
Analytic models for flash-based SSD performance
when subject to trimming

R. Verschoren and B. Van Houdt

Department of Mathematics and Computer Science
University of Antwerp - iMinds

Middelheimlaan 1, B-2020 Antwerp, Belgium
Email:{robin.verschoren,benny.vanhoudt}@uantwerpen.be

Abstract—Garbage collection is known to have a profound impact
on SSD performance as it strongly influences the write amplifica-
tion. Another key value that impacts the write amplification is the
amount of over-provisioning, which lowers the write amplification
at the cost of reducing the user-visible storage capacity. Write
amplification occurs as the valid pages that remain on a block
selected by garbage collection need to be copied to a free block
before an erasure can take place. Some of these valid pages may
however belong to a deleted file and therefore copying them is
redundant. To avoid copying deleted data, the operating system
can issue a Trim command to invalidate pages whenever a file is
deleted.

Prior analytical studies on the write amplification in SSDs
assumed that no trimming takes place. In this paper we generalize
a number of mean field models to assess the impact of trimming
on the write amplification. Using these models we argue that
the write amplification in a (large) system with trimming can be
determined by analyzing a system without trimming that uses a
larger over-provisioning factor (and modified hot fraction, in case
of hot and cold data). Using numerical results we further show
that trimming cold data results in a more significant reduction in
the write amplification compared to trimming hot data.

I. INTRODUCTION

Modern SSDs make use of several channels each connected
to a small number of flash chips. Each flash chip in turn may
accommodate multiple dies, each consisting of a few planes.
Finally, a single data plane contains thousands of blocks each
holding a fixed number of pages, e.g., 64 pages per block.
Data reads and writes are performed at the granularity of flash
pages. Logical page addresses are often mapped to planes in
a deterministic manner, that is, the channel, chip, die and
plane numbers are fully determined by the logical address
[13]. However, data within a plane is written in an out-of-place
manner. Therefore the flash translation layer (FTL) maintains a
table that maps logical page numbers to physical page number
for each plane.

The reason for supporting out-of-place writes is that in order
to write data to a page, the page must be in the erase state,
which is one of the three possible states, the other two being
valid or invalid. However, erasing data can only occur on a
block level. Thus, in order to erase a single page, the entire
block containing the page must be erased. Erasing a complete

block and writing back all the valid data for each write would
detriment the SSD performance. Therefore all data is written
to a special block on the plane, called the write frontier (WF),
and the physical page corresponding to the former location of
the logical page is marked as invalid.

When the WF of a plane becomes full the garbage collection
(GC) algorithm is triggered. The GC algorithm creates a new
WF by selecting a victim block within the plane and erasing all
of its pages. The victim block typically contains several valid
pages and these are copied to a free block before the victim
block is erased. These internal copy operations contribute to
the so-called write amplification. The write amplification is
equal to the ratio of the total number of writes divided by
the number of writes requested by the operating system. If
we denote pj as the probability that the victim block contains
j valid pages and denote the number of pages per block as
b, the write amplification (WA) is given by WA = b/(b −∑
j jpj).

When the write amplification increases, SSD performance
degrades and its life span reduces as write operations are
much slower than read operations and each block can only
be erased a limited number of times, e.g., 10K times [6],
before becoming useless. As such it is important that the
GC algorithm, in the long run, selects blocks with as few
valid pages as possible. To help reduce the write amplification
SSDs are over-provisioned. More specifically, the user-visible
address space, consisting of U pages, is smaller than the
total number of pages T on the SSD. The fraction of over-
provisioning 1−U/T is defined as the spare factor Sf and the
larger Sf the more likely the GC algorithm is to find a block
with a limited number of valid pages, which reduces the write
amplification.

As with traditional hard disk drives, file delete operations
are invisible to the SSD. Thus, some of the pages may be
marked as valid and may be copied by the GC algorithm,
while its data might belong to a deleted file. To prevent
such unnecessary copy operations the Trim command was
introduced (in the ATA command set). This command allows
the operating system to inform the SSD about data that can
be invalidated on the SSD (when a file is deleted).

Prior analytical models to assess the write amplification in
SSDs have analyzed various GC algorithms: Random, Greedy
[2], [3], Windowed [8], [9], FIFO [3], d-choices [14], [15],
[16]. These models considered uniform random write work-
loads, hot and cold data models [12], as well as systems with
hot and cold data identification [7], [11]. In all of these studies
the FTL layer was assumed to be page-mapped, meaning a
logical page can we written on any physical page of the plane,
which provides better read and write performance than block-
mapped FTLs at the expense of requiring more memory to
store the FTL map. Further, these studies also assumed the
Trim command was either not supported by the operating
system/SSD device or was disabled.

In this paper we generalize (some of) the mean field models
developed in [14], [15], [16] such that the impact of the
Trim command can be studied while still considering a page-
mapped FTL. Using these models we argue that the write
amplification of a system that supports trimming can be
computed from the models without trimming if the over-
provisioning factor (and hot fraction) in the latter models is
properly set. For instance, consider a system with spare factor
Sf , i.e., utilization ρ = 1 − Sf , subject to uniform random
writes. Assume the trim usage is such that logical pages are
written at rate λ and if valid trimmed at rate µ. In this case
the system with trimming is shown to have the same write
amplification as a system without trimming with spare factor
1− ρλ/(λ+ µ). Note that λ/(λ+ µ) is the probability that a
logical page is stored on the drive and thus ρλ/(λ+µ) is the
mean effective utilization. If we assume a moderate trim rate
µ/λ = 0.07 (as found in some SSD workloads), this implies
that an SSD with 5% over-provisioning and trimming behaves
as an SSD with 11.2% over-provisioning without trimming
as far as the write amplification is concerned. To the best of
our knowledge, the only analytical models to study the effect
of trimming were presented in [5], [4], which were mostly
limited to uniform random writes and trim operations, where
an incoming request is a trim request with a fixed probability
q < 1/2.

The remainder of the paper is structured as follows. Section II
discusses the GC algorithms, workload models and system
setups considered in this paper. The mean field models,
their validation and the equivalence with the models without
trimming is presented in Section III. Numerical examples
are presented in Section IV, while conclusions and possible
generalizations are discussed in Section V.

II. SYSTEM DESCRIPTION

Although the GC algorithm typically runs on a plane level,
the mean field models presented below can be used for SSDs
that perform GC either globally or on a plane level. In the
latter case the workload specified below corresponds to the
workload offered to a single plane and the blocks considered
are the set of blocks belonging to this plane.

A. GC algorithms

We consider the same class C of GC algorithms as in [14]. A
GC algorithm belongs to C if and only if the following two
conditions hold:

C1: Let b be the number of pages per block, mi the fraction
of blocks containing exactly i valid pages and denote
~m = (m0, . . . ,mb), then there should exist a set of
probabilities pj(~m) where pj(~m) reflects the probability
that a block containing exactly j valid pages is selected
by the GC algorithm. In other words, whether block n,
for any n, is selected by the GC algorithm should only
depend on the number of valid pages j on block n and
the fraction of blocks mi containing exactly i valid pages,
for i = 0, . . . , b.

C2: For j = 0, . . . , b, the probabilities pj(~m) should be
smooth in ~m with ~m ∈ ∆ = {~m ∈ Rb+1|mi ≥
0,
∑b
i=0mi = 1}.

An important subset of C is the class of d-choices GC
algorithms which select d ≥ 1 blocks uniformly at random
and erase a block containing the least number of valid pages
among the d selected blocks. Hence,

pj(~m) =

 b∑
`=j

m`

d

−

 b∑
`=j+1

m`

d

. (1)

Note, when d = 1 this algorithm corresponds to the Random
GC algorithm, while letting d tend to infinity coincides with
the Greedy GC algorithm, which selects the block containing
the least number of valid pages.

The mean field models introduced in this paper can be
directly used to study a more general class of GC algo-
rithms, where pj(~m) is replaced by pi,j(~m), which equals
the probability that a block is selected containing ex-
actly j valid pages, i of which are hot. In this case
~m ∈ ∆h/c = {(m0,0,m0,1,m1,1,m0,2, . . . ,mb,b)|mi,j ≥
0,
∑

0≤i≤j≤bmi,j = 1} and mi,j is the fraction of blocks
containing exactly j valid pages, i of which are hot.

