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Abstract—Distributed Join-Idle-Queue load balancing is
known to achieve vanishing waiting times in the large-scale limit
provided that the number of dispatchers remains fixed, while
the number of servers tends to infinity. When the number of
dispatchers m scales to infinity together with the number of
servers n, such that r = n/m remains fixed, the large-scale
performance of Join-Idle-Queue load balancing is less clear as
waiting times no longer vanish.

In this paper we first discuss some existing mean field models
for distributed Join-Idle-Queue load balancing with r = n/m
fixed and explain why the well-known model introduced in [1]
is not exact in the large-scale limit. The inexactness is caused
by mixing two variants of distributed Join-Idle-Queue load
balancing: a variant with and one without token withdrawals.
Next we introduce mean field models for Join-Idle-Queue load
balancing with token withdrawals, where an idle server places a
token at a dispatcher with the shortest among d randomly chosen
dispatchers.

The introduced mean field models imply that in case of phase
type distributed service times and a total job arrival rate of
λn < n, the response time of a job corresponds to that in a
standard M/PH/1 queue with load λq0. The value of q0 can be
determined numerically and depends on λ, r and d, but not on the
job size distribution (apart from its mean). This simple behavior
is due to the token withdrawals and is lost if such withdrawals do
not take place. We present simulation experiments that suggest
that the unique fixed point of the introduced mean field models
provides exact results in the large-scale limit.

Index Terms—Load balancing; join-idle-queue; mean field
models; distributed computing

I. INTRODUCTION

In traditional server farms jobs are distributed among
the front end servers by a single hardware load bal-
ancer/dispatcher. While such a load balancer can support
hundreds of servers, it is expensive, needs to be reconfigured
when some of the servers are turned off during periods with
low utilization and is not as robust as a distributed system. For
this reason the use of multiple software based load balancers
is preferential in a Cloud environment. While traditional load
balancers often made use of the join-the-shortest-queue (JSQ)
algorithm, as all the requests and responses tended to flow
through the load balancer, a new class of distributed load bal-
ancers called Join-Idle-Queue (JIQ) for systems with multiple
load balancers was introduced in [1]. Throughout the paper we
use the terms load balancer and dispatcher interchangeably.

Distributed JIQ load balancing operates as follows: each
dispatcher maintains an I-queue that contains a list of server
identities. These are servers that reported that they became idle
some time ago. We refer to these server identities as tokens.

When a new job arrives at a dispatcher, it is immediately
assigned to a server in the following manner:

• If the I-queue of the dispatcher is not empty, the job is
assigned to a server, the identity of which is selected from
the list in its I-queue. In such case the identity/token of
the selected server is removed from the list.

• If the I-queue of the dispatcher is empty, a random server
is selected.

From the server side we have that whenever a server becomes
idle, it adds its identity to the I-queue of a dispatcher. Two
algorithms are considered in [1]:

• JIQ-Random, meaning the dispatcher is selected at ran-
dom,

• JIQ-SQ(d), meaning the server selects d dispatchers at
random and adds its identity to a dispatcher with the
shortest I-queue among the d selected dispatchers. For
d = 1 this scheme coincides with JIQ-Random.

Notice that a server may hold one or several jobs even if it
is listed in an I-queue of a dispatcher as other dispatchers
may assign jobs to a server when their I-queue is empty. This
can be avoided by demanding that an idle server withdraws
its identity from the I-queue of the dispatcher as soon as a
job is assigned by another dispatcher. As such we distinguish
between the JIQ load balancing algorithm with and without
token withdrawals. Without token withdrawals, one can make
a further distinction on whether or not a server is allowed to
add its token to more than one dispatcher as the server could
become idle again before its outstanding token is used.

The performance of JIQ load balancing has been studied in
the large-scale limit by various authors. When the number of
dispatchers m remains fixed, while the number of servers n
tends to infinity, JIQ is known to have vanishing waiting times
in many settings [2], [3], [4] under subcritical load per server,
that is, if λn denotes the total arrival rate and the mean job
size equals 1, then all jobs are assigned to idle servers in the
limit when λ < 1.

As any load balancer can only support a finite number of
servers in any real system, it might be more appropriate to look
at the limit if both the number of dispatchers m and the number
of servers n tend to infinity, such that r = n/m remains fixed.
This limit was initially considered in [1] for JIQ-Random and
JIQ-SQ(d) under two assumptions that only hold for JIQ with
token withdrawals. However, as we explain in Section II, the



limit presented in [1] is inexact as the authors mix properties of
JIQ with and without withdrawals when deriving their result.

