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On the Asymptotic Insensitivity of the Supermarket Model
in Processor Sharing Systems

G. KIELANSKI AND B. VAN HOUDT
The supermarket model is a popular load balancing model where each incoming job is assigned to a server

with the least number of jobs among d randomly selected servers. Several authors have shown that the large

scale limit in case of processor sharing servers has a unique insensitive fixed point, which naturally leads to the

belief that the queue length distribution in such a system is insensitive to the job size distribution as the number

of servers tends to infinity. Simulation results that support this belief have also been reported. However, global

attraction of the unique fixed point of the large scale limit was not proven except for exponential job sizes,

which is needed to formally prove asymptotic insensitivity. The difficulty lies in the fact that with processor

sharing servers, the limiting system is in general not monotone.

In this paper we focus on the class of hyperexponential distributions of order 2 and demonstrate that for

this class of distributions global attraction of the unique fixed point can still be established using monotonicity

by picking a suitable state space and partial order. This allows us to formally show that we have asymptotic

insensitivity within this class of job size distributions. We further demonstrate that our result can be leveraged

to prove asymptotic insensitivity within this class of distributions for other load balancing systems.
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1 INTRODUCTION
The supermarket model refers to a popular load balancing model consisting of N homogeneous

servers and Poisson arrivals with rate λN , where for each incoming job d servers are selected at

random and the job joins the queue with the fewest jobs. In the seminal papers [14, 19] it was

shown that when job sizes are exponential with mean 1 the probability of having k or more jobs in

a server converges to λ(d
k−1)/(d−1)

as the number of servers N tends to infinity. Hence the queue

length decays doubly exponential as soon as d > 1, demonstrating the power of having d choices.

While the authors considered First-Come-First-Served (FCFS) servers, the result also applies to

processor sharing (PS) servers as both systems are equivalent when the job sizes are exponential.

A modularized program to study the supermarket model with non-exponential job sizes was

proposed in [1] for both FCFS and PS servers. The program relies on an ansatz that asserts that, for a

randomized load balancing scheme in equilibrium, any fixed number of queues become independent

of one another as the number of servers tends to infinity. Using this ansatz hypothesis the limiting

steady-state queue length distribution and other performance measures of interest can be computed

by studying the queue at the cavity (e.g., [8, 9]).

For the supermarket model with processor sharing the steady-state queue length distribution of

the queue at the cavity is that of an M/G/1/PS queue with arrival rates that depend on the queue
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length. As the queue length distribution of such a queue is known to be insensitive to the job size

distribution (meaning only the mean job size matters) [3], this naturally leads to the conjecture

that the queue length distribution becomes insensitive to the job size distribution as the number

of servers tends to infinity, which we refer to as asymptotic insensitivity. In [1] the authors noted

that for the supermarket model with a finite fixed number of servers N with PS service, the queue

length distribution is not insensitive, meaning only as N tends to infinity the sensitivity vanishes. In

addition, the authors showed that the cavity map that is used to compute the limiting steady-state

queue length distribution in case of PS servers has a unique fixed point that corresponds to the same

distribution as in the exponential case, yielding further support for the conjecture of asymptotic

insensitivity. While the ansatz was proven in [2, 15] for various load balancing policies and proving

the ansatz for the supermarket model with PS servers would settle the conjecture, it is still an open

problem.

In [17] the authors also considered the supermarket model with PS service and general service

times. The authors used measure-valued processes and martingale techniques to show that the limit

of the empirical distributions satisfies a set of partial differential equations (PDEs). These PDEs

correspond to the transient behavior of an M/G/1/PS queue with a queue length and time dependent
arrival rate. The authors further showed that this set of PDEs has a unique fixed point, which is

in agreement with the result in [1]. However, as stated after listing their main contributions, in

order to prove asymptotic insensitivity of the limit of the stationary measures, global attraction of

the fixed point must be proven. Instead of providing such a proof, the authors present simulation

results supporting asymptotic insensitivity.

A major challenge in proving asymptotic insensitivity for the the supermarket model with PS

servers lies in overcoming the apparent lack of monotonicity in such systems. In this paper we

show that monotonicity arguments can still be leveraged if we restrict ourselves to the class of

hyperexponential distributions of order 2. More specifically, we prove that the limiting steady-state

queue length distribution of the supermarket model with PS servers and order 2 hyperexponential

job sizes is the same as the limiting distribution for exponential job sizes. In other words we prove

asymptotic insensitivity of the limiting steady-state queue length distribution within the class of
hyperexponential distributions of order 2. The class of hyperexponential distributions of order 2 is
often used in performance modeling as it can be regarded as a mixture of long and short jobs and

can be used to match any squared coefficient of variation (SCV) larger than one.

It is worth noting that convergence of the steady state measures has been established in some

specific cases even for systems that are not monotone. For instance, in [12] it is shown that various

load balancing policies for FCFS servers achieve vanishing delays in the heavy traffic regime

when the load equals 1 − N −α
, for 0 < α < 0.5, when the job sizes have general order-2 Coxian

distributions. The supermarket model is one of the policies considered in [12], but in this case d
scales asO(N α

log(N )), whereas in this paper d is a constant independent of N , which implies that

delays do not vanish, and servers use PS instead of FCFS.

The approach taken in this paper is as follows. For job sizes with an order 2 hyperexponential

distribution, the sample paths of the stochastic process of the supermarket model consisting of N
servers converge to the solution of a set of ordinary differential equations (ODEs) that is shown

to have a unique fixed point. The main step to establish asymptotic insensitivity then exists in

showing that the fixed point of the set of ODEs is a global attractor. We show that the set of ODEs

is monotone by using a Coxian representation of the hyperexponential distribution and defining a

suitable state space and partial order, from which global attraction follows without much effort.

The work in this paper is in this regard somewhat similar to [16], where a Coxian representation

and a suitable state space and partial order was also used to prove global attraction of some load

balancing systems. However the systems considered in [16] are restricted to FCFS servers, which
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simplifies the set of ODEs and especially the proof that the set of ODEs is monotone. Moreover,

the result in [16] applies to hyperexponential distributions of any order, while for PS servers the

approach appears to be limited to order 2 distributions (see Section 7). Similar to [16], we also

present our global attraction result in such a manner that it can be used to prove global attraction

for models with PS servers other than the supermarket model and we demonstrate this for the

traditional push strategy (see Section 8). To avoid some technical issues, we assume that the buffer

size at each server is finite.

The main contributions of the paper are as follows:

• We prove asymptotic insensitivity of the limiting steady-state queue length distribution

within the class of hyperexponential distributions of order 2 for the supermarket model with

PS servers.

• We present our global attraction result used to prove asymptotic insensitivity in such a

manner that it may also be leveraged for other load balancing policies with PS servers and

demonstrate this using the traditional push algorithm.

The paper is structured as follows. In Section 2 we discuss the model under consideration and

present the Coxian representation. In Section 3 we introduce the set of ODEs describing the mean

field limit, while the state space and partial order are presented in Section 4. Our global attraction

result is stated and proven in Section 5. In Section 6 we show that the assumptions of our global

attraction result are satisfied for the supermarket model and prove that the set of ODEs has a unique

fixed point that corresponds to the same queue length distribution as in the exponential case. The

asymptotic insensitivity result is presented in Section 7, while in Section 8 we demonstrate that

our results are not limited to the supermarket model. Finally conclusions are drawn in Section 9.

2 MODEL DESCRIPTION
We focus on the supermarket model, also known as the JSQ(d) load balancing policy, with processor

sharing servers. In this model, arrivals occur according to a Poisson process with rate λN , we have

a set of N servers that use processor sharing and each incoming job is immediately assigned to a

server by selecting a server with the least number of jobs among a set of d random servers (with

ties being broken at random). We assume the processing speed of a server equals 1 and when n
jobs are present in a server, each job receives an equal share 1/n of the processing speed of the

server. We further assume each server has a finite buffer of size B, meaning an incoming job is lost

if d servers with a full buffer are selected. The finiteness of the buffer allows us to avoid certain

technical issues and is not an uncommon assumption in mean field modeling [6, 7]. Further in a

real system all buffers are finite and there is hardly any difference between having a huge finite

buffer or an infinite buffer (as long as the system is stable).

We consider order 2 hyperexponential job sizes with a mean equal to 1, meaning λ < 1 suffices

for the system to be stable. More specifically, with some probability p̃ jobs have an exponential

size with mean 1/µ1 and with probability 1 − p̃ jobs have an exponential size with mean 1/µ2 with
µ1 > µ2, such that p̃/µ1 + (1 − p̃)/µ2 = 1. While the standard phase-type representation (α̃, S̃) of a
hyperexponential distribution is given by α̃ = (p̃, 1 − p̃) and

S̃ =

[
−µ1 0

0 −µ2

]
,

hyperexponential distributions also have a Coxian representation, see [16, Proposition 1], which in

case of 2 phases corresponds to a representation (α, S) with α = (1, 0) and

S =

[
−µ1 p1µ1
0 −µ2

]
,
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where p1 = (1 − p̃)(1 − µ2/µ1) and (1 − p1)µ1 > µ2. In fact one can readily check (by computing

the Laplace Stieljes transform) that any distribution with an order 2 Coxian representation and

(1 − p1)µ1 > µ2, is a hyperexponential distribution with p̃ = 1 − p1µ1/(µ1 − µ2). For further use we
denote ν1 = µ1(1 − p1) and ν2 = µ2. To establish monotonicity we formulate the mean field limit

using the Coxian representation (α, S).
The main challenge to prove global attraction using monotonicity arguments, is to pick a set of

variables that capture the system state such that the set of ODEs that describes the dynamics of the

mean field model in terms of these variables is monotone with respect to some partial order on the

associated state space. When the job sizes are exponential, [19] showed that the set of ODEs given

by

d

dt
hj (t) = λ(hdj−1(t) − hdj (t)) − (hj (t) − hj+1(t)),

where the variables hj (t) represent the fraction of the servers with j or more jobs at time t is
monotone with respect to the pointwise partial order.

