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A Better Model for Job Redundancy: Decoupling
Server Slowdown and Job Size

Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf, and Benny Van Houdt

Abstract—Recent computer systems research has proposed using redundant requests to reduce latency. The idea is to replicate a
request so that it joins the queue at multiple servers. The request is considered complete as soon as any one of its copies completes.
Redundancy allows us to overcome server-side variability – the fact that a server might be temporarily slow due to factors such as
background load, network interrupts, and garbage collection – to reduce response time. In the past few years, queueing theorists have
begun to study redundancy, first via approximations, and, more recently, via exact analysis. Unfortunately, for analytical tractability,
most existing theoretical analysis has assumed an Independent Runtimes (IR) model, wherein the replicas of a job each experience
independent runtimes (service times) at different servers. The IR model is unrealistic and has led to theoretical results which can be at
odds with computer systems implementation results. This paper introduces a much more realistic model of redundancy. Our model
decouples the inherent job size (X) from the server-side slowdown (S), where we track both S and X for each job. Analysis within the
S&X model is, of course, much more difficult. Nevertheless, we design a dispatching policy, Redundant-to-Idle-Queue (RIQ), which is
both analytically tractable within the S&X model and has provably excellent performance.
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1 INTRODUCTION

As cloud computing and resource sharing become more
prevalent, we are faced with greater degrees of server vari-
ability. Recent computer systems studies have shown that
the same job can take up to 12× or 27× longer to run on
one machine than another [3], [26]. This is due to varying
background load, temporary garbage collection, networking
interrupts, and other transient events. This server variability
is exacerbated by multiplexing of applications and by our
increased reliance on virtual machines (VMs); multiple VMs
may share the same host resources, affecting each other in
unpredictable ways.

In an effort to reduce overall latency, and particularly tail
latency, the computer systems community has proposed us-
ing redundancy [3], [4], [7], [18], [19], [23]. Redundancy, also
known as job replication, is the idea of dispatching the same
job to multiple servers, where the job is considered “done”
as soon as it completes service on any one server. Redundancy
provides two key advantages: First, a job that is dispatched
to d servers experiences the queue with the least work. This
is true even if jobs are dispatched to queues immediately
via a front-end load balancer that has no knowledge of the
number of jobs in each queue, or the jobs’ sizes. Second, each
job experiences the minimum slowdown of the servers on
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which it runs. Both advantages are important when server-
side variability is high.

As redundancy has become more popular in computer
systems, a raft of theory papers have attempted to analyze
the response time benefits of redundancy [6], [10]–[16], [20],
[21], [23]. These results assume an Independent Runtimes
(IR) model, where a job’s copies have independent runtimes
(service times) at different servers. The independent run-
times typically are assumed to be exponentially distributed
or more highly variable. Here, the IR model suggests that
(barring cancellation costs), “more redundancy is better.”

While the IR model makes sense in certain settings, it can
be problematic in others. Consider for example a job that is
very large, meaning that it comprises a large volume of com-
putation. That job should appear to be large on all servers,
possibly slowed down more on some servers than others.
This does not happen in the IR model: the job is assigned a
different, independent, runtime on different servers. When
the job runs on multiple servers it experiences the minimum
runtime of all those servers’ independent runtimes. Thus
an inherently large job can become arbitrarily small under
the independence assumption. There is no concept of an
inherently large job which remains large at every server.

In this paper we propose a more realistic model for
redundancy, called the S&X model (see Figure 1). The S&X
model explicitly decouples the server slowdown (repre-
sented by the random variable S) from the inherent job size
(represented by the random variable X). The S&X model
marks a departure from traditional queueing theory, which
uses a single “service time” variable to jointly represent the
server speed and job size. A single random variable is insuf-
ficient in the context of redundancy: We need to decouple
the variables so that a job with a large X component (large
job size) will have a large X component on every server.

The S&X model sheds light, however, on some sad
truths: redundancy is not always a win and can in fact be
dangerous. Consider for example, the Redundancy-d policy,
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Fig. 1. The S&X model. The system has k servers and jobs arrive as a
Poisson process with rate λk. Each job has an inherent size X. When a
job runs on a server it experiences slowdown S. A job’s running time on
a single server is R(1) = X · S. When a job runs on multiple servers,
its inherent size X is the same on all these servers and it experiences a
different, independently drawn instance of S on each server.
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Fig. 2. Under Redundancy-d, each arriving job sends copies to d servers
chosen uniformly at random. Here we show mean response time, E [T ],
as a function of d under Redundancy-d when the system has k = 1000
servers, the total arrival rate is λk where λ = 0.7, and inherent job
sizes,X, follow a two-phase hyperexponential distribution with balanced
means, E [X] = 1

4.7
, and C2

X = 10. In the IR model (solid green line,
from analysis in [10]), each job draws an i.i.d. instance of X on each
server. As d increases, mean response time decreases. In the S&X
model (dashed pink line, simulated; 95% confidence intervals are within
the line unless shown), a job draws a single instance of X which is the
same on all servers, and an i.i.d. instance of S on each server. Here S
is an empirically measured distribution described in Section 3. While in
the S&X model mean response time initially decreases as a function of
d, as d becomes high the system eventually becomes unstable.

which replicates every arriving job to d queues [10]. Under
the IR model assumed in [10], mean response time only
decreases as we increase d. By contrast, in the S&X model,
mean response time under Redundancy-d can improve sig-
nificantly as we add a small amount of redundancy, but the
system (typically) eventually becomes unstable because of
the increased load of replication, sending mean response
time to infinity (see Figure 2). Unfortunately, in general we
cannot determine the values of d that will lead to good per-
formance or to instability, because providing a performance
analysis of policies like Redundancy-d in the S&X model
is an open problem that is likely very difficult (analyzing
Redundancy-d even within the IR model requires a very
complex state space, since one needs to track all the copies
of every job in every queue, see [10]).

The difficulty in tuning and potential instability of
Redundancy-d in the S&X model motivate us to look for
new redundancy policies which are less sensitive to d, are
robust in that they provably will not go into overload,
and are analytically tractable within the S&X model. To

this end, we introduce a new redundancy policy, called
Redundant-to-Idle-Queue (RIQ). This policy is similar to
Redundancy-d in that every arrival queries d servers. How-
ever replicas are only made to those servers which are idle.
If no server is idle, then the job is sent to a random one of
the d servers (with no additional replicas). We provide an
analytical approximation for the transform of response time
under RIQ as a function of d. Our analysis allows for any
distribution of S, any distribution ofX , and any cancellation
time. Our analysis matches simulation very well, provided
that d is small relative to the total number of servers,
which is certainly typical in practice. Most importantly,
our analysis shows us that RIQ is extremely robust. While
Redundancy-d can outperform RIQ at low d, we derive an
analytical upper bound on the response time of RIQ under
any S and X for any d that shows the system does not go
into overload as d gets high.

The RIQ policy demonstrates that it is possible to design
provably robust and analytically understood redundancy
policies within the S&X model. But there is still room
for improvement. We consider several modifications to the
baseline policies, motivated by strategies used in practice.
One idea that further reduces response time is to use Join-
the-Shortest-Queue dispatching for jobs that do not find
idle servers. Another idea is to replicate only small jobs;
unfortunately this hurts RIQ, which is already quite con-
servative. On the other hand, replicating only small jobs can
prevent instability under Redundancy-d, while still allowing
Redundancy-d to achieve good performance at low d. As a
compromise between Redundancy-d and RIQ, we propose
the THRESHOLD-n policy, under which each arriving job
polls d servers and replicates itself to those servers with
fewer than n jobs in the queue. Like under RIQ, the sys-
tem is stable under THRESHOLD-n for all d. Like under
Redundancy-d, mean response time under THRESHOLD-n
can be quite low at the best choice of d.

The remainder of this paper is organized as follows. In
Section 2 we review prior theoretical and empirical work on
redundancy. Section 3 introduces the S&X model. In Sec-
tion 4 we discuss Redundancy-d and the difficulties it poses,
and in Section 5 we introduce and analyze Redundant-to-
Idle-Queue (RIQ). Sections 6 and 7 evaluate the performance
of RIQ at low d and high d respectively. In Section 8 we dis-
cuss improvements upon Redundancy-d and RIQ. Section 9
studies an alternative setting where a job’s extra copies are
cancelled upon the start, rather than upon completion, of
the first copy. Finally, in Section 10 we conclude.