A mean field model for JIQ-Random and JIQ-Pod with
token withdrawals and exponential job sizes is presented in
[5]. JIQ-Pod operates as JIQ-Random, except that the power-
of-d-choices paradigm [6], [7] is used by the dispatcher when
a job is assigned to a dispatcher with an empty I-queue. While
JIQ-Pod improves the performance of JIQ-Random under
high loads, the downside is that some jobs are not assigned
immediately. While no convergence proofs are presented in
[5], simulation results suggest that the unique fixed point of the
mean field model corresponds to the exact limit. The authors
in [5] also illustrate using simulation that their model for JIQ-
Random is more accurate than the model in [1] for finite n,
but no explanation is provided.

A number of variants of JIQ, including JIQ-SQ(d), without
token withdrawals and exponential job sizes are analyzed using
mean field models in [8] for the case where servers to not
add their token to more than one dispatcher. These models
are significantly more complicated than the ones with token
withdrawals and even proving the existence of a unique fixed
point appears to be problematic, which is needed before one
can even start thinking about convergence proofs. The author
does present simulation results that suggest that the models
provide exact results in the large-scale limit. The main insights
of the models in [8] are that the system behavior of JIQ-SQ(d)
without token withdrawals is quite complex as the servers
experience queue length dependent arrival rates and the order
in which dispatchers select tokens from their I-queue impacts
performance.

In this paper we make the following contributions:

1) We explain why the large-scale analysis presented in [1]
is inexact. On the upside we show that the inaccuracy of
the proposed limit for JIQ-SQ(d) is small and decreases
rapidly as d increases.

2) We introduce a novel mean field model for JIQ-SQ(d)
with token withdrawals. We first consider exponential
job sizes and then generalize to phase-type distributed
job sizes. Both models are validated by simulation in
Section V. Our results for JIQ-SQ(d) for exponential
job sizes with d = 1 coincide with the results presented
in [5] for JIQ-Random.

It should be relatively easy to prove that our mean field models
become exact over finite time scales as the number of servers
tends to infinity as our models fall within the framework of
density dependent population processes of Kurtz [9].

Under the assumption (supported by simulation in Section
V) that the mean field models presented in this paper are
asymptotically exact, the following insights are obtained for
JIQ-SQ(d):

1) As n tends to infinity with r = n/m fixed, the response
time distribution of a job becomes identical to that in an
M/PH/1 queue with load λq0.

2) The value of q0 depends on λ, d and r, but is independent
of the job size distribution (with mean 1).

n q0 E[R]
50 0.3738 1.4878
500 0.3757 1.4708
5000 0.3752 1.4687
model in [1] 0.4000 1.5152

TABLE I
SIMULATION RESULTS FOR JIQ-RANDOM WITH TOKEN WITHDRAWALS

AND EXPONENTIAL JOB SIZES, λ = 0.85 AND r = n/m = 10 FOR
n = 50, 500 AND 5000 SERVERS. E[R] IS THE MEAN RESPONSE TIME AND
q0 THE PROBABILITY THAT A DISPATCHER HOLDS ZERO TOKENS. THERE

IS NO CONVERGENCE TO THE MODEL AS n TENDS TO INFINITY.

3) The method used by the dispatcher to select a token
from its I-queue when an arrival occurs, has no impact
on the performance.

We end this introduction with a short discussion of some
other JIQ related work. In [10] it was shown that JIQ is
not heavy traffic optimal, which is not surprising due to the
random assignments used when a job arrives at a dispatcher
with an empty I-queue. The authors therefore propose and
study Join-Below-Threshold load balancing which is in the
same spirit as JIQ-Threshold [8]. Load balancers for homoge-
neous and heterogeneous systems using outdated queue length
information were considered both in the case of a single
[11] or multiple dispatchers [12], [13]. For heterogeneous
systems that use JIQ load balancing with a fixed number of
dispatchers, vanishing waiting times were achieved in the limit
by exchanging tokens or using non-uniform token allotment
in [14]. Finally, JIQ was also studied in a setting with service
elasticity in [15] and [16].

The paper starts with a discussion of the large-scale limit
analysis in [1] in Section II. Sections III to V are devoted
to the JIQ-SQ(d) models and their validation. The paper ends
with some conclusions in Section VI.

II. INEXACTNESS OF AN EXISTING LARGE-SCALE
ANALYSIS

In this section we first demonstrate that the model in [1] for
the large-scale system is inexact and identify the reason for
this inexactness. In Table I we present an arbitrary simulation
experiment for JIQ-Random with an increasing number of
servers n and compare these results with the model in [1].
This model depends on two assumptions: (1) there is exactly
one copy of each idle server in the I-queues and (2) there are
only idle servers in the I-queues. As these assumptions are
valid for JIQ-Random with token withdrawals, we simulated
the system with token withdrawals. The fact that the model
in [1] is not asymptotically exact for the system without
token withdrawals was already demonstrated in [8, see Table
I], which is not surprising as assumption (2) does not hold
without withdrawals. Table I strongly suggests that the model
in [1] is not asymptotically exact even with token withdrawals.
Nevertheless, we will demonstrate that it may still be regarded
as a good to excellent approximation.

