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ABSTRACT
Processor sharing queues are often used to study the performance

of time-sharing systems. In such systems the total service rate µ(m)
depends on the number of jobsm present in the system and there

is a limit implemented, called the multi-programming level (MPL),

on the number of jobs k that can be served simultaneously. Prior

work showed that under highly variable jobs sizes, setting the MPL

k beyond the value k∗ = argmaxm µ(m) may reduce the mean

response time.

In order to study the impact of the MPL k on the response time

distribution, we analyse the MAP/PH/LPS-k(m) queue. In such a

queue jobs arrive according to a Markovian arrival process (MAP),

have phase-type (PH) distributed sizes, at most k jobs are processed

in parallel and the total service rate depends on the number of jobs

being served. Jobs that arrive when there are k or more jobs present

are queued.

We derive an expression for the Laplace transform of the re-

sponse time distribution and numerically invert it to study the

impact of the MPL k . Numerical results illustrate to what extent

increasing k beyond k∗ increases the quantiles and tail probabilities
of the response time distribution. They further demonstrate that

for bursty arrivals and larger MPL k values having more variable

job sizes may reduce the mean response time.
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1 INTRODUCTION
Processing jobs with highly variable job sizes in a first-come-first-

served (FCFS) order is clearly suboptimal as short jobs get stuck

behind long jobs. Therefore many systems employ some form of

time sharing such that short jobs experience much better delay

characteristics which often results in an overall gain in the mean

system response time. In such systems the efficiency tends to im-

prove as the number of jobs processed in parallel increases up to

some point after which the efficiency declines as too many jobs are

competing for the available resources [13]. In a queueing theore-

tic setting such a system corresponds to a processor sharing (PS)

queue where the overall processing rate of the server depends on

the number of jobs present. If we denote µ(m) as the processing
rate in case there arem jobs served in parallel, then µ(m) is called
the service curve and this curve tends to be unimodal and attains

a maximum in some value k∗, i.e., µ(k∗) ≥ µ(m) for anym. As it

is desirable that the system operates at high efficiency a common

approach is to limit the number of jobs that is processed in parallel

to some k , where k is called the multi-programming level (MPL)

and setting k = k∗ is a very natural choice. Whenever the number

of jobs n in the system exceeds k , n − k of the jobs queue to receive

service. Thus, the system operates as a limited processor sharing
queue where the service rate depends on the number of jobs in

service.

As indicated in [5] when the job sizes are highly variable the

mean response times can be further reduced by picking an MPL k
that exceeds k∗ (especially if the load is not too high). The intuition
is that although setting k > k∗ reduces the service rate when there

are many jobs present, short jobs tend to have an easier time to

pass long jobs which outweighs the reduced service rate (if the load

is not too high). However, service disciplines that minimize the

mean response time, like shortest job next, also tend to cause some

form of starvation for the long jobs. Thus it would be interesting

to see how the MPL k affects not only the mean response time,

but the response time distribution. In fact it can be anticipated that

increasing k beyond k∗ may increase the tail probabilities as long

jobs have a more difficult time to complete.

The main objective of this paper is to develop an efficient nume-

rical method to compute the response time distribution in a limited

processor sharing queue to investigate how it is affected by the MPL

k . To this end we derive an expression for the Laplace transform

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(LT) of the response time distribution of the MAP/PH/LPS-k(m)

queue, where jobs arrive according to a Markovian arrival process

(MAP) of order na , jobs have an order ns phase-type (PH) distribu-
ted size, at most k jobs are processed in parallel and the service rate

depends on the number of jobs being served. Jobs that arrive when

there are k or more jobs present are queued (in an infinite buffer)

and queued jobs are taken in FCFS order from the queue whenever

a job completes service. To obtain the response time distribution

we numerically invert the LT, which requires us to numerically

evaluate the LT at various values of s . For this purpose we propose
two approaches: a Kronecker and a spectral expansion approach. At

first glance both approaches may appear problematic as they rely

on matrix computations where the size of the matrices involved is

O(nanks ). However, as we are mostly interested in highly variable

job sizes we focus on hyper-exponential distributions with ns = 2

phases only (as in [5]). Further, it is easy (see [5]) to reduce these

O(na2k ) size matrices to matrices of sizeO(nak), which allows fast

numerical inversion as indicated by the various numerical examples

(for na = 1,ns = 2 and k = 15 computing the probability P[R ≤ t]
that the sojourn time is less than or equal to t for a given t requires
less than 10 seconds on a regular laptop).

The main insights provided by the numerical examples is that

while increasing the MPL k beyond k∗ reduces the mean response

times in case of highly variable job sizes, it does significantly incre-

ase the tail probabilities. More surprisingly, when the arrivals occur

in bursts and the MPL k is large (e.g., k = 15) more variable job sizes

can result in significantly lower mean response times (while the

tail probabilities still increase with increasing job size variability).

The paper is structured as follows. The queueing model analyzed

in this paper is described in Section 2, while Section 3 reviews some

of the related work in this area. Section 4 focuses on how to compute

the queue length distribution. The analysis of the response time

distribution is presented in Section 5 and is the main technical

contribution of the paper. Section 6 discusses various numerical

examples and conclusions are drawn in Section 7.

2 MODEL AND NOTATIONS
To model general service time distribution and job arrival patterns

we assume that customers arrive according to a Markovian arrival

process (MAP) and their job lengths are phase-type (PH) distributed.

PH distributions and MAPs are distributions and point processes

with a modulating finite state background Markov chain [7]. At

the expense of increasing the size of the background Markov chain

any general distribution and point process can be approximated

arbitrary closely with PH distributions and MAPs, respectively.

MAPs can describe point processes with possibly dependent inter-

arrival times and include the special case of renewal processes with

PH distributed inter-arrival times. Various fitting tools are available

online for PH distributions, as well as some tools to approximate

MAPs (e.g., [6]).

We consider an infinite buffer service node, where jobs arrive

according to a MAP(D0,D1) with mean arrival rate λ = δD11I,
where 1I is the column vector of ones of appropriate size and δ is

the stationary distribution of theMAP satisfying δ (D0+D1) = 0 and

δ1I = 1. The service time distribution is PH(α ,A). The completion

rate vector of PH(α ,A) is denoted by a = −A1I. The size of the

arrival MAP is na and the size of the service PH is ns .
The server serves at most k jobs in parallel such that the service

speed depends on the number of parallel served jobs. Ifm (m ≤
k) jobs are served in parallel the service speed of one of those

jobs is µm = µ(m)/m and during such a period the service time is

PH(α , µmA). We only consider MPL values k for which the stability

condition

λα(−A)−11I < kµk ,

holds.

We are interested in the response time distribution of this system.