2 PRIOR WORK: THE GAP BETWEEN THEORY
AND SYSTEMS

Recently there has been growing interest in the theoretical
community in analyzing systems with redundancy, with the
goal of understanding how the number of copies per job
affects response time. All of this theoretical work makes
crucial simplifying assumptions for analytical tractability,
most commonly assuming the IR model. In a few cases,
other simplifications are adopted instead, including that the
system has no queueing (i.e., it is an M/G/∞) or that all
jobs replicate to all servers. As we will see below, these
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assumptions lead to results that are qualitatively different
from those produced by empirical systems studies.

In the Redundancy-d system, every arriving job is repli-
cated to d servers chosen at random, where d is a small
constant compared to the number of servers [10]. The full
distribution of response time as a function of d has been
analyzed in closed form in the IR model [10]. Exact response
time distributions also have been derived in the IR model
in a system in which a job’s class determines where it is
replicated [11]. This result has been extended to networks of
queues, still in the IR model [6]. In [22], jobs are composed
of multiple tasks, where tasks may be replicated; again the
analysis assumes the IR model. In all these works, when
runtimes are exponential or more variable, mean response
time decreases as the number of copies per job increases:
it is optimal to replicate jobs at all servers. This is also in
accordance with [15], [21].

In a redundancy model called the “(n, k) system,” each
job sends copies of itself to all n servers and waits for k ≤ n
copies to complete service. Bounds and approximations
for mean response time in the (n, k) system are derived
in [13], [14], [20], [24] in the IR model. While [13] does
consider a model in which a job’s runtime consists of a
deterministic component that is the same on all servers
and an exponential component that is independent across
servers, this model is only analyzed in a system where there
is no queueing (i.e., an M/G/∞). In a variation called the
“(n, k, r) system,” in which each job sends copies to r ≤ n of
the servers and waits for k ≤ r of these copies to complete,
increasing the value of r decreases mean response time
whenever runtimes are at least as variable as an exponential
distribution [14], [20].

The story told by empirical systems work is more cau-
tious. While theoretical results suggest that response time
decreases as the number of copies increases, practical stud-
ies have shown that creating too many copies can lead to
unacceptably high response times and even instability [23].
This gap emerges because the strong assumptions required
for the above theoretical analysis do not hold in prac-
tice. Specifically, a large job remains large when replicated;
hence, too much redundancy can lead to overload. Systems
researchers have observed that in realistic settings, more so-
phisticated dispatching and scheduling policies are needed
to leverage the potential benefits of redundancy. One idea is
to replicate only small jobs to limit the amount of load added
to the system; this can lead to a 46% reduction in mean
response time [3]. In MapReduce systems, many algorithms
begin running replicated copies of jobs only after waiting
for some delay to identify which jobs are experiencing sig-
nificant slowdown [5], [27]. Recent work builds on this idea
by combining delayed execution of replicas with scheduling
policies that reserve a set of servers on which to run replicas
(assuming jobs are non-preemptible) [4], [19].

Our goal in this paper is to bring the theoretical mod-
els of redundancy systems closer to the real systems that
theoretical work endeavors to analyze. To this end, we
propose a new model called the S&X model that removes
the problematic assumptions in the IR model. We revisit
policies used in practice in Section 8, where we discuss these
policies in the context of the S&X model.

TABLE 1
The Dolly(1,12) empirical slowdown distribution [3]. The server

slowdown ranges from 1 to 12, with mean 4.7.

S 1 2 3 4 5 6 7 8 9 10 11 12
Prob. 0.23 0.14 0.09 0.03 0.08 0.10 0.04 0.14 0.12 0.021 0.007 0.002

3 THE S&X MODEL

We consider a setting with k homogeneous servers (see
Figure 1). Each server has its own queue and works in first-
come first-served order. Jobs arrive as a Poisson process
with rate kλ, where λ is a constant, and are dispatched
immediately upon arrival. We assume that jobs are non-
preemptible.

We introduce the S&X model, which captures the effects
of both job-dependent and server-dependent factors on a
job’s runtime. Here S is a random variable denoting the
slowdown that a job experiences at a server and X is the
job’s inherent size. A job that runs on one server has runtime
R(1) = X ·S (here S is assumed to be at least 1; S represents
the factor by which the inherent size, X , is “stretched”)1.
Unlike in the IR model, in the S&X model runtimes are not
independent across servers because a job’s X component is
the same on all servers.

When a server begins working on a job it draws a new
independent instance of S. Thus consecutive jobs may see
different slowdowns on the same server. This reflects the
fact that slowdowns change over time and are not fixed for
a particular server.

If a job is dispatched to a single server j, it completes
service after time equal to its queueing time, TQj , plus its
running time, X · Sj , where Sj is the instance of S that
the job experiences on server j (Sj is drawn independently
across servers for a given job, and across jobs for a given
server). If a job is dispatched to all servers in some set S , its
response time is

T = min
j∈S
{TQj +X · Sj}.

The S&X model takes a big departure from traditional
queueing theory where there is a single random variable
for “service time,” making it impossible to differentiate
between the inherent job size and the server slowdown
components.

When a job that is running on multiple servers completes
service on one of these servers, all of its remaining copies
must be cancelled. We model the time it takes to cancel a
copy as taking time Z , where Z is a random variable.

We use ρ to denote the system load. Unlike in traditional
queueing systems, in systems with redundancy load and
stability depend not only on the arrival rate and mean run-
time, but also on the particular dispatching and scheduling
policies. Hence we defer a more detailed discussion of load
and stability to Sections 4 and 5, which introduce specific
dispatching policies: Redundancy-d and Redundant-to-Idle-
Queue.

In much of this paper, we focus on the Dolly(1,12) dis-
tribution (see Table 1), which was measured empirically by

1. Alternatively, slowdown can be additive, whereR(1) = X+S. The
analysis and bounds in Sections 5 and 7 easily extend to this setting.
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analyzing traces collected from Facebook’s Hadoop cluster
and Microsoft Bing’s Dryad cluster and has mean 4.7 [3].2

4 THE REDUNDANCY-d POLICY

A natural dispatching policy for systems with redundancy
is Redundancy-d [10].

Definition 1. Under Redundancy-d, each arriving job creates d
copies of itself and sends these copies to d servers chosen uniformly
at random without replacement.

Figure 2 compares mean response time, E [T ], under
Redundancy-d in the IR model (from analysis, see [10]) to
that in the S&X model (simulated; in the S&X model,
we set S ∼ Dolly(1, 12)). In the IR model, as d increases
E [T ] decreases provided runtimes are at least as variable
as an exponential distribution. This is very different from
what happens under the S&X model: while at first E [T ]
decreases as a function of d, as d becomes higher E [T ] starts
to increase and ultimately the system becomes unstable.

While Figure 2 shows that the system can become un-
stable under Redundancy-d in the S&X model if d is too
high, it is difficult to prove this analytically. Typically a
system is stable as long as the system load, ρ, is less than
1. We can think of ρ as being the arrival rate, λ, multiplied
by the expected server capacity used per job. But in the
S&X model, deriving the expected server capacity used
per job is not straightforward because it requires knowing
the average number of servers on which a job runs; this is
not d because some copies may be cancelled while still in
the queue. Furthermore, copies can enter service at different
times on different servers, so knowing the number of servers
on which a job runs is not enough to determine the duration
of time for which the job occupies each server.

Figure 2 highlights the importance of making the right
modeling assumptions. Unlike in the IR model, in the
S&X model Redundancy-d is not robust to the choice of
d; choosing the wrong value of d can lead to unacceptably
poor performance or even instability. Unfortunately, the
analysis of Redundancy-d in the S&X model remains an
open problem, meaning that it is very difficult to know how
to choose a good d.

The lack of robustness, difficulty in tuning, and po-
tentially poor performance of Redundancy-d motivate the
need for a better dispatching policy for the S&X model.
In designing such a policy, it is important to avoid the
factors that cause poor performance for Redundancy-d. In
particular, Redundancy-d creates copies of jobs even when
the system has no extra capacity with which to run these
copies. Consequently, Redundancy-d can add too much load
to the system, causing queue lengths to build up. An impor-
tant consideration when designing dispatching policies for
the S&X model therefore is to ensure that we do not add
excessive load.