To understand the cause of the inexactness, we look at
Theorem 1 in [1]. Denote q̂1 as the probability that an I-queue
contains at least one token in equilibrium when the number of
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Fig. 1. Impact of λ and r on q0 for d = 1 (top) and d = 2 (bottom). Full
lines are obtained using Algorithm 1, dashed lines are for the model in [1].

servers n tends to infinity. Theorem 1 in [1] then states that
for JIQ-Random, we have

q̂1
1− q̂1

= (1− λ)r,

and for JIQ-SQ(d), we have∑
i≥1

q̂
(di−1)/(d−1)
1 = (1− λ)r.

We explain below that the left-hand sides are the mean I-
queue lengths for JIQ-Random and JIQ-SQ(d) without token
withdrawals, while the right-hand side is the mean queue
length of an I-queue in a system with token withdrawals.
Hence Theorem 1 mixes two different JIQ systems and the
analysis in [1] is therefore asymptotically inexact for both
systems.

The left-hand sides of the above equations can be un-
derstood by looking at the mean field models in [8]. More
specifically, looking at the ODEs in [8, Section IV.C] implies
that the distribution of the number of tokens at an I-queue for
JIQ-Random is geometric with parameter q̂1 = s1/λ, while
for JIQ-SQ(d) the probability that an I-queue contains at least
i tokens equals q̂(d

i−1)/(d−1)
1 = (s1/λ)

(di−1)/(d−1). Therefore
the average number of tokens in an I-queue is indeed given by
q̂1

1−q̂1
for JIQ-Random and

∑
i≥1 q̂

(di−1)/(d−1)
1 for JIQ-SQ(d).

The analysis in [8] is for the case without token withdrawals.
Thus the expressions on the left-hand side in Theorem 1
in [1] are the mean I-queue lengths for the system without
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Fig. 2. Relative deviation on q0 of model in [1] compared to Algorithm 1 as
a function of λ and r for d = 1 (top) and d = 2 (bottom.

withdrawals. In such case the total number of tokens residing
in the I-queues does not match the number of idle servers.

However the right-hand side equals (1 − λ)r for both
equations in Theorem 1 in [1] and this is the mean queue
length of an I-queue in a system with token withdrawals.
Indeed, when servers withdraw their token, the total number of
tokens residing in the I-queues perfectly matches the number
of idle servers. As (1−λ) should be the limiting fraction of idle
servers and there are r times as many servers as dispatchers,
the I-queue of a dispatcher contains on average (1−λ)r tokens.

In Figure 1 we compare the value of q0 computed by the
model in [1] with the result of Algorithm 1 presented in
Section III. Simulation experiments presented in Section V
suggest that Algorithm 1 yields asymptotically exact results
for JIQ-SQ(d) with token withdrawals. Figure 1 confirms
the inexactness for varying r and λ values. It also clearly
shows that the accuracy improves as d increases from 1 to
2. In fact, additional experiments (not presented) showed that
the accuracy improved even further when considering larger
d values. Figure 2 further illustrates the relative deviation
between the model in [1] and Algorithm 1. It is fair to state
that while the model in [1] is not asymptotically exact, its
accuracy is outstanding for d > 1 whenever λ is not too close
to one and r is sufficiently large.



III. MEAN FIELD MODEL FOR JIQ-SQ(D) WITH
EXPONENTIAL JOB SIZES

In this section we present a new mean field model for JIQ-
SQ(d) with servers that withdraw their token when a job is
assigned by another dispatcher. We consider a system with m
dispatchers, that each have an I-queue to hold tokens, and n
servers. As before let r = n/m. Poisson arrivals occur at rate
λn and are spread uniformly over the m dispatchers. For now
the job size is exponentially distributed with mean 1.

Let Qi(t) be the number of I-queues with exactly i tokens at
time t, Si(t) the number of servers with i jobs at time t. Hence,∑

iQi(t) = m and
∑

i Si(t) = n. Let Q̂k(t) =
∑

i≥kQi(t)
be the number of I-queues holding k or more tokens. Define
the fractions qi(t) = Qi(t)/m, q̂i(t) = Q̂i(t)/m and si(t) =
Si(t)/n. Let ∆Q̂i(t) denote the expected change in Q̂i(t) over
a small interval dt, that is, ∆Q̂i(t) = E[Q̂i(t+ dt)− Q̂i(t)].
As explained below, we have for i > 0

∆Q̂i(t) = −(λn)dt

(
Q̂i(t)

m
− Q̂i+1(t))

m

)

+ S1(t)dt

(
Q̂i−1(t)

d

md
− Q̂i(t)

d

md

)

− (λn)dtq0(t)i

(
Q̂i(t)

n
− Q̂i+1(t)

n

)
.

