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Abstract

In this paper we consider a multi-channel random-access carrier-sense mul-
tiple access (CSMA) line network with n saturated links, where each link
can be active on at most k of the C available channels at any time. Using
the product form solution of such a network, we develop fast algorithms to
compute the per-link throughputs and use these to study the spatial fairness
in such a network.

Recently it was shown that fairness in a single channel CSMA line network
can be achieved by means of a simple formula for the activation rates, which
depends solely on the number of interfering neighbors. In this paper we
show that this formula still achieves fairness in the multi-channel setting
under heavy traffic, but no such simple formula seems to exist in general,
unless k equals C. On the other hand, numerical experiments show that the
fairness index when using the simple single channel formula in the multi-
channel setting is close to one and tends to improve as k increases. In other
words this simple formula eliminates most of the spatial unfairness in a multi-
channel network, especially when k is close to C.

Keywords: CSMA, multi-channel, fairness, mac

1. Introduction

Random-access carrier-sense multiple access (CSMA) networks have re-
ceived considerable attention over the past few decades and various stochastic
models have been developed and studied in great detail, e.g., [6, 10, 9, 18, 19],
we refer to [7, 17] for a detailed literature overview. Most of these studies
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have focused on the channel throughput, stability, packet delay and/or fair-
ness (between different links) in case of a single channel CSMA network.
Studies on multi-channel CSMA networks are far less abundant and include
[4, 14], where [4] focuses on throughput optimality and stability and [14] on
computing the throughput in large circular and line networks where all the
links make use of equal activation rates.

Spatial unfairness in single channel CSMA networks is fairly well under-
stood [9, 20] as links at the border of the network have a restricted neigh-
borhood and thus a higher probability to access the channel. In large line
networks these border effects do not propagate inside the network as opposed
to more general network topologies. Recently it was shown that spatial un-
fairness in line networks of limited size can also be eliminated by adapting
the activation rates (i.e., mean backoff times) using a simple formula [20].
More specifically, all links achieve the same long run average throughput if
the activation rate of link i is of the form α(1 + α)γ(i)−γ(1), for any α, where
γ(i) is the number of interfering neighbors of link i. Further, these activation
rates are the only ones that achieve fairness due to [19].

In this paper, which is an extended version of [1], we study spatial fairness
of multi-channel CSMA line networks (of moderate size). We consider a
similar network model as in [14], which differs from [3] in the sense that we
limit ourselves to line networks, assume that all links have access to all the
channels, a link can be active on at most k channels at a time and that
interference is the same on each channel. While we can relax some of these
assumptions, this might considerably increase the time complexity of the
algorithms developed to compute the per-link throughputs.

The following contributions are made in this paper. We start by focusing
on the case where each link cannot be active on multiple channels at the same
time, that is, k = 1. For this case we develop fast algorithms to compute the
per-link throughputs, where the time complexity grows linear in the number
of links, by exploiting the product form solution of the network. Second,
we prove that the simple formula α(1 + α)γ(i)−γ(1) to achieve fairness in a
single channel network still guarantees fairness in the multi-channel setting
under heavy traffic, that is, if α is large. We prove this result first for k = 1
and subsequently generalize the result for 1 < k ≤ C. Third, we show
that in general a simple formula to achieve spatial fairness in the multi-
channel setting which depends only on the number of interfering neighbors
does not exist, unless k = C in which case the simple formula for C = 1 still
achieves fairness. Fourth, by making use of the fast algorithms developed
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to compute the per-link throughput, we show that while the simple formula
α(1+α)γ(i)−γ(1) does not eliminate all spatial unfairness in the multi-channel
setting (when k < C), it does eliminate most of the unfairness as the Jain’s
fairness index [12] is typically close to one. Further, this formula results
in more fairness as k increases, while the opposite occurs when using equal
rates. Finally, we show that the same methodology can be used to compute
throughputs in non-equidistant line networks.

Apart from the standard multi-channel CSMA model we also consider a
multi-channel CSMA network with channel repacking. Channel repacking
indicates that a channel is assigned to a link whenever its backoff timer
expires and there is either a channel available or one can be made available by
reassigning some of the channels already in use. While this is hard to achieve
in practice, especially on a general network topology, we mainly study this
variant as we felt that a simple formula to achieve fairness is more likely to
exist in this case. The results however indicate that this is not the case and
all the findings listed above for the standard CSMA network also apply to
the network with repacking.

The paper is structured as follows. In Section 2 we present the model
under consideration assuming that a link cannot be simultaneously active on
multiple channels, that is, when k = 1. The results presented in Sections 3 to
6 are all limited to the setting in which k = 1. In these sections we consider
systems with and without channel repacking. In Sections 7 and 8 we relax the
assumption that k = 1 and limit ourselves to the system without repacking.
The results in the latter two sections are the main novel contribution with
respect to [1] (which was limited to the k = 1 case).

2. Model description

Consider a CSMA line network consisting of C channels, n links and an
interference range of β, meaning a link cannot be simultaneously active with
one of its β left or right neighbors on the same channel. Assume a link
can only be active on one channel at a time and packet lengths follow an
exponential distribution (with mean 1). It is worth noting that the results
presented in this paper remain valid for more general packet length distribu-
tions, i.e., phase-type distributions, due to the underlying loss network (see
for instance [6, 18, 4] for more details). Backoff timers are assumed to fol-
low an exponential distribution, the average of which is specified further on.
Links are assumed to be saturated at all times, that is, each link has at least
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one packet ready for transmission at any time. We consider two systems:
with and without channel repacking.

In case of channel repacking we assume that each link maintains a single
backoff timer and is assigned a channel when the timer expires provided that
a channel is available or one can be made available by reassigning some of
the already assigned channels.

Without channel repacking we still maintain a single backoff timer per
link, but when it expires a channel is selected uniformly at random among
the C channels. This channel is assigned in case it is not being used by
any of the interfering links, otherwise a new backoff period (of exponential
duration) starts. As we assume exponential backoff times, this is equivalent
to maintaining C timers, one for each channel.

To emphasize the difference between both systems, assume C = 2, β = 1,
link 1 is using channel 1 and link 3 is using channel 2. In this case link 2
can become active with channel repacking (as user 1 simply needs to switch
channels), while it cannot without channel repacking.

Due to the exponential nature of the packet lengths and backoff times
it is easy to see that the evolution of both systems can be captured by a
continuous-time Markov chain. More specifically, for the system with repack-
ing all feasible states are given by Ω̄n the set of all binary strings of length n
such that there are at most C ones in any sequence of β+ 1 consecutive bits:

Ω̄n = {(w̄1, . . . , w̄n) ∈ {0, 1}n|
k+β∑
j=k

w̄j ≤ C for k = 1, . . . , n− β}.

