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Abstract

In this paper we introduce a general class of rate-based push and pull load
balancing strategies, assuming there is no central dispatcher and nodes rely on
probe messages for communication.

Under a pull strategy lightly loaded nodes send random probes in order to
discover heavily loaded nodes, if such a node is found one task is transferred.
Under a push strategy the heavily loaded nodes attempt to locate the lightly
loaded nodes.

We show that by appropriately setting its parameters, rate-based strategies
can be constructed that are equivalent with traditional or d-choices strategies.

Traditional strategies send a batch of Lp probes at task arrival (push) or
completion times (pull), whereas rate-based strategies send probes according
to an interrupted Poisson process. Under the centralized/distributed d-choices
strategy, d or d − 1 probes are sent in batch at arrival times and the task is
transferred to the shortest queue discovered.

We derive expressions for the mean delay for all considered strategies assu-
ming a homogeneous network with Poisson arrivals and exponential job durati-
ons under the infinite system model.

We compare the performance of all strategies given that the same overall
probe rate is used. We find that a rate-based push variant outperforms d-
choices in terms of mean delay, at the cost of being more complex. A simple
pull strategy is superior for high loads.
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1. Introduction

Minimizing queuing delays of tasks in distributed networks is increasingly
relevant due to the explosive growth of cloud computing. Cloud applications
typically use a large number of servers, and even a small increase in delay can
result in the loss of users and revenue [1].

Traditionally, distributed applications use a single load balancer to distribute
incoming tasks among available servers. In this case join-the-shortest-queue is
a straightforward strategy [2]. However, this requires that the load balancer is
aware of all the queue lengths in the system. As the system grows in size this
becomes impractical, especially if multiple load balancers use the same server
pool. A practical solution when using multiple load balancers is join-the-idle
queue [3], where idle servers inform a well chosen load balancer of their idle state.
When there is an incoming task, the load balancer forwards it to an idle server
if one is known at that time. This is closely related with the asymptotically
optimal PULL proposed in [4], which uses a single load balancer.

Another approach using a centralized load balancer, called d-choices, lets the
load balancer sample d queue lengths and forwards the task to the least loaded
server. This policy does not require knowledge of all queue lengths at all times,
and improves the queuing delays dramatically compared to randomized load
balancing. This strategy is also known as the power-of-d-choices and is widely
studied [5, 6, 7, 8]. When tasks arrive in batch, it is advantageous to sample
multiple servers and distribute the batch over the discovered servers instead of
treating each task separately [9].

In other systems tasks enter the network via the processing nodes themselves
(e.g., [10, 11, 12, 13]) without an explicit load balancer. In such case, strategies
to reduce the delay fall into two categories: pull and push. Under a pull strategy
(or load stealing) the lightly loaded servers attempt to contact and migrate tasks
from heavily loaded servers. Under a push strategy (or load sharing) it is the
heavily loaded nodes that take the initiative to locate lightly loaded servers.

Nodes typically communicate via probe messages to exchange queue length
information. In order to locate a target queue to migrate a tasks to/from, a
random node is probed and its queue length will determine whether the transfer
is allowed.

We further distinguish between traditional strategies which send a batch of
probes at task arrival (push) or completion times (pull), and rate-based stra-
tegies which send probes periodically. We note that for some systems it is not
feasible to migrate tasks after the initial server assignment. Therefore, the rate-
based strategies are more suited for computational workloads where the cost of
migration is small, as opposed to web services where TCP connections have to
be migrated along with the task [3].

The performance of these classes of strategies has been studied by various
authors. Results presented in [10, 14] compare several push and pull strategies
for a homogeneous distributed system with Poisson arrivals and exponential job
lengths, and extensions to heterogeneous systems are presented in [15, 16]. Load
stealing is also commonly used in the context of shared-memory multiprocessor
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scheduling [17].
These studies showed that the pull strategy is superior under high load

conditions, whereas the push strategy achieves a lower mean delay under low to
moderate loads.

When comparing different strategies, one aspect to keep in mind is the num-
ber of probes required by the strategy. Clearly, allowing a strategy to send more
probes should improve its performance. However, not all strategies can set their
parameters as to match an arbitrary overall probe rate. Comparing strategies
with a different overall probe rate can be biased, as sometimes the strategy with
the higher probe rate is best [18].

In [18] rate-based pull and push variants are introduced that can match any
predetermined probe rate R, allowing the comparison of pull and push strategies
when they use the same overall probe rate. In these variants, probes are sent
at a fixed rate r as long as the server is idle (for pull) or has jobs waiting (for
push). The main result in [18] showed that the rate-based push strategy results
in a lower mean delay if and only if

λ <

√
(R+ 1)2 + 4(R+ 1)− (R+ 1)

2
,

under the so-called infinite system model, and that a hybrid pull/push strategy
is always inferior to the pure pull or push strategy.

In [19] the model of [18] was extended to only allow highly loaded nodes to
send probes, instead of all busy nodes. A node is considered highly loaded if it
has more than T jobs. This allowed the construction of the max-push strategy
that extended the range of λ values where the push variants outperformed the
pull strategy.

In previous work tasks could only be migrated to an empty server. However,
for higher loads it becomes harder to find an empty server. In this situation a
migration to a server that is lightly loaded but not empty can further reduce the
mean delay. Therefore, we extend both the traditional and rate-based model to
allow transfers to lightly loaded nodes, in this case nodes with at most B jobs.
Setting B = 0 only allows transfers to empty servers, reducing the models and
closed form expressions to those found in previous work [19, 18, 13].

Furthermore, we develop several push models that achieve the same per-
formance as the d-choice strategy when using the same number of probes, but
without centralized load balancers.

This paper makes the following contributions:

1. We introduce a general class of push and pull strategies, and describe
its evolution in an infinite system model. We identify several subclasses
by restricting the model parameters. For these subclasses, we find the
stationary queue length distribution, allowing us to express the mean delay
explicitly. Furthermore, we state as conjecture an optimal pull and push
strategy for this general class of strategies.

2. We show that rate-based strategies achieve the same level of performance
compared to traditional strategies, when using the same overall probe rate.
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Therefore, systems where it might be desirable to not send the probes at
task arrival or completion instants are not at a disadvantage. In addition,
rate-based strategies allow for more granular control over the overall probe
rate, whereas the number of probes in a batch must be an integer for the
traditional strategies.

3. We introduce several distributed versions of d-choices with an overall probe
rate of λ2(1−λd−1)/(1−λ), that are equivalent in performance compared
to a centralized d-choices with d probes per task.

4. We show that a rate-based push variant has a lower mean delay than
d-choices, and the pull strategy remains best for high loads.

The paper is structured as follows. In Section 2 we give an overview of
the strategies considered in this paper. Section 3 presents the infinite system
models for a general rate-based push and pull strategy, considers a subclass
corresponding to a particular choice of parameters, and covers the max-push
strategy. Section 4 analyses the traditional pull and push strategies, and shows
the equivalence with rate-based strategies. This equivalence was shown in [18]
for T = 1 and B = 0. In section 5 we introduce a distributed version of the
d-choices strategy, and derive two rate-based variants that are equivalent to
the original d-choices strategy with respect to their stationary distribution. In
Section 6, the best performing rate-based pull and push strategies are compared
to the d-choice strategy.

2. Problem Description and Overview of Strategies

We consider a continuous-time system consisting of N queues, where each
queue consists of a single server with an infinite buffer. As in [10, 20, 15, 12],
jobs arrive locally according to a Poisson process with rate λ < 1, and have an
exponentially distributed duration with mean 1. Servers process jobs in first-
come first-served order. Servers can send probe messages to each other to query
for queue length information and to transfer jobs. We assume that the time
required to transfer probe messages and jobs is sufficiently small in comparison
with the processing time of a job, i.e., transfer times are considered zero. For a
discussion on the impact of communication delay and transfer time we refer to
[21, 22].

1. Rate-based Push/Pull: Whenever a server has i tasks it generates probe
messages according to a Poisson process with rate ri. The node with
length j that is probed is selected at random and the transfer of a job
from the server with the longest to the server with shortest queue length
is allowed if ai,j = 1, while no transfer takes place if ai,j = 0. We will
study several subclasses of this class.

2. Traditional Push: For every task arrival that would bring the queue length
above T , the server first sends up to Lp probes in sequence. The task is
forwarded to the first discovered server with queue length B or less. If no
such server is found, the task is processed by the original server.
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3. Traditional Pull: For each task completion that would bring the queue
length to B or less, the server first sends up to Lp probes in sequence. A
task is migrated from the first discovered server with queue length above
T . If no such server is found, no further action is taken.

4. Distributed d-Choices: Nodes send d − 1 probes on a task arrival instant
and forward the job to the least loaded probed node, or process the task
themselves if no shorter queue is found.

5. Push-d-batch: All servers that have tasks waiting generate probe events
according to a Poisson process with rate ri, where i is the queue length.
During each probe event, a batch of d − 1 probes is sent and a task is
migrated to the least loaded probed node if its queue length is smaller
than i− 1.

We study the different strategies using an infinite system model, i.e. as
the number of queues in the system (N) tends to infinity. In previous work
[18, 19, 23] we observed that the infinite system model is an accurate approxi-
mation for the finite case. A relative error of a few percent or less was observed
when predicting the mean delay for N ≥ 100. We make similar observations in
Sections 3.2 and 3.5 for the strategies introduced in this paper.

3. Rate-based Strategies

In this section we introduce the infinite system model to assess the per-
formance of rate-based push and pull strategies. First let us define a general
rate-based strategy belonging to the class S(r, A), with r a vector (r0, r1, . . .)
and A a binary matrix with elements ai,j . The elements ri of vector r indicate
at which rate a queue with length i sends random probes. The elements ai,j
of matrix A indicate whether a probe from a queue with length i to a queue
with length j results in a task transfer. This class of strategies only allows the
transfer of a single task per probe. We refer to a strategy as a pull strategy if
ai,j = 1 implies i < j, and as a push strategy if ai,j = 1 implies i > j.

The evolution of the queue lengths under this general strategy is modeled
by a set of ODEs denoted as dx(t)/dt = D(x(t)), where x(t) = (x1(t), x2(t), . . .)
and xi(t) represents the fraction of the number of nodes with at least i jobs at
time t. As explained below, this set of ODEs can be written as

dxi(t)

dt
= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t)) + α̂+ β̂ − γ̂ − δ̂ (1)
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with x0(t) = 1, and

α̂ = (xi−1(t)− xi(t))
∞∑

j=i+1

rj(xj(t)− xj+1(t))aj,i−1

β̂ = ri−1(xi−1(t)− xi(t))
∞∑

j=i+1

(xj(t)− xj+1(t))ai−1,j

γ̂ = ri(xi(t)− xi+1(t))

i−2∑
j=0

(xj(t)− xj+1(t))ai,j

δ̂ = (xi(t)− xi+1(t)

i−2∑
j=0

(xj(t)− xj+1(t))rjaj,i

The terms λ(xi−1(t) − xi(t)) and (xi(t) − xi+1(t)) indicate arrivals and com-
pletions, respectively. The term α̂ indicates incoming transfers to queues with
length i − 1 resulting from push request by longer queues. The term β̂ indica-
tes incoming transfers to queues with length i − 1 resulting from pull requests
by those queues. The term γ̂ indicates outgoing transfers resulting from push
requests made by queues with length i. The term δ̂ indicates outgoing transfers
resulting from pull requests made by shorter queues to queues with length i.