The first term is due to arrivals were (Q̂i(t) − Q̂i+1(t))/m
is the probability that a random arrival occurs at a dispatcher
with exactly i tokens in its I-queue. The second term is due
to service completions as jobs are assumed to be exponential
in size with mean one and a server that becomes idle uses the
power-of-d-choices rule to select a dispatcher. The last term
is due to servers withdrawing tokens and can be understood
as follows. First note that i(Q̂i(t) − Q̂i+1(t)) is the total
number of tokens residing at the I-queues that hold exactly
i tokens. Therefore i(Q̂i(t) − Q̂i+1(t))/n is the probability
that an arrival at an empty I-queue is assigned to a server that
has a token at an I-queue with length i.

Dividing left and right by mdt yields

dq̂i(t)

dt
= −λr(q̂i(t)− q̂i+1(t)) + s1(t)r(q̂i−1(t)

d−

q̂i(t)
d)− λ(1− q̂1(t))i(q̂i(t)− q̂i+1(t)), (1)

where q̂0(t) = 1 for all t.
We now proceed with the servers for i > 0:

∆Si(t) = (λn)dtq0(t)

(
Si−1(t)

n
− Si(t))

n

)
− dt (Si(t)− Si+1(t)) + 1[i = 1](λn)(1− q0(t))dt.

The first term corresponds to arrivals in empty I-queues, the
second to service completions and the last term to arrivals in
a non-empty I-queue. Dividing by ndt yields

dsi(t)

dt
= λq0(t)(si−1(t)− si(t))− (si(t)− si+1(t))

+ 1[i = 1]λ(1− q0(t)). (2)

Similarly, we find

ds0(t)

dt
= −λq0(t)s0(t) + s1(t)− λ(1− q0(t)). (3)

Notice that all the above equations apply irrespective of the
manner in which a dispatcher selects a token from its I-queue,
which is in contrast to JIQ-SQ(d) without token withdrawals
[8].

Theorem 1. Let (s, q̂) be a fixed point of (1)-(3) such that∑
i≥0 si = 1,

∑
i≥0 isi <∞, q̂0 = 1 and

∑
i≥0 q̂i <∞, then

λ =
∑

i≥1 si,

s1 = λ(1− λq0), (4)

sk = s1(λq0)
k−1, (5)

for k > 1, with q0 = 1− q̂1. Further,∑
i≥1

q̂i = (1− λ)r. (6)

Proof. The equality λ =
∑

i≥1 si follows from (2) as

0 =
∑
i≥1

i
dsi(t)

dt
= λq0(t)

∑
i≥0

si(t)−
∑
i≥1

si(t)+λ(1− q0(t)).

Using (2) and the fact that
∑

i≥k
dsi(t)
dt = 0 yields

sk = sk−1λq0,

for k ≥ 2, which implies (5). The expression for s1 in (4) is
now immediate by combining λ =

∑
i≥1 si with (5). To prove

(6) we note that (1) implies

0 =
∑
i≥1

dq̂i(t)

dt
= −q̂1(t)λr+ s1(t)r− λ(1− q̂1(t))

∑
i≥1

q̂i(t).

When combined with (4), we find that
∑

i≥1 q̂i = (1−λ)r.

Remarks: 1) Looking at the expression for sk in (5), we
see that the queue length distribution is identical to an M/M/1
queue with arrival rate λq0 when the server is busy and with
an increased arrival rate when the queue is idle (such that the
probability that the queue is idle is 1−λ instead of 1−λq0). As
increasing the arrival rate in an idle queue does not impact the
response time distribution, jobs have the same response time
distribution as in an ordinary M/M/1 queue with arrival rate
λq0. Therefore the response time is exponential with parameter
1 − λq0 (as the service rate equals 1). We indicate how to
compute q0 further on.

2) The equality λ =
∑

i≥1 si is natural as λ should be the
probability that a server is busy. The equality in (6) is also
expected as every idle server has exactly one token at one of
the dispatchers and the fraction of idle servers is (1−λ) while
there are r times as many servers as dispatchers. Therefore the
mean number of tokens per dispatcher should be (1− λ)r.

Theorem 2. Let (s, q̂) be a fixed point of (1)-(3) such that∑
i≥0 si = 1,

∑
i≥0 isi <∞, q̂0 = 1 and

∑
i≥0 q̂i <∞, then

q̂k+1 = q̂k − (q̂dk−1 − q̂dk)
1− λq0

1 + kq0
r

, (7)



for k ≥ 1 with q0 = 1− q̂1.