2. The full distribution does not appear in [3]; we obtained this from
personal communication with the authors.

5 REDUNDANT-TO-IDLE-QUEUE

Here we introduce the Redundant-to-Idle-Queue (RIQ) dis-
patching policy (Section 5.1).3 We derive an approximation
for the Laplace transform of response time under RIQ (Sec-
tion 5.2), and evaluate the accuracy of our approximation by
comparing our analytical results to simulation (Section 5.3).

5.1 The Redundant-to-Idle-Queue Dispatching Policy
Definition 2. Under Redundant-to-Idle-Queue (RIQ), each
arriving job queries d servers chosen uniformly at random without
replacement. If all d queried servers are busy, the job joins the
queue at one of the d servers chosen at random. If 0 < i ≤ d
queried servers are idle, the job enters service at all i idle servers,
and its runtime is R(i) = X ·min{S1, . . . , Si}.

Under RIQ, the system load is ρ = λ ·E [I ·R(I)], where
I is a random variable denoting the number of servers
on which a job runs. Here ρ is the average arrival rate
multiplied by the average service capacity used per job.
Forming an expression for load under RIQ is easier than
for Redundancy-d because under RIQ any job that runs
on multiple servers occupies all of its servers for the same
duration. Nonetheless, it is not immediately obvious how
to compute E [I ·R(I)]; we defer our derivation of ρ to the
end of Section 5.2.

The analysis of RIQ relies on the Asymptotically Inde-
pendent Idleness assumption, defined as follows:

Assumption 1. [Asymptotically Independent Idleness] The
servers are idle d-wise independently; that is,

Pr{server sd idle | servers s1, . . . , sd−1 idle} = Pr{server sd idle}

for all sets of d distinct servers s1, . . . , sd.

In Section 5.3 we show that our analysis matches sim-
ulation when d � k, indicating that Assumption 1 is
reasonable.

5.2 Analysis: Laplace Transform of Response Time
Our derivation of the transform of response time, T̃ (s),
under RIQ begins by conditioning on whether an arrival
to the system finds any idle servers:

T̃ (s) = Pr

{
job finds

idle servers

}
· T̃
(
s

∣∣∣∣ job finds
idle servers

)
+ Pr

{
job finds no
idle servers

}
· T̃
(
s

∣∣∣∣job finds no
idle servers

)
= (1− ρd)T̃ (s |job finds idle servers )

+ ρdT̃ (s |job finds no idle servers ) , (1)

where the second line is due to Assumption 1.
We find T̃ (s|job finds idle servers) by further condition-

ing on the number of idle servers a job finds:

T̃

(
s

∣∣∣∣ job finds
idle servers

)
=

d∑
i=1

Pr

{
job finds i
idle servers

∣∣∣∣ job finds
idle servers

}
· R̃(i)(s)

=

d∑
i=1

(1− ρ)iρd−i
(
d
i

)
1− ρd R̃(i)(s). (2)

3. RIQ is motivated by the highly practical Join-Idle-Queue (JIQ)
policy, under which each arrival is dispatched to a single idle queue, if
one exists [17].
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To find T̃ (s|job finds no idle servers), we observe that a
job that finds no idle servers joins the queue at a single
server, which has the following properties:
1) When the server is idle, arrivals form a Poisson process

with rate λd. This is because the total arrival rate is λk,
each arrival polls the server with probability d

k , and every
job that polls the server while it is idle runs on it.

2) When the server is busy, arrivals form a Poisson process
with rate λ′ = λρd−1. This is because the total arrival
rate is λk, each arrival polls the server with probability
d
k , and runs on it if the job’s d − 1 other servers are also
busy (ρd−1) and the job chooses our particular server ( 1d ).

3) All jobs that find the server idle have runtime R0, where:

R0 =

{
R(1) w.p. ρd−1

R(i) + Z w.p. (1− ρ)i−1ρd−i
(d−1
i−1
)
, 1 < i ≤ d.

(3)
Here we use the probability that the arrival found i − 1
other idle servers among its d − 1 other servers. Note
that in practice, if a job runs on i servers then only i − 1
servers need to incur a cancellation cost Z . We simplify
the analysis by assuming that all i servers incur the cost.

4) All jobs that find the server busy have runtime R(1).
We call the system described above an M*/G/1/efs.

Here M* denotes that the arrival rate depends on whether
the system is idle, and “efs” indicates that the system has
an exceptional first service (i.e., the first job served during a
busy period has a different service time distribution than all
other jobs).

We now have:

T̃

(
s

∣∣∣∣job finds no
idle servers

)
= R̃(1)(s) · T̃Q(s | queueing)M

∗/G/1/efs,

(4)

where T̃Q(s|queueing), the Laplace transform of time in
queue given that a job waits in the queue, is

T̃Q(s | queueing)M
∗/G/1/efs

=
T̃ (s)M

∗/G/1/efs − (1− PM∗/G/1/efs
Q ) · R̃0(s)

P
M∗/G/1/efs
Q · R̃(1)(s)

, (5)

and
P

M∗/G/1/efs
Q =

E [NB ]

E [NB ] + 1
(6)

is the probability of queueing in an M*/G/1/efs and

E [NB ] = λ′ · E [R0]

1− λ′E [R(1)]
(7)

is the expected number of arrivals during an M*/G/1/efs
busy period, and T̃ (s)M

∗/G/1/efs is given in Lemma 1.

Lemma 1. The Laplace transform of response time in an
M*/G/1/efs where the first job experiences service time R0, all
remaining jobs experience service timeR(1), the arrival rate while
the server is idle is λd, and the arrival rate while the server is
busy is λ′ is the same as that in an M/G/1/efs where the first job
experiences service time R0, all remaining jobs experience service
time R(1), and the arrival rate is λ′.

Proof. The M/G/1/efs response time analysis relies on
PASTA, so it does not directly apply to the M*/G/1/efs,

k
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Fig. 3. E [T ] under RIQ from analysis (dashed blue line) and simulation
(solid red line, 99% confidence intervals are within the line) when λ =
0.7, d = 20, X ∼ H2 with E [X] = 1
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and C2

X = 10, S ∼ Dolly(1, 12),
and Z = 0. When k = 1000, the analysis is within 1% of simulation.

which has a state-dependent arrival rate. However, the
arrival rate while the system is idle only affects how close
together busy periods occur. It does not affect the response
time of any of the jobs during the busy period. Thus
to derive response time, we can view the system as an
M/G/1/efs.

The response time in an M/G/1/efs is well understood
(see [25]). For our system, we have

T̃ (s)M
∗/G/1/efs =

1− λ′E [R(1)]

1− λ′E [R(1)] + λ′E [R0]

· (λ′ − s)R̃0(s)− λ′R̃(1)(s)

λ′ − s− λ′R̃(1)(s)
. (8)

Combining equations (1)-(8) gives a closed-form expres-
sion for mean response time under RIQ in terms of ρ.

Finally, we derive ρ, the probability that a server is busy.
In Section 3 we defined ρ = λ · E [I ·R(I)], where I is the
number of servers on which a job runs. Alternatively, we can
compute ρ using renewal-reward theory, defining a cycle as
the time from when a server becomes idle until it is next
idle:

ρ =
E [B]

E [B] + 1
λd

, (9)

where E [B] = E[R0]
1−λ′E[R(1)] is the expected busy period

duration and 1
λd is the mean interarrival time to an idle

server. Note that E [R0] is defined in terms of ρ, hence (9)
defines ρ in terms of itself. When d = 2, the equation is of
degree 2 and can be solved exactly; for higher d we solve for
ρ numerically.

The system is stable as long as ρ < 1. However, without
a closed-form expression for ρ, it is difficult to understand
this stability condition intuitively. In Section 7 we derive
an upper bound on mean response time under RIQ which
gives us an alternative condition: the system is stable if λ ·
E [R(1)] < 1.

5.3 Quality of Approximation
Our approximation matches simulation quite well provided
d is sufficiently small relative to k. Figure 3 compares
mean response time from our analysis to that obtained
via simulation when d = 20, λ = 0.7, X follows a two-
phase hyperexponential distribution with balanced means
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Fig. 4. E [T ] vs. d under Redundancy-d (from simulation) and RIQ (from both simulation and analysis) for X ∼ H2 with E [X] = 1
4.7

and C2
X = 1

(top row) and C2
X = 10 (bottom row), where E [R(1)] = E [X] ·E [S] = 1, S ∼ Dolly(1,12), and the cancellation time is Z = 0, under low (λ = 0.3,

left) and high (λ = 0.7, right) arrival rate. The simulations have k = 1000 servers; 95% confidence intervals are within the line where not shown. At
low λ, RIQ and Redundancy-d perform similarly, but at high λ Redundancy-d becomes unstable when d is large, whereas RIQ continues to achieve
low E [T ].

and E [X] = 1
4.7 andC2

X = 10, and S follows the Dolly(1,12)
server slowdown distribution. Our analysis is more accurate
at high k; when k = 1000 the analysis is within 1% of
simulation. When d and λ are lower the analysis converges
to simulation more quickly.