B. Workload model

As read requests do not impact the write amplification, it
suffices to model the write and trim requests. Let mi be the
fraction of the number of blocks containing exactly i valid
pages. We consider two setups.

1) Uniform random writes and trims: We assume that there
exists a set of probabilities w(~m), such that w(~m) is smooth
in ~m ∈ ∆. An incoming request is a write request with
probability w(~m) and a trim request with probability x(~m) =
1−w(~m), where ~m is the current occupancy vector. Thus, the
probability that an incoming request is a write or trim request
depends only on the fraction of blocks containing exactly i
valid pages, for i = 0, . . . , b.

f r (HW/(HW+CW)) HT/(HT+CT) HT/HW CT/CW

0.05 0.6619 0.5841 0.0623 0.0868
0.10 0.7291 0.6976 0.0676 0.0788
0.15 0.7768 0.7641 0.0695 0.0746
0.20 0.8126 0.8109 0.0705 0.0712
0.25 0.8417 0.8395 0.0704 0.0716
0.30 0.8663 0.8627 0.0703 0.0725
0.35 0.8872 0.8712 0.0693 0.0806
0.40 0.9040 0.8985 0.0702 0.0747
0.45 0.9197 0.9009 0.0692 0.0871
0.50 0.9327 0.9127 0.0691 0.0916

TABLE I: Fractions of write and trim requests to hot (HW,HT)
and cold data (CW,CT) in the JEDEC Test Trace [10] for
various choices of f .

An example that fits within the above framework is the case
where each logical page is requested (i.e., written) at rate λ
and any valid page on the SSD is invalidated by a trim request
at rate µ, which yields

w(~m) =
λρ

λρ+ µ
∑b
i=0

i
bmi

,

where ρ = U/T = 1− Sf .

2) Rosenblum workload [12]: A fraction f of the logical
pages are called hot and the remaining pages are called cold.
An incoming write updates a hot page with probability r ≥ f
(and a cold page with probability 1−r) [12]. When combined
with trim requests, we assume there exists a set of probabilities
wh(~m), wc(~m), xh(~m) and xc(~m) that are a smooth function
of ~m ∈ ∆h/c, such that wh(~m) (wc(~m)) is the probability
that an incoming request writes a hot (cold) page and xh(~m)
(xc(~m)) is the probability that an incoming request trims
a hot (cold) page. Further, these probabilities are such that
r = wh(~m)/(wh(~m) + wc(~m)).

For example, assume hot (cold) logical pages are writ-
ten at rate λh (λc) and hot (cold) valid pages on the
SSD are trimmed at rate µh (µc), respectively, then
(wh(~m), wc(~m), xh(~m), xc(~m)) is proportional to

(λhρf, λcρ(1− f), µh
∑

0≤i≤j≤b

i

b
mi,j , µc

∑
0≤i≤j≤b

j − i
b

mi,j),

where mi,j is the fraction of blocks containing j valid pages,
i of which are hot. In this case r = λhf/(λhf + λc(1 −
f)).

To get an estimate of the fraction of requests that correspond
to Trim commands in real workloads, we analyzed the JEDEC
Test Trace [10]. Table I shows the relation between the number
of write and trim requests, where the f most frequently
requested addresses (w.r.t. both trim and write requests) were
designated as hot. Table I indicates that the fraction of trim
requests is approximately 7% for both hot and cold data, re-
gardless of the fraction of pages that are labeled as hot.

C. Write frontier(s)

We consider two modes of operation, where the second mode
relies on a hot/cold data identification technique.

1) Single write frontier: In this mode we use a single special
block called the write frontier (WF). Pages are written sequen-
tially to the WF, until it is full. Assume that the first j pages of
the WF are in the (in)valid state, while the last b−j are in the
erase state at some point. Next, assume a write operation takes
place on a logical page that is physically stored on page k of
block number x. This operation first writes the new content to
page j + 1 of the WF (changing its state from erase to valid)
and afterwards invalidates page k on block number x. When
the WF is full, the GC algorithm creates a new WF as follows:
it first selects a new block, say block number y, copies all the
valid pages of block y to the random-access memory (RAM),
erases block number y and copies the valid pages back from
RAM to block y. Note, in practice one avoids the need to copy
the valid pages to RAM and back by making use of a single
free block [3]. Whether or not such a free block is used does
not affect the write amplification as we only count the writes
to the SSD.

2) HCWF: In this mode, one block is labeled as the hot write
frontier (HWF) and another as the cold write frontier (CWF)
at all times. New data is written to the corresponding WF,
based on its hotness. We assume that a perfect hot/cold data
identification technique is used, so a page is always written
to the correct WF. Every block is also marked as hot or cold,
based on whether it was last used as a hot or cold WF. The
initial marking of the blocks is irrelevant. If the HWF becomes
full, the GC algorithm is triggered to select a new HWF.
Assume the GC algorithm selects a block containing j valid
pages, called the victim block. Assume the CWF contains b−k
valid pages and thus, has k pages in the erase state when the
GC algorithm is called. There are now 2 cases:

• If the victim block was marked hot, the j valid pages are
simply copied back unto the victim after erasing it. The
current HWF is released back into the data pool and the
victim becomes the new HWF.

• If the victim block was marked cold and j ≤ k, the j valid
pages are copied to the CWF and the victim becomes the
new HWF (with b pages in the erase state) after erasure.
Otherwise if j > k, k of the j pages are (randomly)
selected and copied to the CWF. The remaining j − k
pages are written back to the victim after erasure and the
victim block becomes the new CWF. In this case the GC
algorithm is triggered again to find a new HWF.

A same approach is used when the CWF becomes full, but
with the terms hot and cold reversed.

III. MEAN FIELD MODELS

In this section, we introduce three mean field models that
extend some of the models presented in [14], [15], [16] to

Symbol Explanation

N number of physical blocks
b number of pages per block
Sf spare factor
ρ utilization/load (1− Sf)
mi fraction of blocks with i valid pages
~m occupancy vector (m0, . . . ,mb)
ρeff(~m) effective utilization/load given ~m
pj(~m) prob. that GC selects block with j valid pages given ~m
w(~m) prob. that a request is a write request given ~m
x(~m) prob. that a request is a trim request given ~m
πj(~m) prob. that the WF holds i valid pages given ~m

TABLE II: Table of notations for uniform random writes

incorporate the impact of the Trim command. When setting
the trim probability equal to zero, the drift equations of the
first two models do not coincide with to the ones presented in
[14], [15] as the system is observed at different time epochs.
For the third model, the drift equations do reduce to the ones
presented in [16] if the trim probability is set to zero.

A. Uniform random writes

We first consider a system subject to uniform random writes
that relies on a single write frontier. We show that under
uniform random writes the new model reduces to the model in
[14] with a modified parameter ρ, where ρ = 1−Sf . In other
words, under uniform random writes a system with spare factor
Sf that has the Trim command enabled performs identical to
a system with a larger spare factor with the Trim command
disabled. Thus, the result presented next provides theoretical
support for the approach taken in [5] under uniform random
writes and trim operations.

1) Model description: We define a discrete-time model by
observing the system state at the time epochs just prior to a
write, a trim request or an invocation of the GC algorithm.
Let XN

n (t) ∈ S = {0, . . . , b} for n = 1, . . . , N , denote
the number of valid pages on block number n at the t-th
point of observation (i.e. the t-h time the GC algorithm is
activated or a write or trim request is received). Let MN (t)
be the occupancy measure of XN

n (t), that is, MN (t) =(
MN

0 (t),MN
1 (t), . . . ,MN

b (t)
)

and

MN
i (t) =

1

N

N∑
n=1

1[XN
n (t) = i]

for i ∈ S.

Let w(~m) and x(~m) = 1−w(~m) represent the probability that
an incoming request is a write and trim request, respectively,
given that the current occupancy vector equals ~m. Define the
effective load ρeff(M

N (t)) at time t as

ρeff(M
N (t)) =

1

b

b∑
i=0

iMN
i (t).