Proof. For any fixed point we have
∑

i≥k
dq̂i(t)
dt = 0, which

implies that

0 = −q̂kλr + s1rq̂
d
k−1 − λ(1− q̂1)

(
kq̂k +

∑
s>k

q̂s

)
,

for k ≥ 1. We can rewrite this as

q̂k =
s1rq̂

d
k−1 − λq0

(
(1− λ)r −

∑k−1
s=1 q̂s

)
λr + λq0(k − 1)

, (8)

due to (6). Although this expression can be used to compute
q̂k, we derive a more elegant recursion that is equivalent. We
first note that by (8)

q̂k(λr + λq0k) =

(
s1rq̂

d
k−1 − λq0

(
(1− λ)r −

k−1∑
s=1

q̂s

))

·
(
1 +

q0
r + q0(k − 1)

)
,

and

q̂k+1(λr + λq0k) = s1rq̂
d
k − λq0

(
(1− λ)r −

k∑
s=1

q̂s

)
.

Hence,

(q̂k − q̂k+1)(λr + λq0k) = s1r(q̂
d
k−1 − q̂dk)− λq0q̂k+(

s1rq̂
d
k−1 − λq0

(
(1− λ)r −

k−1∑
s=1

q̂s

))
q0

r + q0(k − 1)

= s1r(q̂
d
k−1 − q̂dk)− λq0q̂k + λq0q̂k.

When combined with (4) this proves (7).

Remarks: 1) When d = 1, (7) implies that

qk = q0

k∏
ℓ=1

1− λq0

1 + ℓq0
r

,

where qk = q̂k − q̂k+1. Further, as
∑

i≥0 qi = q̂0 = 1 this
shows that q0 is a solution of

q0
∑
k≥0

k∏
ℓ=1

1− λq0

1 + ℓq0
r

= 1,

which coincides with Theorem 2 in [5], where it is shown that
q0 is the unique solution of this equation on (0, 1).
2) Given q0 we can compute q̂k for k ≥ 2 using (7) (or (8))
as q̂1 = 1− q0.

Theorem 3. There exists a unique fixed point (s, q̂) of (1)-
(3) such that

∑
i≥0 si = 1,

∑
i≥0 isi < ∞, q̂0 = 1 and∑

i≥0 q̂i <∞.

Proof. Given Theorems 1 and 2, it suffices to show that there
is a unique q̂1 ∈ (0, 1) such that (6) holds, that is, such that∑

i≥1 q̂i = (1−λ)r. It is clear from (7) that q̂k is a continuous
function of q̂1 (but not necessarily monotone, see Figure 3(left)
for an example) and when q̂1 = 1, then q̂k = 1 for any k.
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Fig. 3. Illustration of non-monotone behavior for λ = 0.98, r = 5 and
d = 20 (top), ξk and ψk for λ = 0.7, r = 5, and d = 3 (bottom).

Therefore for any k > (1 − λ)r we have for q̂1 sufficiently
close to 1 that

∑k
s=1 q̂s > (1 − λ)r. Further q̂k+1 ≤ q̂k,

meaning q̂k ≤ 0 for any k when q̂1 = 0. Define ξk = 1 for
k = 1, . . . , ⌊(1−λ)r⌋ as the smallest value of q̂1 ∈ (0, 1) such
that

∑k
s=1 q̂s = (1− λ)r for k > ⌊(1− λ)r⌋.

We now argue that the following two statements hold:
1) q̂k > 0 when

∑k−1
s=1 q̂s ≥ (1− λ)r,

2) q̂k has a positive derivative on (0, ξk−1].
The first statement is immediate from (8) as both s1rq̂dk−1 and
λr + λq0(k − 1) are positive for any q̂1 ∈ (0, 1). Therefore∑k

s=1 q̂s > (1− λ)r when q̂1 equals ξk−1, which shows that
ξk ≤ ξk−1. In other words, ξk ∈ (0, 1] is non-increasing in k
as illustrated in Figure 3(right).

The second statement follows by induction on k as follows.
The statement clearly holds for k = 1. For k > 1, we have
by induction that that q̂s is increasing on (0, ξs−1) for s < k,
meaning

∑k−1
s=1 q̂s is increasing on (0, ξk−1) as ξs is non-

increasing in s. By definition of ξk−1, we also have that∑k−1
s=1 q̂s < (1 − λ)r on (0, ξk−1). By (8) we now see that

q̂k is increasing on (0, ξk−1) as s1rq̂
d
k−1 is increasing and

positive on (0, ξk−1), λr + q0(k − 1)/r is decreasing and
positive on (0, ξk−1) and −λq0((1−λ)r−

∑k−1
s=1 q̂s) is negative

and increasing on (0, ξk−1).
We proceed by using induction on k to argue that∑k
s=1 q̂s > (1−λ)r when q̂1 ∈ (ξk, 1). This trivially holds for

k = 1. For k > 1, we have by induction that
∑k−1

s=1 q̂s exceeds
(1 − λ)r on (ξk−1, 1). By (8), we therefore have that q̂k is



positive on (ξk−1, 1), so
∑k

s=1 q̂s >
∑k−1

s=1 q̂s > (1 − λ)r.
For q̂1 ∈ (ξk, ξk−1), we know that q̂k is increasing and∑k

s=1 q̂s = (1 − λ)r for q̂1 = ξk. This shows that for
k > ⌊(1 − λ)r⌋, there is a unique solution q̂1 = ξk on (0, 1)
such that

∑k−1
s=1 q̂s = (1− λ)r.

