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Abstract

Tree algorithms are a well known class of random access algorithms with a provable max-
imum stable throughput under the infinite population model (as opposed to ALOHA or the
binary exponential backoff algorithm). In this paper, we propose a tree algorithm for oppor-
tunistic spectrum usage in cognitive radio networks. A channel in such a network is shared
among so-called primary and secondary users, where the secondary users are only allowed to
use the channel if there is no primary user activity. The tree algorithm designed in this paper
can be used by the secondary users to share the channel capacity left by the primary users.

We analyze the maximum stable throughput and mean packet delay of the secondary users
by developing a tree structured Quasi-Birth Death Markov chain under the assumption that
the primary user activity can be modeled by means of a finite state Markov chain and that
packets lengths follow a discrete phase-type distribution.

Numerical experiments provide insight on the effect of various system parameters and
indicate that the proposed algorithm is able to make good use of the bandwidth left by the
primary users.

1 Introduction

As the number of wireless devices increases day by day, the need for more bandwidth increases with
it. In order to cope with the resulting spectrum scarcity problem, the concept of opportunistic
spectrum access has been proposed [1]. The main idea of this concept is to allow unlicensed or
secondary users (SUs) on channels which are idle. Whenever licensed or primary user (PU) activity
is detected, the SUs should vacate the channel immediately ensuring the caused interference is
kept at a minimum. Since its introduction many medium access control (MAC) protocols have
been introduced and analyzed [2, 3]. While many of these MAC algorithms are either based on a
CSMA/CA-like random access scheme (e.g., [4, 5]) or use some form of centralized control with
channel reservation (e.g., [6,7]), our aim is to investigate whether we can design an effective random
access scheme that belongs to the class of tree algorithms for opportunistic channel access.

Tree algorithms [8–13] form a well studied class of random access algorithms that were the
first to have a provable maximum stable throughput (MST) above 0 under the infinite population
model (see Section 2.1). Under this model users arrive to the system according to a Poisson process
and leave the system as soon as they transmitted their packet successfully. The MST is defined as
the highest possible (Poisson) input rate λ (times the mean packet length if different from 1) for
which a user spends a finite amount of time in the system with probability one. Tree algorithms
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are said to support free access if new users can join at any time, which is a desirable property
for SUs in a cognitive radio setting. The most important existing results for tree algorithms with
free access include [9, 14] which cover the basic and modified q-ary tree algorithm, [15, 16] which
analyzes the impact of channel errors, [17, 18] which considers variable length packets and many
more (see [19,20]). For blocked access several variations have been considered as well, they include
channels with capture [21], control subchannels [22], multi reception capabilities [23], etc.

In all of the above studies the channel shared by the users is available at all times, in contrast
to a cognitive radio setting. Our objective therefore exists in designing and analyzing a tree
algorithm for opportunistic spectrum usage that is able to cope with possibly long periods of
channel unavailability. In order to demonstrate whether the designed algorithm uses the remaining
spectrum in an effective manner, we show that the achieved MST during the periods of PU
inactivity is close to the MST of the original tree algorithm. Numerical experiments also provide
insights on the effect of various system parameters on the MST and mean packet delay of the SUs.

The system model we consider is a centralized network in which an unlimited set of clients
try to communicate with a single access point (AP). All these nodes have two channels to their
disposal: a data channel for which they are unlicensed and a (very narrow) control channel which
they can use freely and are licensed for it. The nodes are informed about possible PU activity
by the AP in an error free manner. However, whereas the AP is equipped with the necessary
hardware to transmit data and scan for PU activity simultaneously, the clients may only have
hardware to assess one of the two channels at a time. This keeps the clients low-cost and their
energy consumption low. Besides being perfectly detectable by the AP, the only other assumption
we make about PUs is that their activity periods can be modeled using a finite state discrete time
Markov chain (MC), where some states correspond to PU activity and the others to PU inactivity.

Among the SUs, the data channel is divided into time slots. The length of each slot should
exceed the time needed by the AP to scan for PU activity. Packet transmissions can only start at
the beginning of each slot and packets can span multiple slots. At the end of each slot, the AP
broadcasts error-free feedback that will inform the SUs about possible PU activity and whether
or not a successful transmission occurred (see Section 2.2 for more details). Whenever the PUs
become active in a slot, its SU content is considered unusable and will have to be resent at a
later time. The algorithm also relies on channel reservation: if the first segment of a packet is
transmitted successfully, the channel remains reserved for the remaining segments of the packet,
even if PU activity occurs in between.

In order to analyze the MST and mean packet delay of the SUs, we define a tree-structured
Quasi-Birth-Death (QBD) Markov chain, by extending the ideas introduced in [24]. It should be
noted that constructing such an MC for the opportunistic tree algorithm is far more challenging
compared to the basic algorithm with packets of length one (as in [24]) as the obvious generalization
leads to matrices of impractical size for numerical evaluation. As such the system is only observed
at specific points in time, which significantly complicates the transition probabilities as well as the
computation of the mean delay from the steady state probabilities of the chain.

The remainder of the paper is structured as follows. In Section 2 the opportunistic tree
algorithm is introduced along with the channel model used to assess its performance. Section 3
contains a brief overview of the class of tree-structured QBD MCs and their main characteristics.
Next, Section 4 indicates how these MCs can be used to model the opportunistic tree algorithm,
where we use a stepwise approach to capture all of the features of the new algorithm and channel
model. In Section 5 we indicate how the MST and mean delay can be determined using this
Markov chain. Numerical results and a discussion of the impact of various parameters on the
performance can be found in Section 6.
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2 Algorithm and channel model

2.1 Basic binary tree algorithm

The basic binary TA, also known as the Capetanakis-Tsybakov-Mikhailov or CTM algorithm,
with free access was introduced in [8, 9] and was initially analyzed using the following standard
model:

1. Time is slotted into fixed length time slots and packets have a fixed length equal to one time
slot. Packet transmissions are only allowed to start at the beginning of a time slot.

2. The channel is error-free, meaning transmissions are unsuccessful if and only if more than
one user transmits simultaneously, where simultaneous transmissions are called collisions.

3. Error-free binary feedback is provided at the end of each time slot that indicates whether
the slot contained a collision or not.

4. Infinite population: new users arrive on the channel according to a Poisson process and leave
the channel after successfully transmitting their packet.

This standard model has been relaxed in a number of ways, allowing channel errors [15,16], variable
packet lengths [17,18], Markovian arrivals [24], etc.

The operation of the basic binary TA can be described as follows. Users with a packet ready for
transmission are called active, the other users are called inactive. Each user maintains a variable
called counter and when a user becomes active, this variable is initialized to zero. An active user
whose counter equals zero is allowed to transmit in the next time slot (hence the term free access
as new users are always free to join). Users with a counter value larger than zero have to defer
from transmitting until their counter value becomes zero. These users are called the backlogged
users. All active users listen to the channel feedback and update their counter values as follows:

1. If the slot holds a collision, all backlogged users increase their counter by 1, while users
involved in the collision each flip a coin∗. If the result is heads, the counter value remains
zero, otherwise it increases to 1.

2. If the slot was idle or contained a successful transmission, all backlogged users decrease their
counter by 1. If the slot held a successful transmission, the successful user becomes inactive.

A more intuitive way of describing the algorithm is to say that the users involved in a collision
split into two groups. The users in the first group, with counter value zero, may retransmit in
the next slot, while the users in the second group wait until all the packets of first group are
successfully transmitted, including any new packets that arrive during the resolution of the first
group. If new collisions occur during the resolution of a group, the above-mentioned method is
applied recursively. The counter value of a user thus represents the number of groups that are still
ahead before the user may retransmit.

One can also describe the operation of the basic tree algorithm using an (initially empty)
stack of groups, where each group contains zero or more users. At the start of a slot, the top of
stack (ToS) is popped and the new arrivals are added to that group. All the users in the group
then transmit. If this results in a collision, meaning the group contained more than one user,
the group is randomly split into two groups and both groups are pushed on the stack. If the
transmission was successful or the slot was idle, meaning the group contained at most 1 user, the
group is discarded at the end of the slot. In other words, collisions increase the stack size by one,
while idle and success slots decrease its size by one. This procedure is then repeated in each slot.
Using this representation, the counter variable of a user represents the user’s position in the stack.
For this reason tree algorithms are also called stack algorithms.