In order to compute it we first compute the stationary distribution

of the number of customers, the service phases and the phase of

the arrival process, based on which we evaluate the distribution

observed by a tagged customer arriving to the system. This part of

the analysis, presented in Section 4, is a straightforward application

of matrix analytic methods [7, 10]. The challenge is to determine

the response time distribution given the initial distribution of a

tagged customer in an efficient manner: this is by far the main

technical contribution of the paper and is presented in Section 5.

The response time distribution is obtained in the Laplace transform

domain from which a numerical inverse transformation provides

the time domain result.

3 RELATEDWORK
The closest related work is [5] which considers exactly the same

queueing system, but focuses on the mean response time only.

As the MPL that minimizes the mean response time depends to

a large extent on the arrival rate λ the authors also propose two

dynamic schemes to adjust the MPL level to minimize the mean

response time. In [12] a numerical scheme is proposed to study the

response time distribution of a limited processor sharing queue,

but the system is a closed queueing system and job durations are

exponential. While the analysis can be adapted to an open queueing

network with Poisson input, relaxing the exponential job durations

appears problematic.

Limited processor sharing (LPS) queues (where the overall ser-

vice rate does not depend on the number of jobs being processed)

have been studied by a variety of authors. In [9] the impact of

the MPL k on the sojourn time tail asymptotics is studied and a

robust setting for k is proposed that achieves good tail asymptotics

for both heavy and light tailed job size distributions. A method

to assess the mean response time in an LPS queue (with Poisson

arrivals and PH service) via matrix analytic methods was proposed

in [14] and is very similar in nature to Section 4. A closed form

approximation for the mean sojourn time in an LPS queue with ge-

neral service times was proposed in [2]. Fluid, diffusion and heavy

traffic approximations for LPS queues have also been developed in

[15–17]. Further, a monotonicity result for the G/GI/LPS-k queue

was presented in [11], which shows that the queue length distribu-

tion monotonically increases (decreases) in the stochastic ordering

sense as a function of the MPL k for service time distributions with

an increasing (decreasing) hazard rate.
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4 STATIONARY ANALYSIS OF THE NUMBER
OF CUSTOMERS

Let N (t) be the number of customers in the system at time

t , Z (t) be the phase of the MAP characterizing the arrivals at

time t and let {Y1(t),Y2(t), . . . ,Ymin(N (t ),k )(t)} represent the ser-
vice phases of the customers under service at time t . Clearly,
X (t) = (N (t), {Z (t),Y1(t),Y2(t), . . . ,Ymin(N (t ),k )(t)}) is a continu-
ous time Markov process. We state that N (t) is the “level” pro-

cess and {Z (t),Y1(t),Y2(t), . . . ,Ymin(N (t ),k )(t)} is the “phase” pro-
cess. Denote the stationary probabilities of level m by πm , i.e.,

πm is a row vector containing the stationary probabilities for

(N (t), {Z (t),Y1(t),Y2(t), . . . ,Ymin(m,k )(t)}) with N (t) =m. Define

the Kronecker sum for vectors ⊕mi=1a ,
∑m
i=1 ⊗i−1j=1I ⊗ a ⊗ ⊗m

ℓ=i+1I,
then we have the following result:

Theorem 4.1. Let Lm = D0⊕⊕mi=1µmA and Fm = D1⊗α ⊗⊗mi=1I,
form = 0, . . . ,k−1. Let Bm = I⊗⊕mi=1µma, form = 1, . . . ,k , L = Lk,
F = D1 ⊗ ⊗ki=1I, B = I ⊗ ⊕ki=1µkaα and Bk+1 = B. Denote R as the
minimal non-negative solution of the quadratic matrix equation

0 = F + RL + R2B, (1)

Rk = R and define

Rm = −Fm(Lm+1 + Rm+1Bm+2)−1, (2)

form = 0, . . . ,k − 1, then

πm = π0

m−1∏
j=0

Rj,

πk+j = πkRj ,

for m = 0, . . . ,k and j ≥ 0 and π0 is the unique vector such that
π0(L0 + R0B1) = 0 and

∑
i πi1I = 1.

Proof. Due to the fact that N (t) can change at most by one in a

single state transition X (t) is a Quasi-Birth-Death (QBD) Markov

process, where the first k + 1 levels (0, 1, . . . ,k) of this QBD are

irregular and level dependent. The generator of the QBD is given

by 

L0 F0
B1 L1 F1

. . .
. . .

. . .

Bk−1 Lk−1 Fk−1
Bk L F

B L F
. . .

. . .
. . .


,

The result follows from a standard application of matrix analytic

methods [7, 10]. �

The matrices Rm are of size nan
m
s × nan

m+1
s and R is a square

matrix of size nan
k
s . While this may appear problematic for com-

putational purposes, we can use the common method to reduce

the size of the matrices by simply keeping track of the number of

servers that are currently in each service phase (at the expense of

complicating the expressions for the blocks part of the generator

matrix), see Section 6 for more details. When ns = 2, as in our

numerical experiments, this makes the block sizes linear in k (as

opposed to exponential).

Theorem 4.2. After an arrival of a stationary customer the system
state distribution is

π̂m+1 =
1

λ
πmFm,

where Fm = F form ≥ k .

Proof. The probability of being in phase u of levelm + 1 just
after an arrival epoch is (πmFm)u and the result then follows by a

standard Markov chain argument [3]. It suffices to check that

∞∑
m=0

π̂m+11I =
∞∑

m=0

1

λ
πmFm1I =

∞∑
m=0

1

λ
πmD11I ⊗ 1 ⊗ ⊗min(m,k)

i=1 1I =
1

λ
δD11I = 1.

�

5 RESPONSE TIME DISTRIBUTION
The Laplace transform of the response time, R, is denoted by r (s) =
IE(e−sR ). To compute the response time we introduce the following

quantities.