The unique value of q0 such that
∑

i≥1 q̂i = (1 − λ)r is
then found as 1− limk→∞ ξk as q0 = 1− q̂1 and the limit of
a decreasing sequence of values in (0, 1) exists.

Remarks: 1) We see from the proof of Theorem 3 that
for any k > 1 there exists a unique ψk such that q̂k = 0 if
q̂1 = ψk. Further ψk ≥ ψk−1 as q̂k ≤ q̂k−1 (see Figure 3(right)
for an illustration). This implies that if q̂1 < limk→∞ ξk, then
limk→∞ q̂k < 0, while limk→∞ q̂k > 0 if q̂1 > limk→∞ ξk.
Hence, limk→∞ ξk = limk→∞ ψk, where ξk is a decreasing
sequence and ψk an increasing one.

2) Looking at the proof of Theorem 3 and the previous
remark, we have the following simple algorithm to compute
q0 = 1−q̂1. We start with k = ⌈(1−λ)r⌉ and determine ξk and
ψk by performing a bisection algorithm on (0, 1) using (7).
Next we repeatedly increase k by one and determine ξk and ψk

using a bisection algorithm on (ψk−1, ξk−1) until ξk − ψk <
10−15 (see Algorithm 1). Once q0 is found, we can compute
the queue length distributions s and q̂ using (4), (5) and (7).
As noted before, the response time distribution of a job is
exponential with parameter 1− λq0.

Input: λ, d, r
Output: q0

1 k := ⌈(1− λ)r⌉;
2 Compute ξk using bisection on (0, 1);
3 Compute ψk using bisection on (0, ξk);
4 while ξk − ψk > 10−15 do
5 k := k + 1;
6 Compute ξk using bisection on (ψk−1, ξk−1);
7 Compute ψk using bisection on (ψk−1, ξk);
8 end
9 q0 := 1− ξk;

Algorithm 1: Computation of q0 for JIQ-SQ(d).

IV. MEAN FIELD MODEL FOR JIQ-SQ(D) WITH
PHASE-TYPE JOB SIZES

We now generalize the previous mean field model to phase-
type job sizes characterized by a 1 × b vector α and a b × b
matrix T such that P [X > t] = α exp(Tt)e, where X is
the job size and e a vector of ones. For further use denote
t∗ = (−T )e. Phase-type (PH) distributions are distributions
with a modulating finite state Markov chain (see also [17]).
Any general positive-valued distribution can be approximated
arbitrarily close with a PH distribution and there are various
fitting tools available for PH distributions (see e.g. [18]). The
main objective of this section is to show the following two
properties:

1) The distribution of the number of tokens in an I-queue
(given by q̂) does not depend on the job size distribution.
Hence, we have insensitivity in the mean field model for

the manner in which the tokens are distributed over the
dispatchers. This also implies that the probability q0 that an
I-queue is empty is insensitive to the job size distribution.

2) The response time distribution of a job under JIQ-SQ(d)
with phase-type job size distribution X is identical to that of
a job arriving in an M/G/1 queue with arrival rate λq0 and
job size distribution X . Note that this was already shown for
exponential job sizes in the previous section.

Let Si,j(t) be the number of servers in service phase j with i
jobs at time t and S0(t) be the number of idle servers at time t.
Denote S⃗i(t) = (Si,1(t), . . . , Si,b(t)), si,j(t) = Si,j(t)/n and
s⃗i(t) = S⃗i(t)/n. If we look at the evolution of the number of
tokens in an I-queue we see that it is identical to the case of
exponential job sizes, except for the term that corresponds to
the service completions. In the exponential case this term was
given by

S1(t)dt

(
Q̂i−1(t)

d

md
− Q̂i(t)

d

md

)
,

while in case of phase-type job sizes this becomes∑
j

S1,j(t)t
∗
j

 dt

(
Q̂i−1(t)

d

md
− Q̂i(t)

d

md

)
,

where the first sum can be written in matrix notation as
s⃗1(t)t

∗. This implies that (1) becomes

dq̂i(t)

dt
= −λr(q̂i(t)− q̂i+1(t)) + (s⃗1(t)t

∗)r(q̂i−1(t)
d − q̂i(t)

d)

− λ(1− q̂1(t))i(q̂i(t)− q̂i+1(t)), (9)

which is identical to (1) if we replace s1(t) by s⃗1(t)t∗.
We now proceed with the expected change in Si,j(t):

∆Si,j(t) = (λn)dtq0(t)

(
1[i > 1]

Si−1,j(t)

n
+ 1[i = 1]

S0(t)

n
αj

−Si,j(t))

n

)
− dtSi,j(t)t

∗
j + dt

∑
k

Si+1,k(t)t
∗
kαj

− dtSi,j(t)
∑
k ̸=j

Tj,k + dt
∑
k ̸=j

Si,k(t)Tk,j

+ 1[i = 1](λn)(1− q0(t))αjdt.