When the servers are FCFS servers as in [16] and the job sizes are hyperexponential of order 2,

then it suffices to use a set of variables that represent the fraction of servers with j or more jobs

(denoted as hj ,1 in [16]) and a set of variables for the fraction of servers with j or more jobs for

which the server is in phase 2 (denoted as hj ,2 in [16]). In this case a stronger partial order ≤C is

required to get a monotone system. This order is such that h ≤C ˜h if

hj1,1 − hj1,2 + hj2,2 ≤
˜hj1,1 −

˜hj1,2 +
˜hj2,2,

for all j1 ≥ j2 ≥ 1. Note that hj1,1 − hj1,2 + hj2,2 is the fraction of servers with j1 or more jobs in

service phase 1 (given by hj1,1 − hj1,2) plus the fraction of servers with j2 or more jobs in service

phase 2 (given by hj2,2).
For PS servers the system state is clearly more complex as we need to keep track of the number

of jobs in service phase 1 and phase 2. Therefore a more complex set of variables denoted as hi , j
is required, where hi , j represents the fraction of servers with at least i + j jobs of which at least j
jobs are in phase 2, for i, j ≥ 0. As a result, the partial order in case of PS servers is more involved

as is the set of ODEs that describe the evolution of the mean field limit. This implies that proving

monotonicity requires different arguments and is more challenging in case of PS servers. Indeed,

the monotonicity proof in case of FCFS servers given in [16, Proposition 6] is fairly straightforward

compared to the proof of Proposition 5.2 in this paper.

3 THE SET OF ODES
In this section we introduce the set of ODEs that describes the mean field limit when the servers

use processor sharing, have a finite buffer of size B and the order 2 hyperexponential job sizes are

represented in Coxian form. Let hi , j (t), for i, j ≥ 0, denote the fraction of servers with at least i + j
jobs of which at least j jobs are in service phase 2 at time t ≥ 0. We set h0,0(t) = 1 and hi , j (t) = 0, if

i + j > B. We define 1[P] to be 1 if the property P holds and 0 otherwise. To ease the presentation

we define

• yi , j (h(t)) = hi , j (t) − hi−1, j+1(t), for i > 0, j ≥ 0,

• y0, j (h(t)) = h0, j (t) − h0, j+1(t), for j ≥ 0,

• wi , j (h(t)) = yi , j (h(t)) − yi+1, j (h(t)), for i, j ≥ 0,

Note that yi , j (h(t)) represents the fraction of the queues with at least i + j jobs of which exactly

j jobs are in service phase 2 at time t ≥ 0, wi , j (h(t)) is the fraction of the queues with exactly i
jobs in service phase 1 and exactly j jobs in service phase 2 at time t ≥ 0. An illustration of these

ACM Trans. Web, Vol. ?, No. ?, Article ?. Publication date: October 2020.



?:5

h5,4

j1 2 3 4 5 9

5

4

2

1

0

i y4,2

w2,1

д4
2,3,6

j1 2 43

6

3

2

i

Fig. 1. Illustration of the variables hi , j ,yi , j (h) = hi , j − hi−1, j+1 and wi , j (h) = yi , j (h) − yi+1, j (h) (left) and

д
(j)
i1, ...,is

(h) (right).

variables can be seen in Figure 1(left). While the notation may appear a bit heavy, its usefulness

becomes apparent in the next section.

In order to understand the set of ODEs that is presented next, we make the following observations:

• Phase changes increase hi , j (t) if and only if such a phase change happens in a server with

exactly j − 1 jobs in phase 2 and exactly k + 1 jobs in phase 1, for k ≥ i . This happens at rate
p1µ1 times the fraction (k + 1)/(k + j) of jobs that are in phase 1. This explains the appearance

of the first sum in (1).

• Service completions decrease hi , j (t) if a service completion happens in a server with exactly

i + j jobs. These service completions occur at rate (ν1(i − k) + ν2(j + k))/(i + j) if i − k of the

i + j jobs are in phase 1, which explains the second sum in (1).

• Service completions also decrease hi , j (t) if a service completion of a job in phase 2 occurs in a

server with k + j > i + j jobs, of which exactly j jobs are in phase 2. These service completions

occur at rate ν2j/(j + k) when there are j + k jobs. This yields the third sum in (1).

Let fi , j (h(t)) capture the changes due to other events, such as arrivals (specified later on), then the

system of ODEs is given by:

d

dt
hi , j (t) = fi , j (h(t)) + 1[j ≥ 1]p1µ1

∞∑
k=i

wk+1, j−1(h(t))
k + 1

k + j

−

i∑
k=0

wi−k , j+k (h(t))
ν1(i − k) + ν2(j + k)

i + j
− ν2

∞∑
k=i+1

wk , j (h(t))
j

k + j
(1)

for all i, j ≥ 0 with (i, j) , (0, 0) and i + j ≤ B. Note thatwi , j (h(t)) = 0 whenever i + j > B.

Remark. In this paper we show that this set of ODEs has a unique fixed point that is a global
attractor using monotonicity arguments. The monotonicity is proven by separately showing that
fi , j (h(t)) is monotone and that all the remaining terms are monotone. This implies that our result can
also be used to prove global attraction for other systems of ODEs as long as they have the above form
and fi , j (h(t)) is monotone, as demonstrated in Section 8.
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4 STATE SPACE AND PARTIAL ORDER
We define the state space ΩB of the mean field model in terms of the variables hi , j as follows

ΩB =
{
(hi , j )i , j≥0, (i , j),(0,0)

��� 0 ≤ hi , j ≤ 1,hi , j = 0 for i + j > B,hi , j ≥ hi+1, j ,

hi , j ≥ 1[i ≥ 1]hi−1, j+1, (hi+1, j − hi , j+1) − (hi+2, j − hi+1, j+1) ≥ 0

}
. (2)

The last condition states thatwi+1, j ≥ 0, wherewi , j and yi , j is defined analogue towi , j (h(t)) and
yi , j (h(t)), respectively. Note that from the last two conditions we get

hi , j ≥ hi , j+1. (3)

We now define the variables дji1, ...,is (h) illustrated in Figure 1(right) that will be used to define

the partial order.

Definiton 4.1. For h ∈ ΩB , j ≥ 1, 0 ≤ s ≤ j and 0 = i0 < i1 < i2 < . . . < is , we set

дji1, ...,is (h) = h0, j +
s∑

k=1

yik , j−k (h).

Definiton 4.2 (Partial order ≤C on ΩB ). Let h, ˜h ∈ ΩB . We state that h ≤C ˜h if

дji1, ...,is (h) ≤ дji1, ...,is (
˜h) (4)

for all j ≥ 1, 0 ≤ s ≤ j and 0 = i0 < i1 < i2 < . . . < is .

Remark 4.3. By noting that дi+j
1,2, ...,i (h) = hi , j , (4) implies that hi , j ≤ ˜hi , j for all i, j.

Remark 4.4. To see why the pointwise partial order does not suffice, consider h, ˜h ∈ ΩB with

w0,1(h) = w2,0(h) = 1/2 andw1,1( ˜h) = w1,0( ˜h) = 1/2. In other words, in state h half of the servers

contain a single job in phase 2 and the other servers contain 2 jobs both in phase 1, while in state
˜h

half of the servers contain a single job in phase 1 and the remaining servers contain a phase 1 and

phase 2 job. It is easy to check that hi , j ≤ ˜hi , j for all i, j ≥ 0 (as h1,0 = ˜h1,0 = 1, h2,0 = ˜h2,0 = 1/2,

h0,1 = ˜h0,1 = 1/2, h1,1 = 0,
˜h1,1 = 1/2 and hi , j = ˜hi , j = 0 for all other i, j). Hence, h is smaller

than
˜h in the pointwise order. However, idle servers are created at rate ν2/2 in state h and at rate

ν1/2 in state
˜h. As ν1 > ν2, this implies that

˜h1,0 decreases faster than h1,0, meaning the system

is not monotone with respect to the pointwise partial order. Note that h �C ˜h as д1
2
(h) = 1 and

д1
2
( ˜h) = 1/2, so the fact that idle servers are created at a higher rate from state

˜h than state h does

not violate monotonicity with respect to the order ≤C .

Remark 4.5. Consider two sets A and Ã of N servers and let h and
˜h be their corresponding states

in ΩB . The intuition behind the order ≤C is that it should be such that h ≤C ˜h implies that there

exists a mappingm : A → Ã such that both the total number of jobs as well as the number of

jobs in phase two for any server a ∈ A is dominated by the corresponding quantities of server

m(a) ∈ Ã. The above example shows that this is not the case for the pointwise order.

For further use we remark that for j ≥ s ≥ 1:

дji1, ...,is (h) = д
j
i1, ...,is−1 (h) + yis , j−s (h) (5)

and

wis , j−s (h) = д
j
i1, ...,is (h) − дji1, ...,is−1,is+1(h), (6)

w0, j (h) = д
j (h) − дj+1

1
(h). (7)
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To simplify the notation we set дji1, ...,i j ,k (h) = дji1, ...,i j (h) if k ≥ 1, i.e., additional indices after

position j have no impact. Also note that for is > B − (j − s) we have

дji1, ...,is−1,is (h) = д
j
i1, ...,is−1 (h), (8)

as yis , j−s (h) = 0 for is + j − s > B. The next two Lemmas are used further on to prove monotonicity

of the set of ODEs in (1) with respect to the order ≤C .

Lemma 4.6. Let j, s, i1, . . . , is be as in Definition 4.2. Let c1, . . . , cs ∈ R and c0 = 0. We then have
s∑

k=1

wik , j−k (h)ck = д
j
i1, ...,is (h)cs −

s−1∑
k=0

дji1, ...,ik ,ik+1+1, ...,is+1(h)(ck+1 − ck ). (9)

Proof. First, repeatedly using (5) and (6) gives

s∑
k=1

wik , j−k (h) = д
j
i1, ...,is (h) − дji1+1, ...,is+1(h),

which yields that the left hand side of (9) can be rewritten as:

дji1, ...,is (h)c1 − дji1+1, ...,is+1(h)c1 +
s∑

k=2

wik , j−k (h)(ck − c1). (10)

Applying (5) and (6) implies that (10) is equivalent to

дji1, ...,is (h)c1 − дji1+1, ...,is+1(h)c1 −
s∑

k=2

(−дji1, ...,ik (h) + д
j
i1, ...,ik−1,ik+1

(h))(ck − c1)

= дji1, ...,is (h)c1 − дji1+1, ...,is+1(h)c1 −
s∑

k=2

(−дji1, ...,ik ,ik+1+1, ...,is+1(h) + д
j
i1, ...,ik−1,ik+1, ...,is+1

(h))(ck − c1).

(11)

Rearranging the terms in (11) (and noting that the sum can start in k = 1), we conclude that the left

hand side of (9) can be written as

дji1, ...,is (h)c1 − дji1+1, ...,is+1(h)c1 + д
j
i1, ...,is (h)(cs − c1) − 1[s ≥ 2]дji1,i2+1, ...,is+1(h)(c2 − c1)

−

s−1∑
k=2

дji1, ...,ik ,ik+1+1, ...,is+1(h)(ck+1 − ck ) = д
j
i1, ...,is (h)cs −

s−1∑
k=0

дji1, ...,ik ,ik+1+1, ...,is+1(h)(ck+1 − ck ).