Let entry (u,v) of the matrix W(s, i, j) be the Laplace transform
of the probability that i customers are served and j arrive in an

interval of length t where the phase process starts in phase u and

ends in phase v , while service is performed by k servers during the

entire interval. More precisely,

W̄(t , i, j)u,v = P(Nser (t) = i,Narr (t) = j,N (τ ) ≥ k,∀τ < t ,

{Z (t),Y1(t), . . . ,Yk (t)} = v |{Z (0),Y1(0), . . . ,Yk (0)} = u),

where Narr (t) and Nser (t) denote the number of arrivals and servi-

ces in (0, t), respectively, and W(s, i, j) =
∫
t e

−st W̄(t , i, j)dt . As the
elements of W̄(t , i, j) are probabilities, for Re(s) > 0 we have∫ ∞

0

��e−st W̄(t , i, j)u,v
��dt ≤ ∫ ∞

0

��e−st ��dt = ∫ ∞

0

e−Re(s)tdt < ∞,

and consequently W(s, i, j)u,v is analytic for Re(s) > 0 (as the LT

is analytic in its absolute region of convergence). In the subsequent

analysis we present Laplace domain matrix expressions for matrices

of probabilities, these expressions are obtained as the solution of

linear equations in explicit (described by matrix inverse) or in impli-

cit (solution of a Sylvester equation) from. In either cases, without

any further notice, we have that the solution is finite and analytic

for Re(s) > 0 due to the same reasoning as for W(s, i, j)u,v .
Define entryu of the column vector Si(s) as the Laplace transform

of the remaining service timeRr em of a tagged customerwhen there

are i customers in the system, the phase process is in phase u and

the tagged customer is in the first server. That is,

Si(s)u = IE(e−sRr em |N (0) = i, tagged in server 1,

{Z (0),Y1(0), . . . ,Ymin(i,k )(0)} = u).

Theorem 5.1. The Laplace transform of the response time, r (s),
can be expressed as

r (s) =
k−1∑
m=0

1

λ
πmFmSm+1(s) +

∞∑
j=0

∞∑
i=0

1

λ
πkRiFW(s, i, j)B′Sk+j(s)

(3)

where B′ = (I ⊗ ⊕ki=1µka)(I ⊗ α ⊗ki=1 I).
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Proof. We rely on Theorem 4.2 and distinguish between two

cases: the tagged customer either gets to the server directly, or it

is buffered upon its arrival. In the first case the matrix Fm ensures

that the newly arrived customer is in server one and its service time

is described by Sm+1(s). In the second case
1

λ πkRiF describes the

probability that there are k + i customers in front of the tagged one

and

∑∞
j=0 W(s, i, j) describes all arrival patterns until i customers

have departed and the tagged customers starts service. The matrix

B′
ensures that the tagged customer gets to server one, from which

point Sk+j(s) describes the response time. �

Theorem 5.2. The matrices W(s, i, j) satisfy the following relati-
ons:

L(s) , W(s, 0, 0) = (sI − L)−1 , (4)

W(s, i, 0) =W(s, i−1, 0)BL(s) = (L(s)B)i L(s) = L(s) (BL(s))i , (5)
W(s, 0, j) =W(s, 0, j − 1)FL(s) = (L(s)F)j L(s) = L(s) (FL(s))j , (6)

W(s, i, j) = (W(s, i, j − 1)F +W(s, i − 1, j)B) L(s). (7)

Proof. (4) describes the case without any arrivals or service

completions. In this case only the phase can change according to

the matrix L. (5) represents the case that there are i − 1 services

and no arrivals in (0,τ ) with τ < t , there is a service completion at

time τ according to matrix B and there are no arrivals or service

completions in (τ , t). (6) is similar to (5), and (7) considers the cases

that the last event is an arrival or a service completion. �

5.1 Analysis of Si(s)
To compute Si(s) we need matrices that distinguish between a

service completion of the tagged customer or another customer. To

this endwe define B̂ = I⊗µkaα⊗⊗k
ℓ=2

I and B̂m = I⊗µma⊗⊗m
ℓ=2

I for
m ≤ k for the service completion of the tagged customer (residing in

server one). While B̄ = I⊗ I⊗⊕k
ℓ=2

µkaα and B̄m = I⊗ I⊗⊕m
ℓ=2

µma
for m ≤ k correspond to another customer completing service.

Note that B̂ + B̄ = B and B̂m + B̄m = Bm. Furthermore, define

Lm(s) , (sI − Lm)−1 form < k and F′m = D1 ⊗ ⊗mi=1I ⊗ α which is

the same as Fm except that it puts the incoming customer in server

m + 1 (instead of server one).

Theorem 5.3. Si(s) satisfies the following recurrence relations

S1(s) = L1(s)
(
B̂11I + F′1S2(s)

)
, (8)

Sm(s) = Lm(s)
(
B̂m1I + B̄mSm−1(s) + F′mSm+1(s)

)
, for 1 < m < k,

(9)

Sk(s) = L(s)
(
B̂k1I + B̄kSk−1(s) + FSk+1(s)

)
, (10)

Sk+j(s) = L(s)
(
B̂1I + B̄Sk+j−1(s) + FSk+j+1(s)

)
, for j ≥ 1. (11)

Proof. We detail only (9) as the other cases can be derived

similarly. The response time associated with Sm(s) for 1 < m < k
can be computed assuming that there are only phase transitions

according to matrix Lm up to time τ (τ < t ) and at time τ there are

three possible events:

• the service completion of the tagged customer according to

the vector B̂m1I;

• the service completion of a non-tagged customer according

to the matrix B̄k from which the remaining response time is

Sk−1(s);
• an arrival captured by F′m (which keeps the tagged customer

in server one and places the incoming one to servem + 1)
from which the remaining response time is Sm+1(s).

�

To avoid the infinite recurrence relation in (11) we compute

Sk+1(s) explicitly, based on V(s, i,h). Entry (u,v) of V(s, i,h) is the
Laplace transform of the probability that i non-tagged customers

are served and h customers arrive in an interval of length t that
starts in phase u with k + 1 customers and ends in phase v , while
there are at least k + 1 customers in the system during the entire

interval of length t . There are two differences between V(s, i,h)
and W(s, i,h). The first one is that W(s, i,h) considers the service
of all customers while V(s, i,h) considers the service of the non-
tagged customers only and assumes that the tagged customer is not

served in (0, t). The second (and more intricate) difference is that

W(s, i,h) does not put any restrictions on the order of the i service
completions andh arrivals, while for V(s, i,h) the number of arrived

customers may not be below the number of served customers at all

times, ensuring that there are at least k + 1 customers in the system

during the entire interval.