An interesting question regarding the infinite system model is whether it
corresponds to the limit as N tends to infinity of the sequence of rescaled Markov
processes, where processN corresponds to a system consisting ofN servers. This
question is typically answered in two steps: (1) does the set of ODEs describes
the proper limit process of the corresponding finite systems for any finite time
horizon [0, T ] and (2) does the convergence extend to the stationary regime?
For the fixed rate pull and push strategies introduced in the next subsection
with B = 0 and T ≥ 0, both these questions were answered affirmatively in
[18, 19]. In Appendix A and B we shown that this is also the case for B > 0.
While the main line of reasoning in Appendix B is similar to [18, 19], the proof
methodology in Appendix A is not and relies for the most part on the approach
taken in [6]. It may be possible to further generalize this result, but we have
not pursued this further.

In the next sections we simplify Equation (1) by restricting the choice of
r and A, resulting in explicit expressions for the unique fixed point and mean
delay.

3.1. Fixed Rate Push and Pull

To restrict the set of pull and push strategies we state that a queue is long
if it contains more than T tasks and that a queue is short if it has at most B
tasks, with B < T . In addition, only one group of queues (be it long or short)
sends probes independently of the queue length with rate r. We do not consider
hybrid strategies where both the long and short queues transmits probes in this
section. In fact, Theorem 5 from [18] shows that a pure pull or push strategy
is superior to any hybrid strategy when B = 0 and T = 1. Whether this result
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extends to B > 0 and/or T > 1 is an interesting open problem. We allow only
transfers from long queues to short queues. In other words, for the fixed rate
pull strategy {

ri = 0 if i > B

ri = r if i ≤ B
and ai,j is one if i ≤ B and j > T and zero otherwise. Likewise, for the fixed
rate push strategy {

ri = 0 if i ≤ T
ri = r if i > T

and ai,j is one if i > T and j ≤ B and zero otherwise.
The evolution of both the fixed rate pull and push strategy is modeled by a

set of ODEs denoted as dx(t)/dt = F (x(t)), where x(t) = (x1(t), x2(t), . . .) and
xi(t) represents the fraction of the number of nodes with at least i jobs at time
t. This is a simplification of Equation (1), and the ODEs can be written as

dxi(t)

dt
= (λ+ rxT+1(t))(xi−1(t)− xi(t))− (xi(t)− xi+1(t)), (2)

for 1 ≤ i ≤ B + 1 with x0(t) = 1, and

dxi(t)

dt
= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t)), (3)

for B + 2 ≤ i ≤ T , and

dxi(t)

dt
= λ(xi−1(t)−xi(t))−(xi(t)−xi+1(t))−r(1−xB+1(t))(xi(t)−xi+1(t)) (4)

for i > T .
In the next Theorem we express the fixed point for this set of ODEs in

E = {(xi)i≥0|1 = x0 ≥ x1 ≥ ... ≥ 0,
∑
i≥1 xi <∞}.

Theorem 1. The set of ODEs given by (2-4) has a unique fixed point π =
(π1, π2, . . .) ∈ E for λ < 1. Let ηi = πi − πi+1 and η0 = 1 − λ, then the fixed
point can be expressed as

ηi = (1− λ)(λ+ rπT+1)i, 1 ≤ i ≤ B + 1 (5)

ηi = ηB+1λ
i−(B+1), B + 2 ≤ i ≤ T (6)

ηi = ηT

(
λ

1 + r(1− πB+1)

)i−T
, i > T. (7)

Further πT+1 is the unique root on (0, λT+1) of the ascending function

f(x) = (x− 1) + (1− λ)

B∑
i=0

u(x)i + (1− λT−B)u(x)B+1,

where u(x) = λ+ rx and 1− πB+1 = (1− λ)
∑B
i=0 u(πT+1)i.
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Proof. The expressions for ηi readily follow from setting dxi(t)/dt = 0 in Equa-
tions (2-4), and observing that π1 = λ due to the requirement

∑
i≥1 πi <∞.

The requirement
∑
i≥1 πi < ∞ implies that

∑
i≥1 ηi = 1, which can be

restated as

(1− λ)

B∑
i=0

u(πT+1)i + u(πT+1)B+1(1− λT−B) + πT+1 = 1.

Thus, f(πT+1) = 0 and f(x) is increasing on (0, 1) as u(x) is increasing on (0, 1).
Finally, f(0) = −λT+1 and f(λT+1) ≥ 0 as u(λT+1) ≥ λ.

When B = 0 the root of f(x) correspond to the root of a linear equation and
therefore πT+1 has a simple explicit form, i.e., πT+1 = λT+1/(1+r(1−λT )). For
small B, e.g., B = 1, it is still possible to find an explicit expression for πT+1,
but this expression does not appear to be very elegant. Instead we suggest to
use any root finding algorithm on (0, λT+1) to determine πT+1 when B > 0.

We can now express the main performance measures of these push and pull
strategies. First, we note that the overall probe rate for push strategies equals

Rpush = rpushπT+1, (8)

as all queues with length T + 1 or more send probes with rate rpush. Similarly,
the overall probe rate of the pull strategy equals

Rpull = rpull(1− πB+1), (9)

as all queues with length B or less send probes with rate rpull. The behavior
of RPush and RPull for a varying r with fixed λ is shown in Figures 1 and 2.
Furthermore, the total migration rate is

M = r(1− πB+1)πT+1.

From a push perspective a fraction of nodes (πT+1) sends probes at rate r,
succeeding with probability (1 − πB+1). From a pull perspective the roles of
senders and receivers are reversed. Now we can formulate the mean delay:

Theorem 2. The mean delay D of a job under the fixed rate push or pull
strategy equals

Dboth =
1

1− λ

(
1− M

λ
γ

)
,

with

γ = T −B + α+ δ, α =

∞∑
i=T+2

(i− (T + 1))ηi
πT+1

=
λ

1− λ+ r(1− πB+1)
,

δ =

B−1∑
i=0

(B − i)ηi
1− πB+1

=
(1− λ)(B(1− λ− rπT+1)− (λ+ rπT+1)(1− (λ+ rπT+1)B))

(1− πB+1)(1− λ− rπT+1)2
.
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Figure 1: Resulting overall probe rate R when
varying the individual probe rate r for push
strategies with different settings of B and T ,
for a fixed load λ.
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λ=0.8

Pull B=0, T=Any
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Pull B=2, T=4
Pull B=2, T=5

Figure 2: Resulting overall probe rate R when
varying the individual probe rate r for pull
strategies with different settings of B and T ,
for a fixed load λ.

Proof. We use a similar argument as in [23], which showed that the improvement
over the mean delay of an M/M/1 queue can be formulated as a migration
frequency (M/λ) and migration gain (γ). The migration frequency denotes how
many migrations per job take place on average and the migration gain quantifies
the number of places in the queue the migrating job skips. Therefore, the total
improvement is given by how many migrations take place on average per task
multiplied by how many places in the queue a migrating task skips.

Migrating tasks skips on average γ places in the queue. All tasks skip T −B
places by construction of the strategy. Tasks can skip more places depending
on the length of the queue sending the task, accounting for α places on average.
We note this equals the average number of customers in an M/M/1 queue with
service rate 1 + r(1− πB+1). Tasks can also skip more places depending on the
length of the queue receiving the task, accounting for δ places on average.

When comparing the pull and push strategy for a fixed R, we need to set r
such that R attains the target value. For the pull strategy this is trivial, one
simply sets r = R/(1 − λ). For the push strategy this problem can be solved
by substituting rπT+1 by R and computing the fixed point directly from (5-
7). However, when R is relatively large this will result in a negative value for
πT+1. This indicates that queues can send probes at an infinite rate without
exceeding the overall probe limit R, thereby instantly finding migration targets
for all tasks from queues with length T + 1 or more, and reducing πT+1 to zero.
This observation is in agreement with Figure 1 where we observe that for the
push strategy R does not appear to become infinitely large as r tends to infinity.
This is further illustrated in Figure 3, where the load at which πT+1 reaches zero
is marked with a dot. For all loads lower than this point the substitution we
performed (using R instead of rπT+1) is no longer valid, and computing πT+1

yields a negative result. In this case the push strategy with the current B, T
and λ parameters uses less probes than allowed by the overall probe limit R, as
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Figure 3: The probe rate of individual queues (r) and the fraction of queues allowed to send
probes (πT+1), shown for the fixed rate push strategy with B = 1, T = 2 and R = 1. The
probe rate r goes to infinity as the fraction of queues with at least T + 1 tasks (πT+1) reaches
zero. The load λ at which this occurs is marked with a dot. This is also the point where
the behavior of the mean delay changes, as shown in the inset plot. Increasing R results in a
larger r and smaller πT+1 for any given load λ, so πT+1 reaches zero at a higher load. The
converse is true for decreasing R.

all tasks that are eligible to migrate are instantly exhausted. The behavior of
a push strategy with infinite r is equivalent with the max-push strategy with
rmp = 0, covered in Section 3.4.

Conjecture 1. The optimal choice for a rate-based pull strategy in class S(r, A)
given an overall probe rate R is a fixed rate pull strategy with B = 0 and T = 1.

In [19, Theorem 5] it was shown that if B = 0, setting T = 1 is optimal.
Intuitively, increasing T makes it less likely that a probe is successful. Similarly,
a non-empty server is just as likely to locate a queue with length at least T than
an empty server. And the tasks can skip more places in the queue if the request
was sent by the empty server. Therefore, we expect that setting B = 0 and
T = 1 is optimal for the rate-based pull strategy. Figure 4 illustrates that
setting B = 0 and T = 1 is indeed superior to some other choices for B and T
when R = 1.

For the push strategy setting B = 0 is not optimal as shown in Figure 5.
Increasing B improves the performance of the push under moderate to high
loads. We observed that increasing T higher than B + 2 is not beneficial, as
setting the parameter B to B + 1 yields a lower mean delay for that load.
Therefore, such settings are not shown.

3.2. Numerical Validation of Fixed Rate Push

In this section we present validation results for the fixed rate push strategy
with B ≥ 1 as the model for push and pull strategies with B = 0 was already
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Figure 4: The mean delay of the pull strategy with R = 1 for different settings of B and T .
Increasing either B or T results in a higher mean delay.

validated in [19] and we conjecture that the mean delay of the pull strategy
is minimized for B = 0 and T = 1. The infinite system model and simulation
setup only differ in the system size. The rate rpush in the simulation experiments
is independent of N and was determined by λ and R using the expression for
Rpush in (8), we choose R = 1 in all experiments. Each entry in the tables
represents the average value of 25 simulation runs. Each run has a length of
106 (where the service time is exponentially distributed with mean 1) and a
warm-up period of length 106/3.