∗The coin may be biased and its probability p of being heads is a protocol parameter. In our numerical
experiments we have set p = 0.5, while minor improvements in the performance can be expected when optimizing
p.
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2.2 Opportunistic binary tree algorithm

In this section we introduce the opportunistic binary tree algorithm (OBTA) and the cognitive
radio channel model.

OBTA channel model: We start by listing some key differences between the standard channel
model discussed in the previous section and the cognitive radio channel model:

1. The PU activity is introduced and the stations using the OBTA are considered SUs, who
are only allowed to transmit packets when the PUs are inactive.

2. A second channel is introduced on which the stations using OBTA can rely to exchange
small control packets during periods of PU activity.

3. Both channels are slotted, but the length of the slots is no longer related to the packet length,
but should exceed the time the receiver needs to determine whether the PU is active or not.

4. The packet length is no longer fixed, but packets spanning multiple slots are split into
segments that fit within a single slot.

5. The receiver provides 8 types of feedback (using 3 bits) instead of binary feedback at the
end of each time slot. New users are able to receive the feedback provided at the end of the
time slot in which they became active.

OBTA feedback: The eight possible feedback values are: idle, collision, success cont, suc-
cess done, pu start, pu active, pu end and pu end cont. The first 4 feedback values are used to
support the variable packet length and indicate that there is no PU activity and have the following
meaning

• idle: the slot contains no SU activity,

• collision: the slot holds a collision among the SUs,

• success cont : the successful reception of a segment of a packet takes place which is not the
last segment,

• success done: the final segment of a packet is successfully transmitted in the slot.

The remaining four values are used to support the PU activity as follows:

• pu start : a period of PU activity started in this slot and the channel was not reserved,

• pu active: a period of PU activity started and the channel was reserved or a period of PU
activity continues ,

• pu end : the PU activity period has ended (all the PUs became inactive) and the next slot
is not reserved,

• pu end cont : the PU activity period has ended (all the PUs became inactive) and the next
slot is reserved by a SU for the next segment of a packet.

To provide the latter type of feedback the receiver scans each slot for PU activity.
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OBTA algorithm: To ensure minimal interference for the PU, the SUs should stop transmitting
as soon as PU activity is detected. However, as they are unaware of PU activity until the end of
the slot, some overlap between the SUs and the PUs is possible. A segment transmitted during
this overlap is considered lost and should be retransmitted. Likewise, the SUs are unaware of
the deactivation of the PU after a period of activity until they receive confirmation of this at the
end of the slot. Consequently, the first slot after a period of PU activity will be idle. Clearly,
the SUs need to be able to receive feedback during the activity periods of the PU. Therefore, all
the stations switch to the second channel upon receiving feedback equal to pu start or pu active
and switch back to the first, broader, channel when they receive feedback equal to pu end or
pu end cont.

The OBTA algorithm is constructed out of the basic binary tree algorithm (BTA) by intro-
ducing a few modifications, but it keeps the core idea of recursively splitting collisions intact. The
modifications make sure that if the PU becomes active, the SU transmissions are suspended until
the PU is known to be inactive again. They also introduce the notion of channel reservation (as
in [17, 18]): once the first segment of a packet is successfully transmitted, the channel is reserved
among the SUs for the remainder of the packet, meaning the other SUs will not interfere with the
transmission until the packet is fully transmitted, even if there is PU activity in between. The
modifications are as follows:

1. New users still initialize their counter values to zero. However, users with a counter value
equal to zero may only transmit in the next slot, if the feedback in the previous slot differed
from pu start, pu active, pu end cont and success cont (except for the user who reserved the
channel and who is clearly allowed to transmit after pu end cont or success cont feedback).

2. Backlogged users only decrease their counter after receiving idle, success done or pu end
feedback.

3. Every active user increases his counter value by one if the feedback is either pu start or
collision.

Remark that any users that became active during a slot in which the channel was not reserved
and the PU became active, will immediately increase their counter value to one due to the pu start
feedback.

The above algorithm causes collisions among a large group of SUs after long periods of PU
activity, leading to a lower SU channel utilization. To avoid these an extra bit, called flag, is added
to the feedback, a threshold T is added as a protocol parameter and a new variable named tracker
is introduced at the receivers side. This variable tracks the number of consecutive slots with
pu start, pu active, pu end cont or success cont feedback. If the variable reaches the threshold T ,
the receiver resets its value to 0 and in addition sets the flag in the feedback (irrespective of the
feedback value). Upon receiving feedback with the flag set, all active users increase their counter
value by one with the exception of the SU who has reserved the channel (if there is such a SU).
In this way, large groups of new arrivals are avoided by periodically grouping new arrivals and
pushing them on the stack. An overview of the operation of the algorithm can be found in Figure
1.

3 Tree-structured QBD MC: a review

The class of tree-structured Quasi-Birth-Death Markov chains was introduced in [25–27]. In this
section we briefly review its main characteristics. Consider a discrete time bivariate Markov chain
{(Xt, Nt), t ≥ 0}, in which the values of Xt form a (d + 1)-ary tree, and where Nt takes integer
values between 1 and m. Xt is referred to as the node and Nt as the auxiliary variable of the
Markov chain at time t. A (d+ 1)-ary tree is a tree for which each node has exactly d+ 1 children.
The root node is denoted as φ, the remaining nodes are denoted as strings of integers between
0 and d. Throughout the paper we use lower case letters to represent integers and upper case
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Hold
counter = 0

Transmit
counter = 0

Reserved
counter = 0

counter = 1 counter = 2 . . .

Inactive A = {success contf , pu start, pu activef , pu end contf}
B = {idle, success done, pu end}

C = {success cont, pu active, pu end cont}

A ∪ collision/p A ∪ collision A ∪ collision

collision/1− p

C

A ∪ C

C C
B B B

A

B ∪ collision

arrival

success contsu
cc
es
s
d
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e

success done

Figure 1: Flow chart showing the different states and transitions of the sender and its counter
variable. The arc labels depict which type of feedback correspond to which transition: when
feedback is received that belongs to the depicted set, the corresponding transition is made (note
for notation, no difference is made between a single element and its corresponding singleton). The
transitions are fully defined given the current state and the received feedback, with 1 exception.
If the sender is in the ‘Transmit’ state and the type of feedback received is collision, the counter is
increased by 1 w.p. p and remains 0 w.p. 1− p. Feedback in which the flag bit is set, are marked
by ‘f ’. Senders are only allowed to transmit when in the ‘Transmit’ state or in the ‘Reserved’
state and if the feedback is different from pu start and pu active.
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letters to represent strings of integers when referring to the nodes of a tree. We use + to denote
concatenation on the right. For example, if J = j1j2j3, then J + k = j1j2j3k.

The Markov chain {(Xt, Nt), t ≥ 0} is called a tree-structured QBD Markov chain if the
following limitations apply to its transitions. First, if (Xt, Nt) is of the form (J + k, i), then Xt+1

must be either J , J + s or J + k + s for some s ∈ {0, . . . , d}. In other words, from any node all
transitions go either to the parent, a sibling or a child node. Second, the transition probabilities
should be independent of J (and of k in case of a transition to a child node), meaning they can
be written in the form:

• di,jk = Pr[(Xt+1, Nt+1) = (J, j)|(Xt, Nt) = (J + k, i)],

• ai,jk,s = Pr[(Xt+1, Nt+1) = (J + s, j)|(Xt, Nt) = (J + k, i)],

• ui,js = Pr[(Xt+1, Nt+1) = (J + k + s, j)|(Xt, Nt) = (J + k, i)].

Define the m ×m matrices Dk, Ak,s and Us such that entry (i, j) is equal to di,jk , ai,jk,s and ui,js ,
respectively. Finally, when (Xt, Nt) = (φ, i) for some i ∈ {0, . . . ,m}, then (Xt+1, Nt+1) = (s, j)
with probability ui,js and (Xt+1, Nt+1) = (φ, j) with probability f i,j , where the latter probabilities
are grouped in an m×m matrix F .