(12)

This finishes the proof. �

Lemma 4.7. Let j, s, i1, . . . , is be as in Definition 4.2. If s > s̃ , then
is

is + j − s
>

is̃
is̃ + j − s̃

. (13)

Proof. We have that

ik+1
ik+1 + j − (k + 1)

>
ik

ik + j − k
(14)

is equivalent to

(ik+1 − ik )(j − k) > −ik , (15)

which is true, as the right hand side is negative. The statement then follows by repeatedly using

(14) s − s̃ times. �
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5 GLOBAL ATTRACTION
In this section, we define empty summations to be 0. We now state three assumptions for fi , j (h) that
suffice for the set of ODEs in (1) to have a global attractor in ΩB . We prove that these assumptions

hold for the supermarket model in Section 6.

Assumption 1. The functions fi , j (h) : ΩB → R are such that for any h0 ∈ ΩB , the set of ODEs
given by (1) has a unique solution h(t) : [0,∞) → R with h(0) = h0.

Definiton 5.1. For h ∈ ΩB , j ≥ 1, 0 ≤ s ≤ j and 0 = i0 < i1 < i2 < . . . < is , we set

F ji1, ...,is (h) = f0, j (h) +
s∑

k=1

(fik , j−k (h) − fik−1, j−k+1(h)).

Assumption 2. The functions fi , j (h) : ΩB → R are such that for all j ≥ 1 and all ik ’s as in (4) we
have

F ji1, ...,is (h) ≤ F ji1, ...,is (
˜h) (16)

if h ≤C ˜h and дji1, ...,is (h) = д
j
i1, ...,is (

˜h).

Assumption 3. The functions fi , j (h) : ΩB → R are such that the set of ODEs given by (1) has a
unique fixed point π in ΩB .

Under the first two assumptions we prove that the partial order ≤C is preserved over time.

Proposition 5.2. Assume that Assumptions 1-2 hold and let h0, ˜h0 ∈ ΩB . Let h(t) and ˜h(t) be the
unique solution of (1) with h(0) = h0 and ˜h(0) = ˜h0, respectively. If ν1 = µ1(1 − p1) > µ2 = ν2 and
h0 ≤C ˜h0 then h(t) ≤C ˜h(t) for any t ≥ 0.

Proof. We show that (4) is retained over time. Suppose that дji1, ...,is (h(t)) = дji1, ...,is (
˜h(t)) for

some j ≥ 1 and 0 < i1 < . . . < is , with s ≤ j. We need to show that

d

dt
дji1, ...,is (h(t)) ≤

d

dt
дji1, ...,is (

˜h(t)), (17)

as otherwise (4) is violated at some time greater than t . Hence, it suffices to show that
d
dt д

j
i1, ...,is (h(t))

is non-decreasing in дj
′

i′
1
, ...,i′s′

(h(t)) for all sets of indices {j ′, i ′
1
, . . . , i ′s ′}, as in (4), different from

{j, i1, . . . , is }. Due to Assumption 2, this holds for the terms associated to fi , j (h(t)) and it suffices

to show that this also holds for the remaining terms corresponding to phase changes and service

completions.

The drift of дji1, ...,is (h(t)) due to phase changes can be written as

1[j ≥ 1]p1µ1

(
s∑

v=1

iv−1∑
k=iv−1+1

wk , j−v (h(t))
k

k + j −v
+ 1[j ≥ s + 1]

∞∑
k=is+1

wk , j−s−1(h(t))
k

k + j − (s + 1)

)
,

(18)

as illustrated in Figure 2(left).

For ease of notation set is+1 = ∞ and suppress the dependence on h(t). Using (6), we have that

(18) is equal to

1[j ≥ 1]p1µ1

(
s∑

v=1

iv−1∑
k=iv−1+1

(дji1, ...,iv−1,k
− дji1, ...,iv−1,k+1

)
k

k + j −v
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Fig. 2. Illustration of change to д4
2,3,6(h(t)) due to phase changes (left), service completions in phase 1 (middle)

and service completions in phase 2 (right).

+ 1[j ≥ s + 1]
∞∑

k=is+1

(дji1, ...,is ,k − дji1, ...,is ,k+1)
k

k + j − (s + 1)

)
.

Due to (5), this is the same as

1[j ≥ 1]p1µ1

(
s∑

v=1

iv−1∑
k=iv−1+1

(дji1, ...,iv−1,k ,iv+1, ...,is
− дji1, ...,iv−1,k+1,iv+1, ...,is

)
k

k + j −v

+ 1[j ≥ s + 1]
∞∑

k=is+1

(дji1, ...,is ,k − дji1, ...,is ,k+1)
k

k + j − (s + 1)

)
. (19)

Given i1, . . . , is (with i0 = 0 and is+1 = ∞), we now define ai as follows:

ai =
i

i + j −v
−

i − 1

i + j −v − 1

≥ 0,

for v = 1, . . . , s + 1 and iv−1 + 2 ≤ i ≤ iv − 1. Using (8), (19) can be written as

1[j ≥ 1]p1µ1

(
s∑

v=1

(
1[iv − iv−1 ≥ 2]дji1, ...,iv−1,iv−1+1,iv+1, ...,is

iv−1 + 1

iv−1 + 1 + j −v

+

iv−1∑
k=iv−1+2

дji1, ...,iv−1,k ,iv+1, ...,is
ak − 1[iv − iv−1 ≥ 2]дji1, ...,is

iv − 1

iv − 1 + j −v

)
+ 1[j ≥ s + 1]

(
дji1, ...,is ,is+1

is + 1

is + j − s
+

∞∑
k=is+2

дji1, ...,is ,kak − дji1, ...,is

))
, (20)

which shows that if дji1, ...,is (h(t)) = д
j
i1, ...,is (

˜h(t)) with h(t) ≤C ˜h(t), then the drift of дji1, ...,is (
˜h(t))

due to the phase changes is at least as large as the drift of дji1, ...,is (h(t)) due to the phase changes as

only the дji1, ...,is terms have a negative coefficient in the above expression.
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Job completions decreaseдji1, ...,is (h(t)) in the following twoways as illustrated in Figure 2(middle)

and (right):

• when there is a job completion of a job in phase 1 in a server with exactly ik jobs in phase 1

and exactly j − k jobs in phase 2 for some k ∈ {1, . . . , s};
• when there is a job completion of a job in phase 2 in a server with between ik and ik+1 − 1

jobs in phase 1 and exactly j − k jobs in phase 2 for some k ∈ {0, . . . , s − 1[j = s]}.

Set is+1 = ∞. The change to дji1, ...,is (h(t)) due to service completions can therefore be written as

− ν1

s∑
k=1

wik , j−k
ik

ik + j − k
(21)

− ν2

s−1[j=s]∑
k=0

ik+1−1∑
i=ik

wi , j−k
j − k

i + j − k
. (22)

Note, that we can drop −1[j = s] from (22) as j − k = 0 in such case. We now rewrite both

these expressions to show that combined they are such that only the дji1, ...,is terms have negative

coefficients.

Using Lemma 4.6, we have that (21) is equal to

− ν1д
j
i1, ...,is

is
is + j − s

+ ν1

s−1∑
k=0

дji1, ...,ik ,ik+1+1, ...,is+1

( ik+1
ik+1 + j − k − 1

−
ik

ik + j − k

)
. (23)

Note that the coefficients appearing in the sum are positive due to (14).

We now proceed with (22). For ease of presentation we assume we have ik+1 − ik ≥ 2 as the

general case is tedious. The full proof can be found in Appendix A. So suppose ik+1 − ik ≥ 2 for all

k ∈ {0, . . . , s − 1}. We can reorder the terms in (22) as

− ν2

(
w0, j +

s∑
k=0

ik+1−2∑
i=ik+1

wi , j−k
j − k

i + j − k
+

s−1∑
k=0

wik+1−1, j−k
j − k

ik+1 − 1 + j − k
+

s∑
k=1

wik , j−k
j − k

ik + j − k

)
,

by making use of the fact that is+1 = ∞. By means of (7) and (6), we obtain

−ν2

(
(дj − дj+1

1
) +

s∑
k=0

ik+1−2∑
i=ik+1

(дj+1i1, ...,ik ,i
− дj+1i1, ...,ik ,i+1

)
j − k

i + j − k

+

s∑
k=1

(
wik−1, j−k+1

j − k + 1

ik + j − k
+wik , j−k

j − k

ik + j − k

) )
.

As

wik−1, j−k+1 +wik , j−k = д
j+1
i1, ...,ik−1,ik−1,ik

− дj+1i1, ...,ik ,ik+1
,

we get

− ν2

(
(дj − дj+1

1
) +

s∑
k=0

ik+1−2∑
i=ik+1

(дj+1i1, ...,ik ,i
− дj+1i1, ...,ik ,i+1

)
j − k

i + j − k

+

s∑
k=1

(
дj+1i1, ...,ik−1,ik−1,ik

− дj+1i1, ...,ik ,ik+1

) j − k + 1

ik + j − k
−

s∑
k=1

wik , j−k
1

ik + j − k

)
.
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This can be restated using (5) as

− ν2

(
(дji1, ...,is − дj+1

1,i1, ...,is ) +

s∑
k=0

ik+1−2∑
i=ik+1

(дj+1i1, ...,ik ,i ,ik+1, ...,is
− дj+1i1, ...,ik ,i+1,ik+1, ...,is

)
j − k

i + j − k

+

s∑
k=1

(дj+1i1, ...,ik−1,ik−1,ik , ...,is
− дj+1i1, ...,ik ,ik+1,ik+1, ...,is

)
j − k + 1

ik + j − k
−

s∑
k=1

wik , j−k
1

ik + j − k

)
.

By adding and subtracting two sums we find

− ν2

(
(дji1, ...,is − дj+1

1,i1, ...,is )

+

s∑
k=0

ik+1−1∑
i=ik+1

дj+1i1, ...,ik ,i ,ik+1, ...,is

j − k

i + j − k
−

s∑
k=0

ik+1−2∑
i=ik

дj+1i1, ...,ik ,i+1,ik+1, ...,is

j − k

i + j − k

−

(
s∑

k=1

дj+1i1, ...,ik ,ik+1,ik+1, ...,is

j − k + 1

ik + j − k
−

s∑
k=0

дj+1i1, ...,ik ,ik+1,ik+1, ...,is

j − k

ik + j − k

)
−

(
s∑

k=0

дj+1i1, ...,ik ,ik+1−1,ik+1, ...,is

j − k

ik+1 − 1 + j − k
−

s∑
k=1

дj+1i1, ...,ik−1,ik−1,ik , ...,is

j − k + 1

ik + j − k

)
−

s∑
k=1

wik , j−k
1

ik + j − k

)
.