Table 1 shows the relative error in mean delay, observed when comparing a
finite system with size N to the infinite system model. As expected, the error
decreases as the system grows in size, with at most a few percent relative error as
the system reaches 100 nodes. Changing values for T and B can either increase
or decrease the error. For example taking B = 1 and λ = 0.90, increasing T
from 2 to 3 decreases the error, but with λ = 0.95 the same change increases
the error. The error also increases with the load. The infinite system model is
optimistic, underestimating the observed mean delay.

We should note that the actual overall probe rate observed in the finite
system exceeds the requested R, as shown in Table 2. In other words, the
relation between Rpush and rpush given by (8) is not very accurate for small
N values as the infinite model is optimistic with respect to the queue length
distribution. However, as the finite system grows in size, the actual overall
probe rate converges to the one requested.

3.3. Limiting the Individual Probe Rate (r)

In the previous sections we compared strategies by limiting the overall probe
rate (R). However, another factor to take into consideration is the rate at
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which individual servers send probes (r), as in a practical setting the individual
servers might also have a maximum probe rate in addition to the overall probe
rate constraint. As Equations (8) and (9) imply, r can be much higher than
R. In this section we study the impact on the strategies’ performance when
introducing a maximum probe rate limit (rmax).

In Figures 6 and 7 the mean delay achieved by push strategies is shown
when setting rmax to 10 and 50, respectively. These figures suggest that the
relative loss in performance due to limiting r decreases with both B and T . For
B = 0 and T = 1 we can derive a bound on the performance loss due to limiting
r as follows. In [18, Corollary 1] the mean delay for the push strategy with
B = 0, T = 1 is expressed as

D(λ, r) = 1 +
λ

(1− λ)(1 + r)
,

and the highest load λD1 where this mean delay equals one is determined by

λD1 =
1

2

√
R2 + 4R− R

2
.

At this load the relative loss in performance is the highest, so

D(λD1, rmax)− 1

1
=
R+

√
R(R+ 4)

2rmax + 2

is an upper bound for the relative loss in performance when B = 0 and T = 1.
In Figures 8 and 9 the mean delay achieved by pull strategies is shown when

setting rmax to 10 and 50, respectively. As soon as the individual probe limit
is reached, the performance quickly declines compared to the case where r is
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N
B = 1 B = 2

T = 2 T = 3

λ = 0.85 λ = 0.90 λ = 0.95 λ = 0.90 λ = 0.95 λ = 0.95
25 4.15e-2 8.78e-2 1.17e-1 5.42e-2 1.28e-1 1.43e-1
50 1.70e-2 4.21e-2 5.77e-2 2.00e-2 6.28e-2 6.60e-2
100 7.68e-3 2.07e-2 2.92e-2 7.95e-3 3.12e-2 3.17e-2
200 3.60e-3 1.04e-2 1.50e-2 3.49e-3 1.58e-2 1.52e-2
400 1.76e-3 5.07e-3 7.19e-3 1.62e-3 7.68e-3 7.54e-3
800 8.74e-4 2.53e-3 3.76e-3 7.94e-4 3.88e-3 3.76e-3
1600 4.22e-4 1.25e-3 1.79e-3 3.96e-4 2.04e-3 1.94e-3

Table 1: The relative error of the mean delay D in a finite system with size N using the fixed
rate push strategy, compared to the infinite system model. We note that the infinite system
model is optimistic with respect to the performance of the finite system.

N
B = 1 B = 2

T = 2 T = 3

λ = 0.85 λ = 0.90 λ = 0.95 λ = 0.90 λ = 0.95 λ = 0.95
25 4.75e-1 1.05e-1 2.80e-2 1.45e+0 7.13e-2 2.67e-1
50 1.98e-1 5.36e-2 1.40e-2 5.27e-1 3.69e-2 1.41e-1
100 8.75e-2 2.74e-2 7.37e-3 1.96e-1 1.88e-2 7.30e-2
200 4.07e-2 1.40e-2 3.87e-3 8.20e-2 9.85e-3 3.65e-2
400 1.98e-2 6.86e-3 1.80e-3 3.73e-2 4.71e-3 1.85e-2
800 9.75e-3 3.42e-3 9.82e-4 1.79e-2 2.39e-3 9.32e-3
1600 4.78e-3 1.71e-3 4.62e-4 8.80e-3 1.28e-3 4.81e-3

Table 2: The relative error of the overall probe rate R in a finite system with size N using the
fixed rate push strategy, compared to the infinite system model. We note that when using
the r as derived from the infinite system model, the finite system produces a higher overall
probe rate than requested.

not limited. Interestingly, the setting B = 0, T = 1 is no longer optimal. For
λ > rmax−R

rmax
the pull strategy with B = 0, T = 1 is not able to reach the overall

probe limit since it is constrained by the individual probe limit. In this case an
alternative strategy could be formulated, where queues with length at most B
probe at rate rmax and the queues with length B + 1 probe at the highest rate
the overall probe limit allows, probes would result in a task transfer if a server
with at least B + 2 tasks is found. We conjecture that such a strategy achieves
a mean delay that connects the (λ,D) points on a graph where the individual
probe limit is now reached for consecutive values of B, with T = B+1. However,
a formal treatment of such strategy is deemed outside the scope of this paper.

3.4. The Max-Push Strategy

As we noted in Section 3.1, the fixed rate push strategy can not match the
predefined overall probe rate in case R is larger than needed to instantly find
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Figure 6: Mean delay of the push strategy with
different settings for B and T , where R = 1
and rmax = 10. Dotted lines indicate the
mean delay in case r is not limited.
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Figure 7: Mean delay of the push strategy with
different settings for B and T , where R = 1
and rmax = 50. Dotted lines indicate the
mean delay in case r is not limited.

migration targets for all tasks from queues with length T + 1 or more. This
effectively eliminates all queues longer than T , without using the full R budget.
The idea of the max-push strategy is to migrate all new arrivals at a queue with
length T instantly to an eligible server, and let the queues with length exactly
T probe with rate rmp. We later show how to choose rmp, B and T such that
the resulting overall probe rate matches R.

Formally the max-push strategy is a member of S(r, A) and defined as fol-
lows. Let rT = rmp and rT+1 =∞, with the other entries of r set to zero. Let
ai,j be one in case i is either T or T + 1, and j ≤ B.

In [19] the max-push strategy was introduced for B = 0, which we now
generalize for B > 0. We discern two cases: T > B + 1 and T = B + 1.

In case T > B + 1, the evolution of the max-push strategy is given by a
set of ODEs denoted as dx(t)/dt = H(x(t)), where x(t) = (x1(t), x2(t), . . .) and
xi(t) represents the fraction of the number of nodes with at least i jobs at time
t. This is an adaptation of Equation (1) and this set of ODEs can be written as

dxi(t)

dt
=

(
λ+

λxT (t)

1− xB+1(t)
+ rmpxT (t)

)
(xi−1(t)− xi(t))− (xi(t)− xi+1(t)),

(10)
for 1 ≤ i ≤ B + 1, and

dxi(t)

dt
= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t)), (11)

for B + 2 ≤ i < T , and

dxT (t)

dt
= λ(xT−1(t)− xT (t))− xT (t)(1 + rmp(1− xB+1(t))). (12)

Note that all new arrivals at queues of length T are migrated to servers with a
maximum length of B, as indicated by λxT (t) in (10). Probes are sent to random

14



0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

R=1

r
max

=10

Load (λ)

M
e
a
n
 D

e
la

y
 (

D
)

 

 

Pull B=0, T=1

Pull B=0, T=2

Pull B=1, T=2

Pull B=1, T=3

Pull B=2, T=3

Pull B=2, T=4

Figure 8: Mean delay of the pull strategy with
different settings for B and T , where R = 1
and rmax = 10. Dotted lines indicate the
mean delay in case r is not limited.
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Figure 9: Mean delay of the pull strategy with
different settings for B and T , where R = 1
and rmax = 50. Dotted lines indicate the
mean delay in case r is not limited.

servers with equal probability for each server. Consequently, the migrations
from new arrivals at queues of length T are uniformly distributed across servers
with length B or less. Therefore, these migrations arrive at a queue with length
i− 1 with probability (xi−1(t)− xi(t))/(1− xB+1(t)), increasing the fraction of
servers with queue length i ≤ B + 1.

For the case T > B + 1 all migrations have the same target, specifically
queues with length at most B. This is no longer true if we allow T = B + 1.
The new arrivals at a queue with length T can be migrated to any queue with
length at most B. However, a probe from a queue with length T should find a
target with length at most B − 1 in order for the migration to result in a delay
reduction. Therefore, the evolution of the system is described by a different set
of ODEs given below.

In case T = B + 1, the evolution of the max-push strategy is given by a
set of ODEs denoted as dx(t)/dt = I(x(t)), where x(t) = (x1(t), x2(t), . . .) and
xi(t) represents the fraction of the number of nodes with at least i jobs at time
t. As explained below, this set of ODEs can be written as

dxi(t)

dt
=

(
λ+

λxT (t)

1− xT (t)
+ rmpxT (t)

)
(xi−1(t)−xi(t))−(xi(t)−xi+1(t)), (13)

for 1 ≤ i ≤ B, and

dxT (t)

dt
=λ(xT−1(t)− xT (t))− xT (t)(1 + rmp(1− xT−1(t)))

+
λxT (t)

1− xT (t)
(xT−1(t)− xT (t)). (14)

The same remarks as for H(x(t)) apply, with a modification in dxT (t)/dt.
Queues with length T can now also be created by migrating an arrival in a
queue with length T , to a queue with length T − 1. This corresponds with
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the term λxT (t)(xT−1(t) − xT (t))/(1 − xT (t)) in (14). Queues with length T
(xT (t)) again send probes with rate r, and are now successful with probability
1− xT−1(t).

The sets of ODEs H(x(t)) and I(x(t)) have a unique fixed point π̇ and π̂,
respectively. We derive the formulas for these fixed points further on, expressing
the overall probe rate and migration rate first.

For both cases (T > B + 1 and T = B + 1) the overall probe rate can be
formulated as

Rmp =
λπ̆T

1− π̆B+1
+ rmpπ̆T , (15)

with π̆i equal to π̇ or π̂ depending on the value of T . This relation states the
following: new arrivals at a queue of length T (λπ̆T ) must find a server to
migrate to, and find one on average by spending 1/(1− π̆B+1) probes. Queues
with length T (π̆T ) also send probes at the finite rate rmp.

Similarly we can define the migration rate, i.e., the rate at which probes are
successful:

Mmp|T>B+1 = λπ̇T + rmpπ̇T (1− π̇B+1),

Mmp|T=B+1 = λπ̂T + rmpπ̂T (1− π̂B).

For both cases (T > B + 1 and T = B + 1) new arrivals at a queue with length
T (λπ̆T ) are migrated. The rest of the migrations are due to probes sent at
rate rmp by queues with length T (π̆T ). These are successful with probability
(1− π̇B+1) in case T > B + 1 and with probability (1− π̂B) in case T = B + 1.