Theorem 5.4. For V(s, i,h) we have
V(s, 0, 0) = (sI − L)−1 = L(s), (12)

V(s, 0,h) = V(s, 0,h − 1)FL(s) = (L(s)F)h L(s), (13)

V(s, i, i) = V(s, i − 1, i)B̄L(s), (14)

V(s, i,h) = (V(s, i,h − 1)F + V(s, i − 1,h)B̄) L(s), for 0 < i < h.
(15)

Proof. The reasoning is similar to the proof of Theorem 5.2 and

we only emphasize the differences here. The matrix B̄ corresponds

to the service completion of a non-tagged customer, and (14) ensures

that the state when the number of served and arrived customers

is identical, is reachable only from the state when the number of

arrivals equals the number of service completions plus one. This

ensures that there cannot be fewer than k + 1 customers in the

system. �

Theorem 5.5. For Re(s) ≥ 0, Sk+1(s) can be computed as

Sk+1(s) = V(s, 0)
(
I − R̄(s)

)−1B̂1I + V(s, 0)B̄Sk(s), (16)

where V(s, 0) =
(
sI − L − R̄(s)B̄

)−1 and R̄(s) is the minimal non-
negative solution of

sR̄(s) = F + R̄(s)L + R̄2(s)B̄. (17)

Proof. According to the definition of V(s, i,h) we have

Sk+1(s) =
∞∑

m=0

∞∑
ℓ=0

V(s, ℓ, ℓ +m)B̂1I +
∞∑
ℓ=0

V(s, ℓ, ℓ)B̄Sk(s), (18)

where the first term describes the case when the tagged customer

is served before the queue length decreases to k and the second

term describes the case when the tagged customer is not served
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while the queue length is larger than k and from the point when the

queue length reduces to k is its remaining service time is described

by Sk(s).
To avoid infinite summations we introduce V(s, i) =∑∞
ℓ=0 V(s, ℓ, i + ℓ) for which the following recurrence relations hold

for i > 0 based on (15)

V(s, i) = V(s, i − 1)FL(s) + V(s, i + 1)B̄L(s).

Substituting L(s) by (sI − L)−1 gives

sV(s, i) = V(s, i − 1)F + V(s, i)L + V(s, i + 1)B̄,

which indicates that V(s, i) follows a matrix geometric sequence

V(s, i) = V(s, i − 1)R̄(s) = V(s, 0)R̄i (s),

where R̄(s) is the solution of (17). For Re(s) ≥ 0, the spectral radius

of R̄(s) is less than 1 since (F + L + B̄) 1I = −B̂1I ≤ 0, which implies

that

(
I − R̄(s)

)−1
exists. For V(s, 0) we have due to (14)

V(s, 0) = V(s, 0, 0) +
∞∑
ℓ=1

V(s, ℓ, ℓ) = L(s) +
∞∑
ℓ=1

V(s, ℓ − 1, ℓ)B̄L(s)

= L(s) + V(s, 1)B̄L(s),

from which V(s, 0) can be computed as

V(s, 0) = L(s) + V(s, 0)R̄(s)B̄L(s) =
(
sI − L − R̄(s)B̄

)−1
.

Finally, from (18) we have

Sk+1(s) =
∞∑

m=0
V(s, 0)R̄m (s)B̂1I + V(s, 0)B̄Sk(s),

= V(s, 0)
(
I − R̄(s)

)−1B̂1I + V(s, 0)B̄Sk(s), (19)

which completes the theorem. �

Thanks to (16), (10) can be written as

Sk(s) = L(s)
(
B̂k1I + B̄kSk−1(s) + FV(s, 0)

( (
I − R̄(s)

)−1B̂1I + B̄Sk(s)
))
.

(20)

(20) together with (8) and (9) form a set of linear equations for Sm(s)
(m = 1, . . . ,k) for any fixed value of s .

Theorem 5.6. For j > 0, Sk+j(s) can be computed as

Sk+j(s) =
j−1∑
ℓ=0

(
V(s, 0)B̄

)ℓV(s, 0)
(
I − R̄(s)

)−1B̂1I +
(
V(s, 0)B̄

) jSk(s),

(21)

Proof. The recurrence relation in (16) remains valid for higher

number of customers as well, that is

Sk+j(s) = V(s, 0)
(
I − R̄(s)

)−1B̂1I + V(s, 0)B̄Sk+j−1(s). (22)

Successive substitution of this recurrence relation for k+1, . . . ,k+ j
yields (21). �

5.2 Computing the response time distribution
According to (3) and (21) the Laplace transform of the response

time is

r (s) =
k−1∑
m=0

1

λ
πmFmSm+1(s)︸                    ︷︷                    ︸
r1(s)

+

∞∑
j=0

∞∑
i=0

1

λ
πkRiFW(s, i, j)B′Sk+j(s)

= r1(s) +
∞∑
j=0

∞∑
i=0

1

λ
πkRiFW(s, i, j)B′ (V(s, 0)B̄) jSk(s)︸                                                   ︷︷                                                   ︸

r2(s)

+

∞∑
j=1

∞∑
i=0

1

λ
πkRiFW(s, i, j)B′

j−1∑
ℓ=0

(
V(s, 0)B̄

)ℓV(s, 0)
(
I − R̄(s)

)−1B̂1I︸                                                                                ︷︷                                                                                ︸
r3(s)

Using Theorem 4.1 we can compute πm (m = 1, . . . ,k) and
from the linear system of (8), (9) and (20) we can retrieve Sm(s)
(m = 1, . . . ,k) for any fixed value of s . Based on these, we can

compute the first term, r1(s). We now focus on the analysis of r2(s)
and r3(s), using two different computational approaches.

5.2.1 Computing the response time by Kronecker expansion. The
first approach to compute r2(s) and r3(s) exists in relying on a

Kronecker expansion. While the solution is easy to implement, the

size of the matrices involved is the square of the size of the blocks

characterizing the generator of the Markov chain. This implies that

the run time complexity when ns = 2 will grow as k6. The spectral
approach presented in the next section avoids the need to work

with such large matrices and has a time complexity that is cubic

in k when ns = 2 (see Section 6 for more details on the run time

complexity).

Theorem 5.7.

r2(s) =
1

λ

(
Sk(s)T ⊗ πk

)
N(s)vec(M(s, 0))

where ⊗ is Kronecker product, T denotes transpose,vec() is the column
stacking vector operator,

U(s) =
(
I −

(
L(s)T BT ⊗ R

) )−1 (
L(s)T FT ⊗ I

)
and M(s, 0) and N(s) are the solutions of the Sylvester equations1

M(s, 0) = FL(s) + RM(s, 0)BL(s),

N(s) =
(
B′T ⊗ I

)
+

(
B̄T V(s, 0)T ⊗ I

)
N(s)U(s).