Let JN (t) ∈ S represent the number of valid pages in the
write frontier at time t. The process JN (t), t ∈ N forms a

time inhomogeneous Markov chain with transition probability
matrix K(MN (t)) with entries

(
K(MN (t))

)
j,j′ =

x(MN (t)) if j′ = j

w(MN (t)) if j′ = j + 1

pj′(M
N (t)) if j = b

0 otherwise,

where pj(~m) is the probability that the GC algorithm selects a
block with j valid pages provided that the current occupancy
vector equals ~m. These transitions are as expected as a Trim
command does not alter the content of the WF, a write adds a
single page to the WF and a GC call selects a new WF.

For fixed ~m, one readily verifies that the steady state proba-
bility vector π(~m) = (π0(~m), . . . , πb(~m)) of K(~m) is given
by

πj(~m) =
p0(~m) + . . .+ pj(~m)

w(~m)
πb(~m), (2)

for j < b and

πb(~m) = w(~m)/(w(~m) +

b∑
k=0

kpb−k(~m)).

While the process
{(
MN (t), JN (t)

)
, t ∈ N

}
clearly forms a

Markov chain, solving this Markov chain for practical values
for N , e.g. N = 10, 000, is unfeasible. For this reason, we
define M̄N (τ) as a rescaled process such that M̄N (t/N) =
MN (t) for t ∈ N and M̄N (t) affine in [t/N, (t+ 1)/N]. Sim-
ilarly, we define the rescaled process J̄N (τ) for the process
JN (t) modeling the write frontier behavior. We will argue that
the limit process of

(
M̄N (t), J̄N (t)

)
as N tends to infinity is

a deterministic process ~ν(t) = {νi(t)|i ∈ S}, the evolution of
which is given by the following set of ODEs:

dνi(t)

dt
=

b∑
j=0

πj(~ν(t))fi(~ν(t), j) (3)

The drift fi(~m, j) represents the expected change in the
number of blocks containing i valid pages in between two
points of observation, given that the occupancy measure is
equal to ~m and the write frontier contains j valid pages. The
drift can be defined as

fi(~m, j) =

w(~m) (i+1)mi+1−imi

bρ

+ x(~m) (i+1)mi+1−imi

bρeff(~m) if j < b

− pi(~m) + 1[i = b] if j = b

(4)

for i, j ∈ S, where we assume mb+1 = 0. Indeed, if the WF
is not full (j < b) a write occurs that invalidates a page with
probability w(~m)ρeff(~m)/ρ and this page belongs to a block
with i valid pages with probability imi/ρeff(~m)b, while a trim
occurs with probability x(~m) and invalidates a page on a block
with i valid pages with probability imi/ρeff(~m)b.

2) Model equivalence: We now show that any fixed point
of (3) coincides with a fixed point of the mean field model
without trimming presented in [14] if ρ is replaced by the
effective load.
Theorem 1. Let ~m? be a fixed point of (3), then ~m? is a fixed
point of the set of ODEs given by (8) and (9) in [14] if ρ is
replaced by ρeff(~m

?). Further, ρeff(m
?) satisfies

ρeff(~m
?) = ρ

(
1− x(~m?)

w(~m?)

)
. (5)

Proof. As ~m? is a fixed point of (3) we have

0 =

b∑
j=0

πj(~m
?)

πb(~m?)
fi(~m

?, j)

=

(∑b−1
j=0 πj(~m

?)

πb(~m?)

)
fi(~m

?, 0) + fi(~m
?, b),

as the drift fi(~m?, j) is identical for all j < b. Further, we
have ∑b−1

j=0 πj(~m
?)

πb(~m?)
=

∑b
k=0 kpb−k(~m?)

w(~m?)
,

due to (2). Hence, by (4)

0 =
W (~m?)

w(~m?)
fi(~m

?, 0) + fi(~m
?, b) = 1[i = b]− pi(~m?)

+
W (~m?)

w(~m?)

(
w(~m?)

ρ
+

x(~m?)

ρeff(~m?)

)(
(i+ 1)m?

i+1 − im?
i

b

)
(6)

where W (~m?) =
∑b
k=1 kpb−k(~m?) for brevity. Multiplying

this expression by i and summing over i yields

W (~m?)

w(~m?)

b∑
i=0

ifi(~m
?, 0) +

b∑
i=0

ifi(~m
?, b) = b−

b∑
i=0

ipi(~m
?)

+
W (~m?)

w(~m?)

(
w(~m?)

ρ
+

x(~m?)

ρeff(~m?)

)(
−

b∑
i=0

(i+ 1)m?
i+1

b

)

= W (~m?)− W (~m?)

w(~m?)

(
w(~m?)

ρ
+

x(~m?)

ρeff(~m?)

)
ρeff(~m

?) = 0,

which proves (5). Further, combining (5) with (6) shows that

0 = 1[i = b]− pi(~m?) +W (~m?)

(
(i+ 1)m?

i+1 − im?
i

ρeff(~m?)b

)
,

(7)

which is the fixed point equation the mean field model
presented in [14] if we replace ρeff(~m

?) by ρ.

In other words, by setting the load ρ to be equal to ρeff(~m
?),

one can investigate the impact of the Trim command on
a system using uniform random writes without explicitly
modeling the Trim command itself. The write amplification
WA proposed by the model is expressed in terms of the fixed
point using

WA =
b

b−
∑b
j=0 jpj(~m

?)
,

where the fixed point is obtained numerically in a matter of
seconds (see further).

In the special case where a logical page is written at rate λ
and trimmed at rate µ if present on the SSD, the probability
of a logical page to be stored on the SSD equals λ/(µ+ λ).
Therefore the mean load/utilization equals ρλ/(µ+λ) and the
next corollary shows that this corresponds to the effective load
of the fixed point.
Corollary 1. Let w(~m) = λρ

λρ+µρeff(~m) and let ~m? be a fixed
point of (3), then ρeff(~m

?) = λ
λ+µρ.

Proof. The result is immediate by plugging the expression for
w(~m?) into (5).

The next corollary corresponds to the setting considered in [5]
where the trim probability is assumed to be fixed:
Corollary 2. Let w(~m) = q < 1/2 (as in [5]) and let ~m? be
a fixed point of (3), then ρeff(~m

?) = 1−2q
1−q ρ.

3) Convergence and model validation: In order to show that
the rescaled process M̄N (t) converges to the unique solution
of the ODE (3) we can rely on the mean field framework
introduced in [1] by verifying that conditions H1 to H5
hold. We should note that Corollary 1 in [1] only guarantees
convergence over finite time scales. In order to show that the
convergence extends to the stationary regime, one needs to
prove that the set of ODEs has a global attractor. As in [14]
such a proof appears hard in general and is outside the scope
of the paper.

When generating numerical results we restrict ourselves to the
d-choices GC algorithm, but similar results can be generated
for other GC algorithms belonging to the class introduced
in [14]. We further assume that w(~m) = λρ

λρ+µρeff(~m) . We
determine a fixed point of the ODE given by (3) using Euler’s

method with νi(0) =
(
b
i

)(
λ

λ+µρ
)i(

1− λ
λ+µρ

)(b−i)
and a

maximum step size h = 0.001 until ||~ν(t+ h)− ~ν(t)||1 <
10−13.

Tables III and IV show a perfect agreement for the write
amplification and effective load between the simulation results
and the ODE-based prediction for various parameter settings.
The simulations in tables III and IV were averaged over 10
runs each with a length of 10bN . The length of the warm-up
period was 10

3 bN , initialized with bρN valid pages distributed
uniformly at random over the bN available pages. The width
of the 95% confidence intervals was approximately 0.01%, as
indicated in tables III and IV.

B. Hot/cold data model with single write frontier

We now consider a system using non-uniform random writes,
i.e. not all pages are updated or trimmed with equal probabil-
ity, while still assuming the usage of a single write frontier.
More specifically, we rely on the Rosenblum workload model
discussed in Section II-B. Typical case studies with hot/cold

b d ρ µ/λ ODE (3) sim. (95% conf.)

32 10 0.90 0.07 3.1761 3.1762 ± 0.0001
32 10 0.86 0.07 2.6455 2.6457 ± 0.0001
32 16 0.86 0.07 2.5999 2.5997 ± 0.0001
32 2 0.79 0.20 2.1260 2.1261 ± 0.0001
32 10 0.79 0.20 1.6611 1.6611 ± 0.0001

64 10 0.86 0.10 2.4768 2.4768 ± 0.0001
64 2 0.79 0.20 2.1405 2.1406 ± 0.0001

TABLE III: Comparison of ODE-based results and simulation
experiments w.r.t. write amplification for a system with N =
10, 000 blocks for various parameter settings (10 runs).

b d ρ µ/λ ODE (3) λ
λ+µ

ρ sim. (95% conf.)