The Markov chains constructed in this paper do not require transitions among sibling nodes,
as such Ak,s = 0 for all k and s. This implies that the positive recurrence of the Markov chain
can be determined as follows. First compute the matrix V as the limit of the following iterative
method

Vn+1 =

d∑
k=0

Uk(I − Vn)−1Dk,

starting with V0 = 0. Having obtained V , the matrices Rk, 0 ≤ k ≤ d, are determined via

Rk = Uk(I − V )−1,

where entry (i, j) of Rk contains the expected number of visits to state (J + k, j) given that we
start in (J, i) before visiting node J again. The Markov chain (MC) is positive recurrent if and
only if the spectral radius of R = R0 + . . . + Rd is less than one, i.e. sp(R) < 1. Provided that
the MC is positive recurrent, denote the steady state probability of state (J, i) as π(J, i) and let
π(J) = (π(J, 0), . . . , π(J, d)), then

π(J) = π(φ)Rj1Rj2 . . . Rjn ,

for J = j1j2 . . . jn. The boundary vector π(φ) can be obtained as

π(φ) = π(φ)(F +

d∑
k=0

RkDk),

such that π(φ)(I −R)−1e = 1, in which e is a column vector of m ones. Finally, for later use, we
also introduce the matrices Gk, 0 ≤ k ≤ d, where entry (i, j) of Gk corresponds to the probability
that, given the MC starts in state (J + k, i), the first visit to node J occurs in state (J, j). The
matrices Gk can be expressed as Gk = (I−V )−1Dk. Note, the matrices Gk are stochastic whenever
the chain is positive recurrent.

4 Analytical Model

In our model, new users arrive according to a Poisson process with rate λ. A user leaves the
system as soon as he has successfully transmitted an entire packet (that may consist of multiple
segments). In other words there is a one-to-one correspondence between users and packets and the
packet delay is identical to the time that its associated user spends in the system. The probability
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of having x new arrivals over a time span of y slots, is denoted by b
(y)
x = e−λy(λy)x/x! and b

(y)
x+

is used to denote the probability of having x arrivals or more. To ease the notation, we define

b
(y)
x = 0 if x < 0.

Packet lengths are assumed to be distributed according to a discrete time phase type (DPH)
distribution of order n with representation (γ,G). In other words, the probability that a packet is
composed of k segments is given by γGk−1g, where g = e−Ge holds the probabilities of absorption.
We also assume that a packet is composed of at least one segment, i.e., γe = 1. The state space
of the corresponding discrete-time MC is denoted as SG ∪ sg, with sg the absorbing state.

The PU activity is modeled using a discrete time MC with state space Spu and transition
matrix Ppu. The PU’s state space is partitioned into two subsets Si and Sa, the former containing
the states in which the PU is considered idle, the latter in which the PU is considered active. Its
transition matrix is likewise partitioned into submatrices containing the probabilities the PU stays
or becomes (in)active:

Ppu =

[
Pii Pia

Pai Paa

]
.

In order to introduce the tree-structured QBD MC that captures the behavior of the OBTA
algorithm, we will use a stepwise approach: we start by briefly describing the MC used in [24]
for the case where there is no PU activity and all packets have a length of one time slot, next we
consider variable packet lengths as well as the use of the tracker variable and finally we add the
PU activity.

4.1 Fixed length packets and no PU activity

If we assume that all the packets have a length of one time slot and there is no PU activity, the
OBTA algorithm reduces to the basic binary TA described in Section 2.1, the evolution of which
can be described by means of a stack. As such we start by introducing the tree-structured QBD
MC {(Xt, Nt), t ≥ 0} of [24] simplified to the case of Poisson arrivals. Under Poisson arrivals the
system state of the basic binary TA is completely determined by the content of the stack, denoted
as sxsx−1 . . . s2s1s0 where the stack contains x+ 1 groups and the ToS contains s0 users. In order
to obtain a tree-structured QBD MC, let Nt represent the number of users that will transmit in
time slot t, i.e., it is s0 plus the number of new arrivals in slot t−1. The string Xt = sxsx−1 . . . s2s1

represents the remainder of the stack, i.e., in time slot t there are si backlogged users with their
counter value equal to i, for i = 1, . . . , x. Note, sx may be equal to zero if the bottom group of
the stack contains no users.

Whenever a collision occurs, meaning Nt > 1, the users who transmitted are split into two
groups and the counter value of the second group becomes one, while all the backlogged users
increase their counter by one. In other words, the stack size increases by one and thus a transition
occurs to a child node of Xt. The child node is determined by the number of users that selected
the second group, while Nt+1 is determined by the number of users that select the first group plus
the number of new arrivals that occurred in time slot t. Hence,

ui,i
′

k = Pr[(Xt+1, Nt+1) = (J + k, i′)|(Xt, Nt) = (J, i)] = B(i, k)b
(1)
i′−(i−k),

for i > 1, where B(i, k) =
(
i
k

)
pi−k(1− p)k is the probability that k of the i users select the second

group.
If time slot t is idle or holds a success (and Xt 6= φ), meaning Nt = 0 or 1, the backlogged

users decrease their value by one and Nt+1 is determined by the number of users who had their
counter value equal to one plus the number of new arrivals in slot t. Therefore, idle and successful
slots cause a transition to the parent node of Xt and

di,i
′

k = Pr[(Xt+1, Nt+1) = (J, i′)|(Xt, Nt) = (J + k, i)] = b
(1)
i′−k,

for i = 0, 1. When Xt = φ and slot t is idle or holds a success, Nt+1 simply reflects the number of
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arrivals in slot t and Xt+1 = φ:

f i,i
′

= Pr[(Xt+1, Nt+1) = (φ, i′)|(Xt, Nt) = (φ, i)] = b
(1)
i′ ,

for i = 0, 1.
The bivariate process {(Xt, Nt), t ≥ 0} is close to being a tree-structured QBD MC, but requires

nodes to have an infinite number of children and Nt to have an infinite range, as there is no upper
bound on the number of users that can have the same counter value. To circumvent this issue, [24]
introduced a model parameter d, such that at most d packets are transmitted simultaneously in a
time slot, while the remaining packets are dropped. Note, this immediately implies that there can
be at most d users as well with the same counter value. Thus, by introducing d, the range Ω of Nt
becomes {0, . . . , d} and each node has exactly d + 1 children. Introducing this parameter d may
seem a little harsh, but its impact is nearly non-existent if we pick d such that only a very small
fraction ε of the packets is lost, e.g., ε = 10−15. In fact, after selecting a specific value of d we
can solve the MC and determine the loss rate induced by d. Numerical experiments showed that
small values of d, e.g., d = 15, suffice to get highly accurate results (unless we have long periods
of channel reservation and/or PU activity combined with a large threshold T †). The parameter d
causes the following modifications when i′ = d:

ui,dk = B(i, k)b
(1)
(d−(i−k))+,

di,dk = b
(1)
(d−k)+,

f i,d = b
(1)
d+.

This truncation idea will also be used for the more advanced models, but we will skip the details
for the sake of brevity.

4.2 Variable length packets and no PU activity

We will now adapt the tree-structured QBD MC used to model the basic binary TA to incorporate
variable packet lengths. In this case we will also model the impact of the tracker variable. In other
words we model the OBTA algorithm on a channel without PU activity. It may seem odd at first
to use the tracker variable and threshold T in such a setting as its use was motivated by long
periods of PU activity. However, its use can also improve the performance even without PU
activity, provided that the packet length distribution is highly variable. In this case very long
packets will still result in large collisions and these can be avoided using the tracker variable. If
we set the threshold value T =∞ the OBTA algorithm nearly coincides with the TA of [17] in the
absence of PU activity, except that in [17] users are not able to distinguish between the successful
transmission of an arbitrary segment and the last segment of a packet. As such all the successful
transmissions are followed by an idle slot that marks the end of a packet. To analyze the TA
of [17] we can make use of the MC developed in this section if we simply add one more segment
to each packet that corresponds to this idle slot (see Section 6 for more details).

In the absence of PU activity, the OBTA algorithm uses four feedback values (and the flag):
idle, collision, success cont and success done. One way to construct a tree-structured QBD MC is
to adapt Nt such that it captures the number of users that transmit in slot t as well as the phase
of the packet in case a single user is transmitting and the value of the tracker variable. As this
leads to a significant increase in the size of the matrices characterizing the MC, this approach is
not very appealing. Instead, we will no longer observe the system at each time slot.