Having expressed the overall probe rate and migration rate, the fixed points
are given in the next two theorems.

Theorem 3. The set of ODEs given by (10-12) has a unique fix point π̇ =
(π̇0, . . . , π̇T ) ∈ F := {x ∈ RT+1 | 1 = x0 ≥ · · · ≥ xT ≥ 0}. Let η̇i := π̇i − π̇i+1,
then one finds

η̇i = (1− λ)(λ+Rmp)
i, 0 ≤ i ≤ B + 1

η̇i = η̇B+1λ
i−(B+1), B + 2 ≤ i < T.

Moreover π̇B+1 is the unique root on (0, λB+1) of the ascending function:

ġ(x) = (x− 1) + (1− λ)

B∑
i=0

u̇(x, ẇ(x))i,

with u̇(x, y) = λ+ λy
1−x +ry and ẇ(x) = λT−(B+1)(1−λ)x

(1−λT−B)+r(1−x)(1−λT−(B+1))
. The value

of π̇T is given by ẇ(π̇B+1).

Proof. Using
∑T
i=1 dπ̇i/dt = 0 we find that π̇1 = λ and thus η̇0 = 1 − λ. The

expressions for η̇i, for 1 ≤ i < T , easily follow from equations (10) and (11). We
now show that π̇B+1 and π̇T are uniquely determined. For ease of notation, we
write n = B + 1 and m = T − (B + 1). From equation (12) we find that:

λm(1− λ)(λ+Rmp)
n − π̇T (1 + r(1− π̇B+1)) = 0, (16)
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from
∑B
i=0 η̇i = 1− π̇B+1 we find:

(π̇B+1 − 1) + (1− λ)

n−1∑
i=0

(λ+Rmp)
i = 0, (17)

and taking the sum
∑T−1
i=B+1 η̇i = π̇B+1 − π̇T we find:

(π̇T − π̇B+1) + (1− λm)(λ+Rmp)
n = 0. (18)

Equations (15-18) for (π̇B+1, π̇T ) are equivalent to finding an element (x, y) ∈ R2

for which 0 ≤ y ≤ x ≤ 1 and ḟ(x, y) = ġ(x, y) = ḣ(x, y) = 0, with:

ḟ(x, y) = (1− λ)λmu̇(x, y)n − y(1 + r(1− x))

ġ(x, y) = (x− 1) + (1− λ)

n−1∑
i=0

u̇(x, y)i

ḣ(x, y) = (y − x) + (1− λm)u̇(x, y)n.

The proof now proceeds by first showing that ḣ(x, y) = ḟ(x, y) = 0 implies
that y = ẇ(x). Next we argue that 0 ≤ ẇ(x) ≤ x for x ∈ (0, 1) and the proof
completes by showing that ġ(x, ẇ(x)) has a unique root in (0, 1).

From ḣ(x, y) = 0 we find u̇(x, y)n = x−y
1−λm . Plugging this into ḟ(x, y) = 0

shows that we must have y = ẇ(x). Taking the derivative of ẇ(x), we find:

∂ẇ(x)

∂x
=
λm(1− λ)(1− λm+1 + r(1− λm))

(λm(rx− λ− r)− rx+ r + 1)2
> 0.

Note that this means that for x ∈ (0, 1) we have 0 ≤ ẇ(x) as ẇ(0) = 0. We now
show that ẇ(x) ≤ x for x ∈ (0, 1). The inequality ẇ(x) ≤ x can be restated as:

λm(1 + r − rx) ≤ 1 + r − rx

which clearly holds for 0 < λ < 1.
The fact that ∂ẇ(x)/∂x > 0 on (0, 1) yields

∂u̇(x, ẇ(x))

∂x
=
∂u̇

∂x
(x, ẇ(x))︸ ︷︷ ︸
=
λẇ(x)

(1−x)2

+
∂u̇

∂y
(x, ẇ(x))︸ ︷︷ ︸
= λ

1−x+r

· ∂ẇ(x)

∂x
> 0.

This implies that ∂ġ(x, ẇ(x))/∂x > 0. One can easily verify that ġ(0, ẇ(0)) =
−λn < 0 and ġ(λn, ẇ(λn)) ≥ 0 (as u̇(λn, ẇ(λn)) ≥ u̇(0, ẇ(0)) = u̇(0, 0) = λ).
Hence there exists a unique x in (0, λB+1) for which ġ(x) = 0. Thus π̇B+1 must
be equal to this unique root and π̇T = ẇ(π̇B+1) ≤ π̇B+1.

Theorem 4. The set of ODEs given by (13-14) has a unique fixed point π̂ =
(π̂0, . . . , π̂T ) ∈ F . Let η̂i := π̂i − π̂i+1, then:

η̂i = (1− λ)(λ+Rmp)
i 0 ≤ i ≤ B.
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Moreover π̂T is the unique root on (0, λT ) of the ascending function:

f̂(x) := (x− 1) + (1− λ)

B∑
i=0

û(x)i,

with û(x) := λ+ λx
1−x + rx = λ

1−x + rx.

Proof. Let π̂ be a fix point of (13-14), using
∑T
i=1 dπ̂i/dt = 0 we find that

π̂1 = λ and thus η̂0 = 1− λ. The expressions for η̂i easily follow from (13).
We now verify that the given set of equations has a unique solution that

satisfies (14). By definition 1− π̂T =
∑B
i=0 η̂i, which yields the relation:

(π̂T − 1) + (1− λ)

B∑
i=0

(λ+Rmp)
i = 0.

Due to (15) the above equation corresponds to having f̂(x) = 0. We now show

that f̂ is ascending and has exactly one root on (0, λT ). For ease of notation

we let n = B + 1 = T . It is easy to check that f̂(0) = −λn < 0 and f̂(λn) ≥ 0
(as û(λn) ≥ λ). Further dû(x)/dx = λ

(x−1)2 + r > 0 on (0, 1), which shows that

df̂(x)/dx > 0.

We end by checking that the the unique root of f̂(x) satisfies equation (14).
This equation can be rewritten as ĝ(π̂T ) = 0 with ĝ(x) = (1− λ)û(x)n + rx2 −
(1 + r)x, as

0 = λη̂T−1 − π̂T (1 + r(1− π̂T−1 + π̂T − π̂T )) +
λπ̂T

1− π̂T
η̂T−1

=

(
λ+ rπ̂T +

λπ̂T
1− π̂T

)
η̂T−1 + rπ̂2

T − (1 + r)π̂T .

The fact that ĝ(π̂T ) = 0 now follows from:

(1− û(x))f̂(x) = (1− û(x))(x− 1) + (1− λ)(1− û(x)n)

= −(1− λ)û(x)n + (1− û(x))(x− 1) + 1− λ︸ ︷︷ ︸
=−rx2+(1+r)x

= −ĝ(x),

which completes the proof.

From the formulation of the max-push strategy it is clear that there is a
requirement on R, for the strategy to be well-defined. If R is too low, not all
new arrivals at a queue of length T can be migrated. If R is too high, queues
with length T will be exhausted and we face the same problem as before.

A valid parameter set can be determined as follows: Let Γ(B, T,R, λ) be the
value of πT+1 as calculated by (5-7) with rπT+1 replaced by R. Now we discern
two cases to set T given T −B:
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• If T − B > 1, then for a given B and λ, T must be chosen such that
Γ(B, T − 1, R, λ) > 0 and Γ(B, T,R, λ) < 0.

• If T − B = 1, then for a given λ, T must be chosen such that Γ(B,B +
1, R, λ) < 0, and Γ(B − 1, B,R, λ) > 0.

We can now express the main performance measures of the max-push stra-
tegy via Theorems 3 and 4:

Theorem 5. The mean delay D of a job under the max-push strategy with
T ≥ B + 1, equals

Dmp =
1

1− λ

(
1− Mmp

λ
δ

)
,

with

δ = T −B − 1 +
λπ̆T
Mmp

+ β β =

∑B−1
i=0 (B − i)η̆i
1− π̆B+1

Proof. Here, π̆ and η̆ is used to denote π̇ and η̇ or π̂ and η̂, in case T > B + 1
or T = B + 1 respectively. Also Mmp is to be substituted with Mmp|T>B+1 or
Mmp|T=B+1, depending on the values for T and B.

The reasoning is the same as in Theorem 2. Migrating tasks skip on average
δ places in the queue.

All tasks skip T −B− 1 places by construction of the strategy. The fraction
of migrating arrivals at a queue of length T skips one extra place (λπ̆T /Mmp).
Tasks can skip more places depending on the length of the queue receiving the
task, accounting for β places on average.

Figures 10 and 11 show the mean delay of the max-push strategy, for T >
B + 1 and T = B + 1, respectively. The max-push connects the points where
the push can no longer match R. Connected points all use the same value for
parameter B. The values for rmp are shown in Figure 12 for T = B + 1.

Conjecture 2. The optimal choice for a rate-based push strategy in class S(r, A)
is a max-push strategy with T = B + 1, with T chosen depending on the load λ
as outlined in the text preceding Theorem 5.

Intuitively, it appears desirable to let the longer queues spend as much of the
probe budget as possible. The choice of T = B+1 indicates that a task is trans-
ferred if the transfer results in a lower mean delay without further constraints
on how much this gain should be.

3.5. Numerical Validation of Max-Push

We compare the predictions of the infinite system model with respect to
a finite system using the max-push strategy with B ≥ 1 in this section. The
setting B = 0 was already discussed in [19]. The experimental setup is the same
as in Section 3.2, we choose Rmp = 1 for all experiments and determined rmp
using (15).
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Figure 10: Mean delay of the max-push strategy, with T > B + 1 and for B = 0, 1, 2, using
R = 1. For comparison the mean delay of the fixed rate push strategy is also shown for B = 0
(dashed), B = 1 (dot-dashed) and B = 2 (dotted). The markers indicate the value for T ,
with T = B + 1 represented by diamonds, T = B + 2 by stars, T = B + 3 by triangles and
T = B + 4 by squares.

In Table 3 we show the relative error of the mean delay observed in the
finite system, compared to the infinite system model. The error decreases as
the system grows larger, and is smaller for lower loads. Overall, the mean
delay is accurately predicted with a relative error of at most a few percent
as the system size reaches 50 nodes. The infinite system model is optimistic,
predicting a lower mean delay than observed in a finite system.

The relative error of the overall probe rate is shown in Table 4. In all cases
the finite system uses more probes than the requested overall probe rate R.
Again the error decreases as the system grows in size. However, for high loads
and a small system size we observe that the observed overall probe rate is much
larger than requested, with a relative error as high as 2.69. This is due to the
fact that in a small system there is a higher probability that there will be some
periods that all nodes have B or more tasks. If that happens, a new arrival
at a queue with length T can not find an instantaneous transfer target, but
will spend many probes trying. In the infinite system model this is never a
problem, but in a finite system it does occur. In our simulation we allow N
probes (without replacement) for such a task, so all queues have been sampled.
And if no eligible migration target is found, the queue where the task originally
arrived still accepts the task. As the system becomes larger this situation occurs
less frequently or not at all.
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Figure 11: Mean delay of the max-push strategy (full lines), with T = B + 1 for B = 1, 2,
using R = 1. For comparison the mean delay of the fixed rate push strategy is also shown for
T = B + 1 (dashed) and T = B + 2 (dot-dashed).