Note that due to repacking it suffices to keep track of the links that are
active, meaning there is no need to keep track of the channel ids. Let w̄i = 1
if link i is active on some channel and set w̄i = 0 otherwise. When β < C, all
the links can be active simultaneously in case of repacking and Ω̄n is simply
the set of all binary strings of length n. Hence, without loss of generality we
may assume that β ≥ C in case of repacking.

Denote νi as the activation rate of link i, that is, the mean length of
the backoff period equals 1/νi. With rate 1 the Markov chain makes a
transition from a state of the form (w̄1, . . . , w̄i−1, 1, w̄i+1, . . . , w̄n) to state
(w̄1, . . . , w̄i−1, 0, w̄i+1, . . . , w̄n) as the mean packet length equals 1, while the
reverse transition occurs at rate νi provided that (w̄1, . . . , w̄i−1, 1, w̄i+1, . . . , w̄n)
belongs to Ω̄n as this implies that it is possible to assign a channel to node i
(using repacking) when the backoff period ends.
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The above Markov chain is reversible and therefore has a product form.
To see this, consider a set of n independent M/M/1/1 queues, where queue
i has arrival rate νi and service rate 1. As an M/M/1/1 queue is clearly
reversible, so is the union of n such independent queues. The above Markov
chain evolves in exactly the same manner as this set of n M/M/1/1 queues,
except that the state space is truncated to Ω̄n. In other words, transitions
that would result in leaving the set Ω̄n are ignored. The reversibility therefore
follows from the fact that a process obtained by truncating the state space of
a reversible process is reversible [13]. Moreover, the steady state probabilities
of the Markov chain obtained by truncation are identical to the ones of the
original process, up to normalization.

Hence, as the steady state probabilities of the i-th M/M/1/1 queue are
given by 1/(1+νi) and νi/(1+νi), the steady state probability π̄(w̄) of being
in state w̄ = (w̄1, . . . , w̄n) ∈ Ω̄n can be expressed as

π̄(w̄) = Z̄−1
ν

n∏
i=1

νw̄ii , (1)

where Z̄ν =
∑

w̄∈Ω̄n

∏n
i=1 ν

w̄i
i is the normalizing constant and ν = (ν1, . . . , νn).

Without repacking we clearly do need to keep track of the ids of the
channels in use as they may affect whether a link can become active (as in
the example before). Thus the set of all feasible states is given by Ωn, the
set of all strings of length n over the alphabet {0, 1, . . . , C} such that any
sequence of β+1 consecutive symbols does not contain more than one c > 0:

Ωn = {(w1, . . . , wn) ∈ {0, 1, . . . , C}n|wi = 0 or

wj 6= wi for j = max(1, i− β), . . . ,min(n, i+ β)}.

Let Cνi be the parameter of the exponential distribution of the backoff timer
of link i. Using similar arguments as in the system with repacking one finds
that this Markov chain is reversible. The difference is that we do not use a
simple M/M/1/1 queue as a starting point, but instead consider an M/M/1/1
queue with C types of customers where each customer type has the same
arrival rate νi and service rate 1. The steady state probability π(w) of being
in state w = (w1, . . . , wn) ∈ Ωn can therefore be expressed as

π(w) = Z−1
ν

n∏
i=1

ν
1[wi>0]
i , (2)
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where Zν =
∑

w∈Ωn

∏n
i=1 ν

1[wi>0]
i is the normalizing constant, ν = (ν1, . . . , νn)

and 1[A] = 1 if A is true and 1[A] = 0 otherwise.
Throughout the paper we add a bar to a variable or symbol whenever it is

related to the system with repacking, unless it concerns a common parameter
such as C, β, etc.

3. Matrix expressions for the normalizing constant

In this section we derive a matrix expression for the constants Zν and
Z̄ν . Using these expressions we can compute the normalizing constant of
the system with repacking in O(n

(
β+1
C

)
) time and of the system without

repacking in O(nmin(2β, (β + 1)C)) time.

3.1. With Channel Repacking

Theorem 1. The normalizing constant Z̄ν can be written as

Z̄ν =

(
n∏
i=1

(1 + νi)

)
P̄n(C, β + 1, ν),

where P̄n(C, β+1, ν) is the probability that we have at most C successes in any
β + 1 consecutive Bernoulli trials when performing a total of n independent
Bernoulli trials where the i-th trial has success probability pi = νi/(1 + νi).

Proof. The result is immediate by noting Z̄ν can be written as

Z̄ν =

∑
w̄∈Ω̄n

∏n
i=1

(
νi

1+νi

)1[w̄i=1] (
1− νi

1+νi

)1[w̄i=0]

∏n
i=1

1
1+νi

.

Probabilities of the type P̄n(C, β + 1, ν) have been studied previously in
the area of reliability theory [8], in fact the result in Theorem 2, where β = C,
is equivalent to the method presented in [11] for the so-called consecutive-
k-out-of-n:F system. We will generalize this method to any β ≥ C which
implies that our proposed method is also useful to analyze the reliability of
a consecutive-k-out-of-m-from-n:F system.
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Theorem 2. When β = C, we can express P̄n(β, β + 1, ν) as

P̄n(β, β + 1, ν) = e∗1

(
n∏
i=1

M̄β,β+1(νi)

)
e,

where e∗1 is first row of the size β+ 1 identity matrix, e is a column vector of
ones and

M̄β,β+1(νi) =
1

1 + νi


1 νi
...

. . .

1 νi
1 0 . . . 0

 ,
for i = 1, . . . , n.

Proof. When β = C we can have at most β successes in a row. To obtain
an expression for P̄n(β, β+ 1, ν) we construct a time-inhomogeneous Markov
chain with β + 1 transient, labeled 0 to β, and one absorbing state. We
start in state 0 and the i-th transition corresponds to performing the i-th
Bernoulli trail. The β + 1 transient states keep track of the number of
consecutive successes, meaning a success increases the state by 1, while a
failure resets the state to 0. If a success occurs in state β, meaning we
have more than β successes in a row, we move to the absorbing state. The
probability P̄n(β, β + 1, ν) can be expressed as the probability of being in a
transient state at time n.

This theorem allows us to compute Z̄ν in O(nβ) time when β = C.
In order to generalize the previous idea, we introduce the matrices

M̄C,β+1(νi) of size
∑C

k=0

(
β−C+k

k

)
. The rows and columns of M̄C,β+1(νi) are

labeled by the strings w̄ ∈ Ω̄C,β with

Ω̄C,β = ∪Ck=0{w̄ ∈ {0, 1}β−C+k|
∑
i

w̄i = k}.