32 10 0.90 0.07 0.8411 0.8411 0.8410 ± 0.0001
32 10 0.86 0.07 0.8037 0.8037 0.8037 ± 0.0001
32 16 0.86 0.07 0.8037 0.8037 0.8038 ± 0.0001
32 2 0.79 0.20 0.6583 0.6583 0.6583 ± 0.0001
32 10 0.79 0.20 0.6583 0.6583 0.6583 ± 0.0001

64 10 0.86 0.10 0.7818 0.7818 0.7819 ± 0.0001
64 2 0.79 0.20 0.6583 0.6583 0.6583 ± 0.0001

TABLE IV: Comparison of ODE-based results, analytic solu-
tion and simulation experiments w.r.t. effective load ρeff for a
system using uniform random writes with N = 10, 000 blocks
for various parameter settings (10 runs).

data utilize values of f ≤ 0.2 and r ≥ 0.8, meaning more
than 80% of the write requests are to less than 20% of the
data [3].

1) Model description: Let HN
n (t) ∈ S = {0, . . . , b} for

n = 1, . . . , N , denote the number of hot valid pages
on block number n at time t (i.e. the t-h time the GC
algorithm is activated or a write or trim request is re-
ceived) and CNn (t) ∈ S for n = 1, . . . , N denote the
number of cold valid pages on block number n at time
t. Denote XN

n (t) =
(
HN
n (t), HN

n (t) + CNn (t)
)
∈ Ω =

{{i, j}|0 ≤ i ≤ j ≤ b}.

Let MN (t) be the occupancy measure of XN
n (t), i.e.

MN (t) =
{
MN
i,j(t)|(i, j) ∈ Ω

}
and

MN
i,j(t) =

1

N

N∑
n=1

1[XN
n (t) = (i, j)]

for (i, j) ∈ Ω.

Let wh(~m) (wc(~m)) be the probability that an incoming
request writes hot (cold) data and denote xh(~m) (xc(~m)) as
the probability that an incoming request trims hot (cold) data,
given that the current occupancy measure equals ~m ∈ ∆h/c.
Further, let w(~m) = wh(~m) + wc(~m) and x(~m) = xh(~m) +
xc(~m).

Let the hot load ρh = ρf and the cold load ρc = ρ(1 −
f) represent the maximum fraction of pages that contain hot
and cold data respectively. Similarly, define the effective hot
load ρeff,h(~m) =

∑b
i=0

i
bmi,j ≤ ρh, the effective cold load

Symbol Explanation

mi,j fraction of blocks with j valid pages, i of which are hot
~m occupancy vector (m0,0, . . . ,mb,b)
ρeff,h(~m) effective hot load given ~m
ρeff,c(~m) effective cold load given ~m
pi,j(~m) prob. that GC selects block with j valid pages,

i of which are hot, given ~m
wh(~m) prob. that a request writes a hot page given ~m
wc(~m) prob. that a request writes a cold page given ~m
xh(~m) prob. that a request trims a hot page given ~m
xc(~m) prob. that a request trims a cold page given ~m
πi,j(~m) prob. that WF holds a block with j valid pages,

i of which are hot, given ~m

TABLE V: Table of notations for SWF with hot/cold data

ρeff,c(~m) =
∑b
i=0

j−i
b mi,j ≤ ρc and the total effective load

ρeff(~m) = ρeff,h(~m) + ρeff,c(~m) ≤ ρ.

Let JN (t) ∈ Ω represent the number of valid pages in the
write frontier at time t. The process JN (t), t ∈ N forms a
time inhomogeneous Markov chain with transition probability
matrix K(MN (t)) with the following entries:

K(k,l),(k′,l′)

(
MN (t)

)
= (8)

x(MN (t)) k = k′ < b, l = l′ < b,
wh(MN (t)) k < b, l < b, k′ = k + 1, l′ = l + 1,
wc(M

N (t)) k < b, l < b, k′ = k, l′ = l + 1,
pk′,l′(M

N (t)) l = b,
0 otherwise,

where pk,l(~m) is the probability that the GC algorithm selects
a block with l valid pages, k of which are hot, given that the
occupancy vector equals ~m.

For fixed ~m the steady state probability vector π(~m) is a so-
lution of π(~m)K(~m) = π(~m). Its entries can be computed by
first computing the entries π̂k,l(~m) for (k, l) ∈ Ω recursively
as

π̂k,l(~m) =

pk,l(~m) + wh(~m)π̂k−1,l−1(~m) + wc(~m)π̂k,l−1(~m)

w(~m)

π̂k,b(~m) =

pk,b(~m) + wh(~m)π̂k−1,b−1(~m) + wc(~m)π̂k,b−1(~m)

where π̂k,l(~m) is defined as 0 for (i, j) /∈ Ω. We subsequently
normalize π̂(~m) to determine π(~m):

πi,j(~m) =
π̂i,j(~m)∑b

l=0

∑l
k=0 π̂k,l(~m)

.

We can now define the drift ~f(~m, k, l) = {fi,j(~m, k, l)|(i, j) ∈
Ω}, which represents the expected difference in between two
points of observation in the fraction of blocks containing j
valid pages, i of which are hot, given that the occupancy
measure is equal to ~m and the write frontier contains l

valid pages, k of which are hot. We define this drift as
follows:

fi,j (~m, k, l) = (9)

wh(~m)
(i+ 1)mi+1,j+1 − imi,j

bρh

+xh(~m)
(i+ 1)mi+1,j+1 − imi,j

bρeff,h(~m)

+wc(~m)
(j + 1− i)mi,j+1 − (j − i)mi,j

bρc

+xc(~m)
(j + 1− i)mi,j+1 − (j − i)mi,j

bρeff,c(~m)
l < b,

−pi,j(~m) + 1[i = k, j = b] l = b,

which can be understood in a similar fashion as (4).

Using this drift we define the deterministic process ~ν(t) =
{νi,j(t)| {i, j} ∈ Ω}, the evolution of which is given by the
following set of ODEs:

dνi,j(t)

dt
= Fi,j (~ν(t)) (10)

where Fi,j(~m) =
∑

(k,l)∈Ω πk,l(~m)fi,j(~m, k, l). As for the
uniform random writes case, the results in [1] can be used
to see that a rescaled version of the stochastic process{(
MN (t), JN (t)

)
, t ∈ N

}
converges to the unique solution

of the above set of ODEs over any finite time scale.

2) Model equivalence: We now show that any fixed point
of the set of ODEs for the model with trimming is also a
fixed point of the set of ODEs for the model without trimming
presented in [15] provided that the parameters ρ and f are
properly adjusted.

To prove this, we start with the following lemma:
Lemma 1. For ~m ∈ ∆h/c we have

b∑
i=0

iπi,b(~m)

/
b∑

k=0

πk,b(~m) =

wh(~m)

w(~m)

b∑
j=0

jpb−j(~m) +

b∑
j=0

j∑
i=0

ipi,j(~m), (11)

and
b∑
i=0

(b− i)πi,b(~m)

/
b∑

k=0

πk,b(~m) =

wc(~m)

w(~m)

b∑
j=0

jpb−j(~m) +

b∑
j=0

j∑
i=0

(j − i)pi,j(~m),

(12)

Proof. From (8) it follows that the probabilities
K(k,b),(k′,l′)(~m) do not depend on k. This allows us to
state

πi,b(~m)∑b
k=0 πk,b(~m)

=

i∑
k=0

b−k∑
j=i−k

pi−k,j(~m)Bb−j,rk , (13)

where Bb−j,rk =
(
b−j
k

)
rk(1−r)b−j−k and r = wh(~m)/w(~m).

Multiplying by i, summing over i and changing the order of
the sums implies

b∑
i=0

iπi,b(~m)

/
b∑

k=0

πk,b(~m) =

b∑
k=0

b−k∑
j=0

j∑
i=0

(i+ k)pi,j(~m)Bb−j,rk .