6 RESULTS: d� k

In this section we evaluate the performance of RIQ us-
ing our analysis from Section 5. Throughout the section,
E [R(1)] = 1, k = 1000 servers, S follows the Dolly(1,12)
distribution (Table 1, E [S] = 4.7), and X follows a two-
phase hyperexponential distribution (H2) with balanced
means:

X ∼
{

Exp (µ1) w.p. p

Exp (µ2) w.p. 1− p
,

where p
µ1

= 1−p
µ2
.

We consider only the d � k regime, in which our
analysis provides a close approximation for performance
under RIQ. In Section 7 we study what happens when d
is close to k.

In Figure 4 we compare RIQ (our analysis in Section 5
matches simulation) to Redundancy-d (simulated) at both
low and high λ when the inherent job size X has different
squared coefficients of variation, C2

X , and the cancellation
time is Z = 0. When d is low, Redundancy-d outperforms
RIQ because Redundancy-d allows all jobs to benefit from
creating multiple copies, not just jobs finding multiple idle
servers, and this outweighs any pain caused by the extra

load added by these copies. However, as d gets higher,
Redundancy-d becomes unstable, whereas mean response
time under RIQ continues to decrease.

Under both RIQ and Redundancy-d, mean response
time increases as the cancellation time Z increases (see
Figure 5). Under Redundancy-d, as Z increases the system
becomes unstable at lower values of d. Under RIQ, the
system remains stable, indicating that RIQ is more robust
than Redundancy-d.

Results are more dramatic at the tail of response time,
which in computer systems is often a more important metric
than the mean. We numerically invert the transform derived
analytically in Section 5 to obtain the c.d.f. of response time
using the procedure described in [1]4. As d increases, the
95th percentile of response time, T95, drops much more
steeply than E [T ] (see Figure 6), indicating that RIQ suc-
cessfully overcomes the negative effects of the variable
server slowdowns. In fact, all percentiles of response time
are much lower at d = 5 than at d = 1 (see Figure 7).

The trends are similar when the server slowdown fol-
lows distributions other than the Dolly(1, 12) distribution.
In Figure 8 we show mean response time as a function of
d under Redundancy-d and RIQ when S follows a Bimodal
distribution, as was measured in a Google cluster [7]:

S ∼
{

1 w.p. 0.99

14 w.p. 0.01
.

4. We thank Jan-Pieter Dorsman for help with the inversion.
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Fig. 5. Mean response time as a function of d under (a) RIQ (from analysis) and (b) Redundancy-d (simulated with k = 1000 servers, 95%
confidence intervals are within the line except where shown), λ = 0.7, job sizes are X ∼ H2 with E [X] = 1

4.7
and C2

X = 10, and server
slowdowns are S ∼ Dolly(1, 12) for different deterministic cancellation times Z. As Z increases, mean response time increases under both RIQ
and Redundancy-d. Under Redundancy-d, this leads to the system becoming unstable at lower values of d, whereas RIQ remains stable for all
values of Z.
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Fig. 6. Mean (solid blue line) and 95th percentile (dashed pink line) of response time, T , (via analysis) under RIQ when X ∼ H2 with E [X] = 1
4.7

and C2
X = 10, S ∼ Dolly(1, 12), Z = 0, and (a) λ = 0.3 and (b) λ = 0.7. As d increases, both the mean and the 95th percentile of response time

decrease; the improvement is more pronounced in the tail.

With Bimodal slowdown, Redundancy-d is unstable at
lower values of d than with the more uniform Dolly(1, 12)
distribution, but E [T ] under both RIQ and Redundancy-d
follows the same qualitative shape regardless of the distri-
bution of S.

7 RESULTS: HIGH d

One might think that mean response time should be lowest
when d = k, since when d� k we saw that E [T ] decreases
as d increases. However, this intuitively does not make
sense. As d increases, a job achieves decreasing marginal
runtime and queueing time benefit from querying one more
server. Eventually, increasing d only increases load without
providing any benefit. As d gets high, one might think
that the servers are always busy, driving queue lengths to
infinity. Indeed, we see in Figure 9 that ρ (the probability
that a server is busy, measured via simulation) approaches
1 as d → k. But surprisingly, the system is never unstable,
even when d = k. This is because RIQ limits the amount
of added load. Effectively, when a server goes idle we can
think of it as being given some extra work, where this extra
work is some job’s replicated copy. This causes the server
to be always busy (sending ρ to 1) but it affects the queue
length like a vacation time, which cannot cause instability.

t

0 5 10 15 20

P
r
{
T

<
t}

0

0.2

0.4

0.6

0.8

1

d = 1

d = 5

Fig. 7. Distribution of response time under RIQ when d = 1 (solid black
line) and d = 5 (dashed purple line) when S ∼ Dolly(1, 12), X ∼ H2
with E [X] = 1

4.7
and C2

X = 10, and λ = 0.7.

We formalize this intuition in Theorem 1, which gives an
upper bound on E [T ] under RIQ, for all d and for all k.
Our bound uses an M/G/1/vacation system, which was
introduced in [8] and is described in Appendix A.

Theorem 1. Assume that λ · E [R(1)] < 1. Then the response
time under RIQ is upper bounded by the response time in an
M/G/1/vacation queue with arrival rate λ, runtime G = R(1) =
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1.13
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X = 10, and Z = 0, for (a) λ = 0.3 and (b)
λ = 0.7. RIQ results are from analysis; Redundancy-d is simulated (95% confidence intervals are within the line).
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Fig. 9. Mean response time under RIQ (simulated; 95% confidence intervals are within the line) as a function of d when k = 1000, X ∼ H2 with
E [X] = 1

4.7
and C2

X = 10, S ∼ Dolly(1, 12), Z = 0, and (a) λ = 0.3, (b) λ = 0.7. While mean response time increases as d gets close to k, even
when d = k mean response time is lower than when d = 1. The lines are annotated with the values of ρ and E [I] (the expected number of copies
per job) at several different values of d. 99% confidence intervals are within the line for E [T ] and are explicitly shown for ρ and E [I].

S ·X , and vacation time R(1) + Z :

E [T ]
RIQ ≤ E [T ]

M/G/1/vacation

= E [T ]
M/G/1

+ E [(R(1) + Z)e] .

where (R(1) + Z)e denotes the excess of R(1) + Z .

Proof. We will begin by expressing mean response time
under RIQ by conditioning on whether a tagged arrival to
the system finds any idle servers. We have

E [T ]
RIQ

= P

{
tagged job finds

idle servers

}
·E
{
T

∣∣∣∣ tagged job finds
idle servers

}
+ P

{
tagged job finds
no idle servers

}
·E
{
T

∣∣∣∣ tagged job finds
no idle servers

}
.

When the tagged job arrives to the system, if it finds i idle
servers it enters service on all of these servers. For all i, we
have

E

[
T

∣∣∣∣ tagged job finds
i idle servers

]
= E [R(i)]

≤ E [R(1)]

≤ E [R(1)] + E

[
TQ

∣∣∣∣ tagged job finds
no idle servers

]
= E

[
T

∣∣∣∣ tagged job finds
no idle servers

]
.

Hence we have the following upper bound:

E [T ]
RIQ ≤ E [T |tagged job finds no idle servers] . (10)

Given that a tagged arrival found no idle servers, it joins
the queue at a randomly chosen server with the following
properties:

1) When the server is busy, jobs arrive with rate kλ · dk ·
P {job finds other d− 1 servers busy} · 1d ≤ λ.

2) All jobs that arrive to the server while it is busy experi-
ence runtime R(1).

3) A job that arrives to the server while it is idle, and finds
i − 1 other idle servers, experiences runtime R(i) and
possibly a cancellation time Z , hence keeps the server
busy for time R(i) + Z ≤st R(1) + Z .