Note the length of w̄ ∈ Ω̄C,β is limited by β. Let l(w̄) be the length of
w̄ and z(w̄) the position of the first zero (which exists for β > C), e.g.,
l((1, 1, 0, 1, 0, 1)) = 6 and z((1, 1, 0, 1, 0, 1)) = 3, then

(1 + νi)
(
M̄C,β+1(νi)

)
w̄,w̄′

=


1 w̄′ = (w̄z(w̄)+1, . . . , w̄l(w̄), 0),

νi l(w̄) < β, w̄′ = (w̄1, . . . , w̄l(w̄), 1),

0 otherwise.
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Theorem 3. When β > C ≥ 1, we can express P̄n(C, β + 1, ν) as

P̄n(C, β + 1, ν) = e∗1

(
n∏
i=1

M̄C,β+1(νi)

)
e,

where e∗1 is first row of the identity matrix, e is a column vector of ones.
Further, the matrices M̄C,β+1(νi) are of size

(
β+1
C

)
.

Proof. We rely on a time-inhomogeneous Markov chain as before and label
the transient states by the strings in Ω̄C,β. The binary string w̄ ∈ Ω̄C,β reflects
the outcome of all the previous trials that occurred after the (β+ 1−C)-last
failure. A new success is only allowed if the (β + 1−C)-last failure occurred
strictly less than β trials ago and simply adds a 1 to the state. If a failure
occurs we can forget about the outcome of all the trials up until and including
the first 0 in w̄, while adding a 0.

It is easy to see that |Ω̄C,β| =
(
β+1
C

)
as

C∑
k=0

(
β − C + k

k

)
=

C∑
k=0

(
β − k
C − k

)
=

(
β + 1

C

)
,

where the latter equality follows from repeatedly applying
(
n+1
k

)
=
(
n
k

)
+(

n
k−1

)
.

Note, each row of M̄C,β+1(νi) contains at most 2 nonzero entries, meaning
that multiplying M̄C,β+1(νi) with a column vector requires at most 2|Ω̄C,β|
floating point operations, which means the time complexity to compute Z̄ν
is bounded by O(n

(
β+1
C

)
).

Remark. When νi = σ, for i = 1, . . . , n, it is also possible to express Z̄n as

Z̄n =
n∑
j=0

B̄n(β + 1, C, j)σj, (3)

where B̄n(m,C, j) denotes the number of binary strings of length n with
exactly j ones such that no m consecutive bits contain more than C ones.
When β = C, we are thus interested in the number of binary strings of
length n with at most C consecutive ones. As shown in [2, Theorem 3.3],
Bn(C + 1, C, j) can be expressed as

B̄n(C + 1, C, j) =

(
n− j + 1

j

)
C

,
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where
(
n
i

)
s

is the generalized binomial coefficient defined by the recursion:(
n+ 1

i

)
s

=
s−1∑
k=0

(
n

i− k

)
s

,

and
(
n
0

)
s

= 1. Note, when s = 1 these are the usual binomial coefficients,
while for s > 1 they can be expressed in terms of the usual ones [5, p.19] by(

n

i

)
s

=

bi/sc∑
k=0

(−1)k
(
n

k

)(
n+ i− sk − 1

n− 1

)
.

For β > C counting these strings is equivalent to solving the so-called
generalized birthday problem. Rather involved closed form expressions for
B̄n(m,C, j) were derived in [16] when j/2 < C and in [15, Theorem 1] for the
general case. The latter however are expressed as a large sum of determinants
and therefore does not result in an efficient manner to compute B̄n(m,C, j).

3.2. Without Channel Repacking

Consider a (C + 1)-sided coin with outcomes 0, 1, . . . , C and assume that
the probability of having outcome c, for c ∈ {1, . . . , C}, equals p, while the
outcome 0 has the remaining probability 1− Cp, for some p ∈ (0, 1/C). Let
Sβ be the set of all binary strings of length β that contain at most C ones.

To define the set of matrices MC,β+1(νi) of size |Sβ| =
∑min(C,β)

k=0

(
β
k

)
≤ 2β,

we label the rows and columns of MC,β+1(νi) by the strings in Sβ. For
z ∈ Sβ, let n(z) be the value of the binary number represented by z, e.g.,
n((0, 1, 0, 1)) = 5, and define

(1 + Cνi) (MC,β+1(νi))z,z′ =



1 n(z) < 2β−1, n(z′) = 2n(z),

1 n(z) ≥ 2β−1, n(z′) = 2n(z)− 2β,

νi(C − k)
∑β

i=1 zi = k, n(z) < 2β−1,

n(z′) = 2n(z) + 1,

νi(C − k)
∑β

i=1 zi = k, n(z) ≥ 2β−1,

n(z′) = 2n(z)− 2β + 1,

0 otherwise.

(4)
The normalization constant Zν can be expressed as follows using the matrices
MC,β+1(νi):
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Theorem 4. The normalizing constant Zν can be written as

Zν =

(
n∏
i=1

(1 + Cνi)

)
Pn(C, β + 1, ν),

and

Pn(C, β + 1, ν) = e∗1

(
n∏
i=1

MC,β+1(νi)

)
e,

where e∗1 is first row of the size |Sβ| identity matrix, e is a column vector of
ones.

Proof. The proof is similar to the proof of Theorem 1 by noting that Pn(C, β+
1, ν) is the probability that when flipping n coins with C + 1 sides, where
p = νi/(1 + Cνi) for coin i, no sequence of β + 1 consecutive flips results in
two or more identical outcomes equal to some c > 0.

To express Pn(C, β + 1, ν) we construct a time-inhomogeneous Markov
chain (as in the proof of Theorem 3) with |Sβ| transient, labeled z ∈ Sβ,
and one absorbing state. We start in state (0, . . . , 0) and the i-th transition
corresponds to performing the i-th (C + 1)-sided coin flip. The transient
states keep track of the position of the outcomes c > 0 in the last β coin
flips. If we are in transient state z and the outcome of coin flip i is 0, we
simply shift z to the left, drop the leading bit and add a zero to the right. If
the outcome is c > 0 and

∑β
i=1 zi = k there is a probability (C − k)/C that

the outcome differs from the k outcomes with c > 0 in the last β coin flips.
If the outcome differs, we shift z to the left, drop the leading bit and add a
one to the right, otherwise we jump to the absorbing state. The probability
Pn(C, β + 1, ν) can be expressed as the probability of being in a transient
state at time n.

Note, each row of MC,β+1(νi) contains at most 2 nonzero entries, meaning
multiplying MC,β+1(νi) with a column vector requires at most 2|Sβ| floating
point operations, which means the time complexity to compute Zν is bounded
by O(nmin(2β, (β + 1)C)) as

∑β
k=0

(
β
k

)
= 2β and

∑C
k=0

(
β
k

)
≤ (β + 1)C .