If the threshold value T = ∞ we observe the system only at the time slots for which the

†This can be understood by noting that during periods in which new arrivals are not allowed to transmit
(either due to channel reservation and/or PU acitvity), the number of users in the hold state increases (see Figure
1). Thus, the longer these periods last, the higher the probability that we need to drop some packets. The threshold
parameter introduces an upper bound on the length of these periods and therefore smaller T values allow us to use
smaller d values without causing much packet loss.
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feedback in the previous slot differed from success cont. In other words we do not observe the
system during the transmission of the 2nd to last segment of a successfully transmitted packet.
In this case the range Ω of Nt and Xt, where t is now the t-th observed slot, remains the same as
do all the transitions, except for those from a state of the form (J, 1), where the first segment of
a packet is successfully transmitted. These transitions become

d1,i′

k = Pr[(Xt+1, Nt+1) = (J, i′)|(Xt, Nt) = (J + k, 1)] =

∞∑
s=1

(γGs−1g)b
(s)
i′−k,

as γGs−1g is the probability that the packet consists of s segments. Note, in this case we can also
easily relax the assumption on the phase-type distributed packet length.

If we use a finite threshold value T , the above approach causes a problem. If we skip all the
slots corresponding to the 2nd to last segment of a packet, we may need to add several groups
to Xt in a single transition from a state of the form (J, i), because the threshold value may be
reached several times during the transmission of a single packet and each time this occurs we need
to push a group to the stack. Transitions that add several items to Xt are however not allowed
in a tree-structured QBD. To solve this problem, we only skip the slots corresponding to the 2nd
to last segment of a packet for which the flag is not set (i.e., for which the threshold value is not
reached). This implies that we now need to extend the range Ω of Nt to keep track of the phase of
the packet whenever we observe the system in a slot where a segment is successfully transmitted.
Hence, the range Ω of Nt becomes {0, 2, 3, . . . , d} ∪ {(1, j), j ∈ SG}.

The transitions that only involve states of the form (J, i) with i 6= 1 remain identical to the case
of the basic binary TA, but some changes are clearly needed when a state of the form (J, (1, j))
is involved. Let us first consider the case where we make a transition to a slot in which the first
segment is successfully transmitted. These are identical to the binary basic TA except that we
also initialize the phase of the packet length distribution, yielding for i = 0, 2, . . . , d

u
i,(1,j′)
k = B(i, k)b

(1)
1−(i−k)γj′ ,

d
i,(1,j′)
k = b

(1)
1−kγj′ ,

f i,(1,j
′) = b

(1)
1 γj′ ,

as γj′ is the probability to start in phase j′. If we are in a state of the form (J, (1, j)) during the
t-th observed slot and the t+ 1-st observed slot corresponds to a slot in which the flag is set, we
get a transition to a child node as a group of new arrivals is pushed on the stack. Hence,

u
(1,j),(1,j′)
k = (GT )j,j′b

(T )
k ,

as the pushed group consists of all the new packets that arrived during the T consecutive slots
with success cont feedback.

With probability (Gzg)j the remaining length of a packet, currently in phase j, is z+1 segments.

Consequently,
∑T−1
z=0 (Gzg)j expresses the probability that the packet transmission ends before the

threshold is reached (again), in which case a group is popped from the stack and the new arrivals
that occurred during the z+ 1 remaining slots of the packet transmission are added to this group:

d
(1,j),i′

k =

T−1∑
z=0

(Gzg)jb
(z+1)
i′−k ,

d
(1,j),(1,j′)
k =

T−1∑
z=0

(Gzg)jb
(z+1)
1−k γj′ ,

for i′ 6= 1 with f (1,j),(1,j′) = d
(1,j),(1,j′)
0 and f (1,j),i′ = d

(1,j),i′

0 .
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4.3 Variable length packets with PU activity

In the previous section we observed the system after the slots with idle, collision or success done
feedback or when the flag bit was set in the feedback. When PU activity is introduced, we
additionally observe after a slot with either pu start or pu end feedback (unless the channel is
reserved). The system state Nt clearly needs to be extended to incorporate the state of the PU.
The range Ω of Nt now equals

Ω = {(0, s), (1, s), . . . , (d, s)|s ∈ Si}︸ ︷︷ ︸
Ωin

∪{s|s ∈ Sa}︸ ︷︷ ︸
Ωac

∪{(1, j, s)|j ∈ SG, s ∈ Spu}︸ ︷︷ ︸
Ωres

,

where the first two sets Ωin and Ωac correspond to slots without a channel reservation and without
or with PU activity, respectively, while the last set Ωres corresponds to a reserved channel with
or without PU activity. Thus, when an SU reserves the channel and the packet transmission is
interrupted by PU activity, the system makes a transition to a state of Ωres with s ∈ Sa.

Note in case of a single inactive PU state s and no active PU states, the range Ω of Nt contains
one more additional state (1, s) compared to the previous section. This state corresponds to a slot
in which a single user is transmitting its first segment of a packet. In case of no PU activity, we can
remove this state by immediately initializing the phase of the packet and thus by letting Nt equal
(1, j, s) instead of (1, s). However, in the presence of PU activity this transmission may or may not
fail depending on whether the PU becomes active. Hence, if we immediately initialize the phase
of the packet length whenever a single user transmits we would need two sets of states of the form
(1, j, s) in order to be able to distinguish between a reserved or unreserved channel, depending on
whether it is the first segment of the packet that is being transmitted or not. Instead, we will
postpone the initialization of the packet length until the first segment is successfully transmitted,
allowing us to reduce the first set to a single state (1, s).

Transitions with Nt ∈ Ωin and Nt+1 6∈ Ωres: Given that the PU is inactive and remains
inactive during a slot, the transitions corresponding to idle slots and collision slots remain nearly
identical, we merely take the postponed initialization of the packet length distribution and the
transition of the PU into account. This leads to

u
(i,s),(i′,s′)
k = B(i, k)b

(1)
i′−(i−k)(Pii)s,s′ ,

d
(0,s),(i′,s′)
k = b

(1)
i′−k(Pii)s,s′ ,

f (0,s),(i′,s′) = b
(1)
i′ (Pii)s,s′ ,

for i ≥ 2 and s, s′ ∈ Si. Furthermore, if the PU becomes active while the channel is not reserved,
all active users increase their counter value by one:

u
(i,s),s′

k = b
(1)
k−i(Pia)s,s′ ,

for i ≥ 0, s ∈ Si and s′ ∈ Sa. The case where Nt = (1, s) and Nt+1 ∈ Ωin will be covered at the
end of this section.

Transitions with Nt ∈ Ωac and Nt+1 6∈ Ωres: When the PU is active and the channel is
unreserved, we observe the system again if either the threshold is reached or the PU becomes idle
again before reaching the threshold. In the former case, a new group solely existing of new arrivals
is pushed onto the stack, resulting in

us,s
′

k = b
(T )
k (PTaa)s,s′ ,

with s, s′ ∈ Sa. In the latter case, in which the PU becomes inactive before the threshold is
reached (again), the accumulated arrivals are added to the ToS and all of them will transmit in
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the next slot. As the probability of reaching an idle state s′ after z + 1 steps from state s is given
by (P zaaPai)s,s′ , we have

d
s,(i′,s′)
k =

T−1∑
z=0

(P zaaPai)s,s′b
(z+1)
i′−k ,

for i′ ≥ 0, s ∈ Sa and s′ ∈ Si.

Remaining transitions: We end this section by discussing the transitions where Nt = (1, j, s),
with s ∈ Spu, and Nt = (1, s), with s ∈ Si, when the PU does not become active during the
transmission of the first segment. In both cases the next observation point is either when the last
segment of the packet is transmitted or when the flag bit is set. To compute the probabilities
of the corresponding transitions, we define a substochastic matrix PH that keeps track of both
the PU and the packet length distribution during the channel reservation periods. The rows and
columns of PH correspond to the states {(j, s)|j ∈ SG, s ∈ Spu}. As PH captures the evolution
during a single time slot, each transition incorporates a transition of the PU and, if the PU was
idle, a transition of the packet length distribution. Hence,

PH =

[
G⊗ Pii I|SG| ⊗ Pia

I|SG| ⊗ Pai I|SG| ⊗ Paa

]
.

Further, define the matrix Ph as

Ph =

[
g ⊗ Pii

0

]
.

Using these matrices, the probability of reaching the threshold when the channel is reserved,
i.e., when Nt is of the form (1, j, s), can be expressed as (PTH)(j,s),(j′,s′), j, j

′ ∈ SG, s, s′ ∈
Spu, and the probability of finishing the packet transmission before the threshold is reached as∑T−1
z=0 (P zHPh)(j,s),(g,s′), s

′ ∈ Si. Hence, if the channel is reserved, we have

u
(1,j,s),(1,j′,s′)
k = b

(T )
k (PTH)(j,s),(j′,s′),

d
(1,j,s),(i′,s′)
k =

T−1∑
z=0

(P zHPh)(j,s),s′b
(z+1)
i′−k .