4. Traditional Strategies

In this section we analyze the traditional strategies, where probes are not
sent periodically but only on task arrival or completion instants. Probes are
sent sequentially until an eligible target for migration is found, or the maximum
of Lp probes is reached.

We also show that fixed rate strategies as discussed in Section 3 can be con-
structed that use the same overall probe rate and result in the same stationary
queue length distribution as the traditional strategies.

4.1. Traditional Push

In the traditional push variant, up to Lp probes are sent when a new task
arrives at a queue with length at least T . The task is migrated to the first node
discovered that has at most B tasks. A similar setup was studied in [14] using
birth-death models, with the constraint that T = B + 1.

The evolution of the traditional push strategy is modeled by a set of ODEs
denoted as dx(t)/dt = J(x(t)), where x(t) = (x1(t), x2(t), . . .) and xi(t) repre-
sents the fraction of the number of nodes with at least i jobs at time t. As
explained below, this set of ODEs can be written as

dxi
dt

= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t)) (19)

+ λxT (t)(1− xB+1(t)Lp)
xi−1(t)− xi(t)

1− xB+1(t)
,
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Figure 12: The individual probe rate (rmp) for the max-push strategy with T = B + 1 and
R = 1.

for 1 ≤ i ≤ B + 1. For B + 2 ≤ i ≤ T we have

dxi
dt

= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t)), (20)

and for i > T we have

dxi
dt

= λ(xi−1(t)− xi(t))xB+1(t)Lp − (xi(t)− xi+1(t)). (21)

An arrival at a queue with length at least T is not transferred if no lightly
loaded node is found with Lp probes, this occurs with probability xB+1(t)Lp .
So with probability 1−xB+1(t)Lp a new arrival at a queue with length at least T
(occurring at rate λxT (t)) is migrated to a lightly loaded node. Since each server
has the same probability of being probed, the migrating tasks are distributed
uniformly over the lightly loaded nodes ((xi−1(t)− xi(t))/(1− xB+1(t))).

Assume for now that the set of ODEs J(x(t)) has a unique fixed point π̃.
We further assume probes are sent sequentially, and a task is migrated to the
first discovered eligible node. So at least one probe is sent, and another probe
follows if all previous probes failed to locate a lightly loaded node. This results

in an average of 1 +
∑Lp−1
i=1 πiB+1 probes sent. Since probes are sent for each

arrival (with rate λ) at a queue of length T or more (πT ), the resulting overall
probe rate equals

Rtrad.push = λπ̃T
1− π̃LpB+1

1− π̃B+1
. (22)

Having expressed the overall probe rate, the fixed point structure is given in
the next theorem.
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N
B = 1 B = 2

T = 2 T = 3 T = 4 T = 5 T = 3 T = 4
λ = 0.80 λ = 0.875 λ = 0.915 λ = 0.935 λ = 0.915 λ = 0.95

25 2.07e-2 4.10e-2 6.19e-2 7.94e-2 6.25e-2 1.17e-1
50 7.93e-3 1.44e-2 2.03e-2 2.66e-2 2.22e-2 4.16e-2
100 3.70e-3 6.18e-3 7.44e-3 8.85e-3 9.04e-3 1.47e-2
200 1.81e-3 2.92e-3 3.26e-3 3.60e-3 4.14e-3 5.88e-3
400 9.20e-4 1.47e-4 1.60e-3 1.74e-3 2.06e-3 2.64e-3
800 4.25e-4 7.25e-4 7.61e-4 8.42e-4 1.04e-3 1.25e-3
1600 2.15e-4 3.74e-4 4.11e-4 4.35e-4 5.10e-4 6.26e-4

Table 3: The relative error of the mean delay D in a finite system with size N using the
max-push strategy, compared to the infinite system model. We note that the infinite system
model is optimistic with respect to the performance of the finite system.

N
B = 1 B = 2

T = 2 T = 3 T = 4 T = 5 T = 3 T = 4
λ = 0.80 λ = 0.875 λ = 0.915 λ = 0.935 λ = 0.915 λ = 0.95

25 4.20e-1 8.17e-1 1.25e+0 1.53e+0 1.56e+0 2.69e+0
50 1.45e-1 3.67e-1 7.48e-1 1.06e+0 7.09e-1 2.00e+0
100 5.23e-2 1.16e-1 2.78e-1 4.84e-1 1.79e-1 8.75e-1
200 2.37e-2 4.58e-2 8.59e-2 1.46e-1 5.60e-2 2.04e-1
400 1.15e-2 2.14e-2 3.60e-2 5.22e-2 2.55e-2 5.73e-2
800 5.51e-3 1.04e-2 1.69e-2 2.38e-2 1.23e-2 2.52e-2
1600 2.78e-3 5.18e-3 8.45e-3 1.15e-2 6.01e-3 1.21e-2

Table 4: The relative error of the overall probe rate R in a finite system with size N using the
max-push strategy, compared to the infinite system model. We note that when using the rmp

as derived from the infinite system model, the finite system produces a higher overall probe
rate than requested.

Theorem 6. The set of ODEs given by (19-21) has a unique fixed point π̃ =
(π̃0, π̃1, . . . ) ∈ E. Let η̃i := π̃i − π̃i+1, then we have the relations:

η̃i = (1− λ)(λ+Rtrad.push)i, 0 ≤ i ≤ B + 1 (23)

η̃i = η̃B+1λ
i−(B+1), B + 2 ≤ i ≤ T (24)

η̃i = η̃T (λπ̃
Lp
B+1)i−T , i > T. (25)

Moreover π̃B+1 is the unique root of the ascending function on (0, λB+1):

f̃(x) = (x− 1) + (1− λ) ·
B∑
i=0

ũ(x, w̃(x))i,

with w̃(x) = (1−λ)λT−B−1x

(λT−B−λ)xLp+(1−λT−B)
and ũ(x, y) = λ+ λy 1−xLp

1−x . Further, π̃T =

w̃(π̃B+1).
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Proof. Let π̃ be a fix point of (19-21), we show that (19-21) incur relations on
π̃ which make it unique. Using

∑∞
i=1 dπ̃i/dt = 0 we find that π̃1 = λ. The

relations for η̃i easily follow from (19-21).
For ease of notation we write m = T−B−1, n = B+1, l = Lp. By definition

we have
∑B
i=0 η̃i = 1 − π̃B+1 ,

∑T−1
i=B+1 η̃i = π̃B+1 − π̃T and

∑∞
i=T η̃i = π̃T .

These three equalities combined with (22) can be restated as f̃(π̃B+1, π̃T ) =
g̃(π̃B+1, π̃T ) = h̃(π̃B+1, π̃T ) = 0, with

f̃(x, y) = (x− 1) + (1− λ)

n−1∑
i=0

ũ(x, y)i (26)

g̃(x, y) = (y − x) + (1− λm)ũ(x, y)n (27)

h̃(x, y) = −y + (1− λ)
λm

1− λxl
ũ(x, y)n. (28)

From the equation g̃(x, y) = 0 we can infer:

ũ(x, y)n =
x− y

1− λm
.

Plugging this equality into h̃(x, y) = 0, we find that y = w̃(x) must hold. We
now note that

∂w̃(x)

∂x
=

(1− λ)λm(λ(l − 1)(1− λm)xl + (1− λm+1))

(λm+1xl − λm+1 − λxl + 1)2
> 0.

This indicates that w̃(x) ≥ 0 for x ∈ (0, 1) as w̃(0) = 0. We also need to verify
that w̃(x) ≤ x, which is equivalent to

(1− λm)(λxl − 1) ≤ 0,

which holds trivially. We further note that

∂ũ(x, w̃(x))

∂x
=
∂ũ

∂x
(x, w̃(x)) +

∂ũ

∂y
(x, w̃(x))

∂w̃(x)

∂x
> 0,

which means that ∂f̃(x, w̃(x))/∂x > 0. This suffices to prove the uniqueness of
the fixed point. Moreover the existence follows by remarking that f̃(0, w̃(0)) =
−λn < 0 and f(λn, w̃(λn)) ≥ 0.

Instead of providing an explicit formula for the mean delay, we show the
following equivalence.

Theorem 7. When using the same parameters B and T , and matching the
Rtrad.push generated by the traditional push, the fixed rate push strategy has the
same fixed point, resulting in an equivalent performance.

Proof. From (5-7) and (23-25), it is clear that ηi and η̃i are identical for i ≤ T
as Rtrad.push = rπT+1. What remains to be shown is that

λπ̃
Lp
B+1 =

λ

1 + rpush(1− πB+1)
,

which follows by noting that both the vectors ηi and η̃i sum to one.
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4.2. Traditional Pull

In the traditional pull variant, whenever a node with queue length at most
B + 1 has processed a task, it sends out at most Lp probes to locate a highly
loaded node. The first node found with a queue length larger than T , migrates a
task to the probing node. A similar setup was studied in [10] using birth-death
models, with the constraint that T = B + 1.

The evolution of the traditional pull strategy is modeled by a set of ODEs
denoted as dx(t)/dt = K(x(t)), where x(t) = (x1(t), x2(t), . . .) and xi(t) repre-
sents the fraction of the number of nodes with at least i jobs at time t. As
explained below, this set of ODEs can be written as

dxi
dt

= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t))(1− xT+1(t))Lp , (29)

for 1 ≤ i ≤ B + 1. For B + 2 ≤ i ≤ T we have

dxi
dt

= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t)), (30)

and for i > T we have

dxi
dt

= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t)) (31)

− (x1(t)− xB+2(t))(1− (1− xT+1(t))Lp)
xi(t)− xi+1(t)

xT+1(t)
.

The queue length of nodes with at most B + 1 tasks only decreases if they
fail to find a long queue to migrate a task from, this happens with probability
(1−xT+1)Lp . The extra negative term in (31) indicates migrations to the lightly
loaded nodes. For every completion of a queue with length at most B + 1 (rate
(x1 − xB+2)), the probes are successful with probability (1 − (1 − xT+1)Lp),
and the probability for discovery of a long queues with length i is uniformly
distributed over all long queues ((xi(t)− xi+1(t))/(xT+1(t))).

The set of ODEs K(x(t)) has a unique fixed point π̊. We first express the
overall probe rate, and then describe π̊ explicitly.