Since (10) forces all jobs to have a non-zero queueing
time in our upper bound, the first job in the busy period (the
job that arrives to the server while it is idle) can be viewed
as a “dummy” job that does not contribute to response time.
Every time a server goes idle, we can imagine that the server
is forced to work on a “dummy” job with size R(1) + Z , so
the server is always busy when the next real job arrives. This
exactly describes an M/G/1/vacation system with arrival
rate λ, runtime R(1), and vacation time R(1) + Z.

Theorem 2. Under RIQ, the system is stable for all d if
λE [R(1)] < 1.
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Proof. The stability region for the M/G/1/vacation is the
same as that for the M/G/1, namely λ · E [R(1)] < 1. If
the M/G/1/vacation is stable, then RIQ is stable since the
M/G/1/vacation gives an upper bound on RIQ.

8 IMPROVING REDUNDANCY POLICIES

In this section we study several policy variations designed
to improve performance relative to the baseline RIQ and
Redundancy-d policies. In some cases, the analysis pre-
sented in Section 5 extends easily to the variations on RIQ.
In other cases, we develop new response time analysis.
When analysis is not feasible, we study performance via
simulation.

8.1 JSQ: Better Dispatching for Jobs that Find No Idle
Servers

One weakness of RIQ is that when a job finds no idle servers
it is dispatched to a single queue chosen at random, which
is known to yield poor performance. A superior dispatching
policy is Join-the-Shortest-Queue (JSQ), under which each
arriving job joins the queue containing the fewest jobs.
A practical variant of JSQ is JSQ-d, where each arriving
job polls d queues chosen at random and joins the queue
containing the fewest jobs among the d polled queues. JSQ-
d is motivated by the fact that polling all k queues can be
expensive. The RIQ+JSQ policy combines RIQ with JSQ-d
dispatching.

Definition 3. Under RIQ+JSQ, each arriving job polls d servers
chosen uniformly at random without replacement. If 1 ≤ i ≤ d
of the servers are idle, the job enters service at all i idle servers. If
all d servers are busy, the job joins the queue with the fewest jobs
among the d polled queues.

Observation 1. RIQ+JSQ should have the same stability region
as RIQ, since the only difference between the two policies is that
under RIQ+JSQ we achieve better load balancing of the jobs that
do not find idle servers. Hence under RIQ+JSQ, the system should
be stable as long as λ ·E [X · S] < 1.

Response Time Analysis
Our analysis of mean response time under RIQ+JSQ

follows the approach used in [2]. We write a system of equa-
tions that describes the evolution of the RIQ+JSQ system,
then use numerical methods to approximate the steady-state
behavior. It is easy to modify the analysis presented below
to include a cancellation time.

Let Y`,i(t, t + r) be the fraction of servers with at least
` jobs in the queue (including the job in service, if there is
one) at time t such that the job in service at time t is still in
service at time t+ r and is running on exactly i servers. Let
Y`(t, t+ r) =

∑d
i=1 Y`,i(t, t+ r).

For `, i > 1, there are two ways in which a server can
contribute to Y`,i(t, t+ r):

1) The queue length was at least ` at time 0 and the same
job remains in service on i servers during time interval
(0, t+ r).

2) At some time u < t an arrival caused the queue length
to go from `− 1 to ` and the same job is in service on i
servers during the time interval (u, t+ r).

When i = 1 there is a third case: a job completed service at
time u ≤ t and left behind at least ` jobs, and the next job
stays in service during time (u, t+ r). Hence for ` > 1,

Y`,i(t, t+ r) = Y`,i(0, t+ r)

+ λ

∫ t

u=0
(Y`−1(u, u)d − Y`(u, u)d)

· Y`−1,i(u, t+ r)− Y`,i(u, t+ r)

Y`−1(u, u)− Y`(u, u)
du

+ Ii=1

∫ t

u=0
(−∂rY`+1(u, u))Ḡ(t+ r − u)du, (11)

where Ḡ(x) is the probability that a job’s runtime exceeds x
and

−∂rY`+1(u, u) = lim
r→0

Y`+1(u, u)− Y`+1(u, u+ r)

r

is the service completion rate of jobs in a queue with length
at least `+ 1 at time u.

When ` = 1 the second term, which corresponds to a
new arrival, changes because now the arrival joins an idle
queue and therefore runs on 1 ≤ i ≤ d servers:

Y1,i(t, t+ r) = Y1,i(0, t+ r)

+ iλ

∫ t

u=0

(
d

i

)
Y1(u, u)d−i

· (1− Y1(u, u))iḠ(i)(t+ r − u)du

+ Ii=1

∫ t

u=0
(−∂rY2(u, u))Ḡ(t+ r − u)du, (12)

where Ḡ(i)(x) is the probability that a job’s runtime exceeds
x given that the job is running on exactly i servers.

Summing over i in (11), we find

Y`(t, t+ r) = Y`(0, t+ r)

+ λ

∫ t

u=0
(Y`−1(u, u)d − Y`(u, u)d)

· Y`−1(u, t+ r)− Y`(u, t+ r)

Y`−1(u, u)− Y`(u, u)
du

+

∫ t

u=0
(−∂rY`+1(u, u))Ḡ(t+ r − u)du, (13)

which corresponds to equation (8) in [2] when d = 2.
Summing over i in (12) yields

Y1(t, t+ r) = Y1(0, t+ r)

+ λ

∫ t

u=0

d∑
i=1

(
d

i

)
Y1(u, u)d−i

· (1− Y1(u, u))iiḠ(i)(t+ r − u)du

+ Ii=1

∫ t

u=0
(−∂rY2(u, u))Ḡ(t+ r − u)du. (14)

We now use equations (13) and (14) to numerically
estimate π`, the steady-state probability that a server has
at least ` jobs (assuming the number of servers k is large).
Note that π1 = ρ is the probability that a server is busy.
We introduce a mesh of width δ and approximate Y`(t, r)
for t ∈ [0, δ, 2δ, . . . , t0] and r ∈ [0, δ, 2δ, . . . , r0]. Here r0
is chosen such that Ḡ(r0) is negligible, and t0 is chosen
dynamically so that

∑
`,r |Y`(t+ δ, t+ δ + r)− Y`(t, t+ r)|
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Fig. 10. Comparing baseline RIQ and RIQ+JSQ from our approximation (dashed red line) and simulation (dotted black line; 95% confidence intervals
are within the line). Here S ∼ Dolly(1, 12), X ∼ H2 with E [X] = 1

4.7
and C2

X = 10, Z = 0, and (a) λ = 0.3 and (b) λ = 0.7.

is sufficiently small, e.g., 10−10. We also truncate the queue
lengths to at most n0 jobs.

We start with an empty system at time 0, so Y`(0, r) = 0
for all ` and r, and compute Y`(t + δ, t + r + δ) based on
Y`(t, t+ r) as follows:

Y1(t+ δ, t+ r + δ) = Y1(t, t+ r + δ)

+ λ

∫ t+δ

u=t

d∑
i=1

(
d

i

)
· Y1(u, u)d−i

· (1− Y1(u, u))iiḠ(t+ r + δ − u)du

+

∫ t+δ

u=t
(−∂rY2(u, u))Ḡ(t+ r + δ − u)du

≈ Y1(t, t+ r + δ)− (Y2(t, t+ δ)− Y2(t, t))Ḡ(r +
δ

2
)

+ λδ
d∑
i=1

(
d

i

)
Y1(t, t)d−i(1− Y1(t, t))iiḠ(i)(r +

δ

2
)

Y`(t+ δ, t+ r + δ) ≈ Y`(t, t+ r + δ)

− (Y`+1(t, t+ δ)− Y`+1(t, t))Ḡ(r +
δ

2
)

+ λδ
Y`−1(t, t)d − Y`(t, t)d

Y`−1(t, t)− Y`(t, t)
(Y`−1(t, t+ r)− Y`(t, t+ r)).

The numerical scheme now uses these two approxima-
tions in the following manner.5 First, we define

Ȳ`(t+ δ, t+ r + δ) = Ŷ`(t, t+ r + δ)

− (Ŷ`+1(t, t+ δ)− Ŷ`+1(t, t))Ḡ(r +
δ

2
)

+ λδ
Ŷ`−1(t, t)d − Ŷ`(t, t)d

Ŷ`−1(t, t)d − Ŷ`(t, t)
(Ŷ`−1(t, t+ r)− Ŷ`(t, t+ r)),

and subsequently we compute Ŷ`(t+ δ, t+ r + δ) as

Ŷ`(t+ δ, t+ r + δ) = Ŷ`(t, t+ r + δ)

− (Ȳ`+1(t+ δ, t+ 2δ)− Ȳ`+1(t+ δ, t+ δ))Ḡ(r +
δ

2
)

+ λδ
Ȳ`−1(t+ δ, t+ δ)d − Ȳ`(t+ δ, t+ δ)d

Ȳ`−1(t+ δ, t+ δ)− Ȳ`(t+ δ, t+ δ)

· (Ȳ`−1(t+ δ, t+ r + δ)− Ȳ`(t+ δ, t+ r + δ)).