Finally, if the channel was not reserved, i.e., when Nt is of the form (1, s), and the PU does
not become active during the transmission of the first segment, we also need to take care of the
postponed packet length initialization. This yields

u
(1,s),(1,j′,s′)
k = b

(T )
k (

[
γG⊗ Pii 0

]
PT−1
H )s,(j′,s′),

d
(1,s),(i′,s′)
k = ((γ ⊗ I)Ph)s,s′b

(1)
i′−k + (

[
(γG)⊗ Pii 0

] T−2∑
z=0

P zHPh)s,s′b
(z+2)
i′−k ,

as γPh is the probability that a packet consisting of a single segment is successfully transmitted on
an unreserved channel and γG captures both the initialization and the first transition of the packet

length distribution. We would like to remark that f (1,j,s),(i′,s′) = d
(1,j,s),(i′,s′)
0 and f (1,s),(i′,s′) =

d
(1,s),(i′,s′)
0 as having no backlogged users can be regarded as having empty groups on the stack.

5 Performance Measures

Once the matrices F , Uk and Dk, 0 ≤ k ≤ d are constructed, determining the maximum stable
throughput (MST) is not hard. We merely use the method described in Section 3 to check for
system stability in combination with a simple root finding algorithm such as bisection to find
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Inactive

t2

Hold

t3

Transmit

t4

Reserved
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Inactive

t

arrival
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Figure 2: Figure depicting the three parts of the time that a tagged user spends in the system. t1
is the time at which we observe the system prior to the arrival of the tagged user, t2 is the time the
tagged user exits the Hold state, t3 is the first time that the tagged user enters the Transmit state,
t4 is the time at which the tagged user manages to reserve the channel by successfully transmitting
his first segment and at time t5 the tagged user exits the system (i.e., successfully transmits his
last segment).

the largest arrival rate λ for which sp(R) < 1. Calculating the mean delay however, is far more
complicated. Although the approach is somewhat similar to [24], the computation is considerably
more involved as we do not observe the system at the end of each time slot and some new users
are also immediately pushed onto the stack due to the presence of the tracker variable.

To calculate the expected time a tagged user is active, we split this time into three parts (see
Figure 2). The first part is the time between the actual arrival and next observation point in
the model. When referencing to Figure 1, the user spends this time in the Hold state. This
corresponds to the time between the arrival and t2 in Figure 2. The second part is the time that
elapses between the sender leaving the Hold state and entering the Transmit state for the first
time, that is, the time between t2 and t3 in Figure 2. The final part is the time between the
sender’s first transmission attempt and final transmission, i.e. the successful transmission of the
last segment of the packet (i.e., the time between t3 and t5). The random variables denoting the
length of these periods are denoted as D1, D2 and D3.

Lemma 5.1. Let D1 be the time between a tagged arrival and the next observation point, then

E[D1] =
1

2

∑
x∈Ω δx

∑T
z=1 P [Lx = z]z2∑

x∈Ω δx
∑T
z=1 P [Lx = z]z

,

where the random variables Lx, for x ∈ Ω, are defined as

P [Lx = z] =



1 x = (i, s), 0 ≤ i ≤ d, i 6= 1, s ∈ Si,
(P z−1
aa Paie)s x = s, z = 1, . . . , T − 1, s ∈ Sa,

(PTaae)s + (PT−1
aa Paie)s x = s, z = T, s ∈ Sa,

(γgPiie)s + (Piae)s x = (1, s), z = 1, s ∈ Si,
(
[
γG⊗ Pii 0

]
P z−2
H Phe)s x = (1, s), z = 2, . . . , T − 1, s ∈ Si,

(
[
γG⊗ Pii 0

]
(PT−1
H + PT−2

H Ph)e)s x = (1, s), z = T, s ∈ Si,
(P z−1
H Phe)(j,s) x = (1, j, s), z = 1, . . . , T − 1, j ∈ G,

s ∈ Spu,
(PTHe)(j,s) x = (1, j, s), z = T, j ∈ G, s ∈ Spu,

(1)

and δx with x ∈ Ω is entry x of the row vector

δ = π(φ)(I −R)−1.

Proof. Let Lx be the random variable representing the number of slots that occur between two
consecutive points of observation, given thatNt = x at the first point of observation. Its probability
distribution can be readily deduced from the model and is given by (1).
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To calculate the probability that the tagged user arrives between two consecutive observation
points that are z slots apart, we note that due to the Poisson arrivals the tagged user is z1/z2

times more likely to arrive in an interval of length z1 than in an interval of length z2. Therefore,
we can express the required probability as P [Lx = z]z/

∑T
z=1(P [Lx = z]z) given that Nt = x at

the first of the two consecutive points of observation. Denote δx as the probability that Nt = x at
an arbitrary point of observation and let δ be the row vector with entry x equal to δx, then due
to the form of the steady state probabilities

δ = π(φ)(I −R)−1.

Therefore, the probability that the tagged user arrives in a period of length z between to arbitrary
consecutive points of observation, can be expressed as∑

x∈Ω δxP [Lx = z]z∑
x∈Ω δx

∑T
z=1 P [Lx = z]z

,

and the results is established by noting that the position of the tagged used is uniformly distributed
within this period due to the Poisson arrivals.

For further use, define ξx and ξ
(2)
x respectively as the means and second moments of Lx and

let ξ and ξ(2) denote the corresponding column vectors. In other words, ξx =
∑T
z=1 zP [Lx = z]

and ξ
(2)
x =

∑T
z=1 z

2P [Lx = z]. Hence, due to the previous lemma, we have E[D1] = δξ(2)

2δξ .

Lemma 5.2. Let D2 be the time that the tagged user spends in the system between exiting the
Hold state and entering the Transmit state for the first time, then

E[D2] = ΥWΦ1,

where

Υ =
π(φ)F̄ +

∑d
k=0 δRkD̄k + δ

∑d
k=0 Ūk

(π(φ)F̄ +
∑d
k=0 δRkD̄k + δ

∑d
k=0 Ūk)e

, (2)

and the matrices F̄ , Ūk and D̄k are identical to F , Uk and Dk defined in Section 4, except that

b
(y)
z and b

(y)
z+ are replaced by ze−λy(λy)z/z! and z(1 −

∑z−1
l=1 e

−λy(λy)l/l!), respectively. Further,
W is a diagonal matrix with

Wx,x =

{
1, x ∈ Ωac ∪ Ωres,

0, otherwise,

and Φ1 is the unique solution of the following system of linear equations:

Φ1 = ξ +

d∑
s=0

Us(Φ1 +GsΦ1).

Proof. The time D2 is the time the tagged user spends in the system between exiting the Hold
state and his first transmission attempt. If the tagged user is in the Hold state and the feedback
is idle, collision, success done or pu end, he immediately transfers to the Transmit state, meaning
D2 = 0. However, if the received feedback is success contf , pu start, pu activef or pu end contf ,
the tagged user increases his counter to 1 and has to wait until his counter is 0 to start his first
transmission attempt. It is possible to identify these two cases by looking at the system state
when the tagged user exits the Hold state, i.e. at t2 in Figure 2. Indeed, if at time t2 the channel
is reserved or the PU is active (or both), the tagged user does not send in the next slot, but
increases his counter to 1 and thus contributes to D2. In all other cases (meaning the channel was
idle, there was a collision or the last segment of a packet was successfully transmitted in the slot
the tagged user arrived), D2 equals zero.
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Next, we derive an expression for the probability that the system is in state x ∈ Ω when exiting
the Hold state (i.e., at the first observation point after the tagged arrival, that is, at time t2 in
Figure 2) and we group these probabilities in a row vector Υ. To calculate Υ we use a slightly
modified version of the transition matrices of the model. The gist of the idea is that we look at
the system state at an arbitrary point of observation, make a single transition and note that the
tagged user is z1/z2 times more likely to be part of a transition during which z1 new arrivals occur
instead of z2. Therefore, we define F̄ , Ūk and D̄k in the same manner as F , Uk and Dk in Section

4, but with b
(y)
z and b

(y)
z+ replaced by ze−λy(λy)z/z! and z(1 −

∑z−1
l=1 e

−λy(λy)l/l!), respectively.
Thus, to determine Υ we observe the system state at an arbitrary point of observation, make a
single transition according to these scaled transition matrices and renormalize the result. Clearly,
the scaled transition matrix F̄ is used for the transition from the root node (Xt = φ), D̄k applies
only in a state for which the node variable is of the form Xt = J + k, while the Ūk matrices apply
to all states. The probability of being in the root node at an arbitrary point in time is given by
π(φ) and the probability of being in a state for which Xt is of the form J + k can be expressed as
δRk. Consequently, the row vector Υ can be computed as (2).