The equality in (11) now follows by noting that

b∑
k=0

b−k∑
j=0

j∑
i=0

ipi,j(~m)Bb−j,rk =

b∑
j=0

j∑
i=0

ipi,j(~m).

and

b∑
k=0

b−k∑
j=0

j∑
i=0

kpi,j(~m)Bb−j,rk =

b∑
j=0

pj(~m)(b− j)r.

The equality in (12) can be derived similarly by noting that

b∑
i=0

(b− i)πi,b(~m)

/
b∑

k=0

πk,b(~m) =

b∑
k=0

b−k∑
j=0

j∑
i=0

[(b− j − k) + (j − i)]pi,j(~m)Bb−j,rk .

Theorem 2. Let ~m? be a fixed point of (10). Define ρ̃ =
ρeff,h(~m?) + ρeff,c(~m

?) and f̃ = ρeff,h(~m?)/ρ̃, then ~m? is a
fixed point of the set of ODEs given by (7) and (8) in [15] if
(r, f, ρ) is replaced by (r, f̃ , ρ̃). Further, ρeff,z(m

?) satisfies

ρeff,z(~m
?) = ρz

(
1− xz(~m

?)

wz(~m?)

)
. (14)

for z = h, c.

Proof. We start with the observation that the fixed point
equation for (10) can be written as(

b−1∑
l=0

l∑
k=0

πk,l(~m
?)

)
fi,j(~m

?, 0, 0)+

b∑
k=0

πk,b(~m
?)fi,j(~m

?, k, b) = 0, (15)

Due to (9), we have

b∑
k=0

πk,b(~m
?)fi,j(~m

?, k, b) =

− pi,j(~m?)

(
b∑

k=0

πk,b(~m
?)

)
+ πi,b(~m

?)1[j = b]. (16)

and

fi,j(~m
?, 0, 0) =(

wh(~m?)

ρh
+

xh(~m?)

ρeff,h(~m?)

)
(i+ 1)m?

i+1,j+1 + im?
i,j

b
+(

wc(~m
?)

ρc
+

xc(~m
?)

ρeff,c(~m?)

)
(j + 1− i)m?

i,j+1 + (j − i)m?
i,j

b
(17)

Next, we note that
b−1∑
l=0

l∑
k=0

πk,l(~m
?)

/
b∑

k=0

πk,b(~m
?) =

b∑
l=1

l

1− x(~m?)

b−l∑
k=0

pk,b−l(~m
?) =

1

w(~m?)

b∑
l=1

lpb−l(~m
?),

(18)

as this ratio is equal to the mean number of incoming trim or
write requests in between two GC calls.

Combining (15), (16) (17) and (18) with (13) in Lemma 1
results in the following fixed point equation

0 =

(
wh(~m?)

w(~m?)

(i+ 1)m?
i+1,j+1 + im?

i,j

ρeff,h(~m?)b

+
wc(~m)

w(~m?)

(j + 1− i)m?
i,j+1 + (j − i)m?

i,j

ρeff,c(~m?)b

) b∑
l=1

lpb−l(~m
?)

− pi,j(~m?) +

i∑
k=0

b−k∑
j=i−k

pi−k,j(~m
?)Bb−j,rk 1[j = b],

provided that (14) holds. As this equation is identical to the
fixed point equation of (7) and (8) in [15] if (f, ρ) are replaced
by (f̃ , ρ̃), it suffices to prove (14) to complete the proof.

To establish (14) for z = h we multiply (15) by i and sum
over i and j. By (16) and (11) we find

b∑
j=0

j∑
i=0

b∑
k=0

πk,b(~m
?)ifi,j(~m

?, k, b)

/(
b∑
l=0

πl,b(~m
?)

)

=
wh(~m?)

w(~m?)

b∑
j=0

jpb−j(~m
?), (19)

Due to (17)

b∑
j=0

j∑
i=0

ifi,j(~m
?, 0, 0) =

−
(
wh(~m?)

ρh
+

xh(~m?)

ρeff,h(~m?)

)1

b

b∑
j=0

j∑
i=0

im?
i,j

︸ ︷︷ ︸

ρeff,h(~m?)

. (20)

Combining (15), (18), (19) and (20) yields (14) for z = h.
The argument for z = c proceeds in a similar fashion, but we
multiply (15) by j − i before summing over i and j and rely
on (12) instead of (11).

It is worth remaking that the effective hot load ρeff,h(~m?) only
depends on ρh and the ratio xh(~m?)/wh(~m?). However, the
latter may in general also depend on the effective cold load
ρeff,c(~m

?), meaning the fixed point equations for ρeff,h(~m?)
and ρeff,c(~m

?) are not necessarily decoupled as in the next
two corollaries.
Corollary 3. Let (wh(~m), wc(~m), xh(~m), xc(~m)) be
proportional to (λhρh, λcρc, µhρeff,h(~m), µcρeff,c(~m)), then
ρeff,h(~m?) = λh

λh+µh
ρf and ρeff,c(~m

?) = λc

λc+µc
ρ(1− f).

The above special case corresponds to the setting where logical
hot/cold pages are written at rate λh/λc and if present on the
SSD trimmed at rate µh/µc, respectively. It shows that the
effective hot and cold loads match the mean number of hot
and cold pages on the device, as anticipated.
Corollary 4. Let xh(~m) = qh, xc(~m) = qc, wh = r(1− qh −
qc) and wh = (1 − r)(1 − qh − qc) and let ~m? be a fixed
point of (3), then ρeff,h(~m?) = ρf(1 − qh/[r(1 − qh − qc)])
and ρeff,c(~m

?) = ρ(1− f)(1− qc/[(1− r)(1− qh − qc)]).

The fixed write and trim probabilities of the latter corollary
were considered in [4, Section 6.1], where the write amplifica-
tion for the system with mixed hot and cold data was estimated
by replacing the load of the uniform model with the overall
effective load. As shown in Figure 8 in [4, Section 6.1], this
approach results in a very poor agreement with simulation as
opposed to the results presented below.

3) Model validation: As for the uniform random writes case
we focus on the d-choices algorithm and set the trim and write
probabilities as specified in Corollary 3. The numerical results
for the write amplification and valid page distribution were
generated by numerically determining a fixed point of the ODE
(10) with νi,j(0) =

(
i
j

)
f i(1− f)

j−i
ηj using Euler’s method

with a variable step size h until ||ν(t+ h)− ν(t)||1 < 10−10,
where ηj is the fixed point of (3) when λ = fλh + (1− f)λc,
µ = fµh + (1− f)µc and ρ = λhρh

λh+µh
+ λcρc

λc+µc
.

The ODE-based results were compared with the mean of 10
simulation runs of the system with the same parameters and
N = 10, 000. Each run consisted of 500bN external (write
or trim) requests and the length of the warm-up period was
500
3 bN . The results are shown in tables VI and VII and indicate

that there is an excellent agreement for the write amplification
and hot effective load between the simulation results and
the ODE solution (similar results were obtained for the cold
effective load).

C. Hot/cold data model with HCWF

In this subsection, we consider the HCWF mode of opera-
tions outlined in Section II-C when subject to a Rosenblum
workload as discussed in Section II-B.

1) Model description: Let XN
n (t) ∈ S = {0, . . . , b} denote

the number of valid pages in block n and Y Nn (t) ∈ {h, c}
reflect whether block n is marked hot (h) or cold (c) at the
t-th point of observation, i.e. the t-the time the GC algorithm

d ρ λh µh/λh
µc/λc ODE (10) sim. (95% conf.)

2 0.82 16 0.20 0.20 2.4316 2.4317 ± 0.0001
2 0.87 16 0.20 0.20 2.7536 2.7536 ± 0.0001

10 0.90 16 0.07 0.07 3.5069 3.5069 ± 0.0001
10 0.90 16 0.07 0.14 2.9056 2.9057 ± 0.0001
16 0.90 24 0.07 0.07 3.5275 3.5277 ± 0.0001
10 0.87 16 0.20 0.20 2.2933 2.2935 ± 0.0001
10 0.87 12 0.20 0.03 3.1853 3.1854 ± 0.0001

TABLE VI: Comparison of ODE-based results and simulation
experiments w.r.t. write amplification for a system using
hot/cold writes and single WF with λc = 1, N = 10, 000
blocks of size b = 32 and a fraction f = 0.2 of hot data for
various parameter settings (10 runs).

d ρ λh µh/λh
µc/λc ODE

(10)

λhρh
λh+µh

sim. (95% conf.)