4. Computing Link Throughputs

In case of channel repacking, denote the long-run average throughput of
link j as θ̄j(ν). It corresponds to the long-run fraction of time that link j is
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active on some channel. To express θ̄j(ν) define the matrices N̄C,β+1(νi) as

(1 + νi)
(
N̄C,β+1(νi)

)
w,w′

=

{
νi l(w) < β,w′ = (w1, . . . , wl(w), 1),

0 otherwise,

i.e., they are obtained by setting all the entries of M̄C,β+1(νi) that correspond
to a failure to zero.

Theorem 5. The throughput θ̄j(ν) of node j can be computed as

θ̄j(ν) =
P̄

(j)
n (C, β + 1, ν)

P̄n(C, β + 1, ν)
,

where

P̄ (j)
n (C, β + 1, ν) = e∗1

(
j−1∏
i=1

M̄C,β+1(νi)

)
N̄C,β+1(νj)

(
C∏

i=j+1

M̄C,β+1(νi)

)
e.

Proof. Using the expression for the steady state we get

θ̄j(ν) = Z̄−1
ν

∑
w̄∈Ω

n∏
i=1

νw̄ii 1[w̄j = 1].

The result now follows from Theorem 1 and by noting that P̄
(j)
n (C, β + 1, ν)

represents the probability that we have at most C successes in any β+1 con-
secutive Bernoulli trials when performing a total of n independent Bernoulli
trials where the i-th trial has success probability pi = νi/(1 + νi) and the
j-th trial is successful.

By first computing the vectors e∗1
∏j−1

i=1 M̄C,β+1(νi) as well as the vectors∏C
i=j+1 M̄C,β+1(νi)e, for j = 1, . . . , n, we can compute the vector of through-

puts θ̄(ν) = (θ̄1(ν), . . . , θ̄n(ν)) in O(n
(
β+1
C

)
) time.

For the system without channel repacking we can proceed in exactly the
same way to compute the vector θ(ν) = (θ1(ν), . . . , θn(ν)) of channel through-
puts, by defining the matrices NC,β+1(νi) as

(1 + Cνi) (NC,β+1(νi))z,z′ =



νi(C − k)
∑β

i=1 zi = k, n(z) < 2β−1,

n(z′) = 2n(z) + 1,

νi(C − k)
∑β

i=1 zi = k, n(z) ≥ 2β−1,

n(z′) = 2n(z)− 2β + 1,

0 otherwise.

(5)
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i.e., they are obtained by setting all the entries of MC,β+1(νi) that corre-
spond to outcome 0 to zero. The time complexity to determine the vector of
throughputs therefore equals O(nmin(2β, (β + 1)C)) (by first computing the
vectors e∗1

∏j−1
i=1 MC,β+1(νi) and

∏C
i=j+1MC,β+1(νi)e, for j = 1, . . . , n).

Remark. In [14] the authors also propose the use of a matrix product to
compute the throughput θj(ν) of link j, but they focus on large networks
with equal activation rates. Further, the matrices used are considerably
larger than the ones used in our approach. For instance, for C = 3 and
β = 2 matrices of size 13 are used, while in our case size

∑2
k=0

(
2
k

)
= 4

suffices.

5. Fairness

Let γ(i) be the number of links that interfere with link i. The main result
in [20] showed that in case of a single channel, i.e., C = 1, fairness can be
achieved in a line network consisting of n links if νi = α(1 + α)γ(i)−γ(1), for
i = 1, . . . , n, for any choice of α. The following section indicates that this
choice of νi still guarantees fairness in case of multiple channels, i.e., C ≥ 1,
under heavy traffic with and without repacking.

5.1. Heavy traffic

We start by considering the case where the number of channels C is at
most β + 1.

Theorem 6. Let n > β ≥ 1, C ≤ β + 1 and set νi = α(1 + α)γ(i)−γ(1), then

lim
α→∞

θj(ν) = lim
α→∞

θ̄j(ν) =
C

β + 1
,

for j = 1, . . . , n

Proof. We restrict ourselves to the system without channel repacking. The
argument for the system with repacking proceeds similarly. When α becomes
large νi ≈ αγ(i)−γ(1)+1 and the product form in (2) implies that the Markov
chain spends most of its time in the states w that maximize

val(w)
def
=

n∑
i=1

(γ(i)− γ(1) + 1)1[wi > 0].

12



We will argue that there are C!
(
β+1
C

)
states w for which val(w) is maximized

and that each j ∈ {1, . . . , n} is active in exactly C!
(

β
C−1

)
of these states. This

results in a throughput of
(

β
C−1

)
/
(
β+1
C

)
= C/(β + 1) for each link.

Define the following subset of Ωn of size C!
(
β+1
C

)
:

Mn = {w ∈ Ωn|
β+1∑
i=1

1[wi > 0] = C,wj = wj−(β+1), j > β + 1}.

Note for w ∈ Mn any set of β + 1 consecutive elements contains C distinct
positive elements. Further, wj > 0 in exactly C!

(
β

C−1

)
states w ∈ Mn, as

there are
(

β
C−1

)
ways to select the remaining C−1 positive elements in the first

β+ 1 positions. To complete the proof we now show that val(w) = (n−β)C
for w ∈Mn and val(w) < (n− β)C for w 6∈ Mn.

For n = β + 1 it is clear that val(w) = C for w ∈Mn as γ(i) = β for all
i ∈ {1, . . . , n} and val(w) is therefore equal to the number of ones in w. If
we add a link to a line network of n links, we see that γ(n− β + 1), . . . , γ(n)
increase by one, while γ(i) remains identical for i ≤ n−β and γ(n+1) = γ(1).
Further, any state w can have at most C positive elements in the last β + 1
positions, thus

val(w1, . . . , wn+1) ≤ val(w1, . . . , wn) + C.

Hence, val(w) ≤ (n − β)C for all w ∈ Ωn. When w ∈ Mn the last β + 1
positions of w = (w1, . . . , wn) contain exactly C positive elements and wn+1 =
wn−β, thus each time we add an element to w ∈ Ωn such that wn+1 = wn−β,
its value increases by C. This implies that val(w) = (n− β)C for w ∈Mn.

Assume w 6∈ Mn and w contains less than C positive elements in the first
β+1 positions. In this case val(w) < (n−β)C as val(w1, . . . , wβ+1) < C and
adding a single element can only increase the value by C. If w does contain
exactly C positive elements in the first β+1 positions, let j be smallest index
such that wj 6= wj−(β+1). In this case we must have wj = 0 and wj−(β+1) > 0,
as we otherwise get C + 1 positive elements in (wj−β, . . . , wj) and thus a
repetition of the same positive value within a set of β+ 1 consecutive values.
Thus, when adding wj, the value of (w1, . . . , wj−1) increases by C−1 instead
of C, which implies that val(w) must be less than (n− β)C.