Combining both double sums and keeping in mind that is+1 = ∞, the above expression is equivalent

to

− ν2д
j
i1, ...,is + ν2

s∑
k=0

ik+1−1∑
i=ik+1

дj+1i1, ...,ik ,i ,ik+1, ...,is

(
j − k

i + j − k − 1

−
j − k

i + j − k

)
+ ν2

s∑
k=1

дj+1i1, ...,ik ,ik+1,ik+1, ...,is

(
j − k + 1

ik + j − k
−

j − k

ik + j − k

)
+ ν2

s∑
k=1

дj+1i1, ...,ik−1,ik−1,ik , ...,is

(
j − k + 1

ik + j − k
−

j − k + 1

ik + j − k

)
+ ν2

s∑
k=1

wik , j−k
1

ik + j − k
,

= −ν2д
j
i1, ...,is + ν2

s∑
k=0

ik+1−1∑
i=ik+1

дj+1i1, ...,ik ,i ,ik+1, ...,is

(
j − k

i + j − k − 1

−
j − k

i + j − k

)
+ ν2

s∑
k=1

дj+1i1, ...,ik ,ik+1,ik+1, ...,is

1

ik + j − k
+ ν2

s∑
k=1

wik , j−k
1

ik + j − k
, (24)

We still need to deal with the term ν2
∑s

k=1wik , j−k
1

ik+j−k
. Using Lemma 4.6, we find that this term

equals

ν2д
j
i1, ...,is

1

is + j − s
− ν2

s−1∑
k=0

дji1, ...,ik ,ik+1+1, ...,is+1

(
1

ik+1 + j − k − 1

−
1

ik + j − k

)
,

which has the same form as (23). This shows that the term associated with the service completions

from phase 2 is also monotone when ik+1 − ik ≥ 2 for k = 0, . . . , s . Note that we did not rely on the
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fact that ν1 > ν2, however, this requirement is necessary for the full proof in the Appendix where

we may have ik+1 = ik + 1 for some k values. �

Theorem 5.3. Assume Assumptions 1-3 hold and ν1 > ν2, then π is a global attractor of the set of
ODEs given by (1), meaning h(t) converges to π as t tends to infinity for any h0 ∈ ΩB with h(0) = h0.

Proof. The proof is similar to [11, Theorem 4]. Define (h(u))i , j = 1 and (h(ℓ))i , j = 0 for 0 <

i + j ≤ B, then h(ℓ) ≤C h ≤C h(u) for all h ∈ ΩB . By Proposition 5.2 it suffices to show that h(t)
converges to π when h(0) = h(ℓ) and when h(0) = h(u) as the trajectories of other initial states h0
must remain between these two trajectories.

We prove the convergence when h(0) = h(ℓ), the proof for h(u) is analogous. First note that

h(0) = h(ℓ) ≤C h(t − s) holds for 0 < s < t , as h(ℓ) ≤C h for all h ∈ ΩB . Hence, by Proposition 5.2

h(s) ≤C h(t) for 0 < s < t , as h(t) is the state at time s if we start in state h(t − s). The theory of

monotone dynamical systems (see [10, Theorem 1.4 ]) now implies that h(t) converges to a fixed

point as ΩB is a compact set. Due to Assumption 3, h(t) must converge to π when h(0) = h(ℓ). �

6 THE SUPERMARKET MODEL
In this section we show that Assumptions 1-3 hold for the supermarket model with processor

sharing. We start by describing the expressions for fi , j (h(t)). We first note that f0, j (h(t)) = 0 as

new jobs start service in phase 1 (that is, α = (1, 0) when using the Coxian representation). So

suppose i ≥ 1. The probability that all d chosen servers have at least i + j − 1 jobs but not all have

at least i + j jobs is hdi+j−1,0(t) − hdi+j ,0(t). In other words, this is the probability that at least one

chosen server has exactly i + j − 1 jobs. As

hi−1, j (t) − hi , j (t)

hi+j−1,0(t) − hi+j ,0(t)

is the probability that a server with exactly i + j − 1 jobs has at least j jobs in phase 2, the arrival

terms are given by

fi , j (h(t)) = λ
(
hdi+j−1,0(t) − hdi+j ,0(t)

) hi−1, j (t) − hi , j (t)

hi+j−1,0(t) − hi+j ,0(t)

= λ

(
d−1∑
ℓ=0

hℓi+j−1,0(t)h
d−1−ℓ
i+j ,0 (t)

)
(hi−1, j (t) − hi , j (t)), (25)

where we have used the identity (ad −bd )/(a−b) =
∑d−1

ℓ=0 a
ℓbd−1−ℓ . Define Ψi , j (h(t)) =

d
dt hi , j (t) and

Ψ(h) =
[
Ψi , j (h)

]∞
i , j=0. We first show that Ψ is Lipschitz continuous on ΩB . We use the supremum

metric on ΩB :

d(h, ˜h) =
∞
sup

i , j=0
|hi , j − ˜hi , j |. (26)

Proposition 6.1. The drift Ψ is Lipschitz continuous on ΩB , meaning Assumption 1 is met when
fi , j (h(t)) is defined as in (25).

Proof. Let h, ˜h ∈ ΩB and let w, w̃ be the corresponding vectors as defined in Section 3. As

wi , j = (hi , j − hi−1, j+1) − (hi+1, j − hi , j+1) for i ≥ 1 andw0, j = h0, j − h1, j , we have

∞
sup

i , j=0
|wi , j − w̃i , j | ≤ 4d(h, ˜h). (27)
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We have

ν2
∞
sup

i , j=0

����� ∞∑
k=i+1

(wk , j − w̃k , j )
j

k + j

����� ≤ ν2
∞
sup

i , j=0

∞∑
k=i+1

��wk , j − w̃k , j
��

≤ ν2(B + 1)
∞
sup

i , j=0

��wi , j − w̃i , j
�� ≤ 4ν2(B + 1)d(h, ˜h),

where we have used (27) in the last inequality. Proceeding similarly we get

d(Ψ(h),Ψ( ˜h)) ≤ 4(B + 1)(µ1 + 2µ2)d(h, ˜h)

+ λ
∞
sup

i , j=0

�����(hi , j − hi+1, j )
d−1∑
ℓ=0

hℓi+j ,0h
d−1−ℓ
i+j+1,0 − ( ˜hi , j − ˜hi+1, j )

d−1∑
ℓ=0

˜hℓi+j ,0
˜hd−1−ℓi+j+1,0

����� .
We now use the inequality |am1

1
am2

2
− bm1

1
bm2

2
| ≤ m1 |a1 − b1 | +m2 |a2 − b2 |, for 0 ≤ a1,a2,b1,b2 ≤ 1

andm1,m2 ∈ N \ {0}, to find that

∞
sup

i , j=0

�����(hi , j − hi+1, j )
d−1∑
ℓ=0

hℓi+j ,0h
d−1−ℓ
i+j+1,0 − ( ˜hi , j − ˜hi+1, j )

d−1∑
ℓ=0

˜hℓi+j ,0
˜hd−1−ℓi+j+1,0

�����
≤

∞
sup

i , j=0
|hi , j − hi+1, j − ( ˜hi , j − ˜hi+1, j )| +

∞
sup

i , j=0

�����d−1∑
ℓ=0

(hℓi+j ,0h
d−1−ℓ
i+j+1,0 −

˜hℓi+j ,0
˜hd−1−ℓi+j+1,0)

�����
≤ 2d(h, ˜h) +

∞
sup

i , j=0

d−1∑
ℓ=0

���hℓi+j ,0hd−1−ℓi+j+1,0 −
˜hℓi+j ,0

˜hd−1−ℓi+j+1,0

��� .
Using the above mentioned inequality once more, we get

∞
sup

i , j=0

d−1∑
ℓ=0

���hℓi+j ,0hd−1−ℓi+j+1,0 −
˜hℓi+j ,0

˜hd−1−ℓi+j+1,0

���
≤

∞
sup

i , j=0

d−1∑
ℓ=0

(
ℓ |hi+j ,0 − ˜hi+j ,0 | + (d − 1 − ℓ)|hi+j+1,0 − ˜hi+j+1,0 |

)
≤ 2d2d(h, ˜h).

To conclude, we have

d(Ψ(h),Ψ( ˜h)) ≤
(
4(B + 1)(µ1 + 2µ2) + 2λ(d

2 + 1)
)
d(h, ˜h).

�

We now proceed with Assumption 2. Let j, s, i1, . . . , is be as in Definition 4.2. Define

bk = λ
d−1∑
ℓ=0

hℓik+j−k−1,0(t)h
d−1−ℓ
ik+j−k ,0

(t),

to simplify the notation. Note, that bk > bk+1 if ik+1 − ik ≥ 2 and bk = bk+1 if ik+1 − ik = 1. We

then have that F ji1, ...,is (h(t)), as defined in Definition 5.1, is given by

F ji1, ...,is (h(t)) = f0, j (h(t)) +
s∑

k=1

(fik , j−k (h(t)) − fik−1, j−k+1(h(t)))

= λ
s∑

k=1

(
hdik+j−k−1,0(t) − hdik+j−k ,0(t)

)
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Fig. 3. Illustration of change to д4
2,3,6(h(t)) due to arrivals with JSQ(d).

·
(hik−1, j−k (t) − hik , j−k (t)) − 1[ik ≥ 2](hik−2, j−k+1(t) − hik−1, j−k+1(t))

hik+j−k−1,0(t) − hik+j−k ,0(t)

=

s∑
k=1

bkwik−1, j−k (h(t)).

The change due to arrivals is illustrated in Figure 3.

Proposition 6.2. Assumption 2 holds for the system of ODEs (1) with fi , j (h(t)) specified by (25).

Proof. It suffices to show that F ji1, ...,is (h(t)) is non-decreasing in дj
′

i′
1
, ...,i′s′

(h(t)) for all sets of

indices {j ′, i ′
1
, . . . , i ′s ′}, as in (4), different from {j, i1, . . . , is }. Suppose first that i1 ≥ 2. For ease of

notation set b0 = bs+1 = 0. By using Lemma 4.6, we find

F ji1, ...,is (h(t)) =
s∑

k=1

bkwik−1, j−k (h(t))

= дji1−1, ...,is−1(h(t))bs −
s−1∑
k=0

дji1−1, ...,ik−1,ik+1, ...,is (h(t))
(
bk+1 − bk

)
= −дji1, ...,is (h(t))b1 +

s∑
k=1

дji1−1, ...,ik−1,ik+1, ...,is (h(t))
(
bk − bk+1

)
.