2 0.82 16 0.20 0.20 0.1367 0.1367 0.1366 ± 0.0001
2 0.87 16 0.20 0.20 0.1450 0.1450 0.1450 ± 0.0001
10 0.90 16 0.07 0.07 0.1682 0.1682 0.1683 ± 0.0001
10 0.90 16 0.07 0.14 0.1682 0.1682 0.1683 ± 0.0001
16 0.90 24 0.07 0.07 0.1682 0.1682 0.1683 ± 0.0001
10 0.87 16 0.20 0.20 0.1450 0.1450 0.1451 ± 0.0001
10 0.87 12 0.20 0.03 0.1450 0.1450 0.1450 ± 0.0001

TABLE VII: Comparison of ODE-based results and simulation
experiments w.r.t. hot effective load for a system using hot/cold
writes and single WF with λc = 1, N = 10, 000 blocks of
size b = 32 and a fraction f = 0.2 of hot data for various
parameter settings (10 runs).

is activated or an external write or trim request is issued. Let
MN
z,i(t) be the occupancy measure of XN

n (t) and Y Nn (t), i.e.,
MN (t) = {MN

z,i(t)|z ∈ {h, c}, i ∈ S}, where

MN
z,i(t) =

1

N

N∑
n=1

1
[
XN
n (t) = i, Y Nn (t) = z

]
for i ∈ S and z ∈ {h, c}.

Furthermore, let JN (t) ∈ Ω = {(k, l)|0 ≤ k, l ≤ b} \ {(b, b)}
represent the number of valid pages in the HWF and the CWF
at time t.

The mean field model is defined by means of the deterministic
process ~ν(t) = {νz,i(t)|z ∈ {h, c}, i ∈ S}, the evolution of
which is given by the following set of ODEs:

dνz,i(t)

dt
=

∑
(k,l)∈Ω

πk,l(~m(t))fz,i(~m(t), k, l) (21)

where the drift fz,i(~m, k, l) is defined below and ~π(~m) is
the invariant probability vector of K(~m), where (K(~m))i,j =
P [J(t+ 1) = i|J(t) = j,M(t) = ~m] with (i, j) ∈ Ω.

The expression for the drift is identical to [16, Section 3.1],
except that the case k, l < b needs to be adapted, similar to

Symbol Explanation

mh,i fraction of blocks marked hot holding i valid pages
mc,i fraction of blocks marked cold holding i valid pages
~m occupancy vector (mh,0, . . . ,mc,b)
ph,j(~m) prob. that GC selects a hot block with j valid pages

given ~m
pc,j(~m) prob. that GC selects a cold block with j valid pages

given ~m
πi,j(~m) prob. that HWF contains i and the CWF j valid pages

given ~m

TABLE VIII: Table of notations for HCWF with hot/cold data

the single WF model, to incorporate the changes caused by
the trim requests

fh,i (~m, k, l) = (22)

wh(~m)
(i+ 1)mh,i+1 − imh,i

bρf

+xh(~m)
(i+ 1)mh,i+1 − imh,i

bρeff,h(~m)
k < b, l < b,

−ph,i(~m) i < b, k = b or l = b,

1− ph,b(~m)− pc,(b−l)+(~m) i = b, k = b,

ph,(b−k)+(~m)− ph,b(~m) i = b, l = b,

where pz,i+(~m) =
∑b
j=i pz,j(~m) for z = h, c and analogously

for blocks containing cold data,

fc,i (~m, k, l) = (23)

wc(~m)
(i+ 1)mc,i+1 − imc,i

bρ(1− f)

+xc(~m)
(i+ 1)mc,i+1 − imc,i

bρeff,c(~m)
k < b, l < b,

−pc,i(~m) i < b, k = b or l = b,

1− pc,b(~m)− ph,(b−k)+(~m) i = b, l = b,

pc,(b−l)+(~m)− pc,b(~m) i = b, k = b.

The entries of the probability matrix K(~m), are also nearly
identical to [16, Section 3.1], except that when k, l < b, there is
a probability x(~m) that a trim request arrives. As trim requests
do not affect the WFs, the new state (k′, l′) = (k, l) with
probability x(~m), hence

K(k,l),(k′,l′) (~m) = (24)

x(~m) k = k′ < b, l = l′ < b,
wh(~m) k < b, k′ = k + 1, l = l′ < b,
wc(~m) l < b, l′ = l + 1, k = k′ < b,
ph,k′(~m) k = b, k′ < b, l = l′ < b,
pc,l′(~m) l = b, l′ < b, k = k′ < b,
pc,l′−l(~m) k = b, k′ = 0, b ≥ l′ ≥ l,
ph,k′−k(~m) l = b, l′ = 0, b ≥ k′ ≥ k,
pc,b−l+l′(~m) k = k′ = b, 0 < l′ < l,
ph,b−k+k′(~m) l = l′ = b, 0 < k′ < k,
ph,b(~m) + pc,b(~m) k = k′, l = l′, k or l = b,
0 otherwise.

2) Model equivalence: As for the single write frontier we
now show that any fixed point of the set of ODEs for the
model with trimming is also a fixed point of the set of ODEs
for the model without trimming presented in [16, Section 3.1]
provided that the parameters ρ and f are modified.
Theorem 3. Let ~m? be a fixed point of (21). Define ρ̃ =
ρ̃h(~m?) + ρ̃c(~m

?) and f̃ = ρ̃h(~m?)/ρ̃, then ~m? is a fixed
point of the set of ODEs given by (1) in [16] if (r, f, ρ) is
replaced by (r, f̃ , ρ̃). Further, ρ̃z(~m?) is a solution of

1

ρ̃z(~m?)
=

1

wz(~m?)

(
wz(~m

?)

ρz
+

xz(~m
?)

ρeff,z(~m?)

)
, (25)

for z = h, c.

Proof. The fixed point equation can be written as

−
b−1∑
k=0

πk,b(~m
?)fz,i(~m

?, k, b)−
b−1∑
l=0

πb,l(~m
?)fz,i(~m

?, b, l)

=
∑

(k,l)∈Ω<b,<b

πk,l(~m
?)fz,i(~m

?, k, l)

=
∑

(k,l)∈Ω<b,<b

πk,l(~m
?)(1− x(~m?))×

1

w(~m?)

(
wz(~m

?)

ρz
+

xz(~m
?)

ρeff,z(~m?)

)
(i+ 1)m?

z,i+1 + im?
z,i

b
,

where Ω<b,<b = {(k, l)|0 ≤ k, l < b}. This yields

−
b−1∑
k=0

π̃k,b(~m
?)fz,i(~m

?, k, b)−
b−1∑
l=0

π̃b,l(~m
?)fz,i(~m

?, b, l)

=
∑

(k,l)∈Ω<b,<b

π̃k,l(~m
?)
wz(~m

?)

w(~m?)

(i+ 1)m?
z,i+1 + im?

z,i

(ρ̃z(~m?)/ρ̃)bρ̃
,

where π̃k,l(~m
?) = πk,l(~m

?) if k or l equals b and
π̃k,l(~m

?)/(1 − x(~m?)) = πk,l(~m
?) otherwise. The probabili-

ties π̃k,l(~m?) are the steady state probabilities of the K(~m?)
matrix defined in [16, Section 3.1] as this matrix is identical
to (24) with x(~m?) = 0, wh(~m?) = r and wc(~m

?) = 1 − r.
Hence, the above fixed point equation is identical to the
one in [16, Section 3.1] if we replace (f̃ , ρ̃) by (f, ρ) as
wh(~m?)/w(~m?) = r and wc(~m?)/w(~m?) = 1− r.

We suspect that ρ̃z(~m?) equals ρeff,z(~m
?), but proving this

in general for the HCWF appears more challenging than
in the single WF case. The next corollary indicates that
simple explicit expressions for ρ̃z(~m?) exist in some particular
cases:
Corollary 5. Let (wh(~m), wc(~m), xh(~m), xc(~m)) be
proportional to (λhρh, λcρc, µhρeff,h(~m), µcρeff,c(~m)), then
ρ̃h(~m?) = λh

λh+µh
ρf and ρ̃c(~m?) = λc

λc+µc
ρ(1− f).