When C ≥ β + 1 the throughput θj(ν) approaches one even for νi = α
as α tends to infinity, as Ωn contains states where all the links are active on
some channel and these will dominate as α becomes large.

13



5.2. Intermediate traffic

For intermediate rates and with repacking, setting νi = α(1 + α)γ(i)−γ(1)

does not guarantee fairness except when C = 1 as will become clear from the
following proposition:

Proposition 1. Let β = n− 2 and let φ = ν2 = . . . = νn−1, then fairness is
achieved in a system with repacking if and only if

ν1 = νn =
1

2

(√
(1− φS̄2(φ)/S̄1(φ))2 + 4φ− [1− φS̄2(φ)/S̄1(φ)]

)
, (6)

with S̄k(y) =
∑C−k

i=0

(
n−3
i

)
yi for k ≥ C and S̄k(y) = 0 for k > C.

Proof. Clearly ν1 = νn due to the symmetry of the system, while φ = ν2 =
. . . = νn−1 implies that Z̄−1

ν θ̄1(ν) = Z̄−1
ν θ̄i(ν), for i = 2, . . . , n − 1, can be

written as

ν1(1 + ν1)
C−1∑
i=0

(
n− 2

i

)
φi = φ

(
(1 + ν1)2

C−2∑
i=0

(
n− 3

i

)
φi +

(
n− 3

C − 1

)
φC−1

)
,

as link 1 can be simultaneously active with link n and at most C − 1 inter-
mediate links and if an intermediate link i is active with at most C− 2 other
intermediate links both link 1 and n can be active, while they must both be
silent if there are C − 1 other active intermediate links. In other words, ν1 is
the positive solution of a quadratic equation and (6) follows by noting that∑C−1

i=0

(
n−2
i

)
φi − φ

∑C−2
i=0

(
n−3
i

)
φi =

∑C−1
i=0

(
n−3
i

)
φi.

The next proposition establishes a similar result for the system without
repacking:

Proposition 2. Let β = n− 2 and let φ = ν2 = . . . = νn−1, then fairness is
achieved in a system without repacking if and only if

ν1 = νn =

√
(1 + φS2(φ)/S1(φ))2 + 4φ− [1− φS2(φ)/S1(φ)]

2(1 + S2(φ)/S1(φ))
, (7)

with Sk(y) =
∑C−k

i=0
C!

(C−k−i)!

(
n−3
i

)
yi for k ≥ C and Sk(y) = 0 for k > C.

14
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Figure 1: With repacking: ratio of ν2 and ν1 to achieve fairness as a function of ν1 when
β = n − 2. For C > 1 channel this ratio is no longer a linear function of ν1 and depends
on n.

Proof. Clearly ν1 = νn due to the symmetry of the system, while φ = ν2 =
. . . = νn−1 implies that Z−1

ν θ1(ν) = Z−1
ν θi(ν), for i = 2, . . . , n − 1, can be

written as

ν1(1 + ν1)C
C−1∑
i=0

i!

(
C − 1

i

)(
n− 2

i

)
φi+

ν2
1C(C − 1)

C−2∑
i=0

i!

(
C − 2

i

)(
n− 2

i

)
φi =

φC
C−1∑
i=0

i!

(
C − 1

i

)(
n− 3

i

)
φi+

φ(ν2
1 + 2ν1)C(C − 1)

C−2∑
i=0

i!

(
C − 2

i

)(
n− 3

i

)
φi+

φν2
1C(C − 1)(C − 2)

C−3∑
i=0

i!

(
C − 3

i

)(
n− 3

i

)
φi,

as link 1 can be simultaneously active with link n and at most C − 1 or
C − 2 intermediate links depending on whether link 1 and n use the same
or a different channel. If a intermediate link i is active with at most C − 2
other intermediate links both link 1 and n can be active (either on the same
or a different channel), while they must both be silent if there are C − 1
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Figure 2: Without repacking: ratio of ν2 and ν1 to achieve fairness as a function of ν1
when β = n − 2. For C > 1 channel this ratio is no longer a linear function of ν1 and
depends on n.

other active intermediate links. In other words, ν1 is the positive solution of
a quadratic equation and (7) follows by noting that

C−k∑
i=0

C!

(C − k − i)!

(
n− 2

i

)
φi − φ

C−k−1∑
i=0

C!

(C − k − 1− i)!

(
n− 3

i

)
φi =

C−k∑
i=0

C!

(C − k − i)!

(
n− 3

i

)
φi,

due to Pascal’s triangle identity.

When C = 1, both results reduce to ν1 = (
√

1 + 4φ − 1)/2, meaning
φ = ν2 = ν1(1+ν1) and ν2/ν1 = (1+ν1). Figures 1 and 2 indicate that when
C > 1 the ratio ν2/ν1 needed to achieve fairness is no longer linear in ν1 and
this ratio depends on the network size n. The results do seem to indicate
that if n� C the fairness ratio is close to (1+ν1), which is the fairness ratio
for C = 1.

6. Numerical Results

In this section we investigate the impact of having multiple channels on
the fairness in the network. We limit ourselves to the system without channel
repacking as this is the most relevant from a practical point of view and
numerical experiments not shown here confirm that the main conclusions
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Figure 3: Without repacking: fairness index as a function of the activation rate νi = α
with n = 40 and either C or β fixed.

for the system with repacking are in fact similar. To express the fairness of
the system we make use of Jain’s well-known fairness index [12], which is
computed as

J (θ(ν)) =

(∑n
j=1 θj(ν)

)2

n
∑n

j=1 θj(ν)2
.

We start by considering the case where all the links make use of the same
activation rate, that is, νi = α for i = 1, . . . , n.

Figure 3 depicts the fairness index in a line network consisting of n = 40
links as a function of the activation rate α for different combinations of C
and β. This figure demonstrates that fairness improves as the number of
channels C increases with β fixed, while increasing β with C fixed increases
unfairness. This is quite expected as decreasing C or increasing β implies
that a link is more severely influenced by the activity of its neighboring links.
We also note that the unfairness is quite severe as the index is well below one
(unless C is close to β) and worsens as links become more aggressive, i.e., α
increases.

We now repeat the same experiment, but instead of using equal rates we
set the activation rate νi = α(1 + α)γ(i)−γ(1), which guarantees fairness in
heavy traffic as proven in Theorem 6 and fairness in general when C = 1 due
to [20].

Figure 4 depicts the fairness index in a line network consisting of n = 40
links as a function of the parameter α. The first thing to note is that the
index is now very close to one (above 0.995), meaning the activation rates
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Figure 4: Without repacking: fairness index as a function of α with the activation rate
νi = α(1 + α)γ(i)−γ(1) with n = 40 and either C or β fixed.

that guarantee fairness in the single channel setup cause only a very limited
degree of unfairness in the multi-channel setup. We further note that as
opposed to the equal rate case, fairness slightly decreases with the number
of available channels C in most cases. Further, when C is fixed, having more
or less interference, that is, increasing β, may result in either an increase or
a decrease in fairness depending on the value of α.