We assume probes are sent sequentially, and a task is migrated from the
first discovered eligible node. Thus, at least one probe is sent, and extra probes
follow if all previous attempts were unsuccessful. This results in an average of

1+
∑Lp−1
i=1 (1− π̊T+1)i probes sent. Since probes are sent for each completion at

a queue with a length of at most B + 1, the resulting overall probe rate equals:

Rtrad.pull = (̊π1 − π̊B+2)
1− (1− π̊T+1)Lp

π̊T+1
(32)

Having expressed the overall probe rate, the fixed point is given in the next
theorem.
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Theorem 8. The set of ODEs given by (29-31) has a unique fixed point π̊ =
(̊π0, π̊1, . . . ) ∈ E. Let η̊i := π̊i − π̊i+1, then we have the relations:

η̊i = (1− λ)

(
λ

(1− π̊T+1)Lp

)i
, 0 ≤ i ≤ B + 1 (33)

η̊i = η̊B+1λ
i−(B+1) B + 2 ≤ i ≤ T (34)

η̊i = η̊T

(
λ

1 +Rtrad.pull

)i−T
, i > T. (35)

Moreover, the value of π̊T+1 is found as the unique root of the ascending function:

f̊(x) = (x− 1) + (1− λ)
B+1∑
i=0

ů(x)i + λ(1− λT−B−1)̊u(x)B+1

on (0, λT+1), with ů(x) = λ
(1−x)Lp .

Proof. The expressions for η̊i readily follow from (29-31). To prove the unique-
ness of π̊T+1 we use:

1− π̊T+1 =

B+1∑
i=0

η̊i +

T∑
i=B+2

η̊i

= (1− λ)

B+1∑
i=0

(
λ

(1− π̊T+1)Lp

)i
+ η̊B+1

T∑
i=B+2

λi−(B+1)

= (1− λ)

B+1∑
i=0

u(̊πT+1)i + λ(1− λT−B−1)u(̊πT+1)B+1.

Hence π̊T+1 is a root of f̊(x). Further, f̊(0) = −λT+1 < 0, f̊(λT+1) ≥ 0 and

df̊(x)/dx > 0 on (0, 1) as dů(x)/dx > 0 on (0, 1).

Instead of providing an explicit formula for the mean delay, we show the
following equivalence.

Theorem 9. When using the same parameters B and T , and matching the
Rtrad.pull generated by the traditional pull, the fixed rate pull strategy has the
same fixed point distribution, resulting in an equivalent performance.

Proof. From (5-7) and (33-35), it is clear that ηi and η̊i are identical iff

λ

(1− π̊T+1)Lp
= λ+ rpullπT+1, (36)

as Rtrad.pull = r(1 − πB+1). This follows from noting that both the vectors ηi
and η̊i sum to one.
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5. d-Choices Strategies

In this section we study variants of the d-choices strategy. The original
strategy was introduced in [5], where an infinite system model was used to
describe its behavior. Let x(t) = (x1(t), x2(t), . . .), where xi(t) represents the
fraction of nodes with at least i jobs at time t. Then the evolution of queue
lengths under the d-choices strategy is formulated as the following set of ODEs
denoted as dx(t)/dt = L(x(t)):

dxi(t)

dt
= λ(xi−1(t)d − xi(t)d)− (xi(t)− xi+1(t)). (37)

Results in [5] show that all trajectories converge to a unique fixed point

π̄i = λ
di−1
d−1 . (38)

As explained further on an equivalent distributed variant requires fewer than
d probes per task. Additionally, we construct equivalent rate-based variants
that send either single probes or batches of probes periodically instead of on
task arrival instants.

5.1. Distributed d-Choices

The original d-choices as introduced in [5] assumes that a central dispatcher
sends d probes for every task arrival. When assuming a central dispatcher, other
approaches are known to perform better with less probes [4]. We assume that
tasks originate at the nodes themselves.

In a sense this setup provides the information of exactly one probe message,
that is the queue length of the queue where the task arrives. Therefore, an
equivalent strategy to a central dispatcher sending d probes is to let the nodes
send d − 1 probes on a task arrival instant. The task is then forwarded to the
least loaded probed node, or stays at the originating node if no shorter queue
is found.

The evolution of the distributed d-choices strategy is given by a set of ODEs
denoted as dx(t)/dt = M(x(t)), where x(t) = (x1(t), x2(t), . . .) and xi(t) repre-
sents the fraction of the number of nodes with at least i jobs at time t. As
explained below, this set of ODEs can be written as

dxi(t)

dt
=λ(xi−1(t)− xi(t))xi−1(t)d−1 − (xi(t)− xi+1(t))

+ λxi(t)(xi−1(t)d−1 − xi(t)d−1), (39)

for i > 0, with x0(t) = 1. Queues of length i are created by arrivals in a queue
with length i−1 (λ(xi−1(t)−xi(t))), only if d−1 probes could not find a shorter
queue (probability xd−1i−1 (t)). Additionally, queues of length i are created if an
arrival at a queue with length at least i (λxi(t)), sends d − 1 probes and finds
a queue with length i− 1 the shortest (probability xd−1i−1 (t)− xd−1i (t))
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Algebraic manipulation on (39) immediately shows the equivalence with the
original formulation of the d-choices strategy in (37).

Using fixed point from (38) we can formulate the mean delay in terms of
migrations in the next theorem.

Theorem 10. The mean delay of both the distributed and centralized d-choices
strategy can be formulated as

1

1− λ
(1− α

λ
),

with

α = λ

∞∑
i=1

(π̄i − π̄i+1)

i−1∑
j=0

(π̄d−1j − π̄d−1j+1 )(i− j).

Proof. The improvement over the mean delay of an M/M/1 queue can be for-
mulated as the average number of places a task will skip in the queue due to
a migration. Here, for every arrival (λ) at a queue of length i (π̄i − π̄i+1), the
d− 1 probes could find a shorter queue. The shortest queue found is of length j
with probability (π̄d−1j − π̄d−1j+1 ), in which case the task skips (i− j) places.

Although there is an infinite sum in α of the above theorem, the terms
quickly become small as π̄ decreases doubly exponentially.

We note that the required overall request rate of the distributed d-choices
can be lower than λ(d − 1). First, if a task originates at an empty server, no
probes need to be send as no shorter queue can be found. Similarly, the d − 1
probes could be sent sequentially and stop once an empty server is found. Thus
only servers with at least one job need to send probes at task arrival instants
until either an empty server is found or the maximum of d−1 probes is reached.
Analytically, this results in an overall probe rate of

RdChoices = π̄1λ

(
1 +

d−2∑
i=1

π̄i1

)
,

where π̄1λ is the rate of probe events (arrivals at busy servers), and (1+
∑d−1
i=1 π̄1)

is the number of probes per event. At least one probe is sent, and a next probe
follows if all previous probes found busy servers, up to a maximum of d − 1
probes in total. Since π̄1 equals λ we can simplify the expression to

RdChoices =
λ2(1− λd−1)

1− λ
. (40)

We will match this probe rate in the following sections to create equivalent
strategies.
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5.2. Rate-based Variant Sending Probes in Batch

Instead of sending out d − 1 probes at task arrival instants, we can adapt
the strategy to send batches of probes according to a Poisson process with rate
r. We will call the sending of a batch of probes a probe event. It is our aim to
find a strategy equivalent to the d-choices strategy, i.e. one that achieves the
same stationary distribution when using the same overall probe rate.

The first attempt at finding such a strategy lets queues with two or more
jobs send out batches of probes periodically with a rate r that is independent
of the queue’s length. The evolution of such a strategy is modeled by the set of
ODEs denoted as dx(t)/dt = N(x(t)), where x(t) = (x1(t), x2(t), . . .) and xi(t)
represents the fraction of the number of nodes with at least i jobs at time t. As
explained below, this set of ODEs can be written as

dx1
dt

= λ(1− x1(t)) + rx2(t)(1− x1(t)d−1)− (x1(t)− x2(t)), (41)

and for i ≥ 2 we have

dxi
dt

=λ(xi−1(t)− xi(t)) + rxi+1(t)(xi−1(t)d−1 − xi(t)d−1)

− (xi(t)− xi+1(t))(1 + r(1− xi−1(t)d−1)). (42)

Queues with length one are created by new arrivals and probes to an empty
server. Tasks from all queues with tasks waiting (x2(t)) are eligible for transfer
to an empty server, and those queues generate probe events with rate r. An
empty server is located by d − 1 probes with probability (1 − x1(t)d−1). In
general, queues of length i are created when a probe event of a queue with
length at least i+ 1 identifies a queue with length i− 1 as shortest among the
d− 1 probed servers. Likewise, the fraction of queues with length i decreases if
the probe events (which occur at rate r) locate a queue with length lower than
i− 1 (with probability (1− xi−1(t)d−1)).

From (40) we note that the rate of probe events must be λ2, as you send
(1−λd−1)/(1−λ) probes on average per event. In the system above, all servers
with tasks waiting generate probe events at the same rate. Therefore, in order
for the system to be equivalent with d-choices, we have the condition rπ̄2 = λ2.
In other words, r would need to be 1/λd−1. Unfortunately, when using this r
in conditions (42) and setting dxi(t)/dt = 0, π̄ is not a solution to the resulting
set of equations. In other words, it is impossible to create such a strategy that
has the same fixed point as the d-choices strategy.

However, when we let each queue send at a rate ri depending on its length i,
we can find a strategy equivalent with d-choices by choosing ri appropriately. We
call this strategy push-d-batch. The evolution of such a strategy is modeled by
the set of ODEs denoted as dx(t)/dt = P (x(t)), where x(t) = (x1(t), x2(t), . . .)
and xi(t) represents the fraction of the number of nodes with at least i jobs at
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time t. As explained below, this set of ODEs can be written as

dx1
dt

=λ(1− x1(t))− (x1(t)− x2(t)) (43)

+ (1− x1(t)d−1)

∞∑
j=2

rj(xj(t)− xj+1(t)),

and for i ≥ 2 we have

dxi
dt

=λ(xi−1(t)− xi(t)) (44)

− (xi(t)− xi+1(t))(1 + ri(1− xi−1(t)d−1))

+ (xi−1(t)d−1 − xi(t)d−1)

∞∑
j=i+1

rj(xj(t)− xj+1(t)).

The same remarks as for N(x(t)) apply. The difference here is that queues with
length i generates probe events with rate ri, so we now have to sum the ri over
the queue lengths:

∑∞
j=i+1 rj(xj(t)− xj+1(t)).

We aim to achieve the same stationary distribution as d-choice, so we will
use π̄ from (38) to denote the fixed point. When substituting xi with π̄i in (43),
the expression reduces to zero as required. We also aim to use the same rate of
probe events, therefore

∞∑
j=2

rj(π̄j(t)− π̄j+1(t)) = λ2.

Achieving both objectives is accomplished by the choice of ri. As we know the
fixed point of the d-choices strategy (π̄), we can find ri from dxi/dt in (44) by
rewriting the sum term as the known total sum (λ2) minus the missing terms.
For example we find r2 from

dx2
dt

= 0 =λ(π̄1 − π̄2)− (π̄2 − π̄3)(1 + r2(1− π̄d−11 ))

+ (π̄d−11 − π̄d−12 )(λ2 − r2(π̄2 − π̄3)),

where all terms are known except r2. Repeating this procedure for i ≥ 2 we
find the general expression

ri|batch =
−λ(1− λdi−1)

(1− λdi)(1− π̄d−1i )
− 1− λ1−di−1

(1− λdi)(1− π̄d−1i−1 )
.