Suppose now i1 = 1. We have

F ji1, ...,is (h(t)) = b1w0, j−1(h(t)) +
s∑

k=2

bkwik−1, j−k (h(t)).

Using (7) and (6), this is equal to

b1(д
j−1(h(t)) − дj

1
(h(t))) +

s∑
k=2

bk (д
j−1
i2−1, ...,ik−1

(h(t)) − дj−1i2−1, ...,ik−1−1,ik
(h(t))).
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By (5), we can write this as

b1(д
j−1
i2, ...,is (h(t)) − дji1, ...,is (h(t))) +

s∑
k=2

bk (д
j−1
i2−1, ...,ik−1,ik+1, ...,is

(h(t)) − дj−1i2−1, ...,ik−1−1,ik , ...,is
(h(t)))

= −b1д
j
i1, ...,is (h(t)) +

s∑
k=1

дj−1i2−1, ...,ik−1,ik+1, ...,is
(h(t)) (bk − bk+1) .

This finishes the proof. �

We now present a fixed point π of the system of the ODEs given in (1) when fi , j (h(t)) is given by

(25) and then prove that it is the unique fixed point. As hi , j (t) =
∑

k≥i+j
∑k

ℓ=j wk−ℓ,ℓ(h(t)), finding

a fixed point of (1) is equivalent to finding a fixed point πw
of the corresponding set of equations

for
d
dtwi , j (h(t)). We have

d

dt
wi , j (h(t)) = 1[i ≥ 1]λ

(
hdi+j−1,0(t) − hdi+j ,0(t)

) wi−1, j (h(t))

hi+j−1,0(t) − hi+j ,0(t)

− λ
(
hdi+j ,0(t) − hdi+j+1,0(t)

) wi , j (h(t))

hi+j ,0(t) − hi+j+1,0(t)

+ 1[j ≥ 1]p1µ1wi+1, j−1(h(t))
i + 1

i + j
− µ1wi , j (h(t))

i

i + j
− µ2wi , j (h(t))

j

i + j

+ µ2wi , j+1(h(t))
j + 1

i + j + 1
+ (1 − p1)µ1wi+1, j (h(t))

i + 1

i + j + 1
, (28)

for i, j ≥ 0 and i + j ≤ B, wherewi , j (h(t)) = 0 for i + j > B. Consider the set of ODEs for i = 1, . . . ,B
given by

d

dt
ˆhi (t) = λ( ˆhi−1(t)

d − ˆhi (t)
d ) − ( ˆhi (t) − ˆhi+1(t)) (29)

and set
ˆh0(t) = 1 and

ˆhi (t) = 0, for i > B. Notice this set of ODEs corresponds to the mean field

limit of the supermarket model with FCFS or processor sharing service, exponential job sizes and a

finite buffer of size B [14].

Proposition 6.3. The set of ODEs given by (29) has a unique fixed point π̂ . Further π̂i ∈

(0, λ(d
i−1)/(d−1)) and π̂i > π̂i+1.

Proof. Summing the equations in (29) from i = k to B yields that any fixed point π̂ satisfies

π̂k = λ(π̂dk−1 − π̂dB ),

for k = 2, . . . ,B and π̂1 = λ(1 − π̂dB ). Define H1(x) = λ(1 − xd ) and Hk (x) = λ(Hk−1(x)
d − xd )

for k = 2, . . . ,B, then π̂k = Hk (π̂B ). Using induction on k one now readily shows that Hk (0) =

λ1+d+...+d
k−1
= λ(d

k−1)/(d−1) > 0.

We first consider the case where d is odd. As Hk−1(x)
d−1 ≥ 0 for d odd and H ′

k (x) =

λdHk−1(x)
d−1H ′

k−1(x) − λdxd−1, we immediately have by induction on k that Hk (x) is decreas-
ing on [0, 1] with Hk (1) ≤ 0. As π̂B = HB (π̂B ), this implies that there exists a unique solution

for π̂B ∈ (0, λ(d
B−1)/(d−1)) and therefore at most one fixed point as π̂k = Hk (π̂B ). Further, we see

that π̂k ≤ λ(d
k−1)/(d−1)

as Hk (0) = λ(d
k−1)/(d−1)

and Hk (x) is decreasing. Finally, π̂k < π̂k−1 as
π̂k = λ(π̂dk−1 − π̂dB ) with π̂B positive.

Now assume d is even. H1(x) is clearly decreasing and positive on [0, 1], therefore H2(x) is
decreasing on [0, 1] and H2(1) = −λ < 0. Let ξ2 be the unique root of H2(x) in (0, 1). For x ∈ (ξ2, 1]
we have −x < H2(x) < 0. We now find using induction on k that for k = 3, . . . ,B
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(1) Hk (x) is decreasing on [0, ξk−1) as H
′
k (x) = λdHk−1(x)

d−1H ′
k−1(x) − λdxd−1 and Hk−1(x) is

positive and decreasing on [0, ξk−1),
(2) Hk (ξk−1) = −λξdk−1 < 0 and −x < −λxd < Hk (x) < 0 for x ∈ [ξk−1, 1], where we use (i)

that Hk−1(x)
d ≥ 0 for d even to find that −λxd < Hk (x) and (ii) that −x < Hk−1(x) yields

xd > Hk−1(x)
d
for d even, that is, Hk (x) < 0.

(3) Hk (x) has a unique root ξk on [0, 1] with ξk < ξk−1.

The proof now proceeds as in the case with d odd. �

We now define πw
as

πw
i , j = (π̂i+j − π̂i+j+1)

(
i + j
i

) (
1

µ1

) i (
p1
µ2

) j
, (30)

and show that it is a fixed point of (28). Note that πw
depends on λ via π̂ . If we then define

πi , j =
∑

k≥i+j
∑k

ℓ=j π
w
k−ℓ,ℓ , then π is a fixed point of (1) and

πi ,0 =
∑
k≥i

k∑
ℓ=0

πw
k−ℓ,ℓ =

∑
k≥i

(π̂k − π̂k+1)

(
1

µ1
+
p1
µ2

)k
= π̂i ,

as the mean job size equals one, that is, 1/µ1 +p1/µ2 = 1. Hence the probability of having i or more

jobs in the fixed point π is the same as in the exponential case.

Proposition 6.4. πw is a fixed point of (28).

Proof. The proof is presented in Appendix B. �

Proposition 6.5. πw is the unique fixed point of (28) and therefore Assumption 3 holds for the set
of ODEs in (1) with fi , j (h(t)) specified by (25).

Proof. The proof proceeds similar to [18, Theorem 3]. We first argue that any fixed point θ must

have the same form as in (30), that is, it can be written as

θi , j = ( ˆθi+j − ˆθi+j+1)

(
i + j
i

) (
1

µ1

) i (
p1
µ2

) j
. (31)

Let λi+j = λ(θdi+j ,0 − θdi+j+1,0)/(θi+j ,0 − θi+j+1,0) and replace λ
(
hdi+j−1,0(t) − hdi+j ,0(t)

)
/(hi+j−1,0(t) −

hi+j ,0(t)) in the set of ODEs given by (28) by λi+j−1 and λ
(
hdi+j ,0(t) − hdi+j+1,0(t)

)
/(hi+j ,0(t) −

hi+j+1,0(t)) by λi+j . Then, θ is also a fixed point of this new set of ODEs. However this system of

ODEs corresponds an M/PH/1 queue with a pre-specified arrival rate that depends on the queue

length and processor sharing service. As such a queue is insensitive to the job size distribution [3],

it has a unique fixed point of the form given in (31). It now suffices to argue that
ˆθ j = π̂j , where π̂

is the unique solution of (29).

As θ has the form given in (31), we can repeat the proof of the previous theorem to show that

(41) holds with π̂ replaced by
ˆθ for any i and j and therefore also for i = 0, which means

ˆθ is a fixed

point of (29). The proof is then completed due to Proposition 6.3. �

7 ASYMPTOTIC INSENSITIVITY
We now present our main result, having established global attraction of the fixed point π , the proof
is quite standard. Let π (N )

be the stationary measure associated to the Markov chain X (N )(t) that
captures the fraction of the servers with i + j or more jobs, where at least j of these jobs are in
phase 2 in a system with N servers and initial state X (N )(0) ∈ ΩB .
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Theorem 7.1. The limiting queue length distribution of the supermarket model with processor
sharing service is insensitive to the job size distribution within the class of hyperexponential distributions
of order 2, that is, the sequence π (N ) converges weakly to the Dirac measure associated with the fixed
point π . In other words, the limiting queue length distribution is given by the unique fixed point π̂ of
(29).

Proof. By the Lipschitz continuity and Kurtz’ theorem [5, Chapter 11] the sample paths X (N )(t)
of the stochastic system consisting of N servers converge in probability to the unique solution of

the set of ODEs given by (1) with fi , j (h(t)) specified by (25) over any finite time scale (0,T ], that is,

lim

N→∞
sup

t ≤T
| |XN (t) − h(t)| | = 0,

in probability if limN→∞XN (0) = h0, where h(0) = h0.
As ΩB is compact the sequence of stationary measures π (N )

is tight. Hence, Prokhorov’s theorem

implies that any subsequence of the sequence π (N )
has a further subsequence that converges

to some measure on ΩB . Now [7, Theorem 4], implies that any limit point of the these further

subsequences of π (N )
has support on the compact closure of the set of accumulation points of the

set of ODEs for all initial conditions h0 ∈ ΩB . By Theorem 5.3 the only accumulation point is the

fixed point π , which proves that all these further subsequences converge to the same limit point,

being the Dirac measure δπ of the fixed point π . This implies that the sequence of measures π (N )

converges weakly to the Dirac measure δπ . �

An interesting question at this stage is whether this result can be generalized easily to hyper-

exponential distributions of order r > 2. We now argue that this does not appear to be the case.

Assume we have 3 phases, then the state would be captured by the variables hi , j ,k (t) that represent
the fraction of the servers with at least i + j + k jobs, of which at least j + k are in phase 2 or

3 and at least k are in phase 3 at time t . Similarly, define wi , j ,k (t) as the fraction of the servers

with exactly i jobs in phase 1, j in phase 2 and k in phase 3. Now consider the state h(0) where
w0,1,0(t) = 1, meaning all servers contain 1 job and this job is in phase 2. Further, consider the

state
˜h(t) with w̃99,1,0(t) = 1, meaning all servers contain 100 jobs, 99 in phase 1 and 1 in phase 2.