When x ∈ Ωac ∪ Ωres at time t2 the time D2 corresponds to a fundamental period of the
MC with initial state x. In the OBTA algorithm the fundamental period is the time it takes to
resolve the current event on the channel (PU activity, packet transmission or collision) and allow
for the next group to transmit (those with counter value 1). If the current event results in adding
new groups to the stack in front of the designated group, the time needed to resolve the events
corresponding to those groups is included as well. In the MC, this corresponds to the time needed
to reach a state belonging to node J , given that we started in a state of the form (J + k, x).
We define the column vector Φ1 such that entry x holds the expected length of the fundamental
period with initial state Nt = x. To determine (Φ1)x, we first count the expected number of slots
needed until the next point of observation. Remark that this quantity was already discussed in
Lemma 5.1 and is given by ξx. At this point with probability (Dke)x a transition occurs to the
parent node J and we are done (note, Dke = D0e for all k). However, with probability (Us)x,y a
transition to state (J + k + s, y) occurs, meaning we now first need to count the time needed to
return to a state of the form (J +k, z) and then we need to count the time needed to reach a state
belonging to J . The former is given by (Φ1)y, the latter is obtained using (Gs)y,z, which holds the
probability that the chain is in state (J + k, z) at the end of a fundamental period given that we
started in state (J + k + s, y), and (Φ1)z. In matrix notation, this leads to the following formula

Φ1 = ξ +
d∑
s=0

Us(Φ1 +GsΦ1).

Finally, to calculate E[D2], we define the diagonal matrix W

Wx,x =

{
1, x ∈ Ωac ∪ Ωres,

0, otherwise,

such that E[D2] can be expressed as ΥWΦ1 as D2 = 0 whenever x 6∈ Ωac ∪Ωres at time t2 and is
equal to (Φ1)x for x ∈ Ωac ∪ Ωres.

Lemma 5.3. Let D3 be the time between the first transmission attempt of the tagged user and the
successful transmission of his last segment, then

E[D3] = ΨΦ2,

where

Ψ = Υ(I −W ) +
δ
∑d
k=0 ŪkWGk

(π(φ)F̄ +
∑d
k=0 δRkD̄k +

∑
k δŪk)e

,
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Υ,W, F̄ , D̄k and Ūk are defined in Lemma 5.2,

Φ2 = ξ +

d∑
k=0

[(Mk ◦ Uk)Φ2 + (Nk ◦ Uk)(Φ1 +GkΦ2)],

ξ is defined right after the proof of Lemma 5.1 and where ‘◦’ denotes the Hadamard or entrywise
matrix multiplication,

(Nk)x,y =


1, x = (i, s), y = s′, 0 ≤ i ≤ k, s ∈ Si, s′ ∈ Sa,
k
i , x = (i, s), y = (i′, s′),max(2, k) ≤ i ≤ d, 0 ≤ i′ ≤ d, s, s′ ∈ Si,

0, otherwise,

and (Mk)x,y = 1− (Nk)x,y.

Proof. Define the column vector Φ2 with entries x ∈ Ωres ∪ Ωin\(0, s), s ∈ Spu, as follows:

• If x ∈ Ωin\(0, s), then (Φ2)x represents the expected number of slots until the last segment of
the tagged user is successfully transmitted, given that the tagged user attempts to transmit
his first segment in the current slot, the phase of which is x.

• If x ∈ Ωres, (Φ2)x represents the expected number of slots until the last segment of the
tagged user is successfully transmitted, given that the tagged user has reserved the channel
and the phase of the current slot is x.

For notational purposes, the entries (Φ2)x are also introduced further on for x ∈ Ωac ∪ (0, s), but
these values are of no use.

After obtaining Φ2 (see below), we determine the distribution of the phases x ∈ Ω in which
the tagged user attempts his first transmission (at time t3 in Figure 2) and let the row vector Ψ
contain these values. Assuming we are able to determine both Φ2 and Ψ, the expectation of D3

can clearly be computed as
E[D3] = ΨΦ2.

In Lemma 5.2 we computed Υ, entry x of which holds the probability of being in phase x at
time t2. Further, as D2 = 0 whenever Wx,x = 0, where W is defined in Lemma 5.2, the phase at
time t3 is also x when Wx,x = 0. Hence, (Υ(I−W ))x contains the probability that the system is in
phase x at time t3 and the tagged user is immediately allowed to transmit when exiting the Hold
state. However, in case the tagged user is not allowed to transmit after exiting the Hold state,
ΥW clearly does not match the phase distribution at time t3. To calculate the latter distribution,
we note that as the tagged user is immediately pushed onto the stack when exiting the Hold state,
a transition to a child node must take place. Hence,

ΥW =
δ
∑d
k=0 ŪkW

(π(φ)F̄ +
∑d
k=0 δRkD̄k + δ

∑d
k=0 Ūk)e

,

as F̄ and D̄k do not contain any transitions in which arrivals are pushed onto the stack. We also
know that, as the tagged user is pushed onto the stack, the current state must be of the form
(J + k, x). Furthermore, the state in which the tagged user attempts his first transmission must
be of the form (J, s) and we are interested in the probability distribution of s. Remark that entry
(i, j) of the matrix Gk, which we introduced at the end of Section 3, contains the probability that
the first visit to node J occurs in state (J, j), given that the MC starts in state (J + k, i). Thus,
the phase distribution at time t3 can be calculated as

Ψ = Υ(I −W ) +
δ
∑d
k=0 ŪkWGk

(π(φ)F̄ +
∑d
k=0 δRkD̄k +

∑d
k=0 Ūk)e

.
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The final component we still need to obtain is Φ2. This computation proceeds in a similar but
more involved manner as Φ1. The mean time until the next point of observation is again given
by ξx. With probability (D0e)x (again, D0e = Dke for all k) the last segment of the tagged user
is successfully transmitted at the next point of observation and we are done. Otherwise, with
probability (Uk)x,y a transition to phase y of the k-th child of the current node occurs and the
following cases have to be considered:

1. If x = (1, j, s) or (1, s) and y = (1, j′, s′), we simply need to add (Φ2)y as the channel is still
or became reserved by the tagged user.

2. If x = (i, s) with 1 ≤ i ≤ k and s ∈ Si and y = s′ with s′ ∈ Sa, the PU became active and
we have to wait a fundamental period until the tagged user can transmit again, followed by
(Φ2)z if the fundamental period ends in phase z.

3. If x = (i, s) with max(2, k) ≤ i ≤ d and s ∈ Si and y = (i′, s′) with s′ ∈ Si, then a collision
occurred in the current slot. As there is a transition to the k-th child node, k of the i users
chose the second group, meaning with probability k/i the tagged user selected the second
group. If the tagged user selected the first group, the additional delay can be expressed as
(Φ2)y. Otherwise, the tagged user first has to wait a fundamental period, followed by (Φ2)z
if the fundamental period ends in phase z.

Thus, if we define the matrix Nk as

(Nk)x,y =


1, x = (i, s), y = s′, 0 ≤ i ≤ k, s ∈ Si, s′ ∈ Sa,
k
i , x = (i, s), y = (i′, s′),max(2, k) ≤ i ≤ d, 0 ≤ i′ ≤ d, s, s′ ∈ Si,

0, otherwise,

and (Mk)x,y = 1 − (Nk)x,y, the matrices Nk and Mk clearly contain on position (x, y) the prob-
ability that after a transition (Uk)x,y we need to wait a fundamental period before the user can
resume transmitting or not. Hence, we have the following equation for Φ2:

Φ2 = ξ +

d∑
k=0

[(Mk ◦ Uk)Φ2 + (Nk ◦ Uk)(Φ1 +GkΦ2)],

where ‘◦’ denotes the Hadamard or entrywise matrix multiplication.

Proposition 5.4. The mean time that a tagged user remains in the system, that is, the mean
delay, can be expressed as

E[D1] + E[D2] + E[D3] =
δξ(2)

2δξ
+ ΥWΦ1 + ΨΦ2,

where δ, ξ(2), ξ, Υ, W , Φ1, Ψ and Φ2 are defined in (or after) Lemma 5.1 to 5.3.

6 Numerical Results

In this section we present various results for the mean packet delay and the MST. As the through-
put is typically defined as the fraction of the channel that is used to successfully transmit data,
the MST is defined as the mean packet length times the maximum arrival rate λ for which the
packet delay is finite with probability one.

6.1 Variable packet lengths and no PU activity

Analyzing the MST of the original CTM algorithm with variable packet length has proved to be
challenging. In [17], Tsybakov and Fedortsev derived an upper and lower bound on the MST.
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Figure 3: MST of the original CTM algorithm as a function of the mean packet length when
compared to the lower and upper bound derived in [17].

Using functional equations, Jacquet and Merle [18] analyzed the MST of a modified version of
the algorithm which gave priority to new users after a successful transmission and enabled them
to determine the MST (a less computationally expensive method for getting the MST for this
variation was introduced in [20]). The OBTA algorithm operates identical to the original CTM
algorithm in the absence of PU activity and with the threshold T = ∞, except that it uses four
types of feedback instead of the usual three (being, idle, success and collision). More specifically,
OBTA uses both success cont and success done as feedback for successful segments, such that
users know when the last segment was successfully transmitted, whereas with the original CTM
algorithm users cannot make this distinction. As a result all successful transmissions are followed
by an idle slot. Thus, to analyze the original CTM algorithm we can rely on the MC model of
Section 4.2 if we simply add an additional segment to each packet that represents the idle slot.
This can be easily done by constructing a new DPH (γ′, G′) for the packet length:

γ′ =
[
γ 0

]
,

and

G′ =

[
G g

0 0

]
.

In this manner we calculated the MSTs for the original CTM algorithm with variable packet
lengths and compared them to the bounds introduced in [17]. The results for two different packet
length distributions are shown in Figure 3: one with fixed packet lengths and one with packets
of length 1 with probability c and length 75 with probability 1 − c. The parameter c of the
distribution is set such that the mean packet length matches a given mean, varying between 1 and
50. The upper and lower bounds depicted correspond to the case where all packets have either
length 1 or 75. The upper bound for deterministic packet lengths is nearly identical to the one
where all packets have length 1 or 75, while the lower bound is somewhat larger. The MST results
were computed with d = 40 packets per slot and the bisection algorithm was used to obtain a
precision of 10−3. Two important conclusions can be drawn from this figure: the MST seems
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Figure 4: MST of OBTA with T = ∞ versus MST of the tree algorithm of Jacquet for different
packet length distributions.

quite insensitive to the shape of the distribution, the mean seems to matter the most. In fact,
we also performed the same experiment with a uniform packet length distribution (with mean
lengths between 1 and 50) and got a very similar MST (with an absolute difference in the order of
10−4). Second, the upper bound in [17] and the MST results nearly coincide, where the maximum
absolute difference found between the upper bound and the MSTs of the different distributions is
in the order of 10−3. From these results it is even tempting to conjecture that the upper bound
in [17] coincides with the MST.

The tree algorithm of Jacquet and Merle [18], which gives new users priority after successful
transmissions, implicitly makes use of four types of feedback. As such it is more fair to compare its
performance with that of the OBTA algorithm, instead of with the original CTM algorithm. The
MST results are depicted in Figure 4 for the same three packet length distributions considered
before (i.e., fixed, uniform or length 1 or 75). As the MST curves for the OBTA algorithm nearly
coincide, only one is plotted. Figure 4 clearly indicates that the MST of Jacquet’s algorithm
depends not only on the mean of the distribution, but also on the shape, while lower variance
leads to a higher MST. The results show that Jacquet’s algorithm achieves a higher MST than
the OBTA algorithm provided that the variance of the packet length distribution is not too large.
Note, in case all packets have length 1 or 75 the variance is still fairly low if most of the packets
have length 75, which is required to have a high mean. We should note that we are using a
threshold value of T = ∞ for the OBTA algorithm, so some improvement in the MST of the
OBTA algorithm can still be achieved by optimizing T as discussed in more detail in Section 6.2.
When setting T < ∞ the MST does become more sensitive to the shape of the packet length
distribution.

While the MST was nearly insensitive to the shape of the packet length distribution, the same
does not hold for the mean packet delay as can be seen in Figure 5. In this figure, the mean
delay, normalized by the mean packet length, of OBTA (with T =∞) and Jacquet’s algorithms is
plotted for λ = 0.4. The results show that the mean delay of both algorithms is very similar except
for very small mean packet lengths (as the system is closer to instability). We also note that the
normalized mean delay decreases as a function of the mean packet length, which is expected as
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Figure 5: Delay comparison of the OBTA with the algorithm introduced by Jacquet for different
packet length distributions. The delay was calculated for λ = 0.4.

the MST increases in such case. Finally, we observe higher delays for more variable packet length
distributions, which is probably caused by the fact that short packets can get stuck behind longer
packets.

6.2 Optimal threshold value

In this section we look at the impact of the threshold value T . As it seems natural that the
optimal T is influenced by the mean packet length, we normalized the threshold value by the
mean packet length. Figure 6 displays the MST as a function of the normalized threshold value
for a fixed mean packet length of 20 and no PU activity. The packet lengths are either uniformly
distributed or generated using a DPH that was constructed using the moment matching method
given in [28, Appendix A] which matches the mean and SCV. The results indicate that the MST can
be improved somewhat by optimizing T , while for non-optimal thresholds values the MST becomes
quite dependent on the shape of the packet length distribution. For the uniform distribution and
the moment matched distribution with SCV 1, the optimal relative threshold value is around 0.75,
the value for the other distributions is closer to 0.8. Similar results where also observed when
the mean packet length was set to 5. Furthermore, for the uniform distribution to have a mean
of 20, the maximum packet length equals 39, hence any T > 39 results in the same MST. Note,
by setting T equal to 0.8 times the mean packet length, the mean number of arrivals during an
interval of length T is approximately 0.8 times the MST or somewhat below 1, meaning the mean
size of the groups pushed on the stack due to the tracker reaching the value of T is somewhat
below 1.

To examine the influence of the PU on the optimal threshold value, we repeated the above
experiment for different PU models. Each PU model consisted of two DPHs, one for the idle
period and one for the active period. The DPHs were constructed to match a given mean and
SCV. The mean active time is was set to 400 and the mean idle time is either 600, 800 or 1200
slots, respectively, which results in occupancy ratios of 2/5, 1/3 and 1/4 (the occupancy ratio is
the fraction of time that the PUs are active). The SCV of the moment matched DPHs is either
1 or 6. The packet length distribution is a moment matched DPH with mean 5 and SCV 2. The
results are shown in Figure 7 and indicate that the chosen SCVs for the idle and active period
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do not influence the MST much. On the other hand, the channel occupancy ratio does influence
the optimal threshold value T . The observed optimal T values are approximately 1.2, 1.4 and 1.8
times the mean packet length and increase with the occupancy ratio. This is not unexpected as
the mean number of arrivals during an interval of length T should be somewhat below 1 and this
mean depends on the achieved MST divided by the mean packet length, where the former clearly
decreases as the occupancy ratio increases.

6.3 Benchmarking OBTA

To get an idea of the performance of OBTA in the presence of PU activity, we compare the MST
of OBTA in the presence of a PU, denoted as MSTpu, to the MST of the algorithm in the absence
of a PU, denoted as MSTno pu. To make the comparison fair, we look at the ratio between
MSTno pu and MSTpu/(1− occupancy ratio), as the channel can only be used by OBTA during
periods of PU inactivity. We will refer to MSTno pu as the benchmark value, as we cannot expect
to see a substantially higher value for MSTpu/(1− occupancy ratio). As section 6.2 suggests, the
optimal threshold value T appears to be proportional to the occupancy ratio, we therefore divided
the normalized threshold value by the occupancy ratio in case of PU activity. The normalized
threshold value (before the division by the occupancy ratio) is 1 during the following experiments.

We may expect that OBTA performs poorly given that the inactivity periods are very short,
as switching between PU active and inactive periods also makes some slots unusable for the SUs.
Consider for instance the case where the PU activity is captured by

Ppu =

[
0.5 0.5

0.5 0.5

]
,

where Si = {1} and Sa = {2}. The corresponding system clearly has an occupancy ratio of 0.5
and each period of activity has a mean length of 2 slots. The MST of this system with a moment
matched packet length distribution with mean 10 and SCV 1 and a normalized threshold value of
1 is 0.215. Hence, MSTpu/(1− occupancy ratio) = 0.430, while the MSTno pu = 0.869.

Setting such artificial cases aside, we generated 300 random PUs matrices Ppu using the method
discussed in Appendix A. The MST was calculated for each of the generated PU matrices in
combination with a moment matched packet length distribution with means 10 and 40 and SCVs
1 and 6. The calculations were performed with a precision of 10−3. For each MST, we calculated
the ratio

MSTno PU − |MSTPU |
|MSTPU |

× 100,

where |MSTPU | = MSTpu/(1− occupancy ratio).
Figure 8a shows the ratio for a mean packet length of 10 and Figure 8b for a mean packet

length of 40 slots. The SCVs for both packet length distributions is 1, the case with an SCV equal
to 6 yields similar results. Both figures indicate that for short mean idle periods, the benchmark
value is substantially higher than OBTA: there is a difference of 5 − 15% between the OBTA
with the PU and the benchmark. However, the difference clearly decreases when the mean idle
period length increases, especially when the mean packet length is 40. In this latter case we see
that the benchmark only performs approximately 2% better (worst case). When the mean packet
length is 10 slots, it performs approximately 5% better (worst case). We also note that in some
cases OBTA even exceeds the benchmark by a fraction. For a mean packet length of 10 slots,
the biggest improvement when compared to the benchmark is approximately 0.43%, for a mean
length of 40 slots, the maximum improvement found was 0.20%. This slight improvement may
seem counter-intuitive, but we believe this is merely due to the choice of the threshold T .

6.4 Influence of activity-inactivity dependency.

In this section we examine the impact of correlation between the length of two consecutive PU
activity/inactivity periods. The length of each period is captured by DPHs. The DPH for the idle
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Figure 8: Difference in percentage between the throughput of the OBTA with a PU and without
a PU. The SCV of the packet length distribution is 1 and the normalized threshold value is
1/occupancy ratio.

period is denoted as (γi, Pii) with γi = [pi1, pi2] and pii = e−Piie, the DPH for the active periods
is denoted as (γa, Paa) with γa = [pa1, pa2] and paa = e−Paae. The lengths have a hypergeometric
distribution and in the default case, there is no correlation between consecutive periods. Each
DPH consists of two phases, the first one representing a short period and second one representing
a long period. Consequently, Pii can be represented as

Pii =

[
qi1 0

0 qi2

]
,

with qi1 < qi2 and Paa can be written down in a similar fashion using qa1 and qa2. The absence
of correlation between the idle and active periods means that when becoming active (idle), the
active (idle) state is chosen according to γa (γi). Therefore, the resulting transition matrix can be
denoted as

Ppu,i =

[
Pii piiγa

paaγi Paa

]
.

To create dependency between consecutive periods, we define the transition matrix of the PU with
dependency as

Ppu,d =


qi1 0 a(1− qi1) (1− a)(1− qi1)

0 qi2 (1− b)(1− qi2) b(1− qi2)

c(1− qa1) (1− c)(1− qa1) qa1 0

(1− d)(1− qa2) d(1− qa2) 0 qa2

 .
Given that the first and third state represent the short periods, a, c ∈ [0, 1] are the probabilities
that if the PU switches from idle to active or vice versa, a short period follows a short period.
Conversely, parameters b, d ∈ [0, 1] represent the probabilities that a long period is followed by a
long one.

Through varying the parameters a, b, c and d, we can increase or decrease the correlation/anti-
correlation between the lengths of consecutive periods. As we only wish to alter the correlation
and not the distribution of the active/inactive PU periods, we need to keep the steady state
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Positive Mixed 1 Negative Mixed 2
T avg max avg max avg max avg max
1 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.01
3 -0.01 -0.01 0.00 0.01 0.00 0.01 0.00 0.00
50 0.07 0.18 0.00 -0.01 -0.01 -0.01 0.00 -0.01
∞ 0.50 0.93 -0.03 -0.08 -0.04 -0.10 -0.03 -0.08

Table 1: Average and maximum change (%) of the MST when compared to the independent case.

distribution of PU constant. This creates dependencies between the parameters a, b, c and d:

(1− b) =
π3(1− qq1)− aπ1(1− qi1)

π2(1− qi2)
, (3)

and

(1− d) =
π1(1− qi1)− cπ3(1− qa1)

π4(1− qa2)
. (4)

As b, d ∈ [0, 1], additional restrictions apply to a, c. These restrictions can be readily obtained
from the equations above.

In the numerical experiments we considered two different PU settings:

1. The short idle periods consist of 10 slots on average and the long idle periods of 100, the mean
active periods consist 8 and 80 slots, respectively. In the independent case, the probability
of having a short active period is 0.65 and the probability of having a short idle period is
0.45. This setting corresponds to an occupancy ratio of 35.81%.

2. The mean short idle period is 15 slots and the long idle period 200. The mean length of the
short active period is 20 slots and the mean length of the long active period 120 slots. In
case of no dependence, the probability of having a short active period is 0.75 and 0.35 for
having a short idle period. This setting corresponds to an occupancy ratio of 24.97%.

The packet length distribution was a moment matched DPH with with mean 5 or 15 and SCV 2
or 4. The normalized threshold values considered were 1, 3, 50 and ∞. We examined the impact
of different types of correlation:

1. No correlation: a = 1− b = pa1 and c = 1− d = pi1.

2. Negative correlation: b = d = 0.

3. Mixed correlation (type 1): b = 1 and d = 0.

4. Mixed correlation (type 2): b = 0 and d = 1.

5. Positive correlation: b = d = 1.

The above parameter values are such that the values of a and c correspond to the most extreme
cases that meet the above restrictions.

The MST was determined with a precision of 10−4. After the MST is obtained for a particular
setting, we determined its relative increase using (MSTd/MSTi−1)∗100, where MSTi represents
the MST in the independent case and MSTd represents the MST in the dependent case. The mean
and maximum differences over the different packet length distributions and PU settings are shown
in Table 1. The results indicate that the correlation has hardly any effect on the MST unless
T =∞. In the latter case the impact was still below 1% in all cases and the most pronounced in
the positive correlation case.

The same experiment was repeated for the mean delay when the throughput was set equal
to 0.15, 0.25, 0.35 and 0.45. The results are shown in Table 2. As opposed to the MST, the
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Positive Mixed 1 Negative Mixed 2
T avg max avg max avg max avg max
1 127.6373 196.0642 7.6693 -14.2966 10.2258 -16.4929 6.7175 -14.1622
3 117.9688 188.0498 7.1740 -13.6413 9.6436 -15.9569 6.2183 -13.4140
50 120.2805 188.0430 7.3057 -13.8729 9.8313 -16.0820 6.3443 -13.4630
∞ 114.6996 184.5054 7.1154 -13.7859 9.6705 -15.7072 6.1523 -13.0812

Table 2: Average and maximum change (%) of the mean delay when compared to the independent
case.

correlations have a much more profound impact on the mean delay, as expected. Furthermore,
for each of the threshold settings, we see the largest difference in case of positive correlation,
confirming the MST results above. The other types of correlation turn out to be beneficial for the
mean delay.
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Figure 9: The mean length of the idle periods and the occupancy ratios of the generated Ppu
matrices.

A Generation of the random PUs

To generate the 300 random Ppu matrices used in Section 6.3, we proceeded as follows. The main
objective here is to make sure that the periods of inactivity are not too short (as is often the case
for a random transition matrix), while having an occupancy ratio between 5 and 60 percent. To
construct Ppu we started by selecting one of the following four matrices

100 100 1 1

100 100 1 1

1 1 100 100

1 1 100 100

 ,


150 50 1 0

50 150 0 1

1 10 40 50

1 1 0 50

 ,
 50 20 1

100 1 1

1 20 100

 and

[
20 1

1 15

]
.

Next, we obtained Ppu by multiplying each entry in this matrix with a random number and
renormalizing such that the row sums are equal to one. The corresponding idle state sets are
respectively {1}, {1, 2} and {1, 2} for the matrices of size 2, 3 and 4. Finally, the matrix Ppu was
accepted provided that the occupancy ratio was less than 5% off a predefined target value, while
the mean length of an inactive period had to exceed some threshold. The thresholds considered
were 5, 20, 80, 320, 640 and 1280 slots and the target occupancy ratios were 0.1, 0.2, 0.3, 0.4 and
0.5. For each threshold and target value we generated 10 matrices. Figure 9 shows the resulting
occupancy ratio and mean idle period of the generated matrices.
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