By allowing queues to generate probe events at a rate dependent on the
queue length, we have shown that a rate-based variant equivalent to d-choices
can be constructed for which probe events need not be at task arrival instants.
In this formulation probes are still sent in batch, and therefore this strategy is
not a member of the class S(r, A). In the next section we construct an equivalent
rate-based variant where probe events consist of a single probe, thus belonging
to the class S(r, A).

30



5.3. Rate-based Variant Sending Single Probes

In the previous section we showed that generating probe events as a Poisson
process can be just as effective as sending probes at arrival instants. In this
section we demonstrate that sending probes in batch is also not required to
achieve the same stationary distribution as d-choice.

Again our aim is to construct a strategy with an equivalent performance
compared to d-choice, while using the same number of probes. Now a probe
event consists of sending a single probe. A migration is initiated if the probe
finds a queue of at least two tasks shorter, so all transfers lower the mean queue
length but tasks can be migrated multiple times. Each queue with length i
generates probe events at rate ri, and the overall probe rate is equal to (40).
We will call the strategy described here push-d-single.

Formally this strategy is a member of the class S(r, A) and is defined as
follows. The elements ai,j are one if i > j + 1. The explicit values for ri are
introduced further on.

The evolution of push-d-single is modeled by the set of ODEs denoted as
dx(t)/dt = Q(x(t)), where x(t) = (x1(t), x2(t), . . .) and xi(t) represents the
fraction of the number of nodes with at least i jobs at time t. This is a simplified
version of Equation (1), and the ODEs can be written as

dx1
dt

= λ(1− x1(t))− (x1(t)− x2(t)) + (1− x1(t))

∞∑
j=2

rj(xj(t)− xj+1(t)), (45)

and for i ≥ 2 we have

dxi
dt

=λ(xi−1(t)− xi(t)) (46)

− (xi(t)− xi+1(t))(1 + ri(1− xi−1(t)))

+ (xi−1(t)− xi(t))
∞∑

j=i+1

rj(xj(t)− xj+1(t)).

When substituting xi(t) with π̄i of (38) in (45) and using

∞∑
j=2

rj(xj(t)− xj+1(t)) =
λ2(1− λd−1)

1− λ
,

the expression reduces to zero as required, indicating that this strategy could
have the same fixed point as the d-choices strategy. In order to find a suitable
ri we employ the same method as in the previous section, we rewrite the sum∑∞
j=i+1 rj(xj(t) − xj+1(t)) as the known total (RdChoices) minus the missing

terms. Then, we find ri by substituting π̄ of (38) in (46) and requiring that
dxi/dt = 0. For example r2 is found from

dx2
dt

= 0 =λ(π̄1 − π̄2)− (π̄2 − π̄3)(1 + r2(1− π̄1))

+ (π̄1 − π̄2)

(
λ2(1− λd−1)

1− λ
− r2(π̄2 − π̄3)

)
.
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In general, we find that ri for i ≥ 2 must be equal to

ri|single =

λ
1
d−1


(
λ
di−1

d−1 −λ
di

d−1

)(
λ
di

d−1−λ
d
d−1

)
(
λ

1
d−1−λ

di−1
d−1

)(
λ
di+1
d−1 −λ

di
d−1

) − 1


λ

1
d−1 − λ

di

d−1

,

in order for the stationary distribution to match π̄ while using an overall probe
rate of

∑∞
i=2 ri(π̄i − π̄i+1) = RdChoices.

6. Performance Evaluation

As we know the overall probe rate of the distributed d-choices strategy from
(40), we can compare the considered strategies fairly. That is to say, we compare
the mean delay given that all strategies use the same overall probe rate. We
choose to compare the d-choices strategy due to its popularity, and compare it
with the strategies of the class S(r, A) that we expect to be optimal as indicated
in Conjectures 1 and 2.

We let the d-choices strategy determine the overall probe rate, and make
sure the max-push and fixed rate pull strategy match this rate by setting T,B
and r appropriately. Figures 13 and 14 summarize the performance comparison.

The fixed rate pull strategy is clearly superior for high loads. Also notable
is that its mean delay stays finite as the load λ tends to one, specifically the
delay approaches d/(d − 1) with R = RdChoices. This can be deduced by first
observing that the limit

lim
λ→1

RdChoices = lim
λ→1

λ2(1− λd−1)

1− λ
= d− 1,

and using d−1 as the value for R in limλ→1Dpull, with Dpull from [18, Theorem
3]

DPull =
1 +R

1− λ+R
.

Note that the probe rate r becomes infinite in this case, as it is given by r =
R/(1 − λ). For lower loads the pull strategy is not optimal, but adopting this
strategy independently of the system load might be an option as the performance
is still reasonable and the simplicity of not having to switch strategies depending
on the system load keeps the implementation straightforward. Furthermore, the
only parameter that would have to be adjusted at runtime depending on the
system load is the probe rate, as we conjecture that setting T = 1 and B = 0 is
optimal.

The mean delay of the d-choices and max-push strategy are almost identical
for low loads, with the max-push achieving a slightly lower mean delay. This
region extends to medium loads as d increases. For higher loads the max-push
strategy only slightly outperforms d-choices. This close match in mean delay
is notable because we conjecture that max-push is the optimal push strategy
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within the class S(r, A). This suggests that d-choices achieves a close to optimal
result with a far simpler approach. The only parameter d-choices has to select is
d, whereas the max-push has to adjust B, T and r depending on the system load.
Furthermore, the assumption that a node can probe at an infinite rate might not
hold, and will in practice be replaced by some high but finite rate. Moreover,
in a setting with a finite number of servers it can occur that all queues are
temporarily longer than B and thus no transfers can be made, yet new arrivals
at queues with length T expect an immediate transfer. In addition, sending
a batch of probes might be preferable if the latency is non-negligible in order
to avoid waiting for the results of multiple sequential probes. In conclusion,
d-choices is far more practical than max-push and still achieves a comparable
performance.

To better understand why the performance of the d-choices and max-push
strategies is so similar for low to moderate loads, we show in Table 5 several
probe rates ri used by push-d-single. Clearly ri increases with i and d, but
decreases with λ. The increase with i is fast, so that for low loads the push-
d-single and the max-push behave almost the same. They both require that
queues with length at least i send probes at a practically infinite rate, and that
most of the remaining probes are send by the queues with length i− 1.

(λ, d) r2 r3 r4 r5
(0.5, 2) 1.60 7.53 1.28e+2 3.28e+4
(0.5, 4) 1.35e+1 3.38e+4 9.22e+18 5.79e+76
(0.75, 2) 8.53e−1 1.80 6.81 7.41e+1
(0.75, 4) 4.56 9.61e+1 7.45e+7 7.23e+31
(0.95, 2) 5.53e−1 6.43e−1 8.61e−1 1.50
(0.95, 4) 1.92 3.88 3.59e+1 4.85e+5

Table 5: The first probe rates ri of push-d-single. We note that ri increases rapidly with i
and d, and decreases with λ.

7. Conclusion

In this paper we have studied several load balancing strategies. We introdu-
ced an infinite system model of a general push and pull framework, and indicated
the strategies that we expect to be optimal for this class.

We have extended the infinite system model for the fixed rate push and
pull, max-push, and the traditional push and pull, to include the parameter
B describing the maximal queue length of a lightly loaded server. For a push
strategy increasing this B can lead to better performance, whereas for a pull
strategy setting B = 0 appears best. In addition, we have shown that traditional
and fixed rate strategies are equivalent if both use the same overall probe rate
R.

Furthermore, we have revisited the popular d-choices strategy and have
shown that the required overall probe rate is smaller than d probes per task,
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Figure 13: Mean delay of the d-choices with d = 2, max-push and pull strategy. All strategies
produce the same overall probe rate R.

specifically λ2(1− λd−1)/(1− λ). In the original formulation probes are sent in
batch and on task arrival instants. We have shown that equivalent rate-based
push strategies exist that send either single probes or a batch of probes periodi-
cally according to a Poisson process with rate ri dependent on the queue length
i.

Finally, we compared the performance of the best performing rate-based
push and pull strategy with d-choices, given that the same overall probe rate is
used. The pull strategy is the best choice for high loads, but its simplicity and
reasonable performance for low to moderate loads makes it a viable solution
in case the system must use a single strategy. For low loads the max-push
and d-choices performance is nearly equivalent, with the max-push achieving
a slightly lower mean delay for medium to high loads. Still, it is remarkable
that the simple d-choices strategy performs so close to the more complicated
max-push which we conjecture to be an optimal push strategy.
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Appendix A. Global attraction

We start by proving that there exists a global attractor for the set of ODEs
given by (2-4). The proof proceeds in the same manner as the proof of Theorem
1 in [6] and relies on monotonicity. Let K > T and 0 ≤ c < 1, consider the set
of ODEs given by (2-4) for i = 1 to K with the boundary conditions x0(t) = 1,
xK+1(t) = c ≥ 0 and xi(0) = gi for t ≥ 0 and i = 1, . . . ,K. We refer to this set
of ODEs as the truncated system.

Lemma 1. Assume 1 = g0 ≥ g1 ≥ g2 ≥ . . . ≥ gK ≥ gK+1 = c ≥ 0, then the
solution of the truncated system satisfies 1 = x0(t) ≥ x1(t) ≥ x2(t) ≥ . . . ≥
xK(t) ≥ xK+1(t) = c ≥ 0 for all t.

Proof. As the solution of the truncated ODE is continuous in the initial values,
it suffices to prove the lemma in case of strict inequalities. Assume there exists
a t0 > 0 where the inequalities no longer hold, then there either exists an i
such that xi−1(t0) > xi(t0) = xi+1(t0) or a j such that xj−1(t0) = xj(t0) >
xj+1(t0) as 1 = x0(t0) > xK+1(t0) = c. In the first case we have dxi(t0)/dt ≥
λ(xi−1(t0) − xi(t0)) > 0 and dxi+1(t0)/dt ≤ 0, which contradicts the fact that
xi(t) > xi+1(t) for t < t0. In the second case dxj(t0)/dt ≤ xj+1(t0)−xj(t0) < 0
and dxj−1(t0)/dt ≥ 0, contradicting xj−1(t) > xj(t) for t < t0.

Lemma 2. Let x
(1)
i (t) and x

(2)
i (t), for i = 1, . . . ,K, be two solutions of the

first K ODEs of (2-4), with x
(1)
i (0) ≥ x

(2)
i (0) for i = 1, . . . ,K and x

(1)
K+1(t) ≥

x
(2)
K+1(t) for all t, then x

(1)
i (t) ≥ x(2)i (t) for all t.

Proof. As in Lemma 1 a proof in case of strict inequalities suffices. Assume

x
(1)
i (t0) = x

(2)
i (t0) at time t0 for some i, while x

(1)
i (t) > x

(2)
i (t) for t < t0.

Assume i is the largest index for which this equality holds (note i ≤ K as
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x
(1)
K+1(t) > x

(2)
K+1(t) for all t). We now argue that dx

(1)
i (t0)/dt > dx

(2)
i (t0)/dt,

which contradicts x
(1)
i (t) > x

(2)
i (t) for t < t0. For i > T , we have

dx
(1)
i (t0)

dt
− dx

(2)
i (t0)

dt
= λ(x

(1)
i−1(t0)− x(2)i−1(t0))︸ ︷︷ ︸

≥0

+ (x
(1)
i+1(t0)− x(2)i+1(t0))︸ ︷︷ ︸

>0

+ r
[
(1− x(2)B+1(t0))(x

(2)
i (t0)− x(2)i+1(t0))− (1− x(1)B+1(t0))(x

(1)
i (t0)− x(1)i+1(t0))

]
.

As x
(1)
B+1(t0) ≥ x

(2)
B+1(t0) and x

(1)
i (t0) = x

(2)
i (t0), the last term is at least r(1 −

x
(2)
B+1(t0))(x

(1)
i+1(t0)− x(2)i+1(t0)) ≥ 0.

For B + 2 ≤ i ≤ T , dx
(1)
i (t0)/dt − dx(2)i (t0)/dt is identical to the first two

terms of the case with i > T and is therefore strictly positive. Finally, for
1 ≤ i ≤ B + 1, we have

dx
(1)
i (t0)

dt
− dx

(2)
i (t0)

dt
= λ(x

(1)
i−1(t0)− x(2)i−1(t0))︸ ︷︷ ︸

≥0

+ (x
(1)
i+1(t0)− x(2)i+1(t0))︸ ︷︷ ︸

>0

+ r
[
x
(1)
T+1(t0)(x

(1)
i−1(t0)− x(1)i (t0)− x(2)T+1(t0))(x

(2)
i−1(t0)− x(2)i (t0))

]
.

Since x
(1)
T+1(t0) ≥ x

(2)
T+1(t0) and x

(1)
i (t0) = x

(2)
i (t0), the last term is at least

rx
(1)
T+1(t0))(x

(1)
i−1(t0)− x(2)i−1(t0)) ≥ 0.

Note that in the above lemma we do not demand that x
(1)
K+1(t) is constant

as a function of t. The result also implies the monotonicity of the truncated
systems.

Define Ē = {(xi)i≥0|1 = x0 ≥ x1 ≥ ... ≥ 0} and E the subset of Ē such that
additionally

∑∞
i=0 xi <∞ holds.

Lemma 3. Let g ∈ Ē, then the unique solution xi(t) of (2-4) with xi(0) =
gi, for i ≥ 0, is obtained as the limit of the unique solutions x<K>i (t) of the
truncated systems with x<K>i (0) = gi for i = 1, . . . ,K and x<K>K+1 (t) = 0.

Proof. The proof is identical to the one of Lemma 3 in [6]. The existence of
the limit is based on the fact that x<K+1>

K+1 (t) ≥ 0 = x<K>K+1 (t) due to Lemma 1;

hence, Lemma 2 implies that x<K>i (t) does not decrease as a function of K for
fixed i and t.

Combining Lemma 2 and 3, we immediately have:

Lemma 4 (Monotonicity). Let x
(1)
i (t) and x

(2)
i (t) be the unique solution of (2-

4) with x
(k)
i (0) = g

(k)
i , for k = 1, 2 and i ≥ 0, and g

(1)
i ≥ g

(2)
i for all i, then

x
(1)
i (t) ≥ x(2)i (t) for all i and t.

Define vk(x) =
∑∞
i=k xi for x ∈ Ē. Note that v1(x) <∞ whenever x ∈ E.
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Lemma 5. Let xi(t) be the unique solution of (2-4) with xi(0) = gi for i ≥ 0
and g ∈ E. Assume π ∈ E is a fixed point with π1 = λ < 1 and assume gi ≤ πi
for all i or gi ≥ πi for all i. Then vk(x(t)) is bounded uniformly in t and we
have

lim
t→∞

(xi(t)− πi) = 0,

for all i ≥ 1.

Proof. If gi ≤ πi for all i then xi(t) ≤ πi for all i by Lemma 4 and v1(x(t)) ≤∑
i πi <∞. In case gi ≥ πi for all i, we have x1(t) ≥ π1 = λ. Hence, it suffices to

note that dv1(x(t))/dt = λ− x1(t) ≤ 0 to conclude that v1(x(t)) ≤
∑
i gi <∞.

As 0 ≤ vk(x(t)) ≤ v1(x(t)) the uniform boundedness follows for all k.
To prove the remaining part we rely on the equality

dvk(x(t))

dt
= λxk−1(t)− xk(t)− rxmax(T+1,k)(t)(1− xmin(B+1,k−1)(t)),

which can be obtained by summing the ODEs in (2-4) for i ≥ k. As π is a
fixed point, we have λπk−1 − πk − rπmax(T+1,k)(1 − πmin(B+1,k−1)) = 0. Sub-
tracting this from dvk(x(t))/dt and adding rxmax(T+1,k)(1 − πmin(B+1,k−1)) −
rxmax(T+1,k)(1− πmin(B+1,k−1)) = 0 yields

dvk(x(t))

dt
= λ(xk−1(t)− πk−1)− (xk(t)− πk)

+ rxmax(T+1,k)(t)(xmin(B+1,k−1)(t)− πmin(B+1,k−1))

− r(1− πmin(B+1,k−1))(xmax(T+1,k)(t)− πmax(T+1,k)). (A.1)

To show that limt→∞(x1(t)− π1) = 0, (A.1) implies

v1(x(t))− v1(g) =

∫ t

s=0

(π1 − x1(s))ds.

As v1(x(t)) is uniformly bounded in t we have
∫∞
s=0

(π1−x1(s))ds <∞. Further,
the sign of π1 − x1(t) is the same for all t and the derivative dxi(t)/dt ≤ 1, this
yields that x1(t)− π1 must tend to zero as t goes to infinity.

Next we argue that limt→∞(xi(t) − πi) = 0 for i = 2 and i = T + 1. By
(A.1) we have

v2(x(t))−v2(g) =

∫ t

s=0

[λ(x1(s)− π1)− (x2(s)− π2)

+ rxT+1(s)(x1(s)− π1)− r(1− π1)(xT+1(s)− πT+1)]ds.

Therefore by the uniform boundedness of v2(x(t)) and
∫∞
s=0

(x1(s) − π1) < ∞,
we find ∫ ∞

s=0

[(π2 − x2(s)) + r(1− π1)(πT+1 − xT+1(s))]ds <∞.
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Hence,
∫∞
s=0

(xi(s) − πi)ds < ∞ for i = 2 and i = T + 1 as (π2 − x2(t)) and
(πT+1−xT+1(t)) have the same sign for all t. Thus, limt→∞(xi(t)−πi) = 0 for
i = 2 and T + 1 because dxi(t)/dt ≤ 1 for all i and t. The proof for i 6= 1, 2
and T + 1 proceeds similarly by induction on i using (A.1) and the uniform
boundedness of vi(x(t)).

Theorem 11. Let xi(t) be the unique solution of (2-4) with xi(0) = gi for i ≥ 0
and g ∈ E. Assume π ∈ E is a fixed point and π1 = λ < 1, then

lim
t→∞

(xi(t)− πi) = 0,

for all i ≥ 1.

Proof. Define (g+)i = max(gi, πi) and (g−)i = min(gi, πi) for i ≥ 1, then
g− ≤ g ≤ g+. Let x+(t) be the unique solution of (2-4) with x+(0) = g+

and define x−(t) similarly. By Lemma 5 we know that both x−(t) and x+(t)
converge to π entry-wise, while Lemma 4 indicates that x−(t) ≤ x(t) ≤ x+(t)
for all t ≥ 0.

Appendix B. Weak convergence of invariant measures

Consider a finite system of N queues operating under a fixed rate pull or
push strategy with Poisson arrivals and exponential service times. Let XN

i (t) be
the fraction of queues with at least i jobs at time t. Clearly, (XN

0 (t), XN
1 (t), . . .)

forms a Markov process on the state space {(x0, x1, . . .)|1 = x0 ≥ x1 ≥ . . . ≥
0, xiN ∈ {0, . . . , N}} ⊆ E. Let ΠN be the stationary measure of the Markov
process corresponding to the system with N queues. The next theorem indicates
that the sequence of measures ΠN converges weakly to the dirac measure δπ,
where π is the unique fixed point of (2-4).

Theorem 12. Consider the metric space (E, ρ) where ρ(x, y) =
∑
i≥0 |xi −

yi|/2i, then the sequence of probability measures ΠN converges weakly to the
dirac measure δπ, that is,

lim
N→∞

∫
f(y)ΠN (dy) = f(π),

for any bounded continuous function f from (E, ρ) to R.

Proof. (Sketch) The main idea is to prove that any subsequence {ΠNk} of {ΠN}
has a further sub-subsequence that converges weakly to the same limit, being
δπ, as this implies that the sequence {ΠN} converges weakly to δπ (this property
is sometimes called the Urysohn property). The first step exists in showing that
every subsequence {ΠNk} has a weakly convergent sub-subsequence (without the
need that all of them have the same limit). This can be done by proving that the
sequence of probability measures {ΠN} is tight and by applying the Prokhorov’s
theorem (which states that tightness implies relative compactness). To prove
the tightness we can proceed as in [18] by first using a coupling argument to
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show that the queue length distribution of the system that relies on a pull/push
strategy is bounded by a constant plus the queue length distribution of a set of
N independent M/M/1 queues. Tightness of {ΠN} therefore follows from the
tightness of the set {Π̂N} proven in [18] (for T = 0 and B = 1), where Π̂N is
the invariant measure of the system of N independent M/M/1 queues.

The next step exists in showing that all the convergent sub-subsequences
must have the same limit δπ. For this purpose we make use of [24, Corollary 1].
This corollary shows that any limit point of a subsequence {ΠNk} is the dirac
measure δπ if the following additional three conditions are met (given the tight-
ness). First, the stochastic system should converge weakly to the limiting ODE,
that is, for any fixed T , the conditional expectation E[h(XN (T ))|XN (0) = g]
converges to h(x(T, g)), where x(t, g) is the unique solution of the ODE with
boundary condition x(0, g) = g ∈ E, for any bounded continuous function
h : E → R. In fact, a stronger convergence result can be established by relying
on [20, Theorem 3.13] completely analogue to [18] (for T = 0 and B = 1). Se-
cond, the deterministic limit process should be a continuous semi-flow, which
mainly involves checking the requirement that x(t, g) is continuous in both t and
g. This continuity follows (see [25]) from the observation that the ODE charac-
terized by (2-4) is Lipschitz continuous on the Banach space (E, ρ). Finally, the
ODE should have a unique global attractor. In Theorem 11 we showed that all
trajectories starting in E converge to the unique fixed point π entry-wise, which
is sufficient to have convergence under the metric ρ.
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