In fact, in this case we find that ρ̃z(~m?) is equal to ρeff,z(~m
?)

of the SWF setting (see Corollary 3).

d ρ λh µh/λh
µc/λc ODE

(eq. (10))
sim. (95% conf.)

2 0.82 16 0.20 0.20 2.0770 2.0772 ± 0.0001
2 0.87 16 0.20 0.20 2.3446 2.3451 ± 0.0001
10 0.90 16 0.07 0.07 2.5730 2.5735 ± 0.0001
10 0.90 16 0.07 0.14 2.1687 2.1691 ± 0.0001
16 0.90 24 0.07 0.07 2.4920 2.4925 ± 0.0001
10 0.87 16 0.20 0.20 1.6938 1.6940 ± 0.0001
10 0.87 12 0.20 0.03 2.3815 2.3820 ± 0.0001

TABLE IX: Comparison of ODE-based results and simulation
experiments w.r.t. write amplification for a system using
hot/cold writes and HCWF with λc = 1, N = 10, 000 blocks
of size b = 32 and a fraction f = 0.2 of hot data for various
parameter settings (10 runs).

3) Convergence and numerical solution: The convergence of
the rescaled stochastic process towards the mean field model
over finite time scales is once more guaranteed by [1, Corollary
1].

To generate numerical results we determine a fixed point
~ν = {νz,i|z ∈ {h, c}, i ∈ S} by solving the ODE using Euler’s
method. Euler’s method is iterative and may require as many
as a few thousand iterations. During iteration i + 1, we
need to compute the drifts ~f(~m(i), k, l) for all (k, l) ∈ Ω,
where ~m(i) represents the occupancy vector after iteration i.
Following this, it is also necessary to compute the steady state
probabilities πk,l(~m) during each iteration. This becomes time
consuming for realistic values of b, e.g. b = 32 or 64, since
K(~m) is a b(b+ 2) state Markov chain.

To reduce computation times per iteration in Euler’s method
from O(b6) to O(b4) we can follow the approach taken in
[16, Section 3.2]. It may appear that this approach cannot be
applied directly as the matrices K<b,<b(~m) and K<b,=b(~m)
now depend on ~m. However, it suffices that we compute (I −
K<b,<b(~m))−1K<b,=b(~m) during each iteration and it is not
hard to see that this product is still independent of ~m.

4) Model validation and numerical results: As for the single
WF case, we focus on the d-choices GC algorithm and set the
write and trim rates as specified in Corollary 5. The numerical
results for the write amplification and valid page distribution
were generated by numerically solving the ODE given in
eq. (21) using Euler’s method with a variable step size h until
||ν(t+ h)− ν(t)||1 < 10−10. This procedure was initialized
with νz,0(0) = ρz/ρ− νz,b(0), νz,b(0) = ρzλc/(λc + µc) and
νz,j(0) = 0 for j ∈ S \ {0, b} and z ∈ {h, c}.

Tables IX and X compare the ODE-based write amplification
and effective hot load and the mean of 10 simulation runs
of a system with N = 10, 000 blocks. Each simulation run
consisted of 500bN external (write or trim) requests and the
length of the warm-up period was 500

3 bN . The results indicate
that there is a strong agreement between the simulation results
and the numerical solutions of the set of ODEs in eq. (21) for
various parameter settings.

d ρ λh µh/λh
µc/λc ODE

(eq. (10))

λhρh
λh+µh

sim. (95% conf.)

2 0.82 16 0.20 0.20 0.1367 0.1367 0.1365 ± 0.0001
2 0.87 16 0.20 0.20 0.1450 0.1450 0.1450 ± 0.0001
10 0.90 16 0.07 0.07 0.1682 0.1682 0.1683 ± 0.0001
10 0.90 16 0.07 0.14 0.1682 0.1682 0.1682 ± 0.0001
16 0.90 24 0.07 0.07 0.1682 0.1682 0.1682 ± 0.0001
10 0.87 16 0.20 0.20 0.1450 0.1450 0.1451 ± 0.0001
10 0.87 12 0.20 0.03 0.1450 0.1450 0.1450 ± 0.0001

TABLE X: Comparison of ODE-based results and simulation
experiments w.r.t. hot effective load for a system using hot/cold
writes and HCWF with λc = 1, N = 10, 000 blocks of size
b = 32 and a fraction f = 0.2 of hot data for various parameter
settings (10 runs).

Block size b
 16 32 64 128

W
rit

e
am

pl
. T

R
IM

 /
W

rit
e

am
pl

. N
o

T
R

IM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d = 2 d = 5 d = 10 d = 100

Fig. 1: Write amplification as a function of the block size b
for various choices of d in a system using uniform random
writes with ρ = 0.9, λ = 1 and µ = 0.1, relative to that of a
system without trimming.

IV. NUMERICAL RESULTS

In this section, we present some numerical results for the
systems discussed in this paper that complement the theorems
presented in the previous section. The trim probabilities are set
according to Corollary 1, 3 or 5, depending on whether or not
we consider hot/cold data and a SWF or HCWF setup.

A. Uniform random writes

Figure 1 demonstrates that under uniform random writes and
trim operations the impact of the block size b on the reduction
of the write amplification achieved by trimming is rather
limited (for various d), where somewhat larger gains are
observed as the number of pages b on a block increases. For the
considered block sizes, the observed write amplification when
the trim rate is 10 times as small as the write rate is approxi-
mately 60% of the write amplification without trimming. This
shows that the lifespan of an SSD can be greatly extended
by supporting the Trim command as far fewer erasures are
needed to support the same number of external writes. More

Load ;
0.75 0.8 0.85 0.9 0.95

W
rit

e
am

pl
. T

R
IM

 /
W

rit
e

am
pl

. N
o

T
R

IM

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
d = 1

d = 5

d = 10

Fig. 2: Write amplification for varying loads ρ and various
choices of d in a system using uniform random writes with
b = 32, λ = 1 and µ = 0.07.

Rate of TRIM requests 7

0 0.1 0.2 0.3 0.4 0.5

W
rit

e
am

pl
. T

R
IM

 /
W

rit
e

am
pl

. N
o

T
R

IM

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
d = 1

d = 5

d = 20

Fig. 3: Write amplification as a function of varying trim rates
µ for a system using uniform random writes with b = 32,
assuming λ = 1, proportional to the write amplification for a
system without trimming.

specifically, as the life span is inversely proportional to the
write amplification a 40% reduction in the write amplification
corresponds to an increased life span of about 66%.

The write amplification as a function of the load ρ is depicted
in fig. 2. Larger gains are observed for systems with a smaller
space factor Sf = 1−ρ. In other words, if the system is heavily
over-provisioned, the Trim command offers limited additional
gain, while for small spare factors (e.g., 5%) it may double
the lifespan. Another way to view these results is that with
trimming one can reduce the spare factor, allowing a larger
user-visible storage space, without jeopardizing the lifespan
of the device. Figure 3 shows the impact of the trim rate and
indicates that the write amplification decreases significantly
even when trimming at a low rate. The observed decrease is
larger for small choices of d, meaning the Random algorithm
(d = 1) benefits somewhat more from trimming than the
Greedy algorithm (d =∞).

Block size b
 16 32 64 128

W
rit

e
am

pl
. T

R
IM

 /
W

rit
e

am
pl

. N
o

T
R

IM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
7

z
 / 6

z
 = 0.05 7

z
 / 6

z
 = 0.1 7

z
 / 6

z
 = 0.2

Fig. 4: Write amplification as a function of block size b for
various choices of µz/λz in a HC (SWF) system with d = 10,
f = 0.2, ρ = 0.9, λh = 16 and λc = 1 , relative to that of a
system without trimming.

B. Hot and cold data

In this section we consider hot/cold data combined with a
single WF, meaning the hot and cold data is mixed and there is
no hot/cold data identification technique in place. We assume
that hot (cold) logical pages are requested at rate λh (λc) and
that the hot (cold) pages stored on the SSD get trimmed at rate
µh (µc), respectively. The impact of trimming on the write
amplification for various choices of λz/µz , with z ∈ {h, c},
is not heavily influenced by the block size b as indicated in
fig. 4, where d = 10 and Sf = 0.1.

In fig. 6, we look at the write amplification as a function of
λz/µz without trimming, with hot or cold data trimming only
and in case all data is trimmed. We see that the decrease in
the write amplification is much more pronounced when only
trimming the cold pages, compared to only trimming hot data.
This can be understood by noting that cold data remains on the
device for longer periods of time without being invalidated,
while hot data is invalidated more often due to incoming
external writes or updates. Hence, trimming hot pages does not
contribute as much as to lowering the effective load.

In the previous plots we considered the GC algorithm with
d = 10 choices, in fig. 6 we see that larger values of d tend
to further decrease the write amplification, but setting d = 10
results in a write amplification that is already fairly close to
the greedy algorithm, which corresponds to setting d = ∞.
Further, most of the gain is achieved by trimming the cold
data irrespective of the number of choices d used.

Figure 7 looks at the same setup as Figure 5 except that the
SWF is replaced by the HCWF. In other words, the hot and
cold data is written to separate WFs which implies that a
hot/cold data identification technique is needed. As in the SWF
case, trimming cold data result in more significant gains (as

Write rate 6
z
 / TRIM rate 7

z

0 5 10 15 20

W
rit

e
am

pl
ifi

ca
tio

n

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

No TRIM
TRIM
TRIM hot pages
TRIM cold pages

Fig. 5: Write amplification for several values of λz/µz for HC
(SWF) systems where no data, all data, only hot data and only
cold data is trimmed with d = 10, b = 32, f = 0.2, ρ = 0.9
and λh = 16λc.

Number of choices d
2 4 6 8 10 12 14 16 18

W
rit

e
am

pl
ifi

ca
tio

n

4

5

6

7

8

9 No TRIM
TRIM
TRIM hot pages
TRIM cold pages

Fig. 6: Write amplification as a function of the number of
choices d for HC (SWF) systems where no data, all data, only
hot data and only cold data is trimmed with b = 32, f = 0.2,
ρ = 0.9, λh = 16λc and µz/λz = 0.07.

expected). Further, when the hot and cold data is separated
trimming hot data only seems to result in a more significant
relative gain compared to the case with mixed hot and cold
data.

Figure 8 looks at the impact of the number of choices d in
the HCWF case. We observe that the Greedy GC algorithm is
no longer optimal. This is expected given Theorem 3 and the
fact that the Greedy GC algorithm is known to be suboptimal
in the HCWF setting without trimming (see [16]).

Finally, fig. 9 depicts the gain achieved by implementing
a hot/cold data separation technique and using the HCWF
compared to a system that simply relies on the SWF. It

Write rate 6
z
 / TRIM rate 7

z

0 5 10 15 20

W
rit

e
am

pl
ifi

ca
tio

n

1

1.5

2

2.5

3

3.5

4

No TRIM
TRIM
TRIM hot pages
TRIM cold pages

Fig. 7: Comparison of evolution of the write amplification for
several values of λz/µz for HCWF systems where no data, all
data, only hot data and only cold data is trimmed with b = 32,
f = 0.2, ρ = 0.9 and λh = 16λc.

Number of choices d
2 4 6 8 10 12 14 16 18

W
rit

e
am

pl
ifi

ca
tio

n

3

4

5

6

7

8

9

10
No TRIM
TRIM
TRIM hot pages
TRIM cold pages

Fig. 8: Comparison of evolution of the write amplification in
function of number of choices d for HCWF systems where
no data, all data, only hot data and only cold data is trimmed
with d = 10, b = 32, f = 0.2, ρ = 0.9, λh = 16λc and
µz/λz = 0.07.

indicates that the overall gain decreases somewhat as the trim
rate increases, but remains significant even at high trim rates.
When only trimming the hot data the results suggest that
the relative gain of the HCWF setup grows as the trim rate
increases. This is in line with the previous results and can
be understood by noting that in the SWF case the hot data
is mixed with the cold data and a block contains mostly cold
pages and a few hot ones, thus trimming the hot pages provides
only limited gain. When only trimming the cold pages, the
opposite occurs: the SWF setting appears to benefit more from
trimming.

TRIM rate 7
z
 / Write rate 6

z

0 0.1 0.2 0.3 0.4 0.5

W
rit

e
am

pl
. H

C
W

F
 /

W
rit

e
am

pl
. S

W
F

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82
No TRIM
TRIM
TRIM hot pages
TRIM cold pages

Fig. 9: Write amplification of SWF versus HCWF setup as a
function of varying trim rates µ for a system using uniform
random writes with b = 32, d = 10, ρ = 0.9, f = 0.2,
λh = 16 and λc = 1.

V. CONCLUSION

In this paper we introduced a number of mean field models
to assess the write amplification in the presence of trimming.
The main take-away message is that the write amplification
of these models corresponds to the write amplification of the
corresponding model without trimming provided that the spare
factor and hot data ratio is properly adjusted. Numerical results
also show that the Trim command considerably extends the life
span of an SSD especially when the spare factor is small and
trimming cold data has a more profound impact on the write
amplification than trimming hot data.

The equivalence between the mean field models with and
without trimming should be fairly easy to generalize to the
setting where there are n > 2 levels of data hotness, e.g., a
fraction fi of the data is requested at rate ri, for 1 ≤ i ≤ n.
Another possible extension is to consider the setting with the
double write frontier (DWF) presented in [15]. The idea behind
the DWF approach is to achieve a partial separation between
the hot and cold data without the need to implement a hot/cold
data identification technique by using a different write frontier
for the internal and externally requested writes.

REFERENCES

[1] M. Benaı̈m and J. Le Boudec. A class of mean field interaction models
for computer and communication systems. Performance Evaluation,
65(11-12):823–838, 2008.

[2] W. Bux and I. Iliadis. Performance of greedy garbage collection in flash-
based solid-state drives. Perform. Eval., 67(11):1172–1186, November
2010.

[3] P. Desnoyers. Analytic models of SSD write performance. ACM Trans.
Storage, 10(2):8:1–8:25, March 2014.

[4] T. Frankie, G. Hughes, and K. Kreutz-Delgado. Analysis of trim
commands on overprovisioning and write amplification in solid state
drives, 2012. http://arxiv.org/abs/1208.1794.

[5] T. Frankie, G. Hughes, and K. Kreutz-Delgado. A mathematical model
of the trim command in NAND-flash SSDs. In Proceedings of the
50th Annual Southeast Regional Conference, ACM-SE ’12, pages 59–
64, New York, NY, USA, 2012. ACM.

[6] L. M. Grupp, J. D. Davis, and S. Swanson. The bleak future of NAND
flash memory. In Proc. of USENIX Conference on File and Storage
Technologies, 2012.

[7] J. Hsieh, T. Kuo, and L. Chang. Efficient identification of hot data for
flash memory storage systems. ACM Trans. on Storage, 2:22–40, 2006.

[8] X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write
amplification analysis in flash-based solid state drives. In Proceedings of
SYSTOR 2009: The Israeli Experimental Systems Conference, SYSTOR
’09, pages 10:1–10:9, New York, NY, USA, 2009.

[9] I. Iliadis. Rectifying pitfalls in the performance evaluation of flash solid-
state drives. Performance Evaluation, 79:235 – 257, 2014. Special Issue:
Performance 2014.

[10] JEDEC Solid State Technology Association and JC-64.8 and JC-
64. Solid State Drive (SSD) Endurance Workloads. JESD219A,
JESD219A MT, JESD219A TT.

[11] D. Park and D. Du. Poster: Hot data identification for flash memory
using multiple bloom filters. In Proc. of USENIX Conference on File
and Storage Technologies, 2011.

[12] M. Rosenblum and J. K. Ousterhout. The design and implementation of
a log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52,
February 1992.

[13] A. Tavakkol, M. Arjomand, and H. Sarbazi-Azad. Unleashing the poten-
tials of dynamism for page allocation strategies in SSDs. SIGMETRICS
Perform. Eval. Rev., 42(1):551–552, June 2014.

[14] B. Van Houdt. A mean field model for a class of garbage collection
algorithms in flash-based solid state drives. ACM SIGMETRICS Perform.
Eval. Rev., 41(1):191–202, 2013.

[15] B. Van Houdt. Performance of garbage collection algorithms for flash-
based solid state drives with hot/cold data. Performance Evaluation,
70(10):692–703, 2013.

[16] B. Van Houdt. On the necessity of hot and cold data identification
to reduce the write amplification in flash-based SSDs. Performance
Evaluation, 82:1 – 14, 2014.

