
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Performance analysis of work stealing strategies in large scale multi-threaded
computing

GRZEGORZ KIELANSKI and BENNY VAN HOUDT, University of Antwerp, Belgium

Distributed systems use randomized work stealing to improve performance and resource utilization. In most prior analytical studies

of randomized work stealing, jobs are considered to be sequential and are executed as a whole on a single server. In this paper we

consider a homogeneous system of servers where parent jobs spawn child jobs that can feasibly be executed in parallel. When an idle

server probes a busy server in an attempt to steal work, it may either steal a parent job or multiple child jobs.

To approximate the performance of this system we introduce a Quasi-Birth-Death Markov chain and express the performance

measures of interest via its unique steady state. We perform simulation experiments that suggest that the approximation error tends to

zero as the number of servers in the system becomes large. To further support this observation we introduce a mean field model and

show that its unique fixed point corresponds to the steady state of the QBD. Using numerical experiments we compare the performance

of various simple stealing strategies as well as optimized strategies.

CCS Concepts: • Mathematics of computing → Queueing theory; Markov processes; • Networks → Network performance
analysis.

Additional Key Words and Phrases: matrix analytic methods, distributed computing

ACM Reference Format:
Grzegorz Kielanski and Benny Van Houdt. 2023. Performance analysis of work stealing strategies in large scale multi-threaded

computing. 1, 1 (February 2023), 23 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Jobs in multithreaded computing systems consist of several threads [4, 26]. Upon starting the execution a main thread

(which we call a parent job) several other threads are spawned (which we call child jobs). These spawned child jobs are

initially stored locally, but can be redistributed at a later stage. One way of redistributing jobs is called “randomized

work stealing”: processors that become empty start probing other processors at random (uniformly) and if the probed

processor has pending jobs, some of its jobs are transferred to the probing processor [4, 6]. Another option is to make

use of “randomized work sharing”, where servers that have pending jobs probe others to offload some of their work to

other servers.

Work stealing solutions have been studied by various authors and are often used in practice. They have been implemented

for example in Cilk programming language [3, 7], Intel TBB [21], Java fork/join framework [14], KAAPI [10] and .NET

Task Parallel Library [15]. Some early studies on work sharing and stealing include [6, 18, 24]. In [6] the performance

of work stealing and sharing is compared for homogenous systems with exponential job sizes. Using similar techniques

the work in [6] was generalized to heterogeneous systems in [18]. The key takeaway from these papers is that work

Authors’ address: Grzegorz Kielanski, Grzegorz.Kielanski@uantwerpen.be; Benny Van Houdt, benny.vanhoudt@uantwerpen.be, University of Antwerp,

Middelheimlaan 1, Antwerp, Belgium, B-2020.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-7149-7657
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0001-7149-7657

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Grzegorz Kielanski and Benny Van Houdt

stealing clearly outperforms work sharing in systems with a high load.

More recent work includes [9, 16, 17, 23, 25]. In [9] the authors analyse the system consisting of several homogeneous

clusters with exponential job sizes and where half of the jobs are transferred when a probe is successful. A fair

comparison between stealing and sharing strategies is given for homogeneous networks and exponential job sizes

in [16, 17] and for non-exponential job sizes in [25]. Further, the comparison in [17] is extended to heterogeneous

networks in [23].

The current paper is closely related to [11, 22]. Here and in [11, 22] we consider a system of homogeneous servers

that uses a randomized work stealing policy. Firstly, in [22] we compared two systems: one system where parent jobs

can be stolen and the other system where child jobs can be stolen one at a time. The latter of the two studied systems

was novel in the sense that all previous research about work stealing and sharing focused on systems where jobs are

considered to be sequential and are always executed as a whole on a single server. The key takeaway from [22] is that if

probe rate 𝑟 is large enough, then the second system outperforms the first. This is to be expected: for large probe rates

a job gets redistributed quickly and more queues can work on it, thus lowering the mean response time. On the other

hand, for small probe rates, it is better to transfer parents to empty queues as a larger amount of work is transferred per

steal.

Next, in [11], presented at QEST 2021, we considered a set of policies where if a server with pending child jobs is

probed by an idle server, some of its child jobs are transferred. When a server is probed that does not have pending

child jobs, a pending parent job is transferred instead (if available). The major complication in the analysis of these

policies, compared to [22], is that when several child jobs get stolen at once, child jobs may be transferred several times

before being executed. The objective of [11] was to gain insights on how to determine the number of child jobs that

should be stolen at once. We concluded that the stealing policy where half of the child jobs gets stolen every time is in

general a good stealing policy for large probe rates, while stealing all children performs best when the probe rate is low.

We also noted that stealing a single child usually performs the worst.

In [11, 22] we assumed that parent and child jobs have exponentially distributed service requirements, while jobs

in a real system are typically more variable in size. In this paper, which is an extended version of [11], we relax this

assumption by generalizing the analysis from [11] to phase-type (PH) distributed parent and child job sizes. As any

positive valued distribution can be approximated arbitrarily close by a phase-type distribution [2, Section 3.2.1], this

relaxation is significant, without complicating the analysis too much. We show that the insights obtained in [11] still

hold for PH child and parent jobs. Compared to [11] we also present a mean field model and prove that it has a unique

fixed point that coincides with the steady state of a structured Markov chain (a similar result was presented in [22],

where the proof is considerably easier due to the more restricted setting).

The rest of this paper is organized as follows. In Section 2 we describe the system of 𝑁 queues. The subsequent

sections contain the main contributions of the paper, namely:

• To approximate the performance of the work stealing system of 𝑁 queues, we introduce in Section 3 a Quasi-

Birth-Death Markov chain (QBD for short) that the describes the evolution of a single server queueing system

with negative arrivals. We prove that this QBD has a unique stationary distribution, which can be quickly

calculated. In Section 4, we indicate how to compute the waiting time distribution and mean service time.

• We compare the performance of several stealing strategies in Section 5. We confirm the main insights gained

from [11], namely that the strategy of stealing half of the child jobs performs well for low loads and/or high

probe rates and that stealing all child jobs performs best when the load is high and/or the probe rate is low. We

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Analysis of work stealing strategies in large scale multi-threaded computing 3

further conclude that stealing becomes more worthwhile as the job sizes become more variable (that is, with

increased squared coefficient of variation).

• For some strategies we present simulation results in Section 6 that suggest that as the number of servers

becomes large, the approximation error of the QBD model tends to zero.

• In Section 7, we introduce a mean field model and prove that it has a unique fixed point which is given by the

stationary distribution of the QBD.

We finish the paper with Section 8, where we present some concluding remarks.

2 SYSTEM DESCRIPTION AND STRATEGIES

We consider a system with 𝑁 homogeneous servers each with an infinite buffer to store jobs. Parent jobs arrive

in each server according to a local Poisson arrival process with rate _. Upon entering service a parent job spawns

𝑖 ∈ {0, 1, . . . ,𝑚},𝑚 ≥ 1, child jobs, the number of which follows a general distribution with finite support 𝑝𝑖 (i.e., 𝑝𝑖 ≥ 0

for every 𝑖 and
∑𝑚
𝑖=0

𝑝𝑖 = 1). These child jobs are stored locally and have priority over any parent jobs (either already

present or yet to arrive), while the spawning parent job continues service. Thus, when a (parent or child) job completes

service the server first checks to see whether it has any waiting child jobs, if so it starts service on a child job. If there

are no child jobs present, service on a waiting parent job starts (if any are present). We assume that parent and child

jobs have phase type (PH) distributed service requirements with representations (𝛼𝑝 , 𝑆𝑝) and (𝛼𝑐 , 𝑆𝑐) respectively,
where 𝑆𝑝 is an 𝑛𝑝 ×𝑛𝑝 matrix and 𝑆𝑐 an 𝑛𝑐 ×𝑛𝑐 matrix. This means that the probability that the service requirement of

a child job exceeds 𝑡 is given by 𝛼𝑐𝑒𝑆
𝑐𝑡

1𝑛𝑐 , where 1𝑘 denotes a column vector of ones of height 𝑘 , and the same holds

for the parent jobs if we replace the superscript 𝑐 by 𝑝 . PH distributions are distributions with a modulating finite state

Markov chain (see also [13]). Moreover there are various fitting tools available for PH distributions (see e.g. [12, 20]).

When a server is idle, it probes other servers at random at rate 𝑟 > 0, where 𝑟 is a system parameter. Note that 𝑟

determines the amount of communication between the servers and increasing 𝑟 should improve performance at the

expense of a higher communication overhead. When a server is probed (by an idle server) and it has waiting (parent or

child) jobs, we state that the probe is successful. When a successful probe reaches a server without waiting child jobs, a

parent job is transferred to the idle server. Note that such a transferred parent job starts service and spawns its child

jobs at the new server.

When a successful probe reaches a server with pending/waiting child jobs, several child jobs can be transferred at

once. If the probed server is serving a parent job and there are 𝑖 child jobs in the buffer of the probed server, 𝑗 ≤ 𝑖 child

jobs are stolen with probability 𝜙𝑖, 𝑗 (i.e., for every 𝑖 we have
∑𝑖

𝑗=1
𝜙𝑖, 𝑗 = 1). On the other hand if a child job is being

processed by the probed server and there are 𝑖 child jobs waiting in the buffer of the probed server, 𝑗 ≤ 𝑖 child jobs are

stolen with probability𝜓𝑖, 𝑗 (i.e., for every 𝑖 we have
∑𝑖

𝑗=1
𝜓𝑖, 𝑗 = 1). For ease of notation we set 𝜙𝑖, 𝑗 = 𝜓𝑖, 𝑗 = 0 if 𝑗 > 𝑖 .

Probes and job transfers are assumed to be instantaneous.

The main objective of this paper is to study how the probabilities 𝜙𝑖, 𝑗 and𝜓𝑖, 𝑗 influence the response time of a job,

where the response time is defined as the time between the arrival of a parent job and the completion of the parent

and all its spawned child jobs. Given the above description, it is clear that we get a Markov process if we keep track of

the number of parent and child job and the phase of the job in service in each of the 𝑁 servers. This Markov process

however does not appear to have a product form, making its analysis prohibitive.

Instead we use an approximation method, the accuracy of which is investigated in Section 6. The idea of the

approximation exists in focusing on a single server and assuming that the queue lengths at any other server are

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Grzegorz Kielanski and Benny Van Houdt

independent and identically distributed as in this particular server. Within the context of load balancing, this approach

is known as the cavity method [5]. In fact all the analytical models used in [6, 9, 16–18, 22–25] can be regarded as

cavity method approximations. A common feature of such an approximation is that it tends to become more accurate

as the number of servers tends to infinity, as we demonstrate in Section 6 for our model. The cavity method typically

involves iterating the so-called cavity map [5]. However, in our case the need for such an iteration is avoided by deriving

expressions for the rates at which child and parent jobs are stolen.

3 QUASI-BIRTH-DEATH MARKOV CHAIN

As the system of 𝑁 queues uses work stealing, where (parts of) a job can be transferred upon a successful steal, these 𝑁

queues are coupled in a non-trivial way. However, due to homogeneity of the processors we are still able to analyze

the system of 𝑁 queues by approximating it by a single queue with negative arrivals. This queue can described by a

Quasi-Birth-Death (QBD) Markov chain, which we introduce in this section.

Let _𝑝 (𝑟) denote the rate at which parent jobs are stolen when the server is idle. Let _𝑐,1 (𝑟), . . . , _𝑐,𝑚 (𝑟) denote
respectively the rates at which 1, . . . ,𝑚 child jobs are stolen. We provide formulas for these rates further on. The

evolution of a single server has the following characteristics, where the negative arrivals correspond to steal events:

(1) When the server is busy, arrivals of parent jobs occur according to a Poisson process with rate _. When the

server is idle, parent jobs arrive at the rate _ + _𝑝 (𝑟), while a batch of 𝑖 child jobs arrives at rate _𝑐,𝑖 (𝑟) for
𝑖 = 1, . . . ,𝑚.

(2) Upon entering service, a parent job spawns 𝑖 ∈ {0, 1, . . . ,𝑚},𝑚 ≥ 1, child jobs with probability 𝑝𝑖 . Child jobs

are stored locally.

(3) Child jobs have priority over any parent jobs waiting in the queue and are thus executed immediately after

their parent job when executed on the same server.

(4) Parent and child jobs have PH distributed service requirements with 𝑛𝑝 and 𝑛𝑐 phases and with representations

(𝛼𝑝 , 𝑆𝑝) and (𝛼𝑐 , 𝑆𝑐), respectively. We assume that these representations have 𝛼𝑐1𝑛𝑐 = 1 and 𝛼𝑝1𝑛𝑝 = 1. We

denote 𝑠𝑝 = −𝑆𝑝1𝑛𝑝 and 𝑠𝑐 = −𝑆𝑐1𝑛𝑐 .

(5) If there are parent jobs and no child jobs waiting in the buffer of the server then a negative parent arrival occurs

at the rate 𝑟𝑞, where 𝑞 = 1 − 𝜌 is the probability that a queue is idle (where 𝜌 is defined in (1)).

(6) If a parent job is in service and there are 𝑖 ∈ {1, . . . ,𝑚} child jobs in the buffer of the server, a batch of 𝑗 negative

child job arrivals occurs at the rate 𝑟𝑞𝜙𝑖, 𝑗 , for all 𝑗 ∈ {1, . . . , 𝑖}.
(7) If a child job is in service and there are 𝑖 ∈ {1, . . . ,𝑚 − 1} child jobs pending in the buffer of the server, a batch

of 𝑗 negative child job arrivals occurs at the rate 𝑟𝑞𝜓𝑖, 𝑗 , for all 𝑗 ∈ {1, . . . , 𝑖}.

Note that the load of the system can be expressed as

𝜌 = _

(
𝛼𝑝 (−𝑆𝑝)−1

1𝑛𝑝 + 𝛼𝑐 (−𝑆𝑐)−1
1𝑛𝑐

𝑚∑︁
𝑛=1

𝑛𝑝𝑛

)
, (1)

where 𝛼𝑝 (−𝑆𝑝)−1
1𝑛𝑝 and 𝛼𝑐 (−𝑆𝑐)−1

1𝑛𝑐 is the mean parent and child job size, respectively. Denote by 𝑋 ≥ 0 the

number of parent jobs waiting, by 𝑌 ∈ {0, 1, . . . ,𝑚} the number of child jobs in the server (either in service or waiting),

by 𝑍 ∈ {0, 1} whether a parent job is currently in service (𝑍 = 1) or not (𝑍 = 0) and by𝑊 the phase of the job in service.

Note that we have𝑊 ∈ {1, . . . , 𝑛𝑝 } when 𝑍 = 1 and𝑊 ∈ {0, . . . , 𝑛𝑐 } when 𝑍 = 0, where𝑊 = 0 if the queue is idle. The

possible transitions of the QBD Markov chain are listed in Table 1, corresponding to: 1. a batch of 𝑗 child jobs arriving

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Analysis of work stealing strategies in large scale multi-threaded computing 5

Table 1. Transitions for the QBD in Section 3

From To Rate For

1. (0, 0, 0, 0) → (0, 𝑗, 0, 𝑘) _𝑐,𝑗 (𝑟)𝛼𝑐𝑘 𝑗 = 1, . . . ,𝑚, 𝑘 = 1, . . . , 𝑛𝑐

2. (0, 0, 0, 0) → (0, 𝑗, 1, 𝑘) (_ + _𝑝 (𝑟))𝑝 𝑗𝛼𝑝𝑘 𝑗 = 0, 1, . . . ,𝑚, 𝑘 = 1, . . . , 𝑛𝑝 ,

3. (𝑋,𝑌, 𝑍,𝑊) → (𝑋 + 1, 𝑌 , 𝑍,𝑊) _ 𝑋 + 𝑌 + 𝑍 ≥ 1,𝑊 ≥ 1

4. (𝑋,𝑌, 1, 𝑘) → (𝑋,𝑌, 0, ℓ) 𝑠
𝑝

𝑘
𝛼𝑐
ℓ

𝑋 ≥ 0, 𝑌 ≥ 1, 𝑘 = 1, . . . , 𝑛𝑝 , ℓ = 1, . . . , 𝑛𝑐 ,

5. (𝑋,𝑌, 0, 𝑘) → (𝑋,𝑌 − 1, 0, ℓ) 𝑠𝑐
𝑘
𝛼𝑐
ℓ

𝑋 ≥ 0, 𝑌 ≥ 2, 𝑘, ℓ = 1, . . . , 𝑛𝑐 ,

6. (0, 0, 1, 𝑘) → (0, 0, 0, 0) 𝑠
𝑝

𝑘
𝑘 = 1, . . . , 𝑛𝑝 ,

7. (0, 1, 0, 𝑘) → (0, 0, 0, 0) 𝑠𝑐
𝑘

𝑘 = 1, . . . , 𝑛𝑐 ,

8. (𝑋, 0, 1, 𝑘) → (𝑋 − 1, 𝑗, 1, ℓ) 𝑠
𝑝

𝑘
𝑝 𝑗𝛼

𝑝

ℓ
𝑋 ≥ 1, 𝑗 = 0, 1, . . . ,𝑚, 𝑘, ℓ = 1, . . . , 𝑛𝑝 ,

9. (𝑋, 1, 0, 𝑘) → (𝑋 − 1, 𝑗, 1, ℓ) 𝑠𝑐
𝑘
𝑝 𝑗𝛼

𝑝

ℓ
𝑋 ≥ 1, 𝑗 = 1, . . . ,𝑚, 𝑘 = 1, . . . , 𝑛𝑐 , ℓ = 1, . . . , 𝑛𝑝 ,

10. (𝑋,𝑌, 1, 𝑘) → (𝑋,𝑌, 1, ℓ) 𝑆
𝑝

𝑘,ℓ
𝑋,𝑌 ≥ 0, 𝑘, ℓ = 1, . . . , 𝑛𝑝 , with 𝑘 ≠ ℓ ,

11. (𝑋,𝑌, 0, 𝑘) → (𝑋,𝑌, 0, ℓ) 𝑆𝑐
𝑘,ℓ

𝑋 ≥ 0, 𝑌 ≥ 1, 𝑘, ℓ = 1, . . . , 𝑛𝑐 , with 𝑘 ≠ ℓ ,

12. (𝑋,𝑌, 𝑍,𝑊) → (𝑋 − 1, 𝑌 , 𝑍,𝑊) 𝑟𝑞 𝑋,𝑊 ≥ 1, 𝑌 + 𝑍 = 1,

13. (𝑋,𝑌, 1,𝑊) → (𝑋,𝑌 − 𝑗, 1,𝑊) 𝑟𝑞𝜙𝑌,𝑗 𝑋 ≥ 0, 𝑌 ≥ 𝑗, 𝑗 = 1, . . . ,𝑚,𝑊 = 1, . . . , 𝑛𝑝 ,

14. (𝑋,𝑌, 0,𝑊) → (𝑋,𝑌 − 𝑗, 0,𝑊) 𝑟𝑞𝜓𝑌−1, 𝑗 𝑋 ≥ 0, 𝑌 ≥ 𝑗 + 1, 𝑗 = 1, . . . ,𝑚 − 1,𝑊 = 1, . . . , 𝑛𝑐 .

at an idle queue and the first child job proceeding directly into service, 2. a parent job arriving at an idle queue and

proceeding directly into service, spawning 𝑗 child jobs, 3. a parent arriving to a non-idle queue, 4. completion of a

parent in service, succeeded by a child job, 5. child service completion, succeeded by another child job, 6. completion

of a parent in service, not succeeded by any job, 7. child service completion, not succeeded by another job, 8. parent

service completion, succeeded by a parent job that enters service and spawns 𝑗 child jobs, 9. child service completion,

succeeded by a parent job that enters service and spawns 𝑗 child jobs, 10. a phase change occurs in the service of a

parent, 11. a phase change occurs in the service of a child,12. negative parent job arrival, 13. a parent is in service and a

batch of negative child job arrivals occurs, 14. a child job is in service and a batch of negative child job arrivals occurs.

The four dimensional process {𝑋𝑡 (𝑟), 𝑌𝑡 (𝑟), 𝑍𝑡 (𝑟),𝑊𝑡 (𝑟) : 𝑡 ≥ 0} is an irreducible, aperiodic Quasi-Birth-Death

process, where the level ℓ = ∗when the chain is in state (0, 0, 0, 0) and equals ℓ ≥ 0 when the chain is in a state with𝑋 = ℓ

(different from (0, 0, 0, 0)). When the level ℓ ≥ 0, the phase of the QBD is three dimensional and given by (𝑌, 𝑍,𝑊). The
𝑚𝑛𝑐 + (𝑚 + 1)𝑛𝑝 phases of level ℓ ≥ 0 are ordered such that the 𝑗-th phase corresponds to (𝑌, 𝑍,𝑊) = (⌈ 𝑗/𝑛𝑐 ⌉, 0, (𝑗 − 1)
mod 𝑛𝑐+1), for 𝑗 = 1, . . . ,𝑚𝑛𝑐 and phase𝑚𝑛𝑐+ 𝑗 to (𝑌, 𝑍,𝑊) = (⌈ 𝑗/𝑛𝑝 ⌉−1, 1, (𝑗−1) mod 𝑛𝑝+1) for 𝑗 = 1, . . . , (𝑚+1)𝑛𝑝 .

As explained below, the generator of the process is

𝑄 (𝑟) =

−_0 (𝑟)
∑𝑚

𝑗=1
𝑐,𝑗 (𝑟)^ 𝑗 + (+ _𝑝 (𝑟))𝛼

` 𝐵0 (𝑟) 𝐴1

𝐴−1 (𝑟) 𝐴0 (𝑟) 𝐴1

. . .
. . .

. . .

with _0 (𝑟) =

∑𝑚
𝑗=1

_𝑐,𝑗 (𝑟) + _ + _𝑝 (𝑟). The row vector ^ 𝑗 is defined as ^ 𝑗 =

[
0
′
(𝑗−1)𝑛𝑐 𝛼

𝑐
0
′
(𝑚− 𝑗)𝑛𝑐+(𝑚+1)𝑛𝑝

]
, where 0𝑖

is a column vector of zeroes of length 𝑖 . The initial probability vector 𝛼 records the distribution of child jobs upon a

parent job entering service and the initial phase of that parent. It is given by 𝛼 =

[
0
′
𝑚𝑛𝑐

𝑝0𝛼
𝑝 𝑝1𝛼

𝑝 . . . 𝑝𝑚𝛼𝑝
]
.

Indeed, at rate _𝑐,𝑗 (𝑟)𝛼𝑐𝑘 a batch of 𝑗 child jobs arrives in an idle server, causing a jump to level 1 and phase (𝑗, 0, 𝑘),
Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Grzegorz Kielanski and Benny Van Houdt

while at rate (_ + _𝑝 (𝑟))𝛼𝑝𝑘 a parent job arrives that spawns 𝑗 child jobs with probability 𝑝 𝑗 causing a jump to phase

(𝑗, 1, 𝑘) of level 1.

For further use, define

𝑆 (𝑟) =
[
𝑆00 (𝑟) 0

𝑆10 𝑆11 (𝑟)

]
,

where 𝑆00 (𝑟) is an𝑚𝑛𝑐 ×𝑚𝑛𝑐 matrix and 𝑆11 (𝑟) is an (𝑚 + 1)𝑛𝑝 × (𝑚 + 1)𝑛𝑝 matrix,

𝑆00 (𝑟) = 𝑟𝑞

𝜓1,1

.

.

.
. . .

𝜓𝑚−1,𝑚−1 . . . 𝜓𝑚−1,1

⊗ 𝐼𝑛𝑐 +

𝑆𝑐

𝑠𝑐𝛼𝑐
. . .

. . .
. . .

𝑠𝑐𝛼𝑐 𝑆𝑐

,

𝑆10 =

0𝑛𝑝 . . .

𝑠𝑝𝛼𝑐

𝑠𝑝𝛼𝑐

. . .

, 𝑆11 (𝑟) = 𝑟𝑞

𝜙1,1

.

.

.
. . .

𝜙𝑚,𝑚 . . . 𝜙𝑚,1

⊗ 𝐼𝑛𝑝 +

𝑆𝑝

. . .

. . .

𝑆𝑝

,

where ⊗ denotes the Kronecker product and 𝐼𝑘 denotes the identity matrix of size 𝑘 × 𝑘 . The matrix 𝐴0 (𝑟) contains the
possible transitions for which the level ℓ > 0 remains unchanged, this is when child jobs are stolen, or when a waiting

child moves into service, or when phase of the job in service changes. Hence

𝐴0 (𝑟) = 𝑆 (𝑟) − _𝐼 − 𝑟𝑞𝐼 .

Here, 𝐼 = 𝐼𝑚𝑛𝑐+(𝑚+1)𝑛𝑝 . Whenever it is clear what dimensions an identity matrix should have, we simply write 𝐼 for

the identity matrix of the appropriate size. Note that even when there are no child jobs waiting, the rate 𝑟𝑞 appears

on the main diagonal of 𝐴0 (𝑟) due to the negative parent arrivals. When ℓ = 0 there are no parent jobs waiting and

therefore the negative parent arrivals that occur in phases (1, 0, 𝑘) and (𝑚 + 1, 1, 𝑘′), for 𝑘 = 1, . . . , 𝑛𝑐 and 𝑘
′ = 1, . . . , 𝑛𝑝 ,

have no impact. This implies that

𝐵0 (𝑟) = 𝐴0 (𝑟) + 𝑟𝑞𝑉0 = 𝑆 (𝑟) − _𝐼 − 𝑟𝑞(𝐼 −𝑉0),

where 𝑉0 = diag

([
1
′
𝑛𝑐

0
′
(𝑚−1)𝑛𝑐 1

′
𝑛𝑝

0
′
𝑚𝑛𝑝

])
.The level ℓ can only decrease by one due to a service completion

from a phase with no pending child jobs, that is, from phases (1, 0, 𝑘) and (𝑚+1, 1, 𝑘′), for 𝑘 = 1, . . . , 𝑛𝑐 and 𝑘
′ = 1, . . . , 𝑛𝑝 .

To capture these events define ` =

[
(𝑠𝑐)′ 0

′
(𝑚−1)𝑛𝑐 (𝑠𝑝)′ 0

′
𝑚𝑛𝑝

] ′
. The level can also decrease due to a negative

parent arrival when ℓ > 0. The matrix 𝐴−1 (𝑟) records the transitions for which the level decreases and therefore equals

𝐴−1 (𝑟) = `𝛼 + 𝑟𝑞𝑉0 .

Finally, parent job arrivals always increase the level by one:

𝐴1 = _𝐼 .

Denote by 𝐴(𝑟) = 𝐴−1 (𝑟) +𝐴0 (𝑟) +𝐴1, the generator of the phase process, then

𝐴(𝑟) = 𝑆 (𝑟) + `𝛼 − 𝑟𝑞(𝐼 −𝑉0).

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Analysis of work stealing strategies in large scale multi-threaded computing 7

Define

𝜋∗ (𝑟) = lim

𝑡→∞
𝑃 [𝑋𝑡 (𝑟) = 0, 𝑌𝑡 (𝑟) = 0, 𝑍𝑡 (𝑟) = 0,𝑊𝑡 (𝑟) = 0],

and for ℓ ≥ 0,

𝜋ℓ (𝑟) = (𝜋ℓ,1,0 (𝑟), . . . 𝜋ℓ,𝑚,0 (𝑟), 𝜋ℓ,0,1 (𝑟), . . . , 𝜋ℓ,𝑚,1 (𝑟)),

where

𝜋ℓ, 𝑗,0 (𝑟) = (𝜋ℓ, 𝑗,0,1 (𝑟), . . . , 𝜋ℓ, 𝑗,0,𝑛𝑐 (𝑟))

𝜋ℓ, 𝑗,1 (𝑟) = (𝜋ℓ, 𝑗,1,1 (𝑟), . . . , 𝜋ℓ, 𝑗,1,𝑛𝑝 (𝑟))

and where

𝜋ℓ, 𝑗,𝑘,𝑤 (𝑟) = lim

𝑡→∞
𝑃 [𝑋𝑡 (𝑟) = ℓ, 𝑌𝑡 (𝑟) = 𝑗, 𝑍𝑡 (𝑟) = 𝑘,𝑊𝑡 (𝑟) = 𝑤] .

Due to the QBD structure [19], we have

𝜋0 (𝑟) = 𝜋∗ (𝑟)𝑅0 (𝑟), (2)

where 𝑅0 (𝑟) is a row vector of size𝑚𝑛𝑐 + (𝑚 + 1)𝑛𝑝 and for ℓ ≥ 1,

𝜋ℓ (𝑟) = 𝜋0 (𝑟)𝑅(𝑟)ℓ , (3)

where 𝑅(𝑟) is a (𝑚𝑛𝑐 + (𝑚 + 1)𝑛𝑝) × (𝑚𝑛𝑐 + (𝑚 + 1)𝑛𝑝) matrix and by [13] the smallest nonnegative solution to

𝐴1 + 𝑅(𝑟)𝐴0 (𝑟) + 𝑅(𝑟)2𝐴−1 (𝑟) = 0.

Also, due to the balance equations with ℓ = 0, we have

𝑚∑︁
𝑗=1

𝑐,𝑗 (𝑟)^ 𝑗 + (+ _𝑝 (𝑟))𝛼 + 𝑅0 (𝑟)𝐵0 (𝑟) + 𝑅0 (𝑟)𝑅(𝑟)𝐴−1 (𝑟) = 0

and due to [13, Chapter 6]

𝐴1𝐺 (𝑟) = 𝑅(𝑟)𝐴−1 (𝑟),

where 𝐺 (𝑟) is the smallest nonnegative solution to

𝐴−1 (𝑟) +𝐴0 (𝑟)𝐺 (𝑟) +𝐴1𝐺 (𝑟)2 = 0.

Combining the above yields the following expression:

𝑅0 (𝑟) = −
(𝑚∑︁
𝑗=1

𝑐,𝑗 (𝑟)^ 𝑗 + (+ _𝑝 (𝑟))𝛼
)
(𝐵0 (𝑟) + _𝐼𝐺 (𝑟))−1, (4)

where 𝐵0 (𝑟) + _𝐼𝐺 (𝑟) is a subgenerator matrix and is therefore invertible. We note that 𝑅(𝑟) and 𝐺 (𝑟) are independent
of _𝑐,1 (𝑟), . . . , _𝑐,𝑚 (𝑟) and _𝑝 (𝑟) and can be computed easily using the toolbox presented in [1]. To fully characterize

the QBD in terms of _, 𝛼𝑐 , 𝑆𝑐 , 𝛼𝑝 , 𝑆𝑝 and the probabilities 𝑝𝑖 , 𝜙𝑖, 𝑗 and𝜓𝑖, 𝑗 , we need to specify _𝑐,1 (𝑟), . . . , _𝑐,𝑚 (𝑟) and
_𝑝 (𝑟).

To determine these rates we use the following observation: 𝑞 = 1 − 𝜌 should be the probability that the QBD is in

state (0, 0, 0, 0) and in this state batches of 𝑗 child jobs arrive at rate _𝑐,𝑗 (𝑟). Therefore 𝑞_𝑐,𝑗 (𝑟) should equal the parent

arrival rate _ times the expected number of times that a batch of 𝑗 child jobs is stolen per parent job. The main difficulty

in using this equality lies in the fact that we must also take into account that a child job can be stolen several times

before it is executed.

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Grzegorz Kielanski and Benny Van Houdt

To this end and as a preparation for Proposition 3.1, we define recursively the row vector 𝑝𝑖, 𝑗 (𝑟) such that the 𝑘-th

entry of 𝑝𝑖, 𝑗 (𝑟) is the probability that the phase (𝑖, 𝑗, 𝑘) is visited by the queue during the service of a job just after an

arrival, a steal or a completion.

By conditioning on whether we first have a service completion or steal event, we have

𝑝1,𝑚 (𝑟) = 𝑝𝑚𝛼𝑝

𝑝1,𝑖 (𝑟) = 𝑝𝑖𝛼
𝑝 + 𝑟𝑞

∑︁
𝑗>𝑖

𝜙 𝑗, 𝑗−𝑖𝑝1, 𝑗 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1,

for 𝑖 ∈ {0, . . . ,𝑚 − 1}. For 𝑖 ∈ {1, . . . ,𝑚}, with 𝑝0,𝑚+1 = 0, we further have

𝑝0,𝑖 (𝑟) = 𝑝1,𝑖 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + 𝑝0,𝑖+1 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐

+ 𝑟𝑞
∑︁
𝑗>𝑖

𝜓 𝑗−1, 𝑗−𝑖𝑝0, 𝑗 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1 .

Note that

𝑝1,0 (𝑟)1𝑛𝑝 + 𝑝0,1 (𝑟)1𝑛𝑐 = 1, (5)

as every queue eventually visits phase (0, 1, 𝑘) or (1, 0, 𝑘) for some 𝑘 just after a completion or a steal.

We also define the row vector 𝑝
𝑗
𝑖
(𝑟) recursively, where 𝑘-th entry is the probability that the queue visits phase (0, 𝑖, 𝑘)

just after a completion or a steal has occurred, given that the queue started with 𝑗 child jobs. We have

𝑝
𝑗
𝑗
(𝑟) = 𝛼𝑐 ,

𝑝
𝑗
𝑖
(𝑟) = 𝑝

𝑗

𝑖+1
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐 + 𝑟𝑞

𝑗∑︁
𝑘=𝑖+1

𝜓𝑘−1,𝑘−𝑖𝑝
𝑗

𝑘
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1,

for 𝑖 ∈ {1, . . . , 𝑗 − 1}. Note that we have 𝑝 𝑗
1
(𝑟)1𝑛𝑐 = 1, for 1 ≤ 𝑗 ≤ 𝑚, as the QBD eventually visits phase (0, 1, 𝑘) for

some 𝑘 just after a completion or a steal. We are now in a position to define _𝑐,𝑖 (𝑟) recursively as:

_𝑐,𝑚 (𝑟) = _

𝑞
𝑟𝑞𝜙𝑚,𝑚𝑝1,𝑚 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1

1𝑛𝑝

_𝑐,𝑖 (𝑟) =
_

𝑞
𝑟𝑞

∑︁
𝑗≥𝑖

𝜙 𝑗,𝑖𝑝1, 𝑗 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1
1𝑛𝑝 + _

𝑞
𝑟𝑞

∑︁
𝑗>𝑖

𝜓 𝑗−1,𝑖𝑝0, 𝑗 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1
1𝑛𝑐

+ 𝑟𝑞
𝑚∑︁

𝑗=𝑖+1

_𝑐,𝑗 (𝑟)
𝑗∑︁

𝑘=𝑖+1

𝜓𝑘−1,𝑖𝑝
𝑗

𝑘
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1

1𝑛𝑐 (6)

for 𝑖 ∈ {1, . . . ,𝑚 − 1}. Note that 𝑟𝑞∑𝑛𝑝
𝑗=1

[(𝑟𝑞𝐼 − 𝑆𝑝)−1]𝑖, 𝑗 is the probability that a steal happens before the completion

of the parent, given that the parent started service in phase 𝑖 . It then follows that 𝑟𝑞𝜙𝑚,𝑚𝑝1,𝑚 (𝑟) (𝑟𝑞𝐼 −𝑆𝑝)−1
1𝑛𝑝 indeed

equals the expected number of batches of size𝑚 that are stolen per parent job (as the job must spawn𝑚 child jobs and

these must be stolen as a batch before the parent completes service). For 𝑖 < 𝑚, the first two sums of (6) represent the

expected number of size 𝑖 batches that are stolen from the original server, while the double sum counts the expected

number of such steals that occur on a server different from the original server.

It remains to define _𝑝 (𝑟), for this we demand that 𝜋∗ (𝑟) = 𝑞 and that

𝜋∗ (𝑟) +
∑︁
ℓ≥0

𝜋ℓ (𝑟)1 = 1,

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Analysis of work stealing strategies in large scale multi-threaded computing 9

where we denote 1𝑚𝑛𝑐+(𝑚+1)𝑛𝑝 by 1 for ease of notation.Then from equations (2) and (3),

𝑞

(
1 + 𝑅0 (𝑟) (𝐼 − 𝑅(𝑟))−11

)
= 1, (7)

where the inverse of 𝐼 − 𝑅(𝑟) exists due to Proposition 3.1. Using (4) and (7) we get:

_𝑝 (𝑟) =
(1 − 𝑞) − 𝑞(∑𝑚

𝑗=1
_𝑐,𝑗 (𝑟)^ 𝑗 + _𝛼)𝑤

𝑞𝛼𝑤
, (8)

with𝑤 = −(𝐵0 (𝑟) + _𝐼𝐺 (𝑟))−1 (𝐼 − 𝑅(𝑟))−11. Note that _𝑝 (𝑟) is well-defined for 𝑞 > 0, i.e. 𝜌 < 1. This completes the

description of the QBD Markov chain.

Proposition 3.1. The QBD process {𝑋𝑡 (𝑟), 𝑌𝑡 (𝑟), 𝑍𝑡 (𝑟),𝑊𝑡 (𝑟) : 𝑡 ≥ 0} has a unique stationary distribution for any

𝑟 ≥ 0 if 𝜌 < 1.

Proof. The proof is given in Appendix A. □

4 RESPONSE TIME DISTRIBUTION

We define 𝑇 (𝑟) as the response time of a job in a system with probe rate 𝑟 . The response time is defined as the length

of the time interval between the arrival of a parent job and the completion of this parent job and all of its spawned

child jobs. 𝑇 (𝑟) can be expressed as the sum of the waiting time𝑊 (𝑟) and the service time 𝐽 (𝑟). The waiting time is

defined as the amount of time that the parent job waits in the queue before its service starts. Clearly, the waiting and

the service time of a job are independent in our QBD model.

By repeating the arguments of the proof of [22, Theorem 6.1], we find that𝑊 (𝑟) can be expressed as:

Theorem 4.1. The distribution of the waiting time is given by

𝑃 [𝑊 (𝑟) > 𝑡] = (1′ ⊗ 𝜋0 (𝐼 − 𝑅(𝑟))−1)𝑒W𝑡𝑣𝑒𝑐 ⟨𝐼 ⟩

withW = ((𝐴0 (𝑟) +𝐴1)′ ⊗ 𝐼) + ((𝐴−1 (𝑟))′ ⊗ 𝑅(𝑟)) and where 𝑣𝑒𝑐 ⟨·⟩ is the column stacking operator. The mean waiting

time is

𝐸 [𝑊 (𝑟)] =
∫ ∞

0

𝑃 [𝑊 (𝑟) > 𝑡] 𝑑𝑡 = (1′ ⊗ 𝜋0 (𝐼 − 𝑅(𝑟))−1) (−W)−1𝑣𝑒𝑐 ⟨𝐼 ⟩.

We now focus on the service time 𝐽 (𝑟). We can derive recursive formulas for 𝑃 [𝐽 (𝑟) < 𝑡] which turn out to not be

very suitable for numerical calculations. As these formulas are similar to those from [11, Section 4], we omit them in this

paper. We can also find a formula for the mean service time for general PH distributed child and parent jobs, however,

to improve readability, we opt to present a scheme for calculating the mean service time in case of hyper-exponential

parent and child job service requirements.

Consider a set of 𝑗 servers, where the 𝑘-th server contains 𝑖𝑘 child jobs, with the child job in service being in phase

𝑓𝑘 , where 𝑗 ≥ 1, 0 ≤ 𝑖1 + · · · + 𝑖 𝑗 ≤ 𝑚 and 𝑖𝑘 ≥ 0 for 𝑘 = 1, . . . , 𝑗 . Let 𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟) be the expected time until all these

child jobs have completed service. Define similarly 𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟), except that the first server contains 𝑖1 pending child

jobs and a parent job that is in service and is in phase 𝑓1. By definition, we can drop 𝑖𝑘 ’s that are zero (except 𝑖1 in

𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟)) as long as we drop the corresponding upper indices. We also can permute the indices of 𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟) except

the first one of 𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟), as long as we permute upper and lower indices in the same way. We have 𝐸𝑘
1
(𝑟) = 1/𝑠𝑐

𝑘

and 𝐸𝑘
0
(𝑟) = 1/𝑠𝑝

𝑘
, as 𝐸𝑘

1
(𝑟) (resp. 𝐸𝑘

0
(𝑟)) simply denotes the mean time until completion of a single child (resp. parent)

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Grzegorz Kielanski and Benny Van Houdt

job in phase 𝑘 . Consider a configuration with 𝑗 ≥ 1 queues, with queue 𝑘 = 1, . . . , 𝑗 having 𝑖𝑘 children and the child

in service being in phase 𝑓𝑘 . A service completion in the 𝑘-th queue therefore occurs at rate 𝑠𝑐
𝑓𝑘
, which decreases 𝑖𝑘

by 1. If 𝑖𝑘 > 1, then the next child job starts service in phase 𝑠 with probability 𝛼𝑐𝑠 . A steal can only occur in the 𝑘-th

queue if 𝑖𝑘 > 1, in this case, at rate 𝑟𝑞, a jobs get transferred with probability𝜓𝑖𝑘−1,a to a new queue and the first of

these children start service in phase 𝑠 with probability 𝛼𝑐𝑠 . The total rate at which jobs get completed and stolen equals∑𝑗

𝑘=1
𝑠𝑐
𝑓𝑘

and 𝑟𝑞
∑𝑗

𝑘=1
1[𝑖𝑘 > 1] respectively. As such it takes on average 1/∑𝑗

𝑘=1
(𝑠𝑐
𝑓𝑘
+ 𝑟𝑞1[𝑖𝑘 > 1]) units of time until

a completion or a steal occurs and the probability that a completion (resp. a steal) occurs in 𝑘-th server is given by

𝑠𝑐
𝑓𝑘
/∑𝑗

𝑘=1
(𝑠𝑐
𝑓𝑘

+ 𝑟𝑞1[𝑖𝑘 > 1]) (resp. 𝑟𝑞1[𝑖𝑘 > 1]/∑𝑗

𝑘=1
(𝑠𝑐
𝑓𝑘

+ 𝑟𝑞1[𝑖𝑘 > 1])). We therefore get the following recursive

relations:

𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟) = 1∑𝑗

𝑘=1
(𝑠𝑐
𝑓𝑘
+ 𝑟𝑞1[𝑖𝑘 > 1])

(
1 +

𝑗∑︁
𝑘=1

𝑠𝑐
𝑓𝑘

𝑛𝑐∑︁
𝑠=1

𝛼𝑐𝑠 𝐸
𝑓1,...,𝑓𝑘−1,𝑠,𝑓𝑘+1,...,𝑓𝑗
𝑖1,...,𝑖𝑘−1,𝑖𝑘−1,𝑖𝑘+1,...,𝑖 𝑗

(𝑟)

+ 𝑟𝑞
𝑗∑︁

𝑘=1

1[𝑖𝑘 > 1]
𝑖𝑘−1∑︁
a=1

𝜓𝑖𝑘−1,a

𝑛𝑐∑︁
𝑠=1

𝛼𝑐𝑠 𝐸
𝑓1,...,𝑓𝑗 ,𝑠

𝑖1,...,𝑖𝑘−1,𝑖𝑘−a,𝑖𝑘+1,...,𝑖 𝑗 ,𝑘
(𝑟)

)
.

Similarly, we can derive a recursive formula for 𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟), except that now we have a parent job being served in the

first queue:

𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟) = 1

𝑠
𝑝

𝑓1
+ 𝑟𝑞1[𝑖1 > 0] + ∑𝑗

𝑘=2
(𝑠𝑐
𝑓𝑘
+ 𝑟𝑞1[𝑖𝑘 > 1])

(
1

+ 𝑠𝑝
𝑓1

𝑛𝑐∑︁
𝑠=1

𝛼𝑐𝑠 𝐸
𝑠,𝑓2,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟) + 𝑟𝑞1[𝑖1 > 0]
𝑖1∑︁
𝑘=1

𝜙𝑖1,𝑘

𝑛𝑐∑︁
𝑠=1

𝛼𝑐𝑠 𝐸
𝑓1,...,𝑓𝑗 ,𝑠

𝑖1−𝑘,𝑖2,...,𝑖 𝑗 ,𝑘 (𝑟)

+
𝑗∑︁

a=2

𝑠𝑐
𝑓a

𝑛𝑐∑︁
𝑠=1

𝛼𝑐𝑠 𝐸
𝑓1,...,𝑓a−1,𝑠,𝑓a+1,...,𝑓𝑗
𝑖1,...,𝑖a−1,𝑖a−1,𝑖a+1,...,𝑖 𝑗

(𝑟) + 𝑟𝑞
𝑗∑︁

a=2

1[𝑖a > 1]
𝑖a−1∑︁
𝑘=1

𝜓𝑖a−1,𝑘

𝑛𝑐∑︁
𝑠=1

𝛼𝑐𝑠 𝐸
𝑓1,...,𝑓𝑗 ,𝑠

𝑖1,...,𝑖a−1,𝑖a−𝑘,𝑖a+1,...,𝑖 𝑗 ,𝑘
(𝑟)

)
.

We then have

𝐸 [𝐽 (𝑟)] =
𝑚∑︁
𝑘=0

𝑝𝑘

𝑛𝑝∑︁
𝑖=1

𝛼
𝑝

𝑖
𝐸𝑖
𝑘
(𝑟).

Hence, for hyperexponential job sizes we have a recursive formula for the mean service time. The idea of this formula

can be extended to the case where parent and child jobs have acyclic phase type
1
distributed job requirements, where

we condition not only on whether we have a steal or a service completion, but also on whether we have a phase change.

We end this section with an explanation on how to implement the recursive formulas 𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟) and 𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟).

We first explain how to compute 𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟), where we assume without loss of generality that 𝑖1 ≥ 𝑖2 ≥ · · · ≥ 𝑖 𝑗 . For

𝑘 = 1, 2, . . . ,𝑚, let 𝔭𝑘 denote the number of unique partitions of integer 𝑘 and let the 𝔭𝑘 × 𝑘 matrix 𝑃𝑘 be a list of the

unique partitions of integer 𝑘 , for example

𝑃4 =

4 0 0 0

3 1 0 0

2 2 0 0

2 1 1 0

1 1 1 1

1
A phase type distribution characterized by (𝛼, 𝑆) is acyclic if the rows and columns of 𝑆 can be permