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Abstract Load balancing is one of the key components in many distributed sys-
tems as it heavily impacts performance and resource utilization. We consider a
heterogeneous system where each server belongs to one of K classes and the speed
of the server depends on its class. Two types of load balancing strategies are
considered: arriving jobs are either immediately dispatched to a server class in a
randomized manner, i.e., with probability pk a job is assigned to class k, or are
dispatched based on their size, i.e., jobs with a size in [Tk−1, Tk) are assigned to
class k. Within each class a power of d choices rule is used to select the server that
executes the job.

For large systems and exponential job size durations the optimal probabilities
pk to minimize the mean response time can be determined easily via convex opti-
mization. In this paper we develop a mean field model (validated by simulation)
to investigate how the optimal probabilities pk are affected by the higher moments
and in particular by the variability of the job size distribution when the service
discipline at each server is first-come-first-served. In addition, we make use of the
cavity method to study the optimal thresholds Tk in case the dispatching is based
on the job size.

1 Introduction

Consider a large distributed system consisting of N servers and a (number of)
centralized dispatchers. Incoming jobs are assigned by the dispatcher(s) to the
servers using a load balancing (LB) scheme. A very efficient manner to distribute
the incoming jobs among the servers is to rely on a pure randomized assignment
scheme or some form of round robin. While this allows very fast load balancing
decisions, the resulting performance is known to be inferior to LB schemes that
exploit information concerning the current system state, such as the queue lengths
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or server speeds. Examples of the latter include join-the-shortest-queue (JSQ) LB
[16] or the power-of-d-choices (POD) LB [24,21]. Under JSQ incoming jobs are
assigned to the server containing the least number of jobs, while under POD d

servers are selected uniformly at random and the job is assigned to the server with
the shortest queue length among the d selected servers.

When the system is heterogeneous, for instance when not all the servers have
the same speed, the choice of the LB scheme becomes even more critical as LB
schemes based on joining the server with the least number of jobs among a set of
randomly selected servers may lead to system instability even if the total offered
load is (well) below the total service rate of the system [6]. A manner to avoid
instability when the servers have different speeds (and the overall load is below
1), exists in assigning jobs to servers based on the server speeds [13]. While such
an assignment becomes necessary as the overall load tends to one, it is clearly
suboptimal under low and medium loads as the mean response time can be reduced
by assigning a larger fraction of the jobs to the faster servers. In case of Poisson
arrivals, processor sharing (PS) servers and random job routing (that is, server i
is selected with a fixed probability pi) explicit expressions can be derived for the
routing probabilities that minimize the mean response time [3,13]. Under first-
come-first-served (FCFS) service and more complex LB schemes determining the
optimal fraction of the incoming jobs that needs to be assigned to each of the
servers is much harder.

In this paper we consider a system consisting of N servers where jobs arrive
according to a Poisson process with rate λN with λ < 1. The servers are parti-
tioned into K classes of homogeneous servers, process their jobs in FCFS order and
have an infinite waiting room. By considering FCFS service, we are considering a
setting where jobs are very expensive to preempt and are therefore typically run-
to-completion without interruption (such as in supercomputing centers, see [17]).
Servers belonging to class k serve jobs at rate µk. We consider two dispatching
strategies: incoming jobs are either assigned to a class in a randomized manner or
based on their size. In the randomized case a job is assigned to a class k server with
probability pk. In the size based case we define a set of thresholds Tk (with T0 = 0
and TK = ∞) and assign an incoming job of size x to class k if x ∈ [Tk−1, Tk).
This job size based dispatching rule is known as Size Interval Task Assignment
(SITA) [18]. The main idea of SITA is to reduce the variability of job sizes at a
server, which reduces the mean response time. Once a job is assigned to a server
class, the server that executes the job within class k is selected using POD LB. In
other words, a set of d servers is selected among the class k servers and the jobs is
assigned to the server holding the least number of jobs among the d selected class
k servers.

Note that the above randomized setting is identical to Scheme 3 presented in
[22], except that our servers operate under FCFS instead of PS. For exponential job
durations the queue length distribution under FCFS and PS is the same and under
PS the system is believed to become insensitive to the job size distribution as the
system size N tends to infinity [7,8]. Under FCFS the mean response time remains
sensitive to the job size distribution as N tends to infinity. The main objective of
this paper is to see how the probabilities pk and thresholds Tk that minimize the
mean response time in a large system, are effected by the variability of the job size
distribution and more importantly whether these optimized values reduce the mean
response time significantly compared to more more basic suboptimal manners to
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select pk and Tk. To answer these questions we develop a mean field model for
the randomized case, the accuracy of which is validated using simulation, and rely
on the cavity method [7] for the job size based case. Some of our main insights
are that neglecting the variability of the job size distribution when optimizing
the probabilities pk does not result in a substantial loss in performance and the
reduction in the mean response time offered by using job size information decreases
as the system becomes more heterogeneous.

The paper is structured as follows. In Section 2 we introduce the model under
consideration. Related work is discussed in 3. The mean field model and numerical
examples for the randomized dispatching are presented in 4 and 5. Finally, Sections
6 and 7 focus on the size based dispatching policies.

2 The model

Consider a system of N servers belonging to K classes operating under FCFS.
There are Nk servers of class k and let γk = Nk/N such that

∑K
k=1 γk = 1. All

servers have an infinite waiting room and the speed of a class k server is denoted
as µk. The server speeds are such that

∑K
k=1 γkµk = 1, meaning the average speed

of a server is equal to 1. Incoming jobs arrive at one or multiple dispatchers as a
Poisson process with an overall rate λN and are immediately forwarded to one of
the N servers. To select a server the dispatcher first selects a server class k and
subsequently assigns the job to the server with the least number of jobs among
a set of d servers selected uniformly at random among the class k servers. The
server class k is either selected in a randomized manner or based on the job size x
of the incoming job. In the randomized case we use a set of probabilities pk (with∑
k pk = 1) and class k is selected with probability pk. In the job sized based case

we use a set of thresholds Tk (with 0 = T0 < T1 < . . . < TK = ∞) and class k is
selected if x ∈ [Tk−1, Tk).

The job size distribution is assumed to follow a phase-type distribution [20]
with mean 1 characterized by (α, S), where α is a stochastic vector and S a sub-
generator matrix such that αeSxe is the probability that the job size exceeds x,
where e is a column vector of ones. The time to execute a job on a class k server
is therefore phase-type distributed with parameters (α, µkS) as it suffices to scale
time by a factor µk. We note that the class of phase-type distributions is dense in
the field of all positive-valued distributions. As such any positive-valued distribu-
tion can be approximated arbitrarily close by a phase-type distribution. Various
fitting tools for phase-type distributions are also available online (e.g., jPhase [23],
ProFiDo [5] or BuTools).

Note that due to the Poisson arrivals, the system under consideration behaves
as a set of K independent homogeneous LB systems. In the randomized case the
k-th system has load ρk = λpk/(γkµk) (as the total arrival rate is λN and with
probability pk the job is assigned to one of the γkN class k servers). In the job size
based case the k-th system has load

ρk = λP [Tk−1 ≤ X < Tk]E[X|Tk−1 ≤ X < Tk]/(γkµk),
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where X is the job size distribution. Due to the phase-type assumption for the job
sizes we have P [Tk−1 ≤ X < Tk] = α(eSTk−1 − eSTk)e and

E[X|Tk−1 ≤ X < Tk] =

Tk−1 +
α(−S)−1(eSTk−1 − eSTk)e− (Tk − Tk−1)αeSTke

α(eSTk−1 − eSTk)e
.

For exponential job sizes the probabilities pk for large N can be optimized
by relying on the explicit formula for the mean response time in a homogeneous
system derived in [24,21], that is, the probability that a server contains i or more

jobs converges to ρ
di−1
d−1

k as N tends to infinity under POD LB with exponential
job sizes and load ρk. This results (by applying Little’s law to the complete N-th
system and taking limits) in the following convex optimization problem that can
be solved numerically without much effort:

minimize
pk

f(p1, . . . , pK) =
1

λ

∑
k

γk
∑
i≥1

ρ
di−1
d−1

k .

subject to 0 ≤ ρk < 1; k = 1, . . . ,K,∑
k

γkρk = λ.

(1)

Note that the first set of constraints demands that each of the K subsystems
is stable, while the second constraint demands that the total assigned workload
matches the incoming workload. For K = 2 the first set of constraints can be
restated as 1− γ2µ2

λ < p1 <
γ1µ1

λ (as p2 = 1−p1). One of the main objectives of this
paper is to study the equivalent optimization problem for phase-type distributed
job lengths.

Finding the optimal thresholds Tk for a SITA policy is very challenging and
different heuristics to do so have been proposed in [9,19].

3 Related work

A closely related paper for the randomized case is [22] which proposes mean field
models for three LB schemes: the optimal randomized, SQ(d) and hybrid SQ(d)
LB. The hybrid SQ(d) LB scheme, which was shown to outperform the other two,
is identical to the LB scheme considered in this paper except that [22] considers
PS servers and exponential job sizes. Evidence that the SQ(d) scheme becomes
insensitive to the job size distribution was provided using simulation experiments,
while evidence1 for the asymptotic insensitivity for the hybrid SQ(d) LB under
PS was presented in [7,8].

Two other LB schemes for heterogeneous networks were proposed in [1]. In both
LB schemes a server is chosen by first selecting dk servers of type k at random for
all k and then by selecting one of the servers among the selected

∑
k dk servers

based on the queue length information only (scheme 1) or on the queue length and
server speeds (scheme 2). While Figures 3 and 4 in [1] suggest that these schemes

1 The asymptotic insensitivity under PS was proven given the ansatz of asymptotic inde-
pendence of the queue length for any finite subset of queues.
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Fig. 1: Mean response time (for exponential job sizes) as a function of λ for Scheme
2 of [1] with d1 = d2 = 2 and for the hybrid SQ(4) scheme when γ1 = γ2 = 1/2
and µ1 = 9µ2.

may outperform the hybrid SQ(d) scheme in some cases, the hybrid SQ(2) scheme
uses the queue length information of 2 servers per incoming job, while the other
two LB schemes use the queue length information of 4 queues per job. Figure 1
indicates that if we also allow 4 choices for the hybrid SQ(d) scheme, the optimal
hybrid SQ(d) scheme outperforms scheme 2 of [1] for all arrival rates λ. Another LB
scheme, called HALO POD, that uses a POD rule in a heterogeneous PS network
was proposed in [13]. In this scheme a job is assigned to the shortest of d selected
servers, where a class k server is selected based on the optimal routing probabilities
of a pure randomized LB scheme (first derived in [3]).

In this paper we assess the mean response time in a heterogeneous FCFS LB
network with phase-type distributed job sizes under randomized and size based
dispatching. Another approach to analyze such a network exists in numerically
determining a fixed point of a so-called hydrodynamical PDE presented in [2] as
our network is equivalent to a set of K independent homogeneous FCFS networks.
In fact, this is the approach that we initially used, but finding the optimal prob-
abilities pk by repeatedly solving a hydrodynamical PDE turns out to be much
more time and memory consuming than the approach taken in this paper (due to
the required size of the mesh used by the numerical scheme).

Considerable work has also been done on SITA policies (e.g., [18,19,4,12]).
The main different between our work and these prior studies is that we only use
SITA to select the server class k and use POD LB within each class, while prior
work selected individual servers using SITA. If SITA is used to select individual
servers, each server corresponds to an M/G/1 queue. This is no longer the case if
SITA is only used to select the server class k (unless d = 1, that is, we assign the
job to a random class k server), which further complicates the analysis.

4 A mean field model for randomized dispatching

Let X
(N)
k,j,i(t) be the number of type k ∈ {1, . . . ,K} servers with i > 0 or more jobs

that are in service phase j ∈ {1, . . . , J} at time t. Define Z
(N)
k,j,i(t) = X

(N)
k,j,i(t)/Nk
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as its scaled version. We would like to study limt→∞ Z
(N)
k,j,i(t) for large N . For

this purpose we introduce a mean field model in Section 4.1 for which we provide
theoretical and numerical support in Sections 4.2 and 4.3

4.1 System dynamics

Assume (α, S) is an order J phase-type distribution. The mean field model uses
the variables sk,j,i(t) with i > 0, 1 ≤ j ≤ J and 1 ≤ k ≤ K, that represent the
fraction of servers that are of type k, contain i or more jobs and are in service
phase j at time t. Let zk,j,i(t) = sk,j,i(t)/γk, denote σi,j as the (i, j)-th entry of
the matrix S and let νj = (−Se)j . The evolution of zk,j,i(t) is described by the
following set of ODEs, the intuition behind this set of ODEs is presented below:

dzk,j,1(t)

dt
=
λpk
γk

(1− zdk,1(t))αj − µkνj(zk,j,1(t)− zk,j,2(t))

− µkνj(1− αj)zk,j,2(t) +
∑
j′ 6=j

µkνj′zk,j′,2(t)αj

+
∑
j′ 6=j

zk,j′,1(t)µkσj′,j − zk,j,1(t)
∑
j′ 6=j

µkσj,j′

=
λpk
γk

(1− zdk,1(t))αj − µkzk,j,1(t)νj + µk

J∑
j′=1

zk,j′,2(t)νj′αj

+ µk

J∑
j′=1

zk,j′,1(t)σj′,j − µkzk,j,1(t)
J∑

j′=1

σj,j′ , (2)

where zk,i(t) =
∑J
j=1 zk,j,i(t) and

dzk,j,i(t)

dt
=
λpk
γk

zk,j,i−1(t)− zk,j,i(t)
zk,i−1(t)− zk,i(t)

(zdk,i−1(t)− zdk,i(t))

− µkνj(zk,j,i(t)− zk,j,i+1(t))− µkνj(1− αj)zk,j,i+1(t)

+
∑
j′ 6=j

µkνj′zk,j′,i+1(t)αj +
∑
j′ 6=j

zk,j′,i(t)µkσj′,j − zk,j,i(t)
∑
j′ 6=j

µkσj,j′ , (3)

for i > 1. For i = 1 the intuition is as follows. The arrival rate in a class k server
is λpk/γk and zk,j,1(t) increases when not all of the d selected servers are busy

(probability (1− zdk,1(t))) and service starts in phase j (probability αj). For i > 1,
zk,j,i(t) increases when all d selected servers have at least i − 1 jobs and not all

have i jobs or more, this is represented by the probability (zdk,i−1(t) − zdk,i(t)).
The server that gets the job has to be in phase j, which is represented by the

probability
zk,j,i−1(t)−zk,j,i(t)
zk,i−1(t)−zk,i(t)

.

For i ≥ 1, zk,j,i(t) decreases when a job completion occurs in a class k server
with exactly i jobs that is in phase j (with rate µkνj). It also decreases when a
server in phase j with at least i+1 jobs has a job completion and starts processing
the next job in phase j′ 6= j (with rate µkνj(1−αj)) or a server with at least i jobs
changes its phase from j to j′ 6= j (with rate µkσj,j′). Finally, zk,j,i(t) increases
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when a server in phase j′ 6= j with i + 1 or more jobs completes a job and start
processing the next job in phase j (with rate µkνj′αj) or a server with at least i
jobs changes its phase from j′ 6= j to j (with rate µkσj′,j).

Numerical evaluation: The queue length distribution of the mean field model, char-
acterized by (2-3), is determined via a forward Euler iteration. More specifically,
we start with an empty system at time t = 0, i.e., set zk,j,i(0) = 0 for all k, j and
i > 0, and compute

zk,j,i(t+ δt) = zk,j,i(t) + δt
dzk,j,i(t)

dt
,

with a step size δt that is sufficiently small. This iteration is repeated until a
fixed point π is found, i.e., until dzk,j,i(t)/dt ≤ ε for ε small (e.g., ε = 10−9).
The mean response time is subsequently determined via Little’s law. We did not
encounter any numerical issues when computing a fixed point using this simple
Euler iteration, as such there was no need to rely on more advanced Runge-Kutta
methods.

Asymptotic sensitivity: We end this subsection by showing that any fixed point π
of the set of ODEs is sensitive to the higher moments of the job size distribution
(as opposed to the system with PS service). Summing (2-3) over i and j yields∑

i≥1

dzk,i(t)/dt = µk(ρk −
∑
j′

zk,j′,1νj′).

Let ν be the column vector with its j-th entry equal to νj and denote βj as the
j-th entry of the unique row vector β for which β(S + να) = 0 and

∑
j βj = 1

holds. It is easy to check that β = α(−S)−1 and therefore 1/(βν) is the mean job
duration. If we now assume asymptotic insensitivity, that is, πk,j,i can be written
as πk,iβj , where πk,i is the fixed point of the set of ODEs in case of exponential
job sizes with load ρk, then (3) implies

0 =
λpk
γk

βj(π
d
k,i−1 − π

d
k,i) + µk(πk,i(βS)j + πk,i+1(βν)αj)

=
λpk
γk

βj(π
d
k,i−1 − π

d
k,i)− µk(πk,i − πk,i+1)(βν)αj , (4)

with βν = 1. As πk,i is the fixed point of the set of ODEs in case of exponential
job sizes with load ρk, we have

0 =
λpk
γk

(πdk,i−1 − π
d
k,i)− µk(πk,i − πk,i+1). (5)

Hence, (4) holds if and only if βj = αj for all j ∈ {1, . . . , J}. However, when β = α

one finds (using α(S + να) = β(S + να) = 0) that the probability αeSxe that the
job size exceeds x can be written as

αeSxe =
∞∑
s=0

αSsexs/s! =
∞∑
s=0

(−βν)sxs/s! = e−βνx,
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meaning the job sizes are exponential with mean 1/(βν). Thus for any phase-type
distribution that is not a redundant2 representation of the exponential distribution
πk,iβj is not a fixed point (which would be the case if the system was asymptotically
insensitive as in the PS service case).

4.2 Theoretical support

Let J = {1, . . . , J} and denote the set of ODEs given by (2-3) as
dzk,j,i(t)/dt = Fk,j,i(zk(t)), where zk(t) = (zk,1(t), zk,2(t), . . .) and zk,i(t) =

(zk,1,i(t), . . . , zk,J,i(t)). Define the space EJ = {(xj,i)j∈J ,i≥1|1 ≥ xj,1 ≥ xj,2 ≥
. . . ≥ 0; 1 ≥

∑
j∈J xj,1}. Let w be the metric defined on EJ by setting

w(x,y) = sup
j∈J

sup
i≥1

|xj,i − yj,i|
(i+ 1)2

.

Proposition 1 (EJ , w) is a compact metric space.

Proof By Tychonoff’s theorem any sequence (xn)n in EJ has a subsequence
(xnm)m that converges pointwise to some limit x∗ ∈ EJ . We argue that this
subsequence also converges to x∗ under the metric w which proves compactness.
For any i we can pick m′ large enough such that for m ≥ m′ we have

sup
j∈J

|(xnm)j,i′ − x∗j,i′ |
(i′ + 1)2

≤ 1/(i+ 1)2,

for 1 ≤ i′ ≤ i due to the pointwise convergence. Further

sup
j∈J

|(xnm)j,i′ − x∗j,i′ |
(i′ + 1)2

≤ 1/(i′ + 1)2 < 1/(i+ 1)2,

for any m when i < i′ as |(xnm)j,i′ − x∗j,i′ | ≤ 1. ut

The next proposition shows that Fk(x) : EJ → EJ is Lipschitz, that is, there
exists a constant Lk such that w(Fk(x),Fk(y)) ≤ Lkw(x,y). As (EJ , w) is compact
it is a Banach space and the Lipschitz property implies that the set of ODEs (2-3)
has a unique solution zk,j,i(t) for any given initial state (zk,j,i(0))j∈J ,i≥1 ∈ EJ

and this solution is continuous in t and the initial state.

Proposition 2 Fk(x) is Lipschitz with constant Lk = 3Jµk maxj(−σj,j) + λpk(2 +
dJ + 2Jd2)/γk on (EJ , w).

2 Redundant representations are order J phase-type distributions (α, S) that can be repre-
sented by a phase-type distribution of a smaller order. For instance, any order J > 1 phase
type distribution with S equal to minus the identity matrix is a redundant representation of
the exponential distribution with mean one.
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Proof We make repeated use of the inequality |am1
1 am2

2 − bm1
1 bm2

2 | ≤ m1|a1 − b1|+
m2|a2 − b2| for 0 ≤ a1, a2, b1, b2 ≤ 1 and m1,m2 ∈ {1, 2, . . .}. Due to (2-3) one finds

w(Fk(x),Fk(y)) ≤ 3Jµk max
j

(−σj,j)w(x,y) +
λpk
γk

dJw(x,y) +
λpk
γk

2w(x,y)

+
λpk
γk

sup
i>1

1

i+ 1

∣∣∣∣∣xdk,i−1 − x
d
k,i

xk,i−1 − xk,i
−
ydk,i−1 − y

d
k,i

yk,i−1 − yk,i

∣∣∣∣∣
As (xdk,i−1 − x

d
k,i)/(xk,i−1 − xk,i) =

∑d−1
m=0 x

m
k,i−1x

d−1−m
k,i we get

sup
i>1

1

i+ 1

∣∣∣∣∣xdk,i−1 − x
d
k,i

xk,i−1 − xk,i
−
ydk,i−1 − y

d
k,i

yk,i−1 − yk,i

∣∣∣∣∣
≤ sup
i>1

d−1∑
m=0

|xmk,i−1x
d−1−m
k,i − ymk,i−1y

d−1−m
k,i |

(i+ 1)2

≤ 2d2 sup
i>1

|xk,i − yk,i|
i+ 1

≤ 2Jd2w(x,y).

ut

Let ĒJ = {(xj,i)j∈J ,i≥1 ∈ EJ |
∑
i>0

∑J
j=1 xj,i <∞}, then we have the follow-

ing result:

Theorem 1 Let x(0) ∈ ĒJ and assume limN→∞ Z
(N)
k,j,i(0) = xj,i(0), then

lim
N→∞

sup
u≤t

sup
j∈J

sup
i≥1

|Z(N)
k,j,i(u)− zk,j,i(u)|

(i+ 1)2
= 0 a.s.,

for any fixed t, where z(u) is the unique solution of the set of ODEs given by (2-3)

with zk,j,i(0) = xj,i(0).

Proof The Markov chain Z
(N)
k,j,i(t), for N ≥ 1, is a density dependent population

process as defined in [11, Chapter 11]. Theorem 2.1 in [11, Chapter 11] establishes
our result provided that two conditions (being (2.6) and (2.7) in [11, Chapter 11])
apply for any K ⊂ ĒJ compact. We will argue that both conditions are valid on
EJ which implies that they apply to any compact subset of ĒJ .

The first condition demands that∑
`∈L

w(`, 0) sup
x∈EJ

β`(x) <∞,

where L is the set of all transitions and β`(x) is the scaled transition rate of
transition ` in state x. In our system there are three types of transitions (in a queue
of length i > 0): arrivals, changes in the service phase and service completions.
Arrivals in a queue of length i (in service phase j) increase the queue length by one
and the vector ` corresponding to an arrival therefore has two non-zero entries:
being `j,i which equals −1 and `j,i+1 which equals +1. Hence, w(`, 0) = 1/(i+1)2.
Similarly for a change of service phase and a service completion in a queue of
length i we find w(`, 0) = 1/(i+ 1)2.
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The scaled rate of any of these transitions for any x ∈ EJ is bounded by λpk/γk
(for arrivals) and µk maxj(−σj,j) (for phase changes or service completions). Thus,∑

`∈L
w(`, 0) sup

x∈EJ

β`(x) ≤

(Jλpk/γk + J2µk max
j

(−σj,j))
∑
i≥0

1/(i+ 1)2 <∞.

The second condition demands that Fk(x) is Lipschitz, which was shown in Propo-
sition 2. ut

The above theorem indicates that the sample paths of the Markov chains con-
verge to the unique solution of the set of ODEs given by (2-3) as the number of
queues N tends to infinity over any finite time scale. One may wonder whether
this convergence extends to the stationary regime, meaning whether the steady
state measures of the Markov chains weakly converge to the Dirac measure of a
fixed point of the set of ODEs. While we believe this to be the case (as indicated
in next section that numerically validates this convergence), proving such a result
is hard and considered to be out of scope of the current paper.

4.3 Validation

For the model validation we present only results for K = 2 types of servers, similar
results were obtained for K > 2. Let µr = µ1

µ2
and recall that that γ1µ1 +γ2µ2 = 1.

Further assume that µ1 > µ2, meaning class 1 servers are the fast servers and class
2 the slow servers. As stated before the mean job size is assumed to be 1. Let C2

X be
the squared coefficient of variation of the job size distribution. Whenever C2

X = 1/k
for some k ∈ {2, 3, . . .}, we model the job size distribution as an Erlang distribution
with k phases. For C2

X ≥ 1, we used a hyperexponential (HEXP) distribution with
parameters (α1, ν1, ν2), thus with probability αi a job is a type-i job and has
an exponential duration with mean 1/νi, for i = 1, 2 (where α2 = 1 − α1). When
C2
X ≥ 1 we additionally match the fraction f of the workload that is contributed by

the type-1 jobs (i.e., f = α1/ν1). If we assume that ν1 � ν2 this can be interpreted
as stating that a fraction f of the workload is contributed by the short jobs. The
mean (equal to 1), C2

X and fraction f can be matched as follows:

ν1 =
C2
X + (4f − 1) +

√
(C2
X − 1)(C2

X − 1 + 8ff̄)

2f(C2
X + 1)

, (6)

ν2 =
C2
X + (4f̄ − 1)−

√
(C2
X − 1)(C2

X − 1 + 8ff̄)

2f̄(C2
X + 1)

, (7)

with f̄ = 1− f and α1 = ν1f .
To validate the mean field model, the ODE based mean response times are

compared to a discrete event simulation of the system for various parameter set-
tings listed in Table 1. The discrete event simulation has an additional parameter
N which is the size of the system. We let N ∈ {40, 80, 160, 320, 640, 1280} and ex-
pect that the mean field model becomes more accurate as N increases. In fact due
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Case λ µr γ1 d p1 C2
X

1 0.26754 1.34 0.6 2 0.1692 0.25
2 0.4116 2.8116 0.4 3 0.79378 0.25
3 0.29374 1.3922 0.7 4 0.47121 0.5
4 0.57975 1.9541 0.5 5 0.53563 0.125
5 0.18995 1.3764 0.3 3 0.43491 0.125
6 0.66992 2.2192 0.6 3 0.71812 0.5
7 0.65294 2.0177 0.4 5 0.57074 4
8 0.24765 1.7567 0.6 2 0.63567 2
9 0.75905 1.6631 0.3 3 0.38569 8
10 0.13251 2.2569 0.5 4 0.22224 4
11 0.78211 2.9592 0.6 5 0.95466 2
12 0.25638 2.8824 0.3 5 0.24434 8

Table 1: Parameter settings used to validate the accuracy of the mean field model.

Case N = 40 (95% conf.) N = 80 (95% conf.) N = 160 (95% conf.)
1 1.321e−2 (±5.901e−5) 6.439e−3 (±3.939e−5) 3.225e−3 (±3.013e−5)
2 5.484e−3 (±3.682e−5) 2.646e−3 (±2.505e−5) 1.285e−3 (±1.546e−5)
3 2.229e−2 (±5.484e−5) 1.060e−2 (±3.433e−5) 5.277e−3 (±2.656e−5)
4 2.290e−2 (±4.309e−5) 1.078e−2 (±3.063e−5) 5.239e−3 (±2.331e−5)
5 7.873e−4 (±3.726e−5) 3.566e−4 (±2.547e−5) 1.819e−4 (±1.989e−5)
6 3.038e−2 (±6.501e−5) 1.415e−2 (±4.541e−5) 6.720e−3 (±2.900e−5)
7 5.163e−2 (±7.688e−4) 2.260e−2 (±7.466e−4) 1.114e−2 (±3.122e−4)
8 3.935e−3 (±4.969e−4) 1.535e−3 (±3.217e−4) 9.654e−4 (±3.264e−4)
9 9.580e−2 (±2.509e−3) 4.394e−2 (±1.804e−3) 1.937e−2 (±1.028e−3)
10 8.466e−3 (±1.027e−3) 3.486e−3 (±7.692e−4) 2.000e−3 (±4.353e−4)
11 1.631e−1 (±2.260e−3) 7.475e−2 (±1.102e−3) 3.594e−2 (±5.970e−4)
12 1.630e−2 (±1.228e−3) 8.366e−3 (±7.925e−4) 3.983e−3 (±6.873e−4)

Case N = 320 (95% conf.) N = 640 (95% conf.) N = 1280 (95% conf.)
1 1.601e−3 (±1.742e−5) 8.157e−4 (±1.547e−5) 4.197e−4 (±1.081e−5)
2 6.338e−4 (±1.225e−5) 3.003e−4 (±9.128e−6) 1.477e−4 (±7.971e−6)
3 2.709e−3 (±1.710e−5) 1.429e−3 (±1.191e−5) 8.141e−4 (±1.066e−5)
4 2.587e−3 (±1.304e−5) 1.290e−3 (±9.276e−6) 6.288e−4 (±1.115e−5)
5 9.046e−5 (±1.415e−5) 3.764e−5 (±1.043e−5) 1.935e−5 (±5.237e−6)
6 3.109e−3 (±1.994e−5) 1.387e−3 (±1.329e−5) 5.081e−4 (±1.880e−5)
7 5.248e−3 (±2.872e−4) 2.691e−3 (±1.914e−4) 1.332e−3 (±1.746e−4)
8 3.784e−4 (±2.446e−4) 2.082e−4 (±1.665e−4) 1.151e−4 (±1.212e−4)
9 9.372e−3 (±6.956e−4) 5.681e−3 (±3.789e−4) 2.372e−3 (±3.195e−4)
10 9.152e−4 (±4.019e−4) 5.060e−4 (±2.877e−4) 2.400e−4 (±1.696e−4)
11 1.807e−2 (±4.032e−4) 1.012e−2 (±2.764e−4) 6.137e−3 (±2.767e−4)
12 2.280e−3 (±3.967e−4) 1.166e−3 (±2.814e−4) 4.118e−4 (±1.546e−4)

Table 2: Relative error of the mean field model wrt simulation.

to the results in [14], the expected response time predicted by the mean field model
is 1/N-accurate, which means that multiplying N by 2 should approximately re-
duce the relative error by a factor 2. The first six scenarios considered have Erlang
distributed job sizes, the last six scenarios have hyperexponentially distributed
job sizes where the fraction f = 1/2 (for f 6= 1/2 similar results were obtained).
Table 2 shows the relative error of the mean field model and the associated 95%
confidence interval of the simulation runs. In all cases the accuracy improves with
N and the relative error is below or close to 10−2 for N ≥ 160. We note that for
small N the relative error can be further reduced by relying on the refined mean
field approximation introduced in [15].
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Fig. 2: Mean response time as a function of p for γ1 = γ2 = 1/2, µr = 2, f = 1/2
and C2

X = 4.

5 Numerical results for randomized dispatching

We mainly focus on the case with K = 2 types of servers and discuss settings with
more than two types of servers in subsection 5.4.

5.1 Optimal p1

In case of exponential job sizes we know that the mean response time is a convex
function of p1 as stated in Section 2. Various numerical experiments (see Figure 2
for one specific example) suggest that the mean response time is still convex in p1
in case of non-exponential service times. Note that as λ approaches 1, the system
is only stable in a very narrow region around p = γ1µ1 (which corresponds to a
simple proportional assignment). Let popt be the value of p1 for which the resulting
mean response time is minimized. We now study the impact of the various system
parameters on popt. In Section 5.2 we look at the relative increase in the mean
response time when a suboptimal p1 is used.

Arrival rate λ: As illustrated in Figure 3 popt typically decreases as a function of λ
(the squares mark the λ value for which the mean response time equals 1). This is
expected as fewer jobs in the system implies that one can benefit from sending a
larger fraction of the jobs to the fast servers. There are however exceptions, when
the job sizes are highly variable and the number of choices is large (e.g., C2

X = 8
and d = 20) the optimal p1 value may increase as a function of λ at high loads.
For λ sufficiently small only the fast servers receive jobs and as λ→ 1 the load on
both server types must be balanced to guarantee stability, i.e., p1 and p2 are such
that λp1

γ1µ1
= λp2

γ2µ2
.

Job size variability C2
X : When looking at the impact of the job size variability C2

X

in Figure 3, we note that popt drops below 1 at lower rates λ when C2
X increases.

This can be understood by noting that if all the jobs go to the fast servers and λ
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Fig. 3: Optimal choice of p1 as a function of λ for γ1 = 0.5, µr = 2, f = 1/2 and
different values of C2

X
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Fig. 4: Optimal popt as a function of λ for γ1 = γ2 = 1/2.

becomes large enough, some of the jobs start to experience queueing delays. When
the job sizes are highly variable, there is a bigger risk of experiencing a long delay,
thus it is advisable to start making use of the slow servers at smaller λ values.

For some parameter settings we see that more variable job sizes result in a
lower popt for any arrival rate λ. This means that when job sizes become more
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Fig. 5: Optimal choice of p1 as a function of λ for γ1 = 0.5, f = 1/2, C2
X = 1 and

different values of µr = µ1/µ2.

variable, it is beneficial to reduce the fraction of the jobs assigned to the faster
servers when minimizing mean response times. This rule is however not valid in
all cases: in Figure 3b, where d = 5 and µr = 2, we see that popt for C2

X = 8 is
larger than the corresponding value for C2

X = 4 for some λ ranges. The cause lies
in the fact that the curves of popt start to oscillate notably for larger d values.
These oscillations (that are also visible in Figure 2b) are probably caused by the
fact that for larger d the tail probabilities of the queue length distribution decay
very rapidly and depending on the precise value of λ a minor change in λ may
cause a more significant change in the tail probabilities of either the fast or slow
servers.

Number of choices d: Another observation from Figure 3 is that higher choices for
d tend to increase the optimal value of p1. When d increases the rate λ at which
p1 drops below 1 always seems to increase. This can be understood by noting that
increasing d implies that the likeliness of finding an idle fast server when all the jobs
are assigned to the fast servers increases. Thus the risk of experiencing a queueing
delay decreases with d and therefore assigning all the jobs to the fast servers
remains optimal for larger λ values. The fact that popt increases for increasing d

is generally valid for small to medium loads, but does not remain valid for higher
loads. For instance it is easily verified that when λ = 0.8 the popt for d = 2 equals
0.7024, while for d = 10 it equals 0.6982 when the job sizes are exponentially
distributed.

Higher moments f : Figure 4 illustrates that the first two moments of the job size
distribution do not suffice to determine the optimal split probability popt, meaning
there is no insensitivity with respect to the moments beyond the second moment
and optimizing popt in practice is therefore hard to achieve. The figure also indi-
cates that the optimal fraction of jobs assigned to the fast servers is lower when a
larger fraction of the workload consists of long jobs. This is intuitively clear: if a
larger fraction 1 − f of the load is contributed by the long jobs, there is a bigger
risk for short jobs to be stuck behind a long job and therefore it is better to make
more use of the slow servers.
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Fig. 6: Optimal mean response times as a function of λ for γ1 = 0.5 and f = 1/2
for different values of C2

X .

System heterogeneity µr: We expect that popt tends to increase as the system het-
erogeneity µr = µ1/µ2 increases. Figure 5 confirms this intuition for the case with
d = 10 and 20 choices when γ = f = 1/2 and C2

X = 1.

5.2 Accuracy of simple suboptimal policies

We start by depicting the mean response time for various settings of d, µr and
C2
X in Figure 6 when using the optimal splitting probability popt. As expected the

mean response time increases with the job size variability, decreases as a function
of d and µr, and drops below 1 for sufficiently low loads as the mean service time
of the fast servers is less than one.

More importantly, one may wonder how much gain in the mean response time
one achieves by optimizing p1. For this purpose we now study the relative gain in
the mean response time of the optimal p1 with the following three less complex
assignment policies:

– Proportional: in this case a job is assigned to class k with probability

pk =
γkµk∑K
j=1 γjµj

,
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Fig. 7: Ratio mrtprop/mrtopt as a function of λ with µr = 2.

such that each of the K classes experiences the same load.
– Random within a class: in this case we use the optimized probability pk by

assuming that a random server is selected within a class and job lengths are
exponential. Hence, pk is given by the explicit formula in [3,13], which can be
written as

pk =
1

λ

γkµk∑K
j=1 γjµj

+ (1− 1

λ
)

γk
√
µk∑K

j=1 γj
√
µj
, (8)

where pk is set to one (zero) when the above formula results in a pk larger than
one (less than zero). Note as λ approaches one, these probabilities converge to
the proportional scheme.

– Exponential job size: in this case we optimze p1 by solving the convex opti-
mization problem of (1). Hence we optimize assuming that the job lengths are
exponential.

Note that for all three policies the probabilities p1, . . . , pK only depend on the
server speeds and the mean job size (which equals one), either by means of an
explicit formula or via a simple convex optimization problem. When K = 2 we
denote p1 for the above three policies as pprop, prand and pexp. Their corresponding
mean response times are denoted as mrtprop,mrtrand and mrtexp, respectively.
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Fig. 8: Ratio mrtrand/mrtopt as a function of λ with µr = 2.

pprop versus popt: Figure 7 depicts the relative increase in the mean response time
if we replace the optimal policy (i.e., p1 value) with a simple proportional as-
signment for µr = 2. Similar results were obtained for other choices of µr. While
the proportional scheme is very simple, it results in poor performance for low to
medium loads and this loss in performance compared to the optimal policy grows
as the number of choices d increases (see Figure 7b versus 7c). This is as expected
as the optimal strategy under low load exists in sending all the jobs to the fast
servers, while the proportional scheme balances the load among the servers.

prand versus popt: Figure 8 depicts the relative increase in the mean response time
when relying on (8) instead of using the optimal value for pk. For small λ both
policies (that is, the optimal and the random within a class policy) assign all the
jobs to the fast servers. For somewhat higher arrival rates (at about 0.2 in Figure
8) the random within a class policy starts utilizing the slower servers as well, while
the optimal strategy continues to assign all the jobs to the fast servers. Indeed,
when all the jobs are assigned to the fast servers, the risk of assigning a job to a
busy server increases as d decreases, thus the smaller d the sooner one needs to
utilize the slow servers. Figure 8 illustrates that assuming a random assignment
(i.e., d = 1) results in a performance loss of up to 15% that tends to increase
with the number of choices d and that decreases when the job sizes become more
variable. The latter can be understood by looking at Figure 3 which indicates that
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Fig. 9: Ratio mrtexp/mrtopt as a function of λ with µr = 2.

under low to medium loads, popt increases as a function of d and decreases as
a function of C2

X . Therefore popt and prand are more alike for small d and large
C2
X . We note that in the limit as λ goes to one, both policies use proportional

assignment and thus perform alike.

When comparing the relative errors of the proportional scheme with the ran-
dom within a class policy (compare Figures 7 and 8), we see that the latter results
in lower relative errors. We should however note that the proportional scheme is
easier to implement as it does require an estimation of the arrival rate λ.

pexp versus popt: Figure 9 studies the relative increase in the mean response time
when we only neglect the higher moments of the job size distribution when op-
timizing p1. When d = 5 this results in errors below 5% and the error is only
significant in a fairly small load region. Thus for large enough d, taking the job
size variability into account is not paramount (this was confirmed for other µr
values). When d = 2 the relative increase does surge up to 12% in case of highly
variable job sizes when λ is close to 0.35. The load at which the relative error is
the highest corresponds to the largest arrival rate λ for which pexp still equals 1.
Thus, for highly variable job sizes the region where the relative error surges up
corresponds to the settings where popt drops below 1, but pexp remains 1.

Note that solving the convex optimization problem (1) or computing (8) both
requires one to estimate the arrival rate λ. When comparing Figures 8 and 9, it
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Fig. 10: Ratio mrtf/mrtopt as a function of λ.

is clear that solving the convex optimization problem (which can be done in a
fraction of a second) is far more effective than relying on (8) for d = 5, i.e., larger
d values. Indeed, the convex optimization problem takes the value of d into account
and therefore causes smaller errors for d large. A somewhat unexpected result is
that (8) does result in smaller relative error when d = 2, in case of medium loads
and highly variable job sizes. The explanation is that when computing prand we
make two errors that mostly cancel each other in this case: we assume that d = 1
and that jobs have exponential sizes. For pexp only the latter error is present.

5.3 Impact of the 3rd and higher moments of the job size variability

In the previous section we studied the impact of neglecting the job size variability
when optimizing p by comparing the performance gain obtained by using popt
instead of pexp. In this section we look at the impact of the higher moments
(3rd and beyond). To investigate their impact we consider a hyperexponential
distribution as defined in Section 4.3, where we matched the mean EX = 1, the
squared coefficient of variation C2

X and the fraction f of the workload contributed
by the short jobs. Note that changing f influences the higher moments of the job
size distribution, but not the mean or variance.

To assess the impact of the higher moments we therefore consider job size
distributions with f 6= 1/2 and compare the mean response time in a system with
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Fig. 11: Relative increase in mean response time when a suboptimal policy is used
as a function of the number K of server types for λ = 0.75, d = 2 and µ1/µK = 2.

p1 optimized for f = 1/2, denoted as pf , with the optimal p1. Figure 10 depicts
the relative gain obtained by using the optimal p1 instead of pf when C2

X = 8
(smaller C2

X values result in even smaller relative gains) for f = 0.1 to 0.4. While
the shape of these curves is very unpredictable and irregular, it is also clear that
the relative gain is very minor and less than 2.5% in all cases considered. This
indicates that there is little use in taking these higher moments into account when
optimizing p1 (which is good as they are harder to estimate in practice compared
to the mean or variance).

5.4 Beyond 2 server types

In the previous subsections we assumed that the system consists of two types of
servers only. In this section we illustrate that as the number of server types K
increases, the differences between the mean response time of the simple policies
considered in subsection 5.2 and the optimal choice of p1, . . . , pK decreases. In
other words, the scenario with K = 2 in a way provides an upper bound on how
much one gains by optimizing the pk probabilities.

In Figure 11 we set d = 2, λ = 0.75, γk = 1/K and ordered the server types
such that µ1 > µ2 > . . . µK with µ1/µK = 2 and µk+1 − µk = µk − µk−1 for
k = 2, . . . ,K − 1. We depict the increase in the mean job response time when
the proportional and exponential job size policies are used instead of the optimal
pk values with both low and high job size variability (with f = 1/2). The results
confirm our intuition that this increase tends to diminish as more server types K
are introduced.

6 Analysis for size based dispatching

In this section we indicate how to determine the mean response time in case the
class k is selected based on the job size x of an incoming job when the number
of servers becomes large. Given the thresholds 0 = T0 < T1 < . . . < TK = ∞, the
system is equivalent to a set of K homogeneous POD LB systems. The k-th system
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is equivalent to a system with arrival rate is λN/(γkµk) times P [Tk−1 ≤ X < Tk],
service rate 1 and the job size distribution, denoted as X(k), is a truncated phase-
type distribution, that is:

P [X(k) > x] =


1 x ≤ Tk−1,
α(eSx−eSTk )e

α(eSTk−1−eSTk )e
Tk−1 < x < Tk,

0 x ≥ Tk.

Due to the truncated job size distribution, we cannot define an ODE-based mean
field model as for the randomized dispatching policy in Section 4. Instead we make
use of the cavity method introduced in [7]. This method can be used to assess the
mean response time of the POD LB in a large homogeneous system with general
job size distributions and thus also for truncated phase-type distributions. The
accuracy of the cavity method for large finite systems was already numerically
validated in [7] and as such we do not include such a numerical validation here.
In the remainder of this section we outline how to compute the queue length
distribution for a homogeneous system with POD LB and truncated phase-type
jobs sizes. The mean response time of the heterogeneous system is then obtained
by applying this method K times combined with Little’s law.

The idea of the cavity method exists in starting with some set of arrival

rates (λ
(0)
0 , λ

(0)
1 , λ

(0)
2 , . . .) and to compute the queue length distribution Q(0) of

the Mn/G/1 queue, which is an M/G/1 queue with queue length dependent ar-

rival rates λ
(0)
n . Next, a new set of arrival rates (λ

(1)
0 , λ

(1)
1 , λ

(1)
2 , . . .) is computed

from Q(0) and Q(1) is computed as the queue length distribution of the Mn/G/1

queue with arrival rates (λ
(1)
0 , λ

(1)
1 , λ

(1)
2 , . . .). This procedure is repeated iteratively

until convergence takes place.

We now outline how to compute (λ
(n+1)
0 , λ

(n+1)
1 , λ

(n+1)
2 , . . .) from Q(n) and

Q(n) from (λ
(n)
0 , λ

(n)
1 , λ

(n)
2 , . . .). Assume that the total arrival rate in the homoge-

neous system is λ′N and the service time distribution is a truncated phase-type
distribution on [a, b] (for our k-th system we have λ′ = λ/(γkµk), a = Tk−1 and
b = Tk). Then,

λ
(n+1)
i = λ′d

d−1∑
k=0

(
d− 1

k

)
P [Q(n) = i]kP [Q(n) > i]d−1−k

k + 1
, (9)

which is the arrival rate to a tagged queue of length i if the d queue lengths are
independent and ties are broken uniformly at random.

The distribution Q(n) is simply the queue length distribution of an Mn/G/1

queue with queue length dependent arrival rates (λ
(n)
0 , λ

(n)
1 , λ

(n)
2 , . . .). Although

elegant expressions for the queue length distribution of an Mn/G/1 queue have
been derived before [10], these formulas tend to result in numerical issues. We
therefore present a different approach that exploits the fact that the service time
is a phase-type distribution truncated on [a, b].

We start our iterative scheme with λ
(0)
0 = λ′ and λ

(0)
i = 0 for i > 0. Therefore,

we have λ
(n)
i = 0 for i > n due to (9) and P (Q(n) > n + 1) = 0. To compute

P (Q(n) = i) for i ≤ n we first define an n+ 1 state Markov chain by observing the
Mn/G/1 queue at service completion times. The main challenge is to determine
the probability Qi,j that the queue length changes from i at the start of service
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to j − 1 when the service is completed. This requires some care as the arrival
rate depends on the queue length and is therefore not necessarily fixed during the
service of a single customer.

Define the bidiagonal matrix M as

M =


−λ(n)1 λ

(n)
1

−λ(n)2 λ
(n)
2

. . .
. . .

−λ(n)n λ
(n)
n

0

 ,

then Wi,j is given by entry (i, j) of the matrix W with

W =
(α⊗ I)

∫ b
a

(eSs ⊗ eMs)ds(−Se⊗ I)
α(eSa − eSb)e

=
(α⊗ I)(S ⊕M)−1(e(S⊕M)b − e(S⊕M)a)(−Se⊗ I)

α(eSa − eSb)e
,

where ⊗ is the Kronecker product and S ⊕ M = S ⊗ I + I ⊗ M . Using these
probabilities Wi,j we can easily compute the queue length distribution at service

completion times. To determine the queue length distribution Q(n) at a random
point in time, it now suffices to compute the mean time between two service
completions and Xj,i, which is the expected amount of time that the queue length
equals i during the service of a job that started service when the queue length
equaled j ≥ 1 . Let X be the matrix with entries Xj,i, then

X =

∫ ∞
0

P ( service time > s)eMsds

=

∫ a

0

eMsds+

∫ b

a

α(eSs − eSb)e
α(eSa − eSb)e

eMsds.

The latter integral can be expressed as

(α⊗ I)
∫ b

a

(eSs − eSb)⊗ eMs

α(eSa − eSb)e
ds(e× I),

which simplifies to

(α⊗ I)(S ⊕M)−1(e(S⊕M)b − e(S⊕M)a)(e⊗ I)
α(eSa − eSb)e

− αeSbe

α(eSa − eSb)e

∫ b

a

eMsds.

7 Numerical results for size based dispatching

We focus on the case with K = 2 server types and denote T1 as T . Thus, all jobs
with a size x < T go to one class and the remaining jobs go to the other class. We
refer to jobs with a size below T as short jobs and to jobs with a size that exceeds
T as long jobs. There are two strategies of selecting the class:

– Long jobs to fast servers, short jobs to slow servers
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Fig. 12: Mean response time as a function of the job size threshold for γ1 = γ2 =
1/2, µr = 2 and C2

X = 4.
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Fig. 13: Optimal mean response times in function of λ for both job size interval
assignment approaches for γ1 = γ2 = 1/2 and d = 2.

– Short jobs to fast servers, long jobs to slow servers

As can be seen in Figure 12, for both strategies there appears to be a unique value
for T for which the mean response time is minimal (and not all choices of T result
in a stable system). Both strategies do not necessarily yield the same optimal mean
response time. In fact, for the job size distributions considered in this paper, it
turns out that it is typically more efficient to send the long jobs to the fast servers
as illustrated in Figure 13 (mrta is the optimal mean response time achieved by
sending long jobs to fast servers, mrtb for sending short jobs to fast servers). In
the remainder of this section we therefore limit ourselves to the first strategy.

7.1 Optimal threshold T

In this section we look at the impact of various system parameters on the optimal
threshold value T using Figures 14 and 15.
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Fig. 14: Optimal threshold as a function of the arrival rate λ for γ1 = γ2 = 1/2,
µr = 2.

Arrival rate λ: For low loads, more jobs should be sent to the faster servers, re-
sulting in a low optimal threshold T . For low and high loads the optimal threshold
is not very sensitive to the arrival rate. As λ approaches 1, the optimal threshold
T is such that both server types have the same load.

Job size variability C2
X : For higher job size variability, the optimal threshold T

starts to increase at lower loads and increases more slowly at higher loads. This
is expected as with more variable job sizes the risk of being stuck behind a long
job increases and therefore it is preferential to send more short jobs to the slower
servers, where there is no risk of being stuck behind a long job.

Number of choices d: For a higher number of choices d, the optimal threshold T is
less sensitive to the job size variability. Further, the optimal threshold stays close
to zero for a larger range of arrival rates when d increases. This is intuitively clear
as a higher number of choices increases the probability of selecting an idle server.

System heterogeneity µr: Figure 15 shows that a higher ratio µr leads to a lower
optimal threshold, which is to be expected, as this means that the faster servers
can handle more jobs in less time.

7.2 Accuracy of simple suboptimal strategies

In this section we study the gain of the optimal threshold T (which requires some
effort to compute) with a few basic suboptimal strategies.

– Proportional: In this case T is set such that there is an equal load on both
server types. This heuristic was also proposed in [18,9].

– Load dependent threshold: In this case, we determine the load on the fast
servers ρ1 using a parameter ρm with the following function:

ρ1(ρm, λ, µ1, γ1) =

{
λ

µ1γ1
: ρm > λ

µ1γ1

1− (1−λ)(1−ρm)
1−ρmµ1γ1

: ρm ≤ λ
µ1γ1
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Fig. 15: Optimal threshold as a function of λ for γ1 = γ2 = 1/2, C2
X = 2 and

different values of µr = µ1/µ2.

Input: λ, γ, µ, C2
X , d

Output: ρm
1 ρm = 0;
2 λ = 0.01; while λ < 1 do

3 ρm = λ−0.01
µ1γ1

;

4 mrtρm = mrt(λ, µr, C2
X , d, Tρm );

5 mrt0 = mrt(λ, µr, C2
X , d, 0);

6 if mrt0 > mrtρm then
7 break;
8 end
9 λ = λ+ 0.01

10 end

Algorithm 1: Algorithm to set ρm

With this heuristic all traffic is sent to the fast servers if the resulting load
on these servers remains below ρm. For higher loads, the load on the fast
servers increases linearly (towards proportional load for λ→ 1). The resulting
ρ1 is subsequently used to determine the threshold Tρm of the system. Fig-
ure 17 illustrates the value of ρ1 and its respective threshold under this scheme.

A reasonable value for this parameter ρm can be computed using Algorithm 1.
This algorithm finds the lowest load (that is a multiple of 0.01) such that it is
no longer better to simply send all jobs to the fast servers.

Tprop versus Topt: In Figure 18 we can see that the proportional strategy gives
poor results for low loads, as a more proportional division of jobs is best suited
for highly loaded systems (to avoid unstable systems). For lower values of d the
performance loss of the proportional heuristic at low loads clearly reduces. This
performance loss is also less pronounced for more variable job sizes.

Tρm versus Topt: Figure 19 indicates that the load dependent heuristic performs
better than the proportional one, especially at low loads. It is however somewhat
more complex as we need to set the parameter ρm (which was done using Algorithm
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Fig. 16: Optimal mean response time as a function of the arrival rate λ for γ1 =
γ2 = 1/2.

1). When compared to the optimal choice of T , this heuristic increases the mean
response time by less than 5% when µr = 2 for the job size distributions under
consideration.

7.3 Randomized versus size based dispatching

In this section we compare the mean response time of the randomized and size
based dispatching. The size based dispatching policy requires knowledge of the job
lengths, but should result in a better mean response time. The main objective is
to get some insight on the performance gain that can be obtained if such job size
information is available.

In Figure 20 we plot the mean response time of the optimal randomized and
size based policy and the two size based heuristics, where the parameter ρm was
set using Algorithm 1. As expected the optimal size based strategy outperforms
the optimal randomized strategy and the margin of improvement increases as the
load increases. The load dependent heuristic is also very close to the optimal size
based strategy. More surprisingly, even the simple proportional size based heuristic
outperforms optimal randomized dispatching, except for small loads.
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Fig. 17: Load on fast servers and job size threshold in function of ρm for γ1 = γ2 =
1/2, µr = 2 and C2

X = 4.
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Fig. 18: Ratio mrtprop/mrtopt as a function of λ with µr = 2

Figures 21 and 22 show the relative difference between the optimal randomized
and optimal size based strategies. For higher λ or job size variability, the mean re-
sponse times can be lowered significantly by a size based load balancing approach.
An interesting observation is that the relative difference between both approaches
becomes less pronounced as the system becomes more heterogeneous. Intuitively
this makes sense as in a system where the fast servers are much faster than the
slow ones, most of the jobs should go to the fast servers irrespective of whether
randomized or size based dispatching is used.

8 Conclusion

A class of load balancing schemes for a heterogeneous set of FCFS servers is
analyzed. The servers are partitioned in K classes of servers: within each class
all servers are identical, while servers belonging to different classes only differ in
their server speed. Jobs are assigned to a server class either via randomization or
based on their size x. A power-of-d choices rule is used to select a server within
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Fig. 19: Ratio mrtρm/mrtopt as a function of λ with d = 2
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(a) µr = 2, C2
X = 8, d = 2
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(b) µr = 2, C2
X = 8, d = 5
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(c) µr = 3, C2
X = 4, d = 2
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Fig. 20: Comparison of different strategies: mean response times in function of λ

the selected class. We developed an ODE-based mean field model to estimate the
mean job response time in a system with many servers in case of randomized
dispatching and used the cavity method to assess the mean response time for size
based dispatching.

While the impact of the different system parameters (like the job size vari-
ability or number of choices d) on the optimal randomization probabilities is not
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Fig. 21: Comparison of opt. p vs opt. threshold: ratio of optimal mean response
times in function of λ
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Fig. 22: Comparison of opt. p vs opt. threshold: ratio of optimal mean response
times in function of µr for λ = 0.8

always easy to predict (due to oscillations in some of the curves), the main insight
provided is that only taking the mean job sizes into account when determining
the randomization probabilities (via convex optimization) often results in a very
limited loss in performance compared to the optimal probabilities. For size based
dispatching we showed that a simple load dependent heuristic often achieves a
mean response time that is close to optimal.

Finally, we illustrated that size based dispatching outperforms optimal ran-
domized dispatching even if we use a simple heuristic to estimate the threshold
value.
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