5. We thank Xingjie Li for helpful suggestions to stabilize the numer-
ical scheme.

A similar approach is used to compute Ŷ1(t+ δ, t+ δ + r).
We now use Ŷ`(t, t) to approximate π`. The expected

number of jobs in the system, E [N ], is

E [N ] =
∞∑
`=1

πell − λ
d∑
i=2

(
d

i

)
πd−i1 (1− π1)i(i− 1)E

[
G(i)

]
,

where
(d
i

)
πd−i1 (1− π1)i is the probability that a job runs on

i servers. Note that the second term is included to avoid
overcounting jobs that run on i > 1 servers. Finally, we find
E [T ] by applying Little’s Law.

Validation of Approximation
We compare our computed π` values with simulation;

when k = 1000, d = 10, C2
X = 10, λ = 0.7, and

S ∼ Dolly(1, 12), and for δ = 0.2 and n0 = 10, the
approximation is within 5% of simulation for π1, π2, and
π3 (queue lengths exceed 3 less than 0.5% of the time). The
approximation is more accurate when λ, d, C2

X , and δ are
lower and when k is higher.

Performance
We use our new analysis to compare RIQ+JSQ with

baseline RIQ, assuming d is small (for both policies, this
is the regime in which our analysis holds). When λ is
low, RIQ+JSQ provides very little benefit over RIQ because
most jobs find idle servers (see Figure 10). When λ is high,
RIQ+JSQ beats RIQ because many jobs do not find idle
servers and benefit from being dispatched via JSQ rather
than randomly.

Note that it does not make sense to combine JSQ with
Redundancy-d; this would require either polling> d servers
per job, or limiting the number of replicas to be < d.

8.2 SMALL: Replicate Only Jobs with Small X

A major concern when replicating jobs is that running
multiple copies of the same job adds load to the system.
This is particularly true of jobs with a large inherent size
X . When a large job runs on many servers, it clogs up
these servers for a long time even if it experiences a small
slowdown S on some server. This makes it harder for jobs
with small X components to find any idle servers on which
to run.
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One way to prevent the small jobs from being blocked
on many servers by large jobs is to allow only jobs with a
small X component to create replicas. That is, we define a
constant threshold x and only replicate jobs with inherent
size X ≤ x.

Definition 4. Under RIQ+SMALL, if an arriving job has
inherent sizeX ≤ x it polls d servers chosen uniformly at random
without replacement. If 1 ≤ i ≤ d of the polled servers are idle,
the job replicates itself on all i idle servers. If none are idle, the
job joins the queue at one of the d servers chosen uniformly at
random. If the job has inherent size X > x, it is dispatched to a
single server chosen uniformly at random.

Definition 5. Under Redundancy-d+SMALL, if a job has
inherent size X ≤ x it replicates itself to d servers chosen
uniformly at random, whereas if a job has inherent size X > x it
is dispatched to a single server chosen uniformly at random.

Theorem 3. Under RIQ+SMALL, the system is stable if λ ·
E [X · S] < 1.

Proof. The approach is the same as the approach used to
prove stability under the original RIQ policy; details can be
found in Appendix B.

Response Time Analysis: RIQ+SMALL
The analysis of response time under RIQ+SMALL fol-

lows the same approach as that under the baseline RIQ
policy. We begin by conditioning on a job’s inherent size:

T̃ (s) = T̃ (s |X ≤ x)·P {X ≤ x}+T̃ (s |X > x)·P {X > x} .

To find T̃ (s | X > x), observe that any job with inher-
ent size larger than x is dispatched randomly to a single
M*/G/1/efs. As before, the exceptional first service comes
from the fact that the first job in the busy period may run
on anywhere between 1 and d servers. However, now the
job’s response time is not simply the response time in an
M*/G/1/efs because jobs with size X > x are less likely to
be the first job in a busy period than jobs with size X < x.
So we condition on whether the job finds the server idle:

T̃ (s | X > x) = T̃

(
s

∣∣∣∣ X > x & job
finds idle servers

)
·P
{

job finds
idle servers

}
+ T̃

(
s

∣∣∣∣X > x & job finds
no idle servers

)
·P
{

job finds no
idle servers

}
= R̃(1)(s | X > x) · (1− ρ)

+ T̃Q(s | queueing)M
∗/G/1/efs · R̃(1)(s | X > x) · ρ.

The arrival and service rates in this M*/G/1/efs differ from
those in the original RIQ analysis, and are discussed below.

To find T̃ (s | X ≤ x), we follow the original RIQ
analysis:

T̃ (s | X ≤x) = T̃

(
s

∣∣∣∣ X ≤ x & job
finds idle servers

)
·P
{

job finds
idle servers

}
+ T̃

(
s

∣∣∣∣X ≤ x & job finds
no idle servers

)
·P
{

job finds no
idle servers

}
,

where P {job finds idle servers} = 1−ρd and ρ is computed
numerically using the same approach as in the original RIQ
analysis and the M*/G/1/efs parameterization given below.

Similarly to the original analysis, we have:

T̃

(
s

∣∣∣∣ X ≤ x & job
finds idle servers

)
=

d∑
i=1

P

{
job finds i
idle servers

∣∣∣∣ job finds
idle servers

}
· R̃(i)(s | X ≤ x)

=

d∑
i=1

(1− ρ)iρd−i
(
d
i

)
1− ρd · R̃(i)(s | X ≤ x),

where R̃(i)(s | X ≤ x) = ˜X ·min{S1, . . . , Si}(s | X ≤ x).
If a job with X < x finds no idle servers, it simply

joins the queue at a single server, which behaves like an
M*/G/1/efs:

T̃

(
s

∣∣∣∣ X ≤ x & job finds
no idle servers

)
= T̃ (s | X ≤ x)M

∗/G/1/efs

= R̃(1)(s | X ≤ x) · T̃Q(s)M
∗/G/1/efs.

In this system, our M*/G/1/efs has the following pa-
rameters:

1) When the server is idle, arrivals form a Poisson process
with rate

P {X > x} ·λk · 1

k
+ P {X ≤ x} · λk · d

k
= λ(P {X > x}+ P {X ≤ x} · d).

2) When the server is busy, arrivals form a Poisson process
with rate

P {X > x} ·λk · 1

k
+ P {X ≤ x} · λk · d

k
· ρd−1 · 1

d
= λ(P {X > x}+ P {X ≤ x} · ρd−1).

3) Jobs that find the server idle experience runtime

R0 =


R(1) | X > x w.p. P{X>x}

P{X>x}+d·P{X≤x}
R(i) + Z | X ≤ x w.p. d·P{X≤x}

P{X>x}+d·P{X≤x}
·(1− ρ)i−1ρd−i

(d−1
i−1
)
,

1 ≤ i ≤ d

4) Jobs that find the server busy experience runtime

Rb =

R(1) | X > x w.p. P{X>x}
P{X>x}+P{X≤x}·ρd−1

R(1) | X ≤ x w.p. P{X≤x}·ρd−1

P{X>x}+P{X≤x}·ρd−1

Here the probabilities are reweighted because the
probability that a job of size > x enters the server is not
equal to the probability that a job of size > x enters the
system.

Performance
Figure 11 compares baseline RIQ and Redundancy-d to

their SMALL variants with inherent size cutoffs at the 10th,
50th, and 90th percentiles ofX . The RIQ+SMALL results are
analytical; Redundancy-d+SMALL is simulated.

Surprisingly, replicating only the small jobs does not
reduce mean response time under RIQ. In fact, as the size
cutoff increases (i.e., more jobs are allowed to replicate)
E [T ] decreases, and is lowest under baseline RIQ. This is
because RIQ is designed to replicate only when the system
has spare capacity. Further limiting the number of jobs that
replicate leads to a minor increase in the number of idle
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and C2

X = 10, Z = 0, and λ = 0.3 (left) and λ = 0.7 (right).

servers, thereby helping small jobs that can still replicate.
But this benefit is outweighed by the harm experienced by
the large jobs that no longer get to see the minimum of
multiple server slowdowns.