Figure 5 further demonstrates that setting νi equal to α(1 + α)γ(i)−γ(1)

results in a drastic improvement of the network fairness compared to using
fixed activation rates. The fairness index in this particular case increases
from 0.8583 to 0.9998. Note that the choice νi = 0.5(1.5)6 ≈ 5.7 corresponds
to the rate of the links in the middle of the network when νi = α(1+α)γ(i)−γ(1)

and α = 0.5.

7. Multi-reception capabilities

In this section we discuss a generalization of the earlier results in which
we permit each link to be active on up to k ≤ C channels at a time. As in
the previous section, we focus on the system without repacking capabilities,
but we would like to stress that similar methods can be used to calculate the
throughput of a system with multi-reception capabilities and repacking. The
method to analyze such networks with repacking is in fact a more straight-
forward adaptation of the methods presented in Sections 3 and 4.

We first argue that introducing multiple reception capabilities keeps the
product form intact and subsequently show how the throughput can be com-
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puted. We assume link i maintains a backoff timer per channel with the
same rate νi. In Section 2, we noted that this was equivalent to a single
backoff timer with rate Cνi and selecting a channel uniformly at random.
This equivalence only holds when k = 1. When k > 1, the rate of the single
backoff timer should decrease as a function of the number of channels used by
the link. Indeed, assuming link i is using s(i) < k channels, it uses C − s(i)
exponentially distributed timers, leading to a rate of (C− s(i))νi if we would
replace them by a single timer.

7.1. Model description

Let u be a binary C × n-matrix, its elements denoted as ui,j. Element
ui,j equals one if and only if link j is active on channel i. Define s(u, j) =∑C

x=1 ux,j, i.e. the number of active channels of link j, and d(u, i, j) =∑j+β
x=j ui,x, i.e. the number of links that are active on channel i when consid-

ering links j until j + β. The restriction imposed by the interference range
results in the following state space:

Ωn
C,k = {u|d(u, i, j) ≤ 1, s(u,m) ≤ k, 1 ≤ i ≤ C, 1 ≤ j ≤ n− β, 1 ≤ m ≤ n},

meaning that in every sub-row of β + 1 entries, only one entry is allowed to
be 1 and all column sums must be less than or equal to k.
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The transition rates from state u ∈ Ωn
C,k are as follows. If ui,j = 1, entry

ui,j becomes 0 at rate one. If ui,j = 0, entry ui,j becomes 1 with rate νi
provided that the matrix obtained by setting ui,j = 1 in u belongs to Ωn

C,k.
The steady state of this Markov chain has a simple product form. This can be
noted using a similar argument as in Section 2. Indeed, this particular model
can be obtained by truncating the state space of a set of Cn independent
M/M/1/1 queues organized in a C×n grid, where channel i is used by node
j if queue (i, j) is currently serving a customer. The service rate is one in
all of these queues, while there are exactly C queues with arrival rate νi.
Therefore, we have

π(u) = Z−1
ν

n∏
j=1

C∏
i=1

νj
ui,j . (8)

7.2. Throughput calculation

Using a similar approach as in Section 3.2, we could construct matrices
Mβ+1

C,k (νj) of size |Ωβ
C,k| to calculate the normalizing constant. However, as

|Ωβ
C,k| can be quite large, this approach would be very time and memory

consuming. Instead, we argue that a more compact representation of the
states can be used to compute the throughput. For this purpose we define
the set

Ω̂n
C,k = {z ∈ {0, 1, . . . , k}n|

β∑
x=0

zj+x ≤ C, j = 1, . . . , n− β}.

Given z = (z1, . . . , zn), we define zl:m = (zl, . . . , zm) and f(z) =
∑n

i=1 zi.
Furthermore, we assume zl = 0 for l < 1 or l > n.

If the β left neighbors of link j have f(zj−β:j−1) channels in use, link j
still has C − f(zj−β:j−1) channels out of which it can choose zj channels. In
other words, if we represent the state of the left neighbors of link j using
zj−β:j, there are

(
C−f(zj−β:j−1)

zj

)
different possibilities for link j to be active on

zj channels. This leads to the following definition of the |Ω̂β
C,k| sized matrices

(M̂β+1
C,k (νj))z,z′ =

{
νlj
(
C−f(z)

l

)
f(z) + l ≤ C, z′ = (z2, . . . , zβ, l),

0 otherwise,
(9)

with z, z′ ∈ Ω̂β
C,k. These matrices can be used to calculate the normalizing

constant Zν,k as indicated by the following theorem:
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Theorem 7. The normalization constant of the system in which each link is
allowed to transmit on up to k channels simultaneously can be expressed as

Zν,k = e∗1

(
n∏
j=1

M̂β+1
C,k (νj)

)
e.

Proof. By making use of (8) one finds by induction on i that(
e∗1

i∏
j=1

M̂β+1
C,k (νj)

)
z

=
∑

u∈Ωn
C,k

,(s(u,i−β+1),...,s(u,i))=z

(s(u,i+1),...,s(u,n))=0

Zν,kπ(u),

for any z ∈ Ω̂β
C,k and 1 ≤ i ≤ n.

Note that each row of the matrices M̂β+1
C,k (νj) has at most k+1 nonzero ele-

ments, thus multiplying it with a column vector takes (k+1)|Ω̂β
C,k| time. This

yields an overall complexity of O(n(k + 1)|Ω̂β
C,k|), as opposed to

O(n|Ω̂n
C,k|) when summing over the entire state space.

For k = 1 the throughput of a link was defined as the long-run fraction
of time in which the link was active on some channel. When k > 1 the
throughput should also take the number of channels on which a link is active
into account. As such

θ̂k,j(ν) =
∑

u∈ΩnC,k

s(u, j)π(u).

For the actual calculation of the throughput θ̂k,j(ν), we define

(N̂β+1
C,k (νj))z,z′ =

{
lνlj
(
C−f(z)

l

)
f(z) + l ≤ C, z′ = (z2, . . . , zβ, l),

0 otherwise,
(10)

which is used in the following theorem:

Theorem 8. The throughput θ̂k,j(ν) of node j can be computed as

θ̂k,j(ν) =
e∗1

(∏j−1
i=1 M̂

β+1
C,k (νi)

)
N̂β+1
C,k (νi)

(∏n
i=j+1 M̂

β+1
C,k (νi)

)
e

e∗1

(∏n
i=1 M̂

β+1
C,k (νi)

)
e

.
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Proof. The result is a consequence of Theorem 7 and the fact that we multiply
π(u) by s(u, j).

This method can also be used when the throughput does not scale linearly
with the number of channels. Indeed, if we define ϑj(zj) as the instantaneous
throughput of link j given that it uses zj channels, we merely need to use
the matrices

(N̄β+1
C,k (νj))z,z′ =

{
ϑj(l)ν

l
j

(
C−f(z)

l

)
f(z) + l ≤ C, z′ = (z2, . . . , zβ, l),

0 otherwise,

instead of N̂β+1
C,k (νj) to calculate the throughput. As in the case with k = 1 the

time complexity to compute the vector of throughputs is identical to the time
complexity of computing the normalizing constant, that is, O(n(k+1)|Ω̂β

C,k|).

7.3. Fairness

In this section, we establish two results: when k = C setting the rates
equal to νj = α(1 + α)γ(j)−γ(1) results in fairness for any α (as proven in
[20] for C = 1) and when k < C using the same rates results in fairness
under heavy traffic (which is a generalization of Theorem 6 for k = 1). The
structure of the proof of the latter, is similar to the one of Theorem 6.

Theorem 9. Let n > β ≥ 1, k = C ≤ β + 1, α > 0 and set νj = α(1 +
α)γ(j)−γ(1), then

θ̂k,j(ν) =
α

1 + (1 + β)α
C,

for j = 1, . . . , n

Proof. Since link j uses a separate backoff timer for each channel and C = k,
this network may be regarded as a network consisting of Cn links with a
conflict graph that is composed of C connected components, where each
component is identical to the conflict graph of a line network that uses a single
channel. When C = 1 [20] showed that the rates νj result in a throughput of

α
1+(1+β)α

for each link. As the throughput of the multi-channel links is merely
the sum of the throughputs of their single channel counterparts, the result
follows.

Theorem 10. Let n > β ≥ 1, k ≤ C ≤ β + 1 and set νj = α(1 + α)γ(j)−γ(1),
then

lim
α→∞

θ̂k,j(ν) =
C

β + 1
,
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for j = 1, . . . , n

Proof. Using an argument similar to the proof of Theorem 6, one finds that
the joint process spends most of its time in states maximizing

valk(û)
def
=

n∑
j=1

C∑
i=1

ûi,j(γ(j)− γ(1) + 1).

and this value is only reached for states belonging to the set

M̂n
C,k = {û ∈ Ωn

C,k|
β+1∑
j=1

C∑
i=1

ûi,j = C, ûi,j = ûi,j−(β+1), j > β + 1}.

We now argue that the number of states in which link j is active on x
channels, for x = 1, . . . , k, is the same for any j. This can be seen by noting
that if a state û ∈ M̂n

C,k, we can construct a state û′ ∈ M̂n
C,k by a shift to

the left, i.e. û′i,1 = ûi,2, . . . , û
′
i,n−1 = ûi,n, û

′
i,n = ûi,1. By repeating this shift

β times, we can construct for every given state û ∈ M̂n
C,k in which node j is

active on s(û, j) channels, a state ûl ∈ M̂n
C,k such that s(ûl, l) = s(û, j) for

any l 6= j. Further, as the Markov chain spends on average an equal amount
of time in every state belonging to M̂n

C,k, we may conclude that every link
achieves the same throughput. As we have activity on each of the C channels
for any set of β + 1 consecutive links in M̂n

C,k, this leads to a throughput of

θ̂k,j(ν) = C
β+1

.

The previous result may seem like a very natural generalization of Theo-
rem 6, but it turns out that this generalization only works if we do not allow
repacking. In other words, if we do allow repacking, νj = α(1 + α)γ(j)−γ(1)

does not result in fairness when α tends to infinity as demonstrated by the
following example. Consider C = k = β = 2 and n = 4, meaning all links
interfere with each other except for link 1 and 4. With repacking one obtains
a Markov chain by simply keeping track of the number of channels that each
link is occupying. Further, as the system behaves as a set of n M/M/k/k
queues with a truncated state space, one can establish the following product
form for this Markov chain

π̀k(ū) = Z̀−1
ν,k

n∏
j=1

νj
ūj

(
C

ūj

)
,
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with ū = (ū1, . . . , ūn) and ūj denotes the number of acquired channels by link
j. Due to this product form, the following six states dominate as α tends
to infinity: 1101, 1011, 0110, 2002, 0200 and 0020 (their probability grows
as α4). Due to the presence of the coefficients

(
C
ūj

)
, the probability of the

first two states tends to 8/23, of the third tends to 4/23 and of the last three
tends to 1/23 as α tends to infinity. Hence, the first and the last link have a
throughput of 18/23 = 0.7826, the links in the middle have a throughput of
14/23 = 0.6037. Generalizing the proof of Theorem 6 thus fails because of
the factor

(
C
ūj

)
in the product form. In our particular example links in the

middle have a disadvantage because the probability of being in state 0110
only tends to 4/23. However, if we would consider a network of n = 6 links,
one finds that all the links have throughput 2/3. It appears that in general,
the rates νj = α(1 +α)γ(j)−γ(1) still achieves heavy traffic fairness in systems
with repacking if n is a multiple of β + 1.

7.4. Numerical results

In Figure 6 we plotted the fairness index as a function of α for k = 1, . . . , 4
when n = 40, C = 4, β = 6 and this for νj = α and νj = α(1 + α)γ(j)−γ(1).
The main observation is that k affects the fairness in a very different manner
in both scenarios. When νj = α the fairness decreases with increasing k,
while when setting νj = α(1 + α)γ(j)−γ(1) the opposite occurs. When νj =
α(1 + α)γ(j)−γ(1) we have fairness for any α when k = C, but for k < C, we
only have fairness under heavy traffic. As such it can be expected that the
larger k values result in more fairness. What is perhaps somewhat surprising
is that most of the unfairness already vanishes when we increase k from 1 to
2. When νj = α the decrease in fairness can be understood by noting that
for k = 1 the unfair advantage of links 1 and n is constrained to the first
channel they acquire, leaving the other 3 channels available for the other
links. However, if we increase k, these links can occupy more channels,
leaving fewer channels for the other links. This can also be seen in the left
plot of Figure 7: the throughput of the border links grows considerably while
the throughput of its β neighbors decreases somewhat.

Another observation that can be made in Figure 7 is that for k < C, the
rates νj = α(1 + α)γ(j)−γ(1) tend to overcompensate, giving the links that
benefited in the equal rates regime a clear disadvantage. Finally, we also
observe that k has barely any influence on the mean link throughput when
νj = α(1 + α)γ(j)−γ(1). On the other hand, increasing k when using equal
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Figure 6: Fairness in terms of load with n = 40, C = 4, β = 6, k varying between 1 and 4
with rates νi = α (left) and νi = α(1 + α)γ(i)−γ(1) (right).
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rates leads to an increased mean link throughput, meaning that the links
that benefit gain more than what the remaining links lose.

8. Inhomogeneous line networks

In this section, we further generalize the model of Section 7 by allowing
more flexibility in the number of interfering left and right links. Since the
methodology is quite similar to the one in Section 7, we simply stress the
main differences.

8.1. Model description

Let βi be the number of left neighbors interfering with link i and define
B = (β1, . . . , βn). As we assume that interference is symmetric, B fully
characterizes the interference graph. We also remark that βi+1 ≤ βi + 1, as
we assume that every left interfering link j 6= i of link i+1 also interferes with
link i. Without loss of generality, we assume that βi > 0, for i = 2, . . . , n (as
β1 = 0 by definition). If βi = 0, there would be no interference between links
1, . . . , i− 1 and i, . . . , n and both networks can be analyzed independently.

Similar to Section 7 we can define a Markov chain, the states of which
can be represented by means of a C × n-matrix with entries ūi,j. Its state
space is however different and is given by

ΩBC,k = {ū|d(ū, i, j,B) ≤ 1, s(ū,m) ≤ k, 1 ≤ i ≤ C, 1 ≤ j ≤ n, 1 ≤ m ≤ n},
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where d(ū, i, j,B) =
∑j

x=j−βj ūi,x and s(ū,m) is defined as before. Further-
more, its steady state probabilities have the same form:

π(ū) = Z̄−1
ν,k

n∏
i=1

C∏
j=1

νi
ūi,j .

To express the throughput of each link we define the set Ω̂BC,k as

Ω̂BC,k = {(z1, . . . , zn) ∈ {0, 1, . . . , k}n|
βj∑
x=0

zj−x ≤ C, j = 1, . . . , n}.

Further, let (Ω̂BC,k)i:j = {(zi, zi+1, . . . , zj)|z ∈ Ω̂BC,k}. We define the vector

M̄β1

C,k(ν1) = (1, Cν1,

(
C

2

)
ν2

1 , . . . ,

(
C

k

)
νk1 ),

and the matrices M̄βi
C,k(νi), 1 < i ≤ n, each of size |(Ω̂BC,k)i−1−βi−1:i−1| ×

|(Ω̂BC,k)i−βi:i|, with entry (z, z′) given by

(M̄βi
C,k(νi))z,z′ =


1 z′ = (zβi−1−βi+2, . . . , zβi−1+1, 0),

νji
(C−f(zβi−1−βi+2:βi−1+1)

j

)
f(zβi−1−βi+2:βi−1+1) + j ≤ C,

z′ = (zβi−1−βi+2, . . . , zβi−1+1, j).

0 otherwise,

The idea behind the construction is similar to (9), except that the number
of left neighbors varies with i. Similarly, we define

N̄β1

C,k(ν1) = (1, Cν1, 2

(
C

2

)
ν2

1 , . . . , k

(
C

k

)
νk1 ),

and

(N̄βi
C,k(νi))z,z′ =


jνji
(C−f(zβi−1−βi+2:βi−1+1)

j

)
f(zβi−1−βi+2:βi−1+1) ≤ C,

z′ = (zβi−1−βi+2, . . . , zβi−1+1, j),

0 otherwise.

The normalizing constant and the throughput of the links can now be ob-
tained using the following theorems.
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Theorem 11. The normalization constant of an inhomogeneous line network
in which each link is allowed to transmit on up to k channels simultaneously,
can be expressed as

Z̄ν,k =

(
n∏
i=1

M̄βi
C,k(νi)

)
e.

Proof. The proof is similar to the proof of Theorem 7.

Theorem 12. The throughput θ̄k,j(ν) of node j can be computed as

θ̄k,j(ν) =

(∏j−1
i=1 M̄

βi
C,k(νi)

)
N̄βi
C,k(νj)

(∏n
i=j+1 M̄

βi
C,k(νi)

)
e(∏n

i=1 M̄
βi
C,k(νi)

)
e

.

Proof. The result is a consequence of Theorem 11 and the fact that we mul-
tiply π(u) by s(u, j).

8.2. Numerical results

To demonstrate that the rates needed to achieve fairness in a homoge-
neous line network affect the throughputs in an inhomogeneous network in
a rather unpredictable manner, we perform a simple experiment. Consider
a homogeneous network of n = 40 links, let C = 4 and k = C. We split
this network into two networks of 20 links each in 6 steps by reducing the
number of interfering links in the middle during each step. The resulting
number of left neighbors for links 20 to 26 after each step is shown in Table
1, βi remains 5 for the other links. During each step, we calculate the number
of interfering neighbors γ(i) of each link and use this number to set its rate
to α(1 +α)γ(i)−γ(1). The outcome of this experiment is shown in Figure 9 for
two different values of α.

Note that as k = C, Theorem 9 implies that we have perfect fairness in
step 1 and in step 6. However, as expected, it is clear in Figure 9 that fairness
is lost when the network is no longer homogeneous. Furthermore, it is hard
to predict what happens to the fairness during the intermediate steps. For
instance, when α = 4, we see that the fairness is the most affected in step
4, while when α = 100, fairness worsens with every step, except for the last
step, which restores the fairness in a single step.
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HH
HHHHStep

i
20 21 22 23 24 25 26

1 5 5 5 5 5 5 5
2 5 4 4 4 4 4 5
3 5 3 3 3 3 4 5
4 5 2 2 2 3 4 5
5 5 1 1 2 3 4 5
6 5 0 1 2 3 4 5

Table 1: Number of left neighbors of links 20 to 26 after each step when splitting a
homogeneous line network of 40 links into two networks of size 20.
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Figure 9: Throughput for each link when stepwise splitting a network of 40 links with
C = k = 4, β = 5 and rates νi = α(1 + α)γ(i)−γ(1) with α = 4 (left) and α = 100 (right).

9. Conclusion

In this paper we considered an idealized multi-channel CSMA line network
characterized by the number of links n, the interference range β, the number
of channels C and the vector of backoff rates (ν1, . . . , νn). We developed a
numerical method to compute the vector of throughputs in a time complexity
that is linear in the number of links n (while being exponential in β and C).

Using this method we analyzed the fairness in a multi-channel CSMA line
network and found that while the simple formula of [20] for the single channel
setting does not generalize to a system with C > 1 channels, the degree of
unfairness that this formula causes is very limited. We further showed that
this unfairness vanishes under heavy traffic conditions, that is, as the backoff
rates tend to infinity.
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While the initial model is restricted to homogeneous line networks where
a link can be active on at most one channel at a time, we generalized the
proposed methodology such that both these restrictions can be relaxed.
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