If we generalize the partial order ≤C presented in this paper in the obvious manner, then clearly

h(0) ≤C ˜h(0). However, h(ϵ) ≤C ˜h(ϵ)may not hold for ϵ small, meaning the system does not appear

to be monotone. To understand this, note that from state h(0) servers are created that contain at

least 1 job in phase 3 at a rate µ2p2 as the full server capacity is devoted to a single job in phase 2 in

state h(0), while from state
˜h(0) jobs in phase 3 are only created at a rate µ2p2/100, thus h0,0,1(ϵ)

will exceed
˜h0,0,1(ϵ) for ϵ small enough.

8 TRADITIONAL PUSH
In this section we illustrate that Theorem 5.3 can also be used to prove asymptotic insensitivity of

other systems with PS servers. More specifically we focus on the traditional push strategy studied

for FCFS servers in [4] and [13, Section VI.A]. We will argue that Assumptions 1 to 3 hold for this

strategy in case of PS servers, which allows us to establish asymptotic insensitivity within the class

of order-2 hyperexponential distributions by using the same arguments as in the proof of Theorem

7.1.

We consider a system consisting of N servers, each subject to its own local Poisson arrival

process with rate λ < 1. When a job arrives in server n and server n is busy, a single random server

n′ is probed and the incoming job is immediately transferred to server n′ provided that it is idle.

Otherwise the job is executed on server n. Note that although the servers are PS servers, a job is

fully executed on a single server under this strategy. This is in contrast to the traditional pull or the
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rate-based strategies in [13], where transferred jobs are always partially executed on one server

before being transferred to another PS server. In fact, such partial executions imply that asymptotic

insensitive is lost despite the PS service discipline.

We first define the drift terms fi , j (h) corresponding to job arrivals and transfers for the traditional
push strategy. As jobs always start service in phase 1, we have f0, j (h) = 0 as in the supermarket

model. When i > 0 and i + j > 1, then hi−1, j − hi , j is the fraction of the queues with an exact

queue length of i + j − 1 with at least j jobs in phase 2. Arrivals in such a queue increase the queue

length to i + j provided that the probed server is busy, which occurs with probability h1,0. Hence,
λ(hi−1, j − hi , j )h1,0 is the rate at which hi , j increases due to arrivals that are not transferred (for

i > 0 and i + j > 1). When i = 1 and j = 0, hi , j = h1,0 is the fraction of busy servers and this fraction

increases at rate λ(1 − h1,0), due to local arrivals in idle servers, plus λh1,0(1 − h1,0), due to arrivals

in busy servers that are immediately transferred to an idle server. Hence, we have

fi , j (h) = 1[i > 0, i + j > 1]λ(hi−1, j − hi , j )h1,0

+ 1[i = 1, j = 0]λ
(
(1 − h1,0) + h1,0(1 − h1,0)

)
= 1[i > 0]λ(hi−1, j − hi , j )h1,0 + 1[i = 1, j = 0]λ(1 − h1,0). (32)

In particular, we have

f1,0(h) = λ(1 − (h1,0)
2). (33)

Define Ξi , j (h(t)) =
d
dt hi , j (t) and Ξ(h) =

[
Ξi , j (h)

]∞
i , j=0. The next two results show that Assumptions

1 and 2 hold.

Proposition 8.1. The drift Ξ is Lipschitz continuous on ΩB , meaning Assumption 1 is met when
fi , j (h) is defined as in (32).

Proof. Let h, ˜h ∈ ΩB . Proceeding similarly to Proposition 6.1, we get

d(Ξ(h),Ξ( ˜h)) ≤ 4(B + 1)(µ1 + 2µ2)d(h, ˜h) +
∞
sup

i , j=0

���fi , j (h) − fi , j ( ˜h)
��� .

We have

∞
sup

i , j=0

���fi , j (h) − fi , j ( ˜h)
��� ≤ λd(h, ˜h) + λ

∞
sup

i , j=0

���(hi−1, j − hi , j )h1,0 − ( ˜hi−1, j − ˜hi , j ) ˜h1,0

��� . (34)

We now use the inequality |a1a2 − b1b2 | ≤ |a1 − b1 | + |a2 − b2 |, for 0 ≤ a1,a2,b1,b2 ≤ 1 on (34), to

find that

∞
sup

i , j=0

���(hi−1, j − hi , j )h1,0 − ( ˜hi−1, j − ˜hi , j ) ˜h1,0

��� ≤ ���h1,0 − ˜h1,0

��� + 2d(h, ˜h) ≤ 3d(h, ˜h).

To conclude, we have

d(Ξ(h),Ξ( ˜h)) ≤ (4(B + 1)(µ1 + 2µ2) + 4λ) d(h, ˜h).

�

Proposition 8.2. Assumption 2 holds for the system of ODEs (1) with fi , j (h) specified by (32).

Proof. The proof is presented in Appendix C. �

We now proceed by arguing that we have a unique fixed point in ΩB . As hi , j =∑
k≥i+j

∑k
ℓ=j wk−ℓ,ℓ , finding a fixed point of (1) is equivalent to finding a fixed point πw

of the
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corresponding set of equations for
d
dtwi , j (h(t)). As there is no ambiguity here, we denotew(h(t))

simply asw(t). For the traditional push we have, similar to (28),

d

dt
wi , j (t) = 1[i ≥ 1]λ(wi−1, j (t) −wi , j (t))(1 −w0,0(t)) + 1[i = 1, j = 0]λw0,0(t)

− 1[i = j = 0]λw0,0(t) − 1[i = 0]λw0, j (t)(1 −w0,0(t)) + 1[j ≥ 1]p1µ1wi+1, j−1(t)
i + 1

i + j

− µ1wi , j (t)
i

i + j
− µ2wi , j (t)

j

i + j
+ µ2wi , j+1(t)

j + 1

i + j + 1
+ (1 − p1)µ1wi+1, j (t)

i + 1

i + j + 1
,

(35)

for i, j ≥ 0 and i + j ≤ B, wherewi , j (t) = 0 for i + j > B.
We first consider the set of ODEs for the traditional push strategy in case of exponential job

sizes (which has the same form as in [13, Section VI.A] for FCFS servers). Let ki (t) be the fraction
of servers with i or more jobs at time t , then

d

dt
ki (t) = λ(ki−1(t) − ki (t))k1(t) − (ki (t) − ki+1(t)) + 1[i = 1]λ(1 − k1(t)), (36)

for i = 1, . . . ,B and set k0(t) = 1 and ki (t) = 0, for i > B.

Proposition 8.3. The set of ODEs given by (36) has a unique fixed point π̂ . Further π̂i ∈ (0, λ2i−1)
and π̂i > π̂i+1.

Proof. Summing the equations in (36) from i = k to B yields that any fixed point π̂ satisfies

π̂k =
λ2

1 + λπ̂B
(π̂k−1 − π̂B ),

for k = 2, . . . ,B and π̂1 = λ/(1 + λπ̂B ). Define V1(x) = λ/(1 + λx) and Vk (x) =
λ2

1+λx (Vk−1(x) − x)

for k = 2, . . . ,B, then π̂k = Vk (π̂B ). It is easy to see that Vk (0) = λ2k−1 > 0. By noting that

(Vi+1(x) −Vi (x)) =
λ2

1+λx (Vi (x) −Vi−1(x)), we find,

Vk (x) =
k−1∑
i=1

(Vi+1(x) −Vi (x)) +V1(x) =
k−1∑
i=1

(
λ2

1 + λx

) i−1
(V2(x) −V1(x)) +V1(x)

= −

1 −

(
λ2

1+λx

)k−1
1 − λ2

1+λx︸            ︷︷            ︸
>0

λ(λ2x2 − λ2 + 2λx + 1)

(1 + λx)2︸                        ︷︷                        ︸
>0

+
λ

1 + λx
,

for x ∈ [0, 1]. Hence, Vk (x) < Vk−1(x) for k = 2, . . . ,B and x ∈ [0, 1]. One easily checks that

V ′
2
(x) < 0 on [0, 1] and V2(1) = −λ2/(1 + λ)2 < 0, meaning V2(x) has a unique root ξ2 on [0, 1]. We

now complete the proof by showing by induction thatVk (x) is decreasing on [0, ξk−1] andVk (x) < 0

on [ξk−1, 1], which implies that Vk (x) has a unique root ξk < ξk−1 on [0, 1] (as Vk (0) = λ2k−1) and
Vk (x) is negative on (ξk , 1].

By definition of Vk (x), we have

V ′
k (x) =

λ2

1 + λx
V ′
k−1(x) −

λ3

(1 + λx)2
Vk−1(x) −

λ2

(1 + λx)2
.

Therefore,V ′
k (x) is negative ifV

′
k−1(x) ≤ 0 andVk−1(x) ≥ 0. By induction this is the case on [0, ξk−1],

meaning Vk (x) is decreasing on [0, ξk−1] and negative on [ξk−1, 1] as Vk (x) < Vk−1(x). �
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Proposition 8.4. Let π̂ be the unique fixed point of (36) and define πw as in (30), then πw is a
fixed point of (35).

Proof. The proof is nearly identical to the proof of Proposition 6.4, that is, by replacingwi , j (t)
by πw

i , j in (35) with the left hand side set equal to zero, one obtains

0 =
(
λ(π̂i+j−1 − π̂i+j )π̂1 − (π̂i+j − π̂i+j+1) + 1[i + j = 1]λ(1 − π̂1)

) µ1i

i + j

−
(
λ(π̂i+j − π̂i+j+1)π̂1 − (π̂i+j+1 − π̂i+j+2) + 1[i + j = 0]λ(1 − π̂1)

)
. (37)

for i ≥ 0, which holds as π̂ is the unique fixed point of (36). �

Proposition 8.5. πw is the unique fixed point of (35) and therefore Assumption 3 holds for the set
of ODEs in (1) with fi , j (h) specified by (32).

Proof. We can repeat the same arguments as in the proof of Proposition 6.5, except that we

define λi+j = λ(1 − θ0,0) for i + j > 0, λ0 = λ + λ(1 − θ0,0) and rely on Proposition 8.3. Note that the

M/PH/1 queue with pre-specified arrival rates has arrival rate λ0 when the queue is empty and λ1
when the queue is busy. �

Having established Assumptions 1 to 3, global attraction of the unique fixed point follows from

Theorem 5.3 and asymptotic insensitivity within the class of hyperexponential distributions of

order 2 follows for the traditional push strategy by repeating the arguments in the proof of Theorem

7.1.

9 CONCLUSIONS
In this paper we established an asymptotic insensitivity result for the supermarket model with

processor sharing servers for the class of hyperexponential distributions of order 2. To the best

of our knowledge, it is the first result of its kind for systems with PS service. More specifically,

we showed that the weak limit of the stationary distributions as the number of servers tends to

infinity is given by the Dirac measure of a fixed point, the queue length distribution of which is

insensitive to the job size distribution. The main step in proving this result is showing that the set of

ODEs describing the evolution of the mean field limit, has a global attractor. We also demonstrated,

using the traditional push strategy in distributed systems, that our results can be of use to prove

asymptotic insensitivity results beyond the supermarket model.
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A SERVICE COMPLETIONS IN PHASE 2: GENERAL CASE
The expression in (24) for (22) is only valid in case ik+1 ≥ ik + 2, for k = 0, . . . , s . This is for instance

needed for дj+1i1, ...,ik ,ik+1,ik+1, ...,is
to be well defined. In this Appendix we derive a general expression

for (22), where ik+1 = ik + 1 for some k values is allowed and combine this expression with (23)

(which was shown to be equivalent to (22)), to conclude that the sum of the terms corresponding to

service completions in phase 1 and 2 together are monotone when ν1 > ν2. For ease of presentation
we once more suppress the dependence on h(t).

For given j, s, i1, . . . , is as in Definition 4.2, with is < ∞ and is+1 = ∞, we define inductively

d1 = 1 and dk = 1 + 1[ik − ik−1 = 1]dk−1 for k = 2, . . . , s . We further define an injection σ :

{1, . . . , s̃} → {1, . . . , s} as follows: σ (κ) is the κ-th index k such that ik+1 − ik ≥ 2, not counting

whether or not i1 ≥ 2. As is+1 = ∞, we have s̃ ≥ 1 and σ (s̃) = s . We also set σ (0) = 0. We now

prove three lemmas which are combined afterwards.

Lemma A.1. Define the following formulas, these are illustrated in Figure 4

S =

σ (1)−1∑
k=0

ik+1−1∑
i=ik

wi , j−k
j − k

i + j − k
+wiσ (1), j−σ (1)

j − σ (1)

iσ (1) + j − σ (1)
,

for κ ∈ {1, . . . , s̃}:

T (σ (κ)) =

iσ (κ )+1−2∑
i=iσ (κ )+1

wi , j−σ (κ)
j − σ (κ)

i + j − σ (κ)
,

and for κ ∈ {1, . . . , s̃ − 1}:

U (σ (κ)) = wiσ (κ )+1−1, j−σ (κ)
j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)
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S

T (σ (1))

U (σ (1))

T (σ (2))

U (σ (2))

T (σ (3))

...

j1 2 4 5 63

8

3

9

13

i

Fig. 4. Illustration of the formulas defined in Lemma A.1 for д6
3,8,9,13(h(t)), we have σ (1) = 1, σ (2) = 3,

σ (3) = 4.

+

σ (κ+1)−1∑
k=σ (κ)+1

ik+1−1∑
i=ik

wi , j−k
j − k

i + j − k
+wiσ (κ+1), j−σ (κ+1)

j − σ (κ + 1)

iσ (κ+1) + j − σ (κ + 1)
.

For ease of notation set for k < σ ({1, . . . , s̃}):

T (k ) = 0,

and for k < σ ({1, . . . , s̃ − 1}):

U (k ) = 0.

Then:

− ν2

s∑
k=0

ik+1−1∑
i=ik

wi , j−k
j − k

i + j − k
= −ν2(S +

s∑
k=1

T (k ) +

s∑
k=1

U (k )), (38)

further,

S = дji1, ...,is −
i1−1∑
i=1

дj+1i ,i1, ...,is

(
j

i + j − 1

−
j

i + j

)
− дj+1i1, ...,iσ (1),iσ (1)+1,iσ (1)+1, ...,is

j

i1 − 1 + j
−

σ (1)∑
k=1

wik , j−k
dk

ik + j − k
,
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for κ ∈ {1, . . . , s̃}:

T (σ (κ)) = дj+1i1, ...,iσ (κ ),iσ (κ )+1,iσ (κ )+1, ...,is

j − σ (κ)

iσ (κ) + j − σ (κ)

−

iσ (κ )+1−1∑
i=iσ (κ )+1

дj+1i1, ...,iσ (κ ),i ,iσ (κ )+1, ...,is

(
j − σ (κ)

i + j − σ (κ) − 1

−
j − σ (κ)

i + j − σ (κ)

)
− 1[κ < s̃]дj+1i1, ...,iσ (κ ),iσ (κ )+1−1,iσ (κ )+1, ...,is

j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)
,

and for κ ∈ {1, . . . , s̃ − 1}:

U (σ (κ)) = дj+1i1, ...,iσ (κ ),iσ (κ )+1−1,iσ (κ )+1, ...,is

j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)

− дj+1i1, ...,iσ (κ+1),iσ (κ+1)+1,iσ (κ+1)+1, ...,is

j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)
−

σ (κ+1)∑
k=σ (κ)+1

wik , j−k
dk

ik + j − k
.

Proof. By writing

S +
s∑

k=1

T (k) +

s∑
k=1

U (k ) = S +
s̃∑

κ=1

T (σ (κ)) +

s̃−1∑
κ=1

U (σ (κ))

= S +T (σ (1)) +U (σ (1)) + · · · +T (σ (s̃−1)) +U (σ (s̃−1)) +T (σ (s̃)),

the first claim clearly holds. We have for κ ∈ {1, . . . , s̃}

T (σ (κ)) =

iσ (κ )+1−2∑
i=iσ (κ )+1

(
дj+1i1, ...,iσ (κ ),i

− дj+1i1, ...,iσ (κ ),i+1

) j − σ (κ)

i + j − σ (κ)

=

iσ (κ )+1−2∑
i=iσ (κ )+1

(
дj+1i1, ...,iσ (κ ),i ,iσ (κ )+1, ...,is

− дj+1i1, ...,iσ (κ ),i+1,iσ (κ )+1, ...,is

) j − σ (κ)

i + j − σ (κ)
,

where we relied on (6) for the first equality and (5) for the second. By adding and subtracting zero

to the sums, we find that this is equal to (where the indicator function is due to iσ (s̃)+1 = is+1 = ∞)

дj+1i1, ...,iσ (κ ),iσ (κ )+1,iσ (κ )+1, ...,is

j − σ (κ)

iσ (κ) + j − σ (κ)
−

iσ (κ )+1−2∑
i=iσ (κ )

дj+1i1, ...,iσ (κ ),i+1,iσ (κ )+1, ...,is

j − σ (κ)

i + j − σ (κ)

+

iσ (κ )+1−1∑
i=iσ (κ )+1

дj+1i1, ...,iσ (κ ),i ,iσ (κ )+1, ...,is

j − σ (κ)

i + j − σ (κ)
− дj+1i1, ...,iσ (κ ),iσ (κ )+1−1,iσ (κ )+1, ...,is

1[κ < s̃](j − σ (κ))

iσ (κ)+1 − 1 + j − σ (κ)

= дj+1i1, ...,iσ (κ ),iσ (κ )+1,iσ (κ )+1, ...,is

j − σ (κ)

iσ (κ) + j − σ (κ)

−

iσ (κ )+1−1∑
i=iσ (κ )+1

дj+1i1, ...,iσ (κ ),i ,iσ (κ )+1, ...,is

(
j − σ (κ)

i + j − σ (κ) − 1

−
j − σ (κ)

i + j − σ (κ)

)
− 1[κ < s̃]дj+1i1, ...,iσ (κ ),iσ (κ )+1−1,iσ (κ )+1, ...,is

j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)
.
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This proves the expression for T (σ (κ))
. Suppose i1 = 1, then by the definition of σ ,

S =

σ (1)∑
k=0

wik , j−k
j − k

ik + j − k
.

The definition of σ implies that ik = k = dk for k = 1, . . . ,σ (1) when i1 = 1. By using (7) and then

(5), we get

S = дj − дj+1
1
+

σ (1)∑
k=1

wik , j−k
j − k

ik + j − k
= дj − дj+1

1
+

σ (1)∑
k=1

wik , j−k (1 −
k

ik + j − k
)

= дji1, ...,iσ (1)
− дj+1

1,i1+1, ...,iσ (1)+1
−

σ (1)∑
k=1

wik , j−k
dk

ik + j − k

= дji1, ...,is − дj+1i1, ...,iσ (1),iσ (1)+1,iσ (1)+1, ...,is
−

σ (1)∑
k=1

wik , j−k
dk

ik + j − k
.

Suppose now i1 ≥ 2, then similarly as ik − k = i1 − 1 and dk = k for k = 1, . . . ,σ (1)

S =
i1−1∑
i=0

wi , j
j

i + j
+

σ (1)∑
k=1

wik , j−k
j − k

ik + j − k

= дj − дj+1
1
+

i1−1∑
i=1

wi , j
j

i + j
+

σ (1)∑
k=1

wik , j−k
j − k

ik + j − k

= дji1, ...,is − дj+1
1,i1, ...,is +

i1−2∑
i=1

(
дj+1i ,i1, ...,is − дj+1i+1,i1, ...,is

) j

i + j

+
(
дj+1i1−1 − дj+1i1

) j

i1 − 1 + j
+

σ (1)∑
k=1

wik , j−k (
j

i1 − 1 + j
−

k

ik + j − k
)

= дji1, ...,is − дj+1
1,i1, ...,is +

i1−2∑
i=1

(
дj+1i ,i1, ...,is − дj+1i+1,i1, ...,is

) j

i + j

+
(
дj+1i1−1,i1, ...,iσ (1)

− дj+1i1,i1+1, ...,iσ (1)+1

) j

i1 − 1 + j
−

σ (1)∑
k=1

wik , j−k
dk

ik + j − k
.

Similarly to the proof of T (k )
, we find that S is equal to

дji1, ...,is − дj+1
1,i1, ...,is + д

j+1
1,i1, ...,is − дj+1i1−1,i1, ...,is

j

i1 − 1 + j

−

i1−1∑
i=1

дj+1i ,i1, ...,is

(
j

i + j − 1

−
j

i + j

)
+

(
дj+1i1−1,i1, ...,is − дj+1i1,i1+1, ...,iσ (1)+1,iσ (1)+1, ...,is

) j

i1 − 1 + j

−

σ (1)∑
k=1

wik , j−k
dk

ik + j − k

= дji1, ...,is −
i1−1∑
i=1

дj+1i ,i1, ...,is

(
j

i + j − 1

−
j

i + j

)
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− дj+1i1, ...,iσ (1),iσ (1)+1,iσ (1)+1, ...,is

j

i1 − 1 + j
−

σ (1)∑
k=1

wik , j−k
dk

ik + j − k
.