Similarly, when the system is stable under baseline
Redundancy-d, lowering the size cutoff (i.e., replicating
fewer jobs) leads to an increase in mean response time. But
importantly, the system is stable at higher values of d under
Redundancy-d+SMALL than under baseline Redundancy-d.
While Redundancy-d+SMALL eventually becomes unstable
(e.g., when λ = 0.3 and C2

X = 10, instability occurs around
d = 680), at practical (low) values of d the system is both
stable and relatively insensitive to the particular choice of d.

8.3 THRESHOLD: Replicate to Short Queues Only
A major advantage of RIQ is that the system cannot become
unstable as d gets large. But RIQ is not perfect: with the right
choice of d, Redundancy-d can achieve lower response time
than RIQ. RIQ allows very few jobs to replicate, sacrificing
potential response time gains to guarantee stability. On
the other hand, Redundancy-d allows all jobs to replicate,
offering the potential for large response time improvements,
but risking instability. Ideally, our policy would lie between
RIQ and Redundancy-d: we can afford to replicate more
than under RIQ, but not as much as under Redundancy-d.
To accomplish this, we introduce the THRESHOLD-n policy,
a compromise between RIQ and Redundancy-d.

Definition 6. Under THRESHOLD-n, each arriving job polls
d servers and joins the queue at those servers with queue length
≤ n. If all queue lengths are > n, the job joins a single queue at
random from among the d polled servers.

Note that RIQ and Redundancy-d are the extrema of the
THRESHOLD-n policies, where RIQ≡THRESHOLD-0 and
Redundancy-d≡THRESHOLD-∞.

Unfortunately, THRESHOLD-n is not analytically
tractable. The key feature enabling us to analyze RIQ (and
the JSQ and SMALL variants) is that under these policies,
all copies of a job start service simultaneously, so we do
not need to track the ages of copies in service. This is not
true for THRESHOLD-n, hence we study THRESHOLD-n
via simulation.

THRESHOLD-n achieves the best features of both RIQ
and Redundancy-d (see Figure 12). Like Redundancy-d,
THRESHOLD-n allows for enough redundancy to achieve
substantial response time improvements. Like for RIQ, we
can derive an upper bound on E [T ] that shows that
the system does not become unstable as a function of
d (see Theorem 4). For example, when λ = 0.7 (Fig-
ure 12(b)), THRESHOLD-10 performs nearly identically to
Redundancy-d for d ≤ 7; here both policies outperform
RIQ. At λ = 8, Redundancy-d approaches instability, but
under THRESHOLD-10 response time plateaus to a value
only slightly higher than that under RIQ. The plateau occurs
because all of the queues tend to remain at exactly n, so all
jobs have similar queueing times.

While we cannot analyze performance under
THRESHOLD-n, we can prove that for all n < ∞
and for all d, the system is stable under THRESHOLD-n
provided the system is stable when d = 1. This means
that we can make n as high as needed to achieve the low
response times offered by Redundancy-d at low d, without
worrying about potential instability if we choose d too high.
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Theorem 4. The system is stable under THRESHOLD-n, for all
n, if λ ·E [X · S] < 1.

Proof. We follow a similar approach to the proof of stability
under the original RIQ policy: we derive an upper bound
on mean response time under THRESHOLD-n using an
M/G/1/setup system. Details are in Appendix C.

9 CANCEL-ON-COMPLETE VERSUS CANCEL-ON-
START

Thus far we have assumed a Cancel-on-Complete model, in
which a job’s extra copies are cancelled as soon as the first
copy completes service. For completeness, we now turn to
an alternative Cancel-on-Start model, in which a job’s extra
copies are cancelled as soon as the first copy enters service.
Unlike under Cancel-on-Complete, under Cancel-on-Start
no extra load is added to the system because only one copy
of each job actually runs. Hence with Cancel-on-Complete
there is no disadvantage to making d as high as possible.
While in practice communication overhead may impose an
upper limit on d, in theory it is best to set d = k, hence for
the remainder of this section we assume d = k.

Cancel-on-Start maximizes the queueing benefits of re-
dundancy: each job gets to experience the shortest possible
queueing time across all queues. Importantly, this is not
the same as the Least-Work-Left dispatching policy, under
which each arriving job joins the queue with the least
work, where “work” is the sum of the inherent sizes of
all jobs in the queue, plus the remaining size of the job
currently in service if there is one. Least-Work-Left cannot
take into account the server slowdown each job ultimately
experiences, because server slowdowns are not known in
advance. Cancel-on-Start achieves what Least-Work-Left
would achieve if both X and S were known in advance for
each job (which is equivalent to a central queue); Cancel-
on-Start does this without knowing X or S. In the special
case in which R(1) = X · S is a mixture of exponentials,
response time can be analyzed numerically using Matrix-
Analytic methods. Figure 13(b) shows that when λ is high,
the queueing benefit allows Cancel-on-Start to outperform
both Redundancy-d and RIQ at all values of d.

However, Cancel-on-Start does not allow jobs to experi-
ence the minimum slowdown across multiple servers. When
λ is low, the system has extra capacity, which is wasted

under Cancel-on-Start but used to reduce runtimes under
Cancel-on-Complete. Hence at low λ Redundancy-d and
RIQ both outperform Cancel-on-Start (see Figure 13(a)).

10 CONCLUSION

In this paper we introduce the S&X model, a new, more
realistic model for computer systems with redundancy,
where a job’s inherent size X is decoupled from the server
slowdown S. The model is very general, allowing for any
inherent job size distribution X , any server slowdown
distribution S, and any cancellation time Z . The S&X
model is motivated by a common weakness of existing
theoretical work on redundancy: the Independent Runtimes
(IR) model, where a job’s replicas experience independent
runtimes across servers. The IR model leads to the conclu-
sion that more redundancy always helps, which empirical
systems work has shown is untrue.

In our new S&X model, dispatching policies previously
studied in the theory literature, such as Redundancy-d, can
perform much worse than predicted by prior theoretical
analysis in the IR model. This motivates us to develop a new
dispatching policy designed to perform well in the S&X
model. We introduce the Redundant-to-Idle-Queue policy
(RIQ), under which each arriving job creates redundant
copies only when the job finds idle servers. We derive a
highly accurate approximation for response time under RIQ.
We also derive an upper bound on mean response time
under RIQ that shows that RIQ does not cause instability
even as the redundancy degree d becomes large. Our results
demonstrate that RIQ is extremely robust to the system
parameters, including the inherent job size distribution, the
server slowdown distribution, and d.

The RIQ policy is one example of a redundancy-based
policy that performs well in a realistic model. We ana-
lyze several variants to the baseline RIQ policy, such as
RIQ+JSQ, under which jobs that find no idle servers use
Join-the-Shortest-Queue dispatching, and RIQ+SMALL, un-
der which only jobs with a small inherent size are allowed
to create redundant copies. Our results indicate that because
RIQ already significantly limits the number of jobs that are
allowed to replicate, policy variations that further reduce
the amount of redundancy do not help. Instead, we propose
the THRESHOLD-n policy, which is a more liberal version
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of RIQ that allows jobs to replicate at any server with
fewer than n jobs in the queue rather than just at idle
servers. THRESHOLD-n combines the best features of RIQ
and Redundancy-d: it achieves excellent performance by
allowing many jobs to replicate, but avoids instability by
ultimately limiting the amount of replication.

The S&X model represents an important first step in
bridging the gap between theoretical models of redundancy
and the practical characteristics of real systems that use
redundancy. However, our model does not incorporate ev-
ery aspect of such systems. For example, in practice server
slowdowns may be time-dependent or correlated between
consecutively processed jobs on the same server. We leave
incorporating such features into a theoretical model of re-
dundancy open for future work.
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APPENDIX A
DEFINITIONS NEEDED FOR THEOREM 1
In this section we define the M/G/1/vacation system,
which we use to upper bound mean response time under
RIQ in our system. At a high level, in an M/G/1/vacation
system, the server becomes unavailable (“goes on vacation”)
for a period of time every time it becomes idle. When
the server “comes back” from its vacation, it begins serv-
ing any jobs that have arrived during the vacation time,
or takes another vacation if there are no such jobs. The
M/G/1/vacation system has been studied extensively in
the literature, see, e.g., [8] for an overview.

Definition 7 (Paraphrased from [8]). An M/G/1/vacation
system is a single-server queueing system satisfying the following
properties:

1) Jobs arrive to the system as a Poisson process with rate λ.
2) Each job has runtime R; runtimes are i.i.d. across jobs and

are independent of the arrival process and the sequence of
server vacations.

3) The system is stable. That is, ρ = λE [R] < 1.
4) The scheduling policy (i.e., the order in which jobs are served)

does not depend on the job runtimes.
5) Services are non-preemptible.
6) When the queue becomes empty, the server immediately be-

comes unavailable for time V . If there are jobs waiting in the
queue when the server returns from vacation, it immediately
begins serving these jobs and continues to do so until it
next becomes idle. If instead the queue is empty when the
server returns from vacation, it immediately begins another
vacation of duration V .

The Laplace transform of response time in the
M/G/1/vacation system, T̃M/G/1/vacation(s), has been
shown to satisfy a decomposition property [8]:

T̃M/G/1/vacation(s) = T̃M/G/1(s) · Ṽe(s),

where Ve is the excess of the vacation time V , defined below.

Definition 8. Consider a renewal process with inter-event times
V . Suppose that we look at the process at a random time. The
excess of V is defined to be the remaining time until the next
event occurs. The Laplace transform of the excess of V is

Ṽe(s) =
1− Ṽ (s)

sE [V ]

and the mean excess of V is

E [Ve] =
E
[
V 2
]

2E [V ]
.

APPENDIX B
PROOF OF THEOREM 3
Theorem 5. Under RIQ+SMALL, for all d the system is stable
if λ ·E [X · S] < 1.

Proof. As for the baseline RIQ policy, we will upper bound
mean response time under RIQ+SMALL by the mean re-
sponse time in an M/G/1/vacation system. We first express

mean response time under RIQ+SMALL by conditioning on
a job’s inherent size. We have

E [T ]
RIQ+SMALL

= P {X ≤ x} ·E [T |X ≤ x]

+ P {X > x} ·E [T |X > x] .

When a small job (with sizeX ≤ x) arrives to the system,
if it finds i idle servers it enters service on all of these
servers. For all i, we have

E [T |job finds i idle servers & X ≤ x] = E [R(i)|X ≤ x]

≤ E [R(1)|X ≤ x]

≤ E [R(1)|X ≤ x] + E
[
TQ|job finds no idle servers

]
= E [T |job finds no idle servers & X ≤ x] . (15)

When a small job arrives to the system and does not find
any idle servers, it joins a single queue chosen at random
and experiences response time

E [T |job finds no idle servers & X ≤ x] . (16)

When a large job (with size X > x) arrives to the system,
the job joins a single queue chosen uniformly at random.
The job experiences response time

E [T |X > x]

= E

[
T

∣∣∣∣ X > x & job
finds idle servers

]
·P
{

X > x & job
finds idle servers

}
+ E

[
T

∣∣∣∣X > x & job finds
no idle servers

]
·P
{
X > x & job finds

no idle servers

}
≤ E [T |job finds no idle servers & X > x] . (17)

For both small and large jobs that find no idle servers,
the job joins the queue at a randomly chosen server with the
following properties:

1) When the server is busy, small jobs arrive with rate

kλP {X ≤ x} · d
k
·P
{

job finds d− 1
other servers busy

}
· 1

d

= λP {X ≤ x}P
{

job finds d− 1
other servers busy

}
and large jobs arrive with rate

kλP {X > x} · 1

k
= λP {X > x} .

2) Small jobs that arrive to the server while it is busy
experience runtime R(1|X ≤ x), and large jobs that
arrive to the server while it is busy experience runtime
R(1|X > x).

3) A small job that arrives to the server while it is idle,
and finds i − 1 other idle servers, experiences runtime
R(i|X ≤ x) ≤st R(1|X ≤ x) + Z . A large job that
arrives to the server while it is idle experiences runtime
R(1|X > x).

Since (15), (16), and (17) force all jobs to have a non-zero
queueing time in our upper bound, the first job in the busy
period (the job that arrives to the server while it is idle)
can be viewed as a “dummy” job that does not contribute to
response time. Every time a server goes idle, we can imagine
that the server is forced to work on a “dummy” job, so the
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server is always busy when the next real job arrives. This
dummy job has size

R0 =


R(1|X > x) w.p. P{X>x}

P{X>x}+d·P{X≤x}
R(i) + Z|X ≤ x w.p. d·P{X≤x}

P{X>x}+d·P{X≤x}

·P
{

job finds i− 1

other servers idle

}

≤st

{
R(1|X > x) w.p. P{X>x}

P{X>x}+d·P{X≤x}
R(1) + Z|X ≤ x w.p. d·P{X≤x}

P{X>x}+d·P{X≤x}

≤st R(1) + Z

The system that runs a “dummy” job of size R(1) + Z
every time it becomes idle gives an upper bound on mean
response time in our original system, and is exactly an
M/G/1/vacation system with vacation time R(1) + Z and
arrival rates and runtimes as stated in items 1 and 2
above. We can further upper bound the M/G/1/vacation
system by simply increasing the arrival rate of small
jobs to λP {X ≤ x}. We now have an M/G/1/vacation
system with arrival rate λ, runtime R(1), and vacation
time R(1) + Z . This system is stable provided that λ ·
E [R(1)] = λ · E [X · S] < 1. Since mean response time in
the M/G/1/vacation system upper bounds mean response
time in our original system under RIQ+SMALL, we also
have that our system is stable under RIQ+SMALL, for all d,
if λ ·E [X · S] < 1.

APPENDIX C
PROOF OF THEOREM 4
Theorem 6. Under THRESHOLD-n, for all d and n the system
is stable if λ ·E [X · S] < 1.

Proof. We will upper bound mean response time un-
der THRESHOLD-n by the mean response time in an
M/G/1/setup system. We begin by expressing mean re-
sponse time under THRESHOLD-n by conditioning on
whether a tagged arrival to the system finds any idle
servers. We have

E [T ]
THRESH−n

= P

{
job finds servers
with ≤ n jobs

}
·E
[
T

∣∣∣∣job finds servers
with ≤ n jobs

]
+ P

{
job finds no servers

with ≤ n jobs

}
·E
[
T

∣∣∣∣job finds no servers
with ≤ n jobs

]
.

When a job arrives to the system, if it finds i servers with
fewer than n jobs it joins the queue (or enters service if the
queue is empty) at all of these servers. For all i, we have

E

[
T

∣∣∣∣job finds i servers
with ≤ n jobs

]
≤ E

[
T

∣∣∣∣job finds no servers
with ≤ n jobs

]
.

Hence we have the following upper bound:

E [T ]
THRESH−n ≤ E

[
T

∣∣∣∣job finds no servers
with ≤ n jobs

]
. (18)

Given that a tagged arrival found no servers with ≤ n
jobs, it joins the queue at a randomly chosen server with the
following properties:

1) When the server is busy, jobs arrive with rate kλ · dk ·
P {job finds other d− 1 servers with > n jobs} · 1

d ≤
λ.

2) All jobs that arrive to the server while it is busy experi-
ence runtime R(1).

3) A tagged job that arrives to the server while it has ≤ n
jobs, and finds i − 1 other servers with ≤ n jobs will
complete when the first of its i copies completes service.

Since (18) forces all jobs to wait behind at least n jobs
in our upper bound, we can view any job that arrives
while there are ≤ n jobs at the server to be a “dummy”
job that does not contribute to response time. Every time
the queue length drops below n jobs, we can imagine
that a “dummy” job with size R(1) + Z is added to the
queue, so the server always has greater than n jobs in the
queue when the next “real” job arrives. Alternatively (but
equivalently), we can imagine that a “real” arrival that finds
no other “real” jobs at the server triggers a setup time
of length (R(1) + Z)e +

∑n−1
j=1 (R(1) + Z) (i.e., the time

remaining for the “dummy” job currently in service, plus
n− 1 additional “dummy” jobs in queue; (R(1) +Z)e is the
excess of R(1)+Z). This exactly describes an M/G/1/setup
system with arrival rate λ, runtime R(1), and setup time
(R(1)+Z)e+

∑n−1
j=1 (R(1)+Z). The M/G/1/setup is stable if

λ·E [R(1)] = λ·E [X · S] < 1. Since the mean response time
in the M/G/1/setup upper bounds the mean response time
in our original system under THRESHOLD-n, the system is
stable under THRESHOLD-n if λ ·E [X · S] < 1.