The first and last term are very similar to (2), the other terms
correspond to service completions and phase changes. As t∗ =
−Te, this can be written in matrix form as

∆S⃗i(t) = (λn)dtq0(t)

(
1[i > 1]

Si−1,j(t)

n
+ 1[i = 1]

S0(t)

n
α

− S⃗i(t))

n

)
− dtS⃗i(t)diag(t

∗) + dtS⃗i+1(t)t
∗α

+ dtS⃗i(t)(diag(t
∗) + diag(T )) + dt(S⃗i(t)T

− S⃗i(t)diag(T )) + 1[i = 1](λn)(1− q0(t))αdt,

where diag(v) of a vector v is a diagonal matrix with v on
its main diagonal and diag(A) of a matrix A is the diagonal



matrix obtained by setting all off diagonal entries of A to zero.
After simplifying this implies that

ds⃗i(t)

dt
= λq0(t)(1[i > 1]s⃗i−1(t) + 1[i = 1]s0(t)α− s⃗i(t))

+ s⃗i+1(t)t
∗α+ s⃗i(t)T + 1[i = 1]λ(1− q0(t))α.

(10)

Similarly, we find

ds0(t)

dt
= −λq0(t)s0(t) + s⃗1(t)t

∗ − λ(1− q0(t)). (11)

Theorem 4. Let (s, q̂) be a fixed point of (9-11) such that∑
i≥0 s⃗ie = 1,

∑
i≥0 is⃗ie < ∞, q̂0 = 1 and

∑
i≥1 q̂i < ∞

then λ =
∑

i≥1 s⃗ie,

s⃗1 = (1− λq0)αR/q0, (12)

s⃗k = s⃗1R
k−1, (13)

for k > 1, with q0 = 1−q̂1 and R = λq0(λq0I−λq0eα−T )−1.
Further, s⃗1t∗ = λ(1− λq0).

Proof. By demanding that
∑

i≥1
ds⃗i(t)
dt +s0(t)α = 0 and using

the definition of t∗, one finds that∑
i≥1

s⃗i(T + t∗α) = 0.

Hence,
∑

i≥1 s⃗i is a multiple of the unique invariant vector β
for which β(T + t∗α) = 0 and βe = 1 holds. By considering
the equality

∑
i≥1 i

ds⃗i(t)
dt e = 0, one also finds that∑

i≥1

s⃗it
∗ = λ.

As βt∗ = 1, this allows us to conclude that
∑

i≥1 s⃗i = λβ
and thus that s0 = 1− λ. We may therefore write

λq0s0 + λ(1− q0) = λ
1− λq0
1− λ

s0,

which means that the fixed point equations associated with
(10) and (11) can be stated as

0 = 1[i > 1]λq0s⃗i−1 − λq0s⃗i + 1[i = 1]λ
1− λq0
1− λ

s0α

+ s⃗i+1t
∗α+ s⃗iT,

and

0 = −λ1− λq0
1− λ

s0 + s⃗1t
∗.

These fixed point equations are identical to the balance equa-
tions of an M/PH/1 queue with arrival rate λ0 = λ(1 −
λq0)/(1 − λ) when the queue is empty and arrival rate λq0
otherwise. Therefore (12) and (13) hold due to Theorem 2 in
[19]. To verify that s⃗1t∗ = λ(1− λq0), we note that

(λq0I − λq0eα− T )e = t∗,

which shows that Rt∗ = λq0e and therefore by (12) we find
s⃗1t

∗ = λ(1− λq0) as required.

Theorem 5. There exists a unique fixed point (s⃗, q̂) of (9)-
(11) such that

∑
i≥0 si = 1,

∑
i≥0 isi < ∞, q̂0 = 1 and

settings Job sizes n q0 E[R] rel.err. %

λ = 0.7
r = 5
d = 3

Exponential 50 0.1682 1.1457 0.0341
500 0.1482 1.1173 0.0030
5000 0.1463 1.1141 0.0003
∞ 0.1460 1.1138

HypExp 50 0.1712 1.8476 0.1364
SCV = 10 500 0.1477 1.6428 0.0104
f = 1/2 5000 0.1458 1.6271 0.0007

∞ 0.1460 1.6259 -

λ = 0.85
r = 10
d = 1

Exponential 50 0.3738 1.4878 0.0132
500 0.3757 1.4708 0.0017
5000 0.3752 1.4687 0.0002
∞ 0.3753 1.4684

HypExp 50 0.3790 3.8480 0.0707
SCV = 10 500 0.3765 3.6012 0.0070
f = 1/10 5000 0.3757 3.5825 0.0018

∞ 0.3753 3.5761

TABLE II
JIQ-SQ(d) APPROXIMATION ERROR OF THE SIMULATED q0 AND E[R]

AND RELATIVE ERROR OF E[R].