Proof. Let M(s, j) = ∑∞
i=0 RiFW(s, i, j). For j = 0, we have

M(s, 0) =
∞∑
i=0

RiFW(s, i, 0) =
∞∑
i=0

RiFL(s) (BL(s))i

= FL(s) + RM(s, 0)BL(s)

1
These equations are of the form AXB − X +C = 0 and can therefore be solved in

cubic time using the dlyap MATLAB command.
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which is a Sylvester matrix equation for M(s, 0). For j ≥ 1, one

finds

M(s, j) = FW(s, 0, j) +
∞∑
i=1

RiFW(s, i, j)

= (FL(s))j+1 +
∞∑
i=1

RiF (W(s, i, j − 1)F +W(s, i − 1, j)B) L(s)

= (FL(s))j+1 +
∞∑
i=1

RiFW(s, i, j − 1)︸                    ︷︷                    ︸
M(s, j−1)−FW(s,0, j−1)

FL(s) + R
∞∑
i=1

Ri−1FW(s, i − 1, j)︸                       ︷︷                       ︸
M(s, j)

BL(s)

= M(s, j − 1)FL(s) + RM(s, j)BL(s),
whose closed form solution can be obtained using the vec operator,
by recalling that vec(XYZ ) = (ZT ⊗ X )vec(Y )
vec(M(s, j))

=
(
L(s)T FT ⊗ I

)
vec(M(s, j − 1)) +

(
L(s)T BT ⊗ R

)
vec(M(s, j))

=
(
I −

(
L(s)T BT ⊗ R

) )−1 (
L(s)T FT ⊗ I

)
vec(M(s, j − 1))

=

[ (
I −

(
L(s)T BT ⊗ R

) )−1 (
L(s)T FT ⊗ I

) ] j
vec(M(s, 0)).

= U(s)jvec(M(s, 0)).
This implies that r2(s) can be written in the following manner by

using the equality vec(XYZ ) = (ZT ⊗ X )vec(Y ) with X = πk ,

Y = M(s, j) and Z = B′ (V(s, 0)B̄) jSk(s)

r2(s) =
∞∑
j=0

1

λ
πkM(s, j)B′ (V(s, 0)B̄) jSk(s)

=
1

λ

∞∑
j=0

(
Sk(s)T

(
B̄T V(s, 0)T

) jB′T ⊗ πk

)
vec(M(s, j))

=
1

λ

(
Sk(s)T ⊗ πk

)
·

∞∑
j=0

(
B̄T V(s, 0)T ⊗ I

) j (
B′T ⊗ I

)
U(s)j︸                                            ︷︷                                            ︸

N(s)

vec(M(s, 0))

=
1

λ

(
Sk(s)T ⊗ πk

)
N(s)vec(M(s, 0)),

where for N(s) we have

N(s) =
(
B′T ⊗ I

)
+

∞∑
j=1

(
B̄T V(s, 0)T ⊗ I

) j (
B′T ⊗ I

)
U(s)j

=
(
B′T ⊗ I

)
+

(
B̄T V(s, 0)T ⊗ I

)
N(s)U(s),

which completes the proof. �

Theorem 5.8.

r3(s) =
1

λ

(
Ŝ(s)T ⊗ πk

)
N(s)U(s)(I − U(s))−1vec(M(s, 0)),

where Ŝ(s) = V(s, 0)
(
I − R̄(s)

)−1B̂1I and N(s), U(s) and M(s, 0) are
defined in Theorem 5.7.

Proof. Using Ŝ(s) = V(s, 0)
(
I − R̄(s)

)−1B̂1I, we write

r3(s) =
1

λ

∞∑
ℓ=0

∞∑
j=ℓ+1

πkM(s, j)B′ (V(s, 0)B̄)ℓ Ŝ(s)

=
1

λ

∞∑
ℓ=0

(
Ŝ(s)T

(
B̄T V(s, 0)T

)ℓB′T ⊗ πk

) ∞∑
j=ℓ+1

U(s)jvec(M(s, 0))

=
1

λ

∞∑
ℓ=0

(
Ŝ(s)T

(
B̄T V(s, 0)T

)ℓB′T ⊗ πk

)
·

U(s)ℓ+1(I − U(s))−1vec(M(s, 0))

=
1

λ

(
Ŝ(s)T ⊗ πk

) ∞∑
ℓ=0

(
B̄T V(s, 0)T ⊗ I

)ℓ (
B′T ⊗ I

)
U(s)ℓ︸                                            ︷︷                                            ︸

N(s)

·

U(s)(I − U(s))−1vec(M(s, 0))

=
1

λ

(
Ŝ(s)T ⊗ πk

)
N(s)U(s)(I − U(s))−1vec(M(s, 0)),

�

5.2.2 Computing the response time by spectral expansion. We

start with the next theorem which assumes that V(s, 0)B̄ is diagona-

lizable. For all the numerical experiments performed in this paper, it

turns out that these matrices are indeed diagonalizable. As such all

the numerical results presented in this paper made use of Theorem

5.9 as it avoids the need to perform a Kronecker expansion.

Theorem 5.9. When V(s, 0)B̄ is diagonalizable for a fixed s and
its spectral decomposition is

∑N
n=1 θnunvn , then r2(s) and r3(s) can

be computed as

r2(s) =
1

λ
πk

N∑
n=1

M̃(s,θn )B′unvnSk(s),

and

r3(s) =
1

λ
πk

N∑
n=1

M̃(s, 1) − M̃(s,θn )
1 − θn

B′unvn

· V(s, 0)
(
I − R̄(s)

)−1B̂1I,

where M̃(s,θ ) is the solution of the Sylvester equation2

M̃(s,θ ) = FL(s) + θM̃(s,θ )FL(s) + RM̃(s,θ )BL(s). (23)

Proof. Using M(s, j) defined in Theorem 5.7, r2(s) and r3(s) can
be written as

r2(s) =
∞∑
j=0

1

λ
πkM(s, j)B′ (V(s, 0)B̄) jSk(s),

r3(s) =
∞∑
j=1

1

λ
πkM(s, j)B′

j−1∑
ℓ=0

(
V(s, 0)B̄

)ℓV(s, 0)
(
I − R̄(s)

)−1B̂1I,

where M(s, j) was shown to satisfy

M(s, 0) = FL(s) + RM(s, 0)BL(s),
M(s, j) = M(s, j − 1)FL(s) + RM(s, j)BL(s),

2
This equation is of the form AXB + XC = D and can be solved in cubic time using

a Hessenberg decomposition of (B, C) and Schur decomposition of A, see [4].
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for j ≥ 1. Multiplying the last equation with θ j and summing over

j gives

∞∑
j=1

θ jM(s, j) =
∞∑
j=1

θ jM(s, j − 1)FL(s) + R
∞∑
j=1

θ jM(s, j)BL(s).

