 simulation runs, each
consisting of 10, 000, 000 write requests with a warm-up period of 1, 000, 000
requests.

We end this section by briefly looking at the impact of d, the number of
choices, on the write amplification for the HCWF approach. In Section 4, we
also use this model to compare the performance of the HCWF approach with
other approaches. As indicated in [28] the Greedy algorithm (which corresponds
to setting d =∞) is not optimal in the presence of hot and cold data and under
the DWF approach discussed in [28] there exists an optimal value of d. This can
be understood as follows. Consider two blocks, one with mostly hot data and
one with mostly cold data and assume the block with the cold data contains
one or two more valid pages than the block with the hot data. In this case, the
greedy GC algorithm selects the block containing mostly hot data. However,
it may be better to select the other block first as the block containing mostly
hot data may invalidate many more pages during the time that elapses until the
other block is selected, thereby creating a reduction in the write amplification
in the long run. Thus, if d is set too large, blocks containing only some hot data
may not get sufficient opportunities to further invalidate their data.

Figure 1 indicates that the same holds true for the HCWF approach where
the optimal choice of d is marked by a star, for b = 32, Sf = 0.08 and various
combinations of r and f . Note, the choice of r and f is denoted as 100r/100f
in the legend of Figure 1. The optimal value of d clearly depends on the choice
of r and f (as well as on b and Sf as indicated by other experiments). When
comparing the HCWF with the other approaches we will always set d = 10 as

13

5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Number of choices d

W
ri
te

 A
m

p
lif

ic
a
ti
o
n

b = 32, S
f
 = 0.08

95/2.5

95/5

95/10

80/2.5

80/5

80/10

Figure 1: The impact of the number of choices d on the write amplification for the HCWF
approach under a Rosenblum workload model for various choices of r and f , with b = 32 pages
per block and a spare factor Sf = 0.08.

optimizing d is hard in practice.

4. Synthetic workloads

In this section we compare the write amplification of the SWF, DWF, HCWF
and STAT approaches under a Rosenblum workload model characterized by the
parameters r and f (with r ≥ f). Under such a model there are two types of
pages: hot and cold pages, where all the pages of the same type are accessed
with equal probability. The probability that an arbitrary request accesses a hot
page is denoted as r, while f represents the fraction of hot pages. For instance,
for r = 0.9 and f = 0.05, 90% of the requests go to 5% of the logical address
space, while the remaining 95% of the space is only accessed by 10% of the
write requests. We focus on the case with b = 32 pages per block, but similar
conclusions can be drawn for other b values.

The GC algorithm used by SWF, DWF and HCWF is the d-choices algo-
rithm, where d = 100 for SWF and d = 10 for the DWF and HCWF approach.
For the SWF approach numerical results in [28] indicated that setting d = ∞
is optimal and setting d = 100 gives a near optimal result. For the DWF and
HCWF approaches there exists an optimal value for d (see Section 3.3). As this
optimal d value depends on the workload characteristics we have set d = 10
instead, keeping in mind that a minor reduction in the write amplification can
still be expected if d is optimized.

14

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

Fraction p of S
f
 = 0.12 for Hot Data

W
ri
te

 A
m

p
lif

ic
a

ti
o

n

95/2.5

95/5

95/10

90/2.5

90/5

90/10

80/2.5

80/5

80/10

Figure 2: Impact of the fraction p assigned to the hot partition on the write amplification of
the STAT approach in an SSD with b = 32 pages per block and a spare factor Sf = 0.12.

4.1. Perfect data identification

We start by assuming that the hot/cold data identification technique iden-
tifies the hot pages in a perfect manner, meaning all the hot/cold pages are
correctly labeled and the hot and cold data is perfectly separated in the HCWF
and STAT approaches. To determine the optimal fraction p of the spare fac-
tor Sf assigned to the hot partition by the STAT approach, we numerically
minimize

Woverall(p) = rWhot(p) + (1− r)Wcold(p),

where Whot(p) (Wcold(p)) is the write amplification on the hot (cold) partition.
To determine Whot(p) (Wcold(p)), we note that each partition can be regarded
as an isolated SSD with a uniform random write workload. As such we use the
Greedy GC algorithm on each partition (as it is believed to be optimal under
uniform random writes) and determine p such that Woverall(p) is minimized.
Note that increasing p will decrease Whot(p), as the hot partition has a larger
spare factor, but increases Wcold(p). In other words, we pick p such that the
spare factor Sf is distributed among the two partitions in an optimal manner.
Figure 2 shows the impact of p on the overall write amplification of the STAT
approach (for b = 32 and Sf = 0.12) and indicates that the optimum is quite
broad, especially when the hot data is concentrated on a small fraction of the
drive (i.e., 2.5%). It also indicates that the optimal p value is very workload
dependent and picking a single near optimal p is not feasible.

Figure 3 depicts the write amplification of the SWF, DWF, HCWF and
STAT approach for various choices of r and f with b = 32 and Sf = 0.12
and 0.08. The mean field models in [28] were used to compute the results for

15

95/2.5 95/5 95/10 90/2.5 90/5 90/10 80/2.5 80/5 80/10
0

1

2

3

4

5

6

7

8

9

Data hotness 100r/100f

W
ri
te

 A
m

p
lif

ic
a
ti
o
n

b = 32

SWF

DWF

HCWF

STAT

S
f
=0.12

S
f
=0.08

Figure 3: Write amplification of the SWF, DWF, HCWF and STAT approach under a Rosen-
blum workload model for various choices of r and f , with b = 32 pages per block and a spare
factor Sf = 0.12 and 0.08.

the SWF and DWF approach, the results for HCWF were determined using
the mean field model in Section 3, while the results for STAT were found by
numerically optimizing p and using the results in [4] to determine Whot(p) and
Wcold(p).

As expected Figure 3 shows that STAT performs best, SWF is the worst
and HCWF outperforms DWF. We also note that the reduction achieved by
DWF, HCWF and STAT compared to the SWF approach, grows as the hot
data gets hotter (increasing r or decreasing f). More importantly we observe
that the reduction achieved by the DWF approach, which does not require a
data identification technique, gets closer to the reduction of HCWF and STAT
as the hot data gets hotter. In other words, if most of the write requests are
concentrated on a small fraction of the drive, there is limited additional gain
in implementing a hot/cold data identification technique even if the technique
separates the data in a perfect manner. We also note that while the performance
of STAT is superior to the HCWF approach, it does rely on the optimization of
the fraction p which was noted to be quite workload dependent (see Figure 2).

4.2. Impact of false positives and negatives

In this section we investigate the impact of having false positives and nega-
tives in the hot/cold data identification technique, where false positives are cold
pages that are incorrectly labeled as hot and false negatives are hot pages that
are labeled cold. False positives and negatives are a genuine concern for many
data identification techniques, for instance in [11] as many as 30% of the identi-
fied hot pages may be false positives if the number of hash functions or the hash

16

table size is too small. In this section we will look at the impact of having much
fewer false positives and negatives (up to 6%). False positives and negatives
clearly only affect the write amplification of the HCWF and STAT approaches,
as the SWF and DWF do not rely on hot/cold data identification. Further,
as the SWF approach is clearly inferior to DWF, we will compare HCWF and
STAT with DWF only. Let fp (fn) represent the probability that a false positive
(negative) occurs.

For the STAT approach we need to determine the optimal choice of the
parameter p (the fraction of Sf allocated to the hot partition). First note that
in the presence of false positives/negatives STAT identifies a fraction

fhot = f(1− fn) + (1− f)fp,

as hot data and a fraction fcold = 1−fhot as cold. Further, the probability that
a request goes to the hot partition is given by

rhot = r(1− fn) + (1− r)fp,

while rcold = 1−rhot. For a given p, we need to determine the write amplification
on each partition, which is done using the mean field model in [28] as the
workload on each partition corresponds to a Rosenblum model with parameters
rhot, fhot (and rcold, fcold). The optimal p is subsequently determined using a
numerical optimization method.

The write amplification of the HCWF is determined via a customized simu-
lation program as the mean field model of Section 3 does not incorporate false
positives or negatives. Although it is possible to extend the mean field model
of Section 3 to capture the impact of false positives and negatives, numerically
solving the resulting ODE would be very time consuming and would offer little
benefit compared to simulation.

Figure 4 compares the write amplification of the HCWF and STAT approach
with DWF in the presence of an increasing number of false positives (and no false
negatives), for b = 32 and Sf = 0.08. As the number of false positives increases
(from 0% to 6%), the difference between HCWF and STAT on the one hand
and DWF on the other becomes less significant, especially when the hot data is
concentrated on a small fraction of the drive, e.g., 2.5%. Thus, a substantial part
of the gain provided by implementing a hot/cold data identification technique
vanishes even in the presence of a small number of false positives. We can
also see that the STAT approach suffers more from false positives than HCWF.
Similar results in case of false negatives (and no false positives) are presented
in Figure 5, except that the increase in the write amplification is somewhat
smaller.

The impact of having both false positives and negatives is depicted in Figure
6. As expected the DWF results are even closer to HCWF and STAT. In fact,
in some cases (mostly with f = 0.025) DWF even outperforms the HCWF and
STAT approach, while HCWF is also superior to STAT in some cases as it
suffers less from having false positives and negatives. In short, if the hot data
is highly concentrated, implementing a hot/cold data identification technique

17

95/2.5 95/5 95/10 90/2.5 90/5 90/10 80/2.5 80/5 80/10
0

1

2

3

4

5

6

Data hotness 100r/100f

W
ri
te

 A
m

p
lif

ic
a

ti
o

n

STAT

DWF

HCWF

b = 32, S
f
 = 0.080% false pos

2% false pos

4% false pos

6% false pos

Figure 4: The effect of false positives on the write amplification of the STAT, HCWF and
DWF approach under a Rosenblum workload model for various choices of r and f , with b = 32
pages per block and a spare factor Sf = 0.08.

with a false positive/negative probability above 5% may deteriorate the system
performance compared to simply relying on the DWF approach.

5. Trace-based workloads

The synthetic workloads considered in Section 4 assume that all the pages
can be classified into two types of pages, where pages of the same type are
updated equally often. As such it is obvious to label one type of pages as
hot and the other type as cold. Intuitively it is also clear that the HCWF
and STAT approaches are very effective on such a workload. In reality we
are however faced with a popularity distribution, where each page has its own
access rate. As such it is far less obvious where to draw the line between
hot and cold data. Clearly, the hot data corresponds to the most popular
pages, but it is not clear which fraction of the pages should be labeled hot
to achieve the greatest benefit. Note that most data identification techniques
aim at identifying hot data [5, 11, 23], meaning they aim at partitioning the
logical address space in two parts, although some schemes have been proposed
that attempt to partition the space in more parts [7]. In this section we will
compare the SWF, DWF and HCWF approaches using trace-based simulation
experiments. We do not consider the STAT approach as determining the optimal
fraction p using simulation would be very time consuming and not feasible in
practice.

18

95/2.5 95/5 95/10 90/2.5 90/5 90/10 80/2.5 80/5 80/10
0

1

2

3

4

5

6

Data hotness 100r/100f

W
ri
te

 A
m

p
lif

ic
a

ti
o

n

b = 32, S
f
 = 0.08

DWF

STAT

HCWF

0% false neg

2% false neg

4% false neg

6% false neg

Figure 5: The effect of false negatives on the write amplification of the STAT, HCWF and
DWF approach under a Rosenblum workload model for various choices of r and f , with b = 32
pages per block and a spare factor Sf = 0.08.

5.1. I/O Workloads

For the trace-based simulation experiments presented in this section, we
made use of the following real-world I/O traces:

• rsrch0 [22, 1]: an I/O trace collected at a server supporting research
projects at Microsoft Research.

• prxy0 [22, 1]: an I/O trace containing requests of a Firewall/web proxy
server at Microsoft Research.

• online [29, 2]: an I/O trace of a coursework management workload on
Moodle at a university.

• webmail [29, 2]: an I/O trace of webmail traffic on a university depart-
ment mail server.

More specifically, we first preprocessed the above traces by aligning the offset
of each request to a multiple of 4 KB (all the offsets in the traces are multiples
of 512 bytes). Requests with sizes above 4 KB (if present) were subsequently
split into several (sequential) requests such that all requests have a size of at
most 4 KB. Some statistics on the trace files after this processing was done are
listed in Table 3. It lists the percentage of the requests that are write requests
(%Writes), the number of requests in the trace (#Requests), and the percentage
of the accessed logical block address (LBA) space that is only read (%LBA RO).
Table 4 provides information regarding the data locality of the write operations.

19

95/2.5 95/5 95/10 90/2.5 90/5 90/10 80/2.5 80/5 80/10
0

1

2

3

4

5

6

Data hotness 100r/100f

W
ri
te

 A
m

p
lif

ic
a

ti
o

n

STAT

DWF

HCWF

b = 32, S
f
 = 0.080% false pos+neg

2% false pos+neg

4% false pos+neg

6% false pos+neg

Figure 6: The effect of false positives and negatives on the write amplification of the STAT,
HCWF and DWF approach under a Rosenblum workload model for various choices of r and
f , with b = 32 pages per block and a spare factor Sf = 0.08.

I/O trace %Writes #Requests %LBA RO
rsrch0 [22] 88.87 3,253,639 19.02
prxy0 [22] 96.36 22,136,692 19.53
online [29] 73.88 5,700,499 64.87
webmail [29] 81.86 7,795,815 55.19

Table 3: Data set statistics. %Writes: percentage of writes, #Requests: number of request
and %LBA RO: the size of the LBA space that is only read.

More specifically, it lists the fraction of the accessed LBA space that corresponds
to the most frequently written data, e.g., 80% of the writes in the rsrch0 trace
go to 14.11% of the accessed logical block address space.

The SSD used in the trace-driven simulation experiments is composed of
U = bx/bc logical blocks, where x is equal to the number of logical pages
accessed during the trace. The number of physical blocks N is determined by U
by means of the spare factor Sf , i.e., U = N(1−Sf). In other words, a fraction
(1 − Sf) of the pages is in the valid state at all times during the simulation,
while all of the logical pages are accessed at least once during the simulation,
but data is only written to some of the pages. The data is initially placed in an
unfragmented manner on the drive such that the first U physical blocks contain
all the valid pages and the remaining N − U blocks contain only pages in the
erase state.

To make the simulation runs sufficiently large we also adopted the replay
method used in prior SSD work [17, 21]. By replaying a trace, we simply mean

20

rsrch0 prxy0 webmail online
10% 0.0000 0.0003 0.0002 0.0001
20% 0.0001 0.0006 0.0007 0.0007
30% 0.0003 0.0009 0.0015 0.0202
40% 0.0005 0.0012 0.0026 0.0440
50% 0.0025 0.0015 0.0050 0.0680
60% 0.0348 0.0040 0.0221 0.0920
70% 0.0879 0.0252 0.0451 0.1161
80% 0.1411 0.0464 0.0685 0.1404
90% 0.1967 0.0677 0.1127 0.1649

Table 4: Data locality of the writes, e.g., 80% of the writes in the rsrch0 trace go to 14.11%
of the accessed logical block address space.

that the I/O pattern of the trace is repeated a number of times without change
such that the overall trace length exceeds 50, 000, 000 requests. This implies
that all pages are updated several times during a single run, unless the page is
only read during the original trace. The numerical results presented in Table 5
are based on 10 simulation runs each such that the 95% confidence intervals are
sufficiently small.

5.2. Numerical results

In this section we compare the write amplification of the SWF, DWF
and HCWF approaches using trace-based simulation experiments. As the
HCWF approach relies on a hot data and cold identification technique, we
consider five different choices for the fraction fhot of the pages labeled hot:
0.0025, 0.005, 0.01, 0.02 and 0.04, meaning the fraction of pages labeled hot varies
between 0.25% and 4%. Note that for any data identification technique the frac-
tion of hot pages is either explicitly defined, e.g., as in [5] by the size of the hot
list, or implicitly determined by the parameters of the identification technique,
e.g., as in [11] and [23] where this fraction can dynamically change over time.
In either case, it is hard to optimize this fraction (or the related parameters) to
minimize the write amplification as it is workload dependent (as shown further
on). We also limit ourselves to the setting with perfect hot data identifica-
tion, introducing false positives or negatives would further increase the write
amplification of the HCWF approach somewhat.

Table 5 compares the write amplification of the SWF, DWF and HCWF ap-
proaches for Sf = 0.06, 0.10 and 0.14, while b = 64 (similar results are observed
for other b values). For each of the three approaches the d-choices GC algorithm
was used, with d = 10. A first observation is that the optimal fraction of hot
data fhot (among the values considered) to minimize the write amplification is
workload dependent: 1% for rsrch0, 2% for prxy0, 0.25% for online and 1% for
webmail. Second, the results of the DWF approach are always much closer to
the HCWF results than to the SWF results, so the DWF approach captures
most of the gain that the HCWF approach offers when compared to the SWF
approach.

21

Sf SWF DWF HCWF HCWF HCWF HCWF HCWF
0.25% 0.5% 1% 2% 4%

rsrch0 trace

0.14 2.843 1.785 1.604 1.559 1.535 1.549 1.583
0.10 3.739 2.095 1.979 1.915 1.876 1.897 1.945
0.06 5.601 2.826 2.825 2.752 2.694 2.731 2.799

prxy0 trace

0.14 3.330 1.363 1.490 1.480 1.458 1.443 1.459
0.10 4.258 1.623 1.779 1.763 1.734 1.719 1.744
0.06 6.105 2.273 2.484 2.458 2.414 2.393 2.427

online trace

0.14 1.513 1.429 1.418 1.421 1.424 1.430 1.431
0.10 1.907 1.761 1.712 1.718 1.723 1.733 1.743
0.06 2.830 2.506 2.443 2.452 2.464 2.483 2.502

webmail trace

0.14 1.859 1.430 1.474 1.421 1.399 1.419 1.444
0.10 2.414 1.729 1.801 1.722 1.685 1.715 1.755
0.06 3.600 2.441 2.592 2.481 2.408 2.455 2.519

Table 5: Impact of the fraction of data labeled hot on the write amplification of the 10-choices
GC algorithm when using the HCWF approach compared to the SWF and DWF approaches
(b = 64 pages per block).

We also note that in some cases the HCWF approach outperforms the DWF
approach for each of the fractions fhot considered (e.g., rsrch0 trace), while in
other cases the DWF approach is superior in all five cases (e.g., prxy0 trace).
Overall, it is fair to state that the write amplification of the DWF approach is
close to that of the HCWF approach and may even be below if the fraction of hot
data is not properly chosen. Thus, even if the hot and cold data identification
technique generates no false positives or negatives, the HCWF approach may
be inferior to the DWF approach for some workloads given that a fixed fraction
fhot of the pages is labeled hot. This makes the added value of some existing
data identification techniques questionable with respect to reducing the write
amplification as it complicates the design of the FTL driver without creating a
very clear additional benefit.

6. Conclusions

Hot and cold data identification techniques are known to be very useful in
reducing the write amplification on flash-based solid state drives (by separat-
ing the hot and cold data), but also contribute to the complexity and memory
requirements of the FTL driver. In this paper we compared the write amplifica-
tion of the write approach discussed in [28], called the DWF approach, with two
write approaches that do require hot and cold data identification. The DWF
approach separates writes triggered by the GC algorithm and operating system,
respectively, and therefore does not rely on any hot and cold data identification
technique.

22

Numerical results, based on both mean field models and simulation experi-
ments, demonstrated that the DWF approach can capture a substantial part of
the reduction achieved by the two write approaches that rely on hot and cold
data identification (especially as the hot data gets hotter). Further, in case the
fraction of data labeled hot is not properly chosen or in case of a substantial
number of false positives/negatives occur (e.g., 5%), the DWF approach may
even become superior. These results make the necessity of implementing a hot
and cold data identification technique questionable with respect to reducing the
write amplification as the added value is rather limited.

For future work we also intend to compare these write approaches under
dynamic hot and cold data workloads (meaning workloads for which the id and
amount of hot pages changes over time) as well as for systems supporting the
TRIM command.

Aknowledgement

This work was supported by the FWO Flanders via research project
G024714N entitled Design and analysis of garbage collection algorithms for
flash-based solid state drives.

[1] ftp://ftp.research.microsoft.com/pub/austind/msrc-io-traces/. MSRC-io-
traces.

[2] http://sylab-srv.cs.fiu.edu/dokuwiki/doku.php?id=projects:srcmap:start.
SyLab Energy Proportional Storage Systems Traces.

[3] M. Benäım and J. Le Boudec. A class of mean field interaction models for
computer and communication systems. Performance Evaluation, 65(11-
12):823–838, 2008.

[4] W. Bux and I. Iliadis. Performance of greedy garbage collection in flash-
based solid-state drives. Perform. Eval., 67(11):1172–1186, November 2010.

[5] Li-Pin Chang and Tei-Wei Kuo. An adaptive striping architecture for flash
memory storage systems of embedded systems. In Proceedings of the Eighth
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’02), RTAS ’02, pages 187–, Washington, DC, USA, 2002. IEEE
Computer Society.

[6] F. Chen, D.A. Koufaty, and X. Zhang. Understanding intrinsic charac-
teristics and system implications of flash memory based solid state drives.
ACM SIGMETRICS Perform. Eval. Rev., 37(1):181–192, 2009.

[7] Mei-Ling Chiang, Paul C. H. Lee, and Ruei-Chuan Chang. Using data
clustering to improve cleaning performance for flash memory. Softw. Pract.
Exper., 29(3):267–290, March 1999.

23

[8] T.S. Chung, D.J. Park, S. Park, D.H. Lee, S.W. Lee, and H.J. Song. A
survey of flash translation layers. Journal of Systems Architecture, 55:332–
343, 2009.

[9] P. Desnoyers. Analytic models of SSD write performance. ACM Trans.
Storage, 10(2):8:1–8:25, March 2014.

[10] E. Gal and S. Toledo. Algorithms and data structures for flash memories.
ACM Computing Surveys, 37:138–163, 2005.

[11] J. Hsieh, T. Kuo, and L. Chang. Efficient identification of hot data for
flash memory storage systems. ACM Trans. on Storage, 2:22–40, 2006.

[12] X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write amplification
analysis in flash-based solid state drives. In Proceedings of SYSTOR 2009:
The Israeli Experimental Systems Conference, SYSTOR ’09, pages 10:1–
10:9, New York, NY, USA, 2009.

[13] J. Kang, H. Jo, J. Kim, and J. Lee. A superblock-based flash translation
layer for NAND flash memory. In In EMSOFT 2006: Proceedings of the 6th
ACM IEEE International conference on Embedded software, pages 161–170.
ACM, 2006.

[14] Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min, and Yookun
Cho. A space-efficient flash translation layer for compactflash systems.
IEEE Transactions on Consumer Electronics, 48:366–375, 2002.

[15] S. Lee, D. Shin, Y.-J Kim, and J. Kim. LAST: locality-aware sector trans-
lation for NAND flash memory-based storage systems. SIGOPS Oper. Syst.
Rev., 42(6):36–42, October 2008.

[16] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song. A
log buffer-based flash translation layer using fully-associative sector trans-
lation. ACM Trans. Embed. Comput. Syst., 6(3), July 2007.

[17] Y. Li, P.P.C. Lee, and J.C.S. Lui. Stochastic modeling of large-scale solid-
state storage systems: Analysis, design tradeoffs and optimization. ACM
SIGMETRICS Perform. Eval. Rev., 41(1):179–190, 2013.

[18] Sang-Phil Lim, Sang-Won Lee, and Bongki Moon. FASTer FTL for
enterprise-class flash memory SSDs. In Proceedings of the 2010 Inter-
national Workshop on Storage Network Architecture and Parallel I/Os,
SNAPI ’10, pages 3–12, Washington, DC, USA, 2010. IEEE Computer
Society.

[19] J. Menon. A performance comparison of RAID-5 and log-structured arrays.
In Proceedings of the 4th IEEE International Symposium on High Perfor-
mance Distributed Computing, HPDC ’95, pages 167–178, Washington, DC,
USA, 1995.

24

[20] C. Min, K. Kim, H. Cho, S. Lee, and Y. I. Eom. SFS: Random write
considered harmful in solid state drives. In Proc. of USENIX Conference
on File and Storage Technologies, pages 139–155, 2012.

[21] M. Murugan and D. Du. Rejuvenator: A static wear leveling algorithm
for NAND flash memory with minimized overhead. In In Proc. of IEEE
MSST, 2011.

[22] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: Practical
power management for enterprise storage. Trans. Storage, 4(3):10:1–10:23,
November 2008.

[23] D. Park and D. Du. Poster: Hot data identification for flash memory using
multiple bloom filters. In Proc. of USENIX Conference on File and Storage
Technologies, 2011.

[24] J.T. Robinson. Analysis of steady-state segment storage utilizations in a
log-structured file system with least-utilized segment cleaning. SIGOPS
Oper. Syst. Rev., 30(4):29–32, October 1996.

[25] M. Rosenblum and J. K. Ousterhout. The design and implementation
of a log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52,
February 1992.

[26] B. Van Houdt. Analysis of the d-choices garbage collection algorithm with
memory in flash-based ssds. In Proceedings of Valuetools, Torino (Italy),
DEC 2013.

[27] B. Van Houdt. A mean field model for a class of garbage collection al-
gorithms in flash-based solid state drives. ACM SIGMETRICS Perform.
Eval. Rev., 41(1):191–202, 2013.

[28] B. Van Houdt. Performance of garbage collection algorithms for flash-based
solid state drives with hot/cold data. Performance Evaluation, 70(10):692–
703, 2013.

[29] A. Verma, R. Koller, L. Useche, and R. Rangaswami. SRCMap: energy
proportional storage using dynamic consolidation. In Proceedings of the
8th USENIX conference on File and storage technologies, FAST’10, pages
267–280, Berkeley, CA, USA, 2010.

[30] L. Xiang and B. Kurkoski. An improved analytical expression for write
amplification in NAND flash. In International Conference on Computing,
Networking, and Communications (ICNC), pages 497–501, 2012.

25