∑
i≥0 q̂i < ∞. Further, q̂ is insensitive to the phase-type

distribution (α, T ).

Proof. By Theorem 4 we have that s⃗1t = λ(1−q0λ), therefore
the fixed point equations associated with (1) and (9) are
identical and have a unique solution q̂ due to Theorem 3.
As q0 = 1 − q̂1, the s⃗ part of the fixed point (s⃗, q̂) is fully
determined by (12) and (13).

Remarks: 1) The unique fixed point (s⃗, q̂) can be computed
by first computing q0 in the same manner as in the exponential
case. The vectors s⃗k, for k ≥ 1 are then computed using (12)
and (13).

2) The fixed point (s⃗, q̂) is such that the distribution s⃗ at
the servers is identical to an M/PH/1 queue with arrival rate
λq0 and an increased arrival rate λ0 when the queue is empty
(such that the probability to have an empty queue is 1−λ). As
such the response time distribution is the same as in an M/G/1-
queue with arrival rate λq0, therefore the mean response time
E[R] is given by the Pollaczek–Khinchin mean value formula:

E[R] =
λq0E[X2]

2(1− λq0)
+ 1,

as the mean job size E[X] = 1.

V. VALIDATION OF THE JIQ-SQ(D) MEAN FIELD MODEL

In this section we present simulation results to verify the
accuracy of the mean field models presented in Sections III and
IV. We performed a large number of simulation experiments
and present some arbitrarily selected cases in Table II. We
performed experiments with increasing values for the number
of servers n = 50, 500 and 5000. The number of dispatchers
used equals m = n/r. The system was simulated for a length
of 107/m time units (where the mean job size equals one time
unit). A warm-up period of 33% was used and the results were
averaged over several runs. Apart from the simulation results
Table II also contains the value of q0 determined by Algorithm
1 and the mean response time E[R] of the corresponding
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Fig. 4. Validation of the queue length distribution at server side for λ = 0.8,
d = 2, r = 5 and hyper-exponential job sizes with SCV=10 and f = 1/2.

M/PH/1 queue with load λq0. They are presented on the line
with n = ∞.

We considered both exponential job sizes and hyper-
exponential job sizes with mean 1. In the latter case, we
set the parameters p, µ1, µ2, with α = (p, 1 − p) and T =
diag(−µ1,−µ2), such that the squared coefficient of variation
(SCV) equals 10 and f = p/µ1. Table II clearly suggests that
the mean field models of Sections III and IV are asymptotically
exact as the simulation results appear to converge towards
the performance predicted by the unique fixed point of the
corresponding mean field model.

Having validated the mean field models, it seems fair to state
that for JIQ-SQ(d) with token withdrawals the response time
of a job approaches the response time in an ordinary M/PH/1
queue with load λq0 as the number of servers n becomes large
(with r = n/m fixed). Hence, the system behavior on the
server side becomes very simple. Unfortunately determining q0
is much harder due to the withdrawal of tokens. If we consider
JIQ-SQ(d) without token withdrawals, then [8] suggests that
the dynamics at the dispatcher side become very simple, e.g.,
for d = 1 the number of tokens has a geometric distribution.
However, without token withdrawals the server dynamics are
much more involved as the job arrival rates become queue
length dependent. The mean field model in [1] can be regarded
as combining the simple server side dynamics of JIQ-SQ(d)
with token withdrawals with the simple dispatcher dynamics
of JIQ-SQ(d) without token withdrawals. Remarkably, this
combination yields a good to excellent approximation as
shown in Figures 1 and 2.

We also performed several simulation experiments that
demonstrated that our mean field models are also very accurate
for the queue length distribution at the servers (and not just
the mean), only one such example is presented in Figure 4
due to the lack of space.

VI. CONCLUSIONS

In this paper we first explained why the well-known model
introduced in [1] is not asymptotically exact for JIQ-SQ(d)
with or without token withdrawals. We introduced a number of
performance models for JIQ-SQ(d) load balancing with token

withdrawals. Simulation experiments suggest that these models
provide asymptotically exact results.

For JIQ-SQ(d) with token withdrawals these models suggest
that the response time distribution of a job becomes identical
to that in an M/PH/1 queue with load λq0 in the large-scale
limit. The value of q0 depends on λ, d and r, but is independent
of the job size distribution (with mean 1). The token selection
method used by the dispatcher does not impact the system
performance.
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