For M̃(s,θ ) = ∑∞
j=0 θ

jM(s, j) we therefore have

M̃(s,θ ) − M(s, 0) = θM̃(s,θ )FL(s) + RM̃(s,θ )BL(s) − RM(s, 0)BL(s),

from which, for any s and θ , M̃(s,θ ) is the solution of the Sylvester

equation

M̃(s,θ ) = FL(s) + θM̃(s,θ )FL(s) + RM̃(s,θ )BL(s). (24)

If V(s, 0)B̄ is diagonalizable and its spectral decomposition is∑N
n=1 θnunvn then

r2(s) =
∞∑
j=0

1

λ
πkM(s, j)B′

N∑
n=1

θ
j
nunvnSk(s)

=
1

λ
πk

N∑
n=1

M̃(s,θn )B′unvnSk(s),

and

r3(s) =
∞∑
j=1

1

λ
πkM(s, j)B′

j−1∑
ℓ=0

N∑
n=1

θ ℓnunvnV(s, 0)
(
I − R̄(s)

)−1B̂1I

=
1

λ
πk

N∑
n=1

∞∑
j=1

M(s, j)B′ 1 − θ
j
n

1 − θn
unvnV(s, 0)

(
I − R̄(s)

)−1B̂1I

=
1

λ
πk

N∑
n=1

M̃(s, 1) − M̃(s,θn )
1 − θn

B′unvnV(s, 0)
(
I − R̄(s)

)−1B̂1I.

�

If V(s, 0)B̄ is non-diagonalizable, then its spectral decomposition

contains at least one non-trivial Jordan block. The following theo-

rem discusses the case when the spectral decomposition of V(s, 0)B̄
is composed by a single Jordan block of maximal size.

Theorem 5.10. If for a fixed s the spectral decomposition of
V(s, 0)B̄ is

V(s, 0)B̄ = Θ−1


θ 1

θ 1

. . .
. . .

θ


Θ,

then

r2(s) =
1

λ
πkΦ(s)ΘSk(s),

r3(s) =
1

λ
πkΨ(s)ΘV(s, 0)

(
I − R̄(s)

)−1B̂1I,

where the ℓth column of Φ(s) and Ψ(s) can be computed as

[Φ(s)]ℓ =
ℓ−1∑
n=0

M̃(n)(s,θ )
n!

[B′Θ−1]ℓ−n ,

[Ψ(s)]ℓ =
ℓ−1∑
n=0

(
M̃(s, 1)

(1 − θ )n+1
−

n∑
u=0

1

(1 − θ )u+1
M̃(n−u)(s,θ )
(n − u)!

)
[B′Θ−1]ℓ−n ,

such that M̃(0)(s,θ ) = M̃(s,θ ) and M̃(n)(s,θ ) (n ≥ 1) is the solution
of the Sylvester equation3

M̃(n)(s,θ ) = nM̃(n−1)(s,θ )FL(s) (25)

+ θM̃(n)(s,θ )FL(s) + RM̃(n)(s,θ )BL(s).

Proof. First we note that (25) is the nth derivative of (24)

with respect to θ . (25) is a Sylvester equation for M̃(n)(s,θ ) when
M̃(n−1)(s,θ ) is known. It means that for a fixed θ , M̃(n)(s,θ ) can be

computed iteratively starting from n = 0.

For the given spectral decomposition of V(s, 0)B̄, we have

r2(s) =
∞∑
j=0

1

λ
πkM(s, j)B′Θ−1


θ 1

θ 1

. . .
. . .

θ


j

ΘSk(s)

=
1

λ
πk

∞∑
j=0

M(s, j)B′Θ−1


θ j

(j
1

)
θ j−1 . . .

( j
N
)
θ j−N

θ j
(j
1

)
θ j−1 . . .

. . .
. . .

θ j

︸                                                        ︷︷                                                        ︸
Φ(s)

ΘSk(s),

where

(j
i
)
= 0 for i > j.

The first column of Φ(s), [Φ(s)]1, can be computed as

[Φ(s)]1 =
∞∑
j=0

M(s, j)[B′Θ−1]1θ j = M̃(s,θ )[B′Θ−1]1.

For the second column we have

[Φ(s)]2 =
∞∑
j=1

M(s, j)[B′Θ−1]1
(
j

1

)
θ j−1 +

∞∑
j=0

M(s, j)[B′Θ−1]2θ j

= M̃(1)(s,θ )[B′Θ−1]1 + M̃(s,θ )[B′Θ−1]2.

and the last column is

[Φ(s)]N =
N−1∑
n=0

∞∑
j=n

M(s, j)[B′Θ−1]N−n

(
j

n

)
θ j−n

=

N−1∑
n=0

M̃(n)(s,θ )
n!

[B′Θ−1]N−n .

Similarly,

r3(s) =
1

λ
πkΨ(s)ΘV(s, 0)

(
I − R̄(s)

)−1B̂1I,

3
This equation is of the same form as (23) and can therefore also be solved in cubic

time.



Performance’17, November 2017, New York City, USA author(s)

SCV p 1/γ1 1/γ2
1 0.5000 1 1

2 0.7887 0.6340 2.3660

5 0.9082 0.5505 5.4495

10 0.9523 0.5251 10.4749

19 0.9743 0.5132 19.4868

Table 1: Parameter settings of the hyper-exponential job size
distribution for various SCV values.

where

Ψ(s) =
∞∑
j=1

M(s, j)B′Θ−1
j−1∑
ℓ=0


θ ℓ

(ℓ
1

)
θ ℓ−1 . . .

( ℓ
N
)
θ ℓ−N

θ ℓ
(ℓ
1

)
θ ℓ−1 . . .

. . .
. . .

θ ℓ


=

∞∑
j=1

M(s, j)B′Θ−1



1−θ j
1−θ

d
dθ

1−θ j
1−θ . . . 1

N !

dN
dθN

1−θ j
1−θ

1−θ j
1−θ

d
dθ

1−θ j
1−θ . . .

. . .
. . .
1−θ j
1−θ


.

The first column of Ψ(s) is

[Ψ(s)]1 =
∞∑
j=0

M(s, j)[B′Θ−1]1
1 − θ j

1 − θ
=

M̃(s, 1) − M̃(s,θ )
1 − θ

[B′Θ−1]1.

and its N th column is

[Ψ(s)]N =
N−1∑
n=0

∞∑
j=n

M(s, j)[B′Θ−1]N−n
1

n!

dn

dθn
1 − θ j

1 − θ

=

N−1∑
n=0

1

n!

dn

dθn
M̃(s, 1) − M̃(s,θ )

1 − θ
[B′Θ−1]N−n ,

where

dn

dθn
M̃(s, 1) − M̃(s,θ )

1 − θ
=

n! M̃(s, 1)
(1 − θ )n+1

−
n∑

u=0

n!

(n − u)!
M̃(n−u)(s,θ )
(1 − θ )u+1

�

The cases when multiple, potentially non-trivial Jordan blocks

appear in the spectral decomposition of V(s, 0)B̄ can be handled by

the combination of these results and are omitted here.