Finally, noting that ik+1 − 1 = ik for k = σ (κ) + 1, . . . ,σ (κ + 1) − 1, ik − k = iσ (κ)+1 − σ (κ) − 1 and

dk = k − σ (κ) for k = σ (κ) + 1, . . . ,σ (κ + 1), we find similarly to the proof of S with i1 = 1 for

κ ∈ {1, . . . , s̃ − 1}:

U (σ (κ)) = wiσ (κ )+1−1, j−σ (κ)
j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)
+

σ (κ+1)∑
k=σ (κ)+1

wik , j−k
j − k

ik + j − k

=
(
дj+1i1, ...,iσ (κ ),iσ (κ )+1−1

− дj+1i1, ...,iσ (κ )+1

) j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)

+

σ (κ+1)∑
k=σ (κ)+1

wik , j−k

(
j − σ (κ)

iσ (κ)+1 + j − σ (κ) − 1

+
σ (κ) − k

ik + j − k

)
= дj+1i1, ...,iσ (κ ),iσ (κ )+1−1,iσ (κ )+1, ...,iσ (κ+1)

j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)

− дj+1i1, ...,iσ (κ )+1,iσ (κ )+1+1, ...,iσ (κ+1)+1

j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)

−

σ (κ+1)∑
k=σ (κ)+1

wik , j−k
dk

ik + j − k

= дj+1i1, ...,iσ (κ ),iσ (κ )+1−1,iσ (κ )+1, ...,is

j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)

− дj+1i1, ...,iσ (κ+1),iσ (κ+1)+1,iσ (κ+1)+1, ...,is

j − σ (κ)

iσ (κ)+1 − 1 + j − σ (κ)

−

σ (κ+1)∑
k=σ (κ)+1

wik , j−k
dk

ik + j − k
.

This finishes the proof of the first lemma. �

Lemma A.2. We have for κ = 0, . . . , s̃ − 1

j − σ (κ)

iσ (κ)+1 + j − (σ (κ) + 1)
≥

j − σ (κ + 1)

iσ (κ+1) + j − σ (κ + 1)
.

Proof. As iσ (κ+1) − σ (κ + 1) ≥ iσ (κ)+1 − (σ (κ) + 1), the claim holds if

j − σ (κ)

iσ (κ+1) + j − σ (κ + 1)
≥

j − σ (κ + 1)

iσ (κ+1) + j − σ (κ + 1)
.

But this is true as σ (κ + 1) > σ (κ). �

Lemma A.3. We have for every k = 1, . . . , s − 1: if dk+1
ik+1+j−(k+1)

−
dk

ik+j−k
> 0 then

dk+1
ik+1 + j − (k + 1)

−
dk

ik + j − k
=

ik+1
ik+1 + j − (k + 1)

−
ik

ik + j − k
. (39)

Proof. Suppose dk+1 = 1, i.e. ik+1 − ik ≥ 2. Then ik + j − k < ik+1 + j − (k + 1) and thus

dk+1
ik+1 + j − (k + 1)

−
dk

ik + j − k
<

dk+1
ik+1 + j − (k + 1)

−
dk

ik+1 + j − (k + 1)
=

1 − dk
ik+1 + j − (k + 1)

≤ 0.
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Hence, it suffices prove the claim for the case where dk+1 = 1 + dk , i.e. where ik+1 − ik = 1. (39) is

then equivalent to

dk+1
ik + j − k

−
dk

ik + j − k
=

ik+1
ik + j − k

−
ik

ik + j − k
,

which is true. �

We now combine these Lemmas. We can rewrite (38) using Lemma A.1. Note that the last term

in T (σ (κ))
cancels the first term inU (σ (κ))

, while the first term in T (σ (κ))
can be combined with the

last term in U (σ (κ−1))
for κ > 1 and with S for κ = 1. Then, by Lemma A.2 all these terms have the

desired sign and only the following sum remains to be dealt with

ν2

s∑
k=1

wik , j−k
dk

ik + j − k
. (40)

Using Lemma 4.6, we can rewrite (40) as

ν2

s∑
k=1

wik , j−k
dk

ik + j − k
= ν2д

j
i1, ...,is

ds
is + j − s

− ν2

s−1∑
k=0

дji1, ...,ik ,ik+1+1, ...,is+1

( dk+1
ik+1 + j − k − 1

−
dk

ik + j − k

)
.

The coefficients in this sum may not have the desired sign, however, if this is the case they can be

combined with the expression that was derived for (21), that is,

− ν1

s∑
k=1

wik , j−k
ik

ik + j − k
= −ν1д

j
i1, ...,is

is
is + j − s

+ ν1

s−1∑
k=0

дji1, ...,ik ,ik+1+1, ...,is+1

( ik+1
ik+1 + j − k − 1

−
ik

ik + j − k

)
.

The proof is now finished using Lemma A.3 and ν1 > ν2.

B PROOF OF PROPOSITION 6.4
πw

is a fixed point of (28) if

0 = 1[i ≥ 1]λ
(
π̂di+j−1 − π̂di+j

) πw
i−1, j

π̂i+j−1 − π̂i+j
− λ

(
π̂di+j − π̂di+j+1

) πw
i , j

π̂i+j − π̂i+j+1

+ 1[j ≥ 1]p1µ1π
w
i+1, j−1

i + 1

i + j
− µ1π

w
i , j

i

i + j
− µ2π

w
i , j

j

i + j

+ µ2π
w
i , j+1

j + 1

i + j + 1
+ (1 − p1)µ1π

w
i+1, j

i + 1

i + j + 1
.

By using the definition of πw
, this is equivalent to

0 = 1[i ≥ 1]λ(π̂di+j−1 − π̂di+j )

(
i + j − 1

i − 1

) (
1

µ1

) i−1 (
p1
µ2

) j
− λ(π̂di+j − π̂di+j+1)

(
i + j
i

) (
1

µ1

) i (
p1
µ2

) j
+ 1[j ≥ 1]p1µ1(π̂i+j − π̂i+j+1)

(
i + j
i + 1

) (
1

µ1

) i+1 (
p1
µ2

) j−1
i + 1

i + j

− µ1(π̂i+j − π̂i+j+1)

(
i + j
i

) (
1

µ1

) i (
p1
µ2

) j
i

i + j
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− µ2(π̂i+j − π̂i+j+1)

(
i + j
i

) (
1

µ1

) i (
p1
µ2

) j
j

i + j

+ µ2(π̂i+j+1 − π̂i+j+2)

(
i + j + 1

i

) (
1

µ1

) i (
p1
µ2

) j+1
j + 1

i + j + 1

+ (1 − p1)µ1(π̂i+j+1 − π̂i+j+2)

(
i + j + 1
i + 1

) (
1

µ1

) i+1 (
p1
µ2

) j
i + 1

i + j + 1
.

We can rewrite this as

0 = λ(π̂di+j−1 − π̂di+j )
µ1i

i + j
− λ(π̂di+j − π̂di+j+1) + µ2(π̂i+j − π̂i+j+1)

j

i + j
− µ1(π̂i+j − π̂i+j+1)

i

i + j

− µ2(π̂i+j − π̂i+j+1)
j

i + j
+ p1(π̂i+j+1 − π̂i+j+2) + (1 − p1)(π̂i+j+1 − π̂i+j+2),

or, equivalently,

0 = (λ(π̂di+j−1 − π̂di+j ) − (π̂i+j − π̂i+j+1))
µ1i

i + j
− (λ(π̂di+j − π̂di+j+1) − (π̂i+j+1 − π̂i+j+2)). (41)

But this is true by definition of π̂ .

C PROOF OF PROPOSITION 8.2
By (33), F 1

1
(h) is only decreasing in д1

1
= h1,0. So we may assume that the indices {j, i1, . . . , is } are

different from j = 1, i1 = 1. We then have

F ji1, ...,is (h) = f0, j (h) +
s∑

k=1

(fik , j−k (h) − fik−1, j−k+1(h))

= λh1,0

s∑
k=1

wik−1, j−k (h).

The arrivals can be visualised in the same way as those for the supermarket model (see Figure 3).

If s = 0 then there is nothing to show, so suppose s ≥ 1. We need to check two cases: i1 = 1 and

i1 > 1. Set ck = λh1,0 = λд1
1
(h) for k = 1, . . . , s and c0 = cs+1 = 0. Suppose first i1 > 1. By using

Lemma 4.6, we get

F ji1, ...,is (h) =
s∑

k=1

ckwik−1, j−k (h)

= дji1−1, ...,is−1(h)cs −
s−1∑
k=0

дji1−1, ...,ik−1,ik+1, ...,is (h)
(
ck+1 − ck

)
= λд1

1
(h)(дji1−1, ...,is−1(h) − дji1, ...,is (h)).

If h, ˜h ∈ ΩB such that h ≤C ˜h and дji1, ...,is (h) = д
j
i1, ...,is (

˜h), then д1
1
(h) ≤ д1

1
( ˜h) and дji1−1, ...,is−1(h) ≤

дji1−1, ...,is−1(
˜h) such that

λд1
1
(h)(дji1−1, ...,is−1(h) − дji1, ...,is (h)) ≤ λд1

1
( ˜h)(дji1−1, ...,is−1(

˜h) − дji1, ...,is (
˜h)).

Suppose now i1 = 1. Proceeding similarly as in Proposition 6.2, we get

F ji1, ...,is (h) =
s∑

k=1

ckwik−1, j−k (h)
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= −c1д
j
i1, ...,is (h) +

s∑
k=1

дj−1i2−1, ...,ik−1,ik+1, ...,is
(h) (ck − ck+1)

= λд1
1
(h)(дj−1i2−1, ...,is−1(h) − дji1, ...,is (h)).

If h, ˜h ∈ ΩB such that h ≤C ˜h and дji1, ...,is (h) = д
j
i1, ...,is (

˜h), then д1
1
(h) ≤ д1

1
( ˜h) and дj−1i2−1, ...,is−1(h) ≤

дj−1i2−1, ...,is−1(
˜h) such that

λд1
1
(h)(дj−1i2−1, ...,is−1(h) − дji1, ...,is (h)) ≤ λд1

1
( ˜h)(дj−1i2−1, ...,is−1(

˜h) − дji1, ...,is (
˜h)).

This finishes the proof.
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