6 NUMERICAL RESULTS
In this section we present numerical results obtained by nume-

rically inverting the Laplace transform r (s) of the response time

distribution. As we are mainly interested in systems where the

workload consists of a mixture of long and short jobs, we make use

of a hyper-exponential (HEXP) distribution with ns = 2 phases to

model the job size distribution. Under a 2-phase HEXP distribution

a job has an exponentially distributed length with mean 1/γ1 with
probability p and an exponentially distributed length with mean

1/γ2 with probability 1 − p. The parameters p,γ1 and γ2 are set

by matching the mean job duration EX , its squared coefficient of
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Figure 1: Prototypical service rate curve of [5].

variation SCV (for any SCV ≥ 1) and a shape parameter. Unless

otherwise stated, we set

EX = 1, γ1 = 1 +

√
SCV − 1

SCV + 1
, γ2 = 1 −

√
SCV − 1

SCV + 1
, p =

γ1
2

,

and

α =
[
p 1 − p

]
, A =

[
−γ1

−γ2

]
.

Table 1 lists the resulting parameters for SCV = 1, 2, 5, 10 and

19. For instance, when SCV = 10 about 95% of the jobs are type 1

jobs, these are typically short jobs, and the remaining 5% of the jobs

have a job length that is on average 20 times longer. We make use

of the same prototypical service rate curve µ(m) as in [5] which

is depicted in Figure 1. Note that the service rate is maximized at

when k = 4 or 5.

To numerically invert the Laplace transform we make use of

the Euler algorithm [1, Section 5]. To determine the probability

P[R ≤ t] that the response time is at most t , this algorithm evalu-

ates r (s)/s in a set of 2M points, where Re(s) = M ln(10)/3t > 0.

For our numerical results we set M = 32 and all computations

were performed in double precision using the MATLAB function

euler_inversion which can be downloaded from the Mathworks

File Exchange server [8]. This function requires the function that

evaluates r (s)/s for a specific value of s as input.
As stated in Section 4 the theorems presented in this paper make

use of matrices of size nks na , which allows us to specify the matrices

in an elegant manner using Kronecker sums and products. Even

if ns = 2 this would result in matrices of size 2
kna . To reduce the

computation times, we use the common approach to reduce the

size of the matrices involved by keeping track of the number of

jobs in each phase (instead of the service phase of each individual

job), e.g., [14]. For ns = 2 this would reduce the size of the matrices

to (k + 1)na (as there can be between 0 and k jobs in phase 1).

However, looking at the analysis in Section 5 it should be noted

that we always need to maintain the phase of the tagged job (located

in server 1). This implies that we can only collapse the phases of

the remaining k − 1 service phases and the size of the matrices used

in our computations therefore equals 2kna .
For all the numerical experiments presented in this section we

were able tomake use of Theorem 5.9 as thematricesV(s, 0)B̄ turned

out to be diagonalizable for all the parameter settings considered.

For Poisson input (λ = 0.8) and HEXP service the computation
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Figure 2: Mean job response time as a function of the MPL k
under Poisson arrivals with rate λ = 0.8.
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Figure 3: Mean job response time as a function of the MPL k
under Poisson arrivals with rate λ = 0.9.

time was less than 1 second for k = 6, about 3.2 seconds for k = 10

and 7.5 seconds for k = 15 to compute a single probability of the

form P[R > t] (on an Intel Core i7-3630QM 2.40 GHz laptop). These

computation times are not very sensitive to the specific value of t
or the SCV of the job sizes. For MAP input with na = 2 instead of

Poisson input the computation times roughly increase by a factor 8

(as the size of the matrices doubles and computation times are cubic

in the size of the matrices involved). If we rely on Theorems 5.7

and 5.8 instead of Theorem 5.9 the computation times for k = 6, 10

and 15 increase to approximately 4, 40 and 440 seconds, which

clearly demonstrates the effectiveness of Theorem 5.9 to reduce the

computation times.

6.1 Poisson arrivals
The Poisson arrival process with rate λ is a special case of a MAP

with na = 1, D0 = −λ and D1 = λ. Figures 2 and 3 depict the mean

response time in case of Poisson job arrivals with rate λ = 0.8 and

0.9 for various choices of the service time SCV. These plots are

similar to [5, Figure 3] and confirm that selecting a higher MPL k
when the job sizes are highly variable is beneficial for the mean

response time.
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Figure 4: Response time distribution for various MPL k va-
lues under Poisson arrivals with rate λ = 0.8 and SCV = 19.
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Figure 5: Response time distribution for various MPL k va-
lues under Poisson arrivals with rate λ = 0.9 and SCV = 19.

Figures 4 and 5 show the response time distribution for various

choices of the MPL k for the setting with SCV = 19. These figures

clearly illustrate that while the mean response time is minimized

for an MPL value well beyond 5 (where the service rate curve is

maximized), the tail of the response time distribution behaves very

differently and is minimized by setting k = 4, the smallest k value

for which µ(k) ≥ µ(m) for allm. This observation is in agreement

with the observation made in [9] that under light tailed job size

distributions, the tail asymptotics of a limited processor sharing

queue (with a fixed service rate curve) tends to improve as the

MPL level k decreases. It also confirms our intuition that the mean

response time improves up to some point as for larger k short jobs

have an easier time passing long jobs, but this makes it harder for

the long jobs to complete service, which worsens the tail behavior

of the response time distribution.

This is further illustrated in Figures 6 and 7 where we depict the

response time distribution conditioned on the initial service phase

of a job. We state that jobs that started service in phase i , for i = 1, 2,

are type-i jobs. In case of HEXP job lengths, this implies that the
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Figure 6: Response time distribution of short jobs, i.e., type-1
jobs, for various MPL k values under Poisson arrivals with
rate λ = 0.8 and SCV = 19.
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Figure 7: Response time distribution of long jobs, i.e., type-2
jobs, for various MPL k values under Poisson arrivals with
rate λ = 0.8 and SCV = 19.

type-i jobs have a mean length of 1/γi and roughly speaking the

type-1 jobs correspond to short jobs (with a mean length of about

0.5) and type-2 jobs are typically long (with a mean close to 20). To

compute these distributions, denoted as Rshor t and Rlonд , we can
rely on the results presented in Section 5, except that the vector

α used in the matrices B′
and F′ needs to be replaced by ei , the

stochastic vector with entry i equal to 1. Ideally we would like to

compute the response time distribution of a job given its size, but

this distribution cannot be directly obtained from Section 5.

Figure 6 shows that the response time distribution of the short
jobs tends to improve as k increases up to k = 12, the value that

minimizes the mean response time. For larger t smaller k values

still perform better, but this is most likely due to the fact that not all

type-1 jobs are truly short. Similarly Figure 7 shows that increasing

k is typically bad for the long jobs.
We end this section by depicting the 99

th
percentile of the re-

sponse time distribution for various choices of the SCV in Figure 8.
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Figure 8: The 99
th percentile of the response time distribu-

tion as a function of the MPL k under Poisson arrivals with
λ = 0.8.

This percentile is very meaningful whenever the main concern of

the system is to guarantee good response time for the majority of

the jobs, e.g., 99% of the jobs. Figure 8 indicates that except for the

SCV = 19 case, the 99
th

percentile is minimized by setting the MPL

equal to 4 or 5. It indicates that the tail asymptotics kick in rather

quickly and using a larger MPL k might not give the desirable result.

The fact that a larger k reduces the 99
th

percentile of the response

time for an SCV equal to 19 is not surprising as in this case about

97.5% of the jobs are type-1 jobs (see Table 1) and these benefit

from increased k values.

6.2 Phase-type renewal arrivals
In this section we investigate the impact of the arrival process by

replacing the Poisson arrivals used in the previous section with

a phase-type renewal process. This means that consecutive inter-

arrival times are still independent, but the inter-arrival time distri-

bution follows a phase-type distribution. Similar to the service time

distribution, we assume an HEXP inter-arrival time distribution

characterized by the mean arrival rate λ and its squared coefficient

of variation SCVa , that is

na = 2, D0 = λ

[
−γ1

−γ2

]
, D1 = λ

[
pγ1 (1 − p)γ1
pγ2 (1 − p)γ2

]
,

where γ1,2 = 1 ±
√
(SCVa − 1)/(SCVa + 1) and p = γ1/2.

Figure 9 depicts the mean response time as a function of k when

the PH renewal process has a mean arrival rate λ = 0.8 and an

SCVa = 10. Note in such case the inter-arrival times are a mixture

of many rather short inter-arrival times and less frequent long

inter-arrival times. The most notable result in this figure (which we

also confirmed by simulation) is that when the MPL k is large, the

mean response time reduces as the job sizes become more variable

(i.e., SCV increases). The intuition behind this rather unexpected

result is as follows. In case of bursty arrivals there are some time

intervals where the queue received many jobs in a short period of

time. When these jobs are a mixture of long and short jobs and

k is large, some of the jobs, being the short ones, can be cleared

more quickly. This implies that the queue length can be reduced

more quickly after such a burst of arrivals in case the job sizes are
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Figure 9: Mean job response time as a function of the MPL k
under PH renewal input with rate λ = 0.8 and SCVa = 10 for
various SCV values for the job sizes.
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Figure 10: Response time distribution for k = 15 under PH
renewal input with rate λ = 0.8 and SCVa = 10 for job sizes
with SCV = 1, 5 and 19.

more variable. If the queue length decreases more quickly, the total

service capacity increases more rapidly after such a burst of arrivals,

which is clearly beneficial for the response times. Another example

that confirms this intuition is presented further on in case of MAP

arrivals with correlated inter-arrival times. Figure 10 indicates that

while the mean response times may improve with the variability

of the job sizes when k is large, e.g., k = 15, the tail probabilities

behave in line with our expectations: more variable job sizes given

higher tail probabilities.

Figures 9 and 11 further illustrate that increasing the MPL k
beyond k∗ also reduces the mean response time in case of PH

renewal input and the tail probabilities are affected in a similar

manner as in the Poisson case (that is, setting k = k∗ remains

optimal for the tail).

6.3 Markov modulated Poisson arrivals
In this section we look at the impact of having correlated job inter-

arrival times. For this propose we rely on a 2-state Markov modu-

lated Poisson process (MMPP). Such a process alternates between

two states and while in state i it generates arrivals according to
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Figure 11: Response time distribution for various MPL k va-
lues under PH renewal input with rate λ = 0.8 and SCVa = 10

and job sizes with SCV = 19.
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Figure 12: Mean job response time as a function of the MPL
k under MMPP input with rates λ1 = 0.7, λ2 = 0.9 and a mean
sojourn time 1/ϕ = 1000.

a Poisson process with rate λi , for i = 1, 2. The sojourn times in

each state are exponential and we assume they have the same mean

1/ϕ. Such a process can be represented as a MAP in the following

manner:

na = 2, D0 =

[
−λ1 − ϕ ϕ

ϕ −λ2 − ϕ

]
, D1 =

[
λ1 0

0 λ2

]
.

Figure 12 depicts the mean response time as a function of the MPL

k for various SCV values of the job size in case of MMPP input

with λ1 = 0.7, λ2 = 0.9 and 1/ϕ = 1000, while Figure 13 depicts the

sojourn time distribution for the same MMPP when SCV = 19. The

main conclusions are the same as in the Poisson setting: under high

job size variability setting the MPL k beyond k∗ reduces the mean

response time at the expense of an increase in the tail probabilities.

Figure 12 may appear to be in conflict with the intuition provided

in the previous section in case the arrivals occur in a bursty manner

as even for larger k , a higher SCV value results in a larger mean

response time (in contrast to Figure 9). However, this is merely due

to the fact that an MMPP process with λ1 = 0.7 and λ2 = 0.9 is
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Figure 13: Response time distribution for k = 15 under
MMPP input with rates λ1 = 0.7, λ2 = 0.9 and amean sojourn
time 1/ϕ = 1000 for job sizes with SCV = 19.
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Figure 14: Mean job response time as a function of the MPL
k under MMPP input with rates λ1 = 0.5, λ2 = 1.1 and a mean
sojourn time 1/ϕ = 1000.

not very bursty. If we further increase the difference between the

arrival rates λ1 and λ2 to 0.6 as illustrated in Figure 14 we note that

more variable job sizes do result in lower mean response times for

k large.

7 CONCLUSIONS
Motivated by time sharing systems, we studied a processor sharing

queueing system where at most k jobs are served simultaneously,

the overall service rate µ(m) depends on the number of jobs m
in service and additional jobs are buffered (and served in FCFS

order). Arrivals are assumed to occur according to a Markovian

arrival process (MAP) and the job sizes follow a phase-type (PH)

distribution. We derived an expression for the Laplace transform of

the response time distribution via both a Kronecker and spectral

expansion approach.

By numerically inverting the Laplace transformwe demonstrated

that while increasing the multi-programming level (MPL) k beyond

k∗ = argmaxm µ(m) may decrease the mean response time in case

of highly variable job sizes (as shown in [5]), this has a negative

effect on the tail behavior which may already be visible at the 99th

percentile of the response time distribution. Further, in case of

bursty arrivals and large MPL k having more variable job sizes

may reduce the mean response times, while the tails still behave as

expected (more job size variability leads to larger tail probabilities).

In short the results shed light on the potential drawbacks associ-

ated with increasing the MPL value beyond k∗ when performing

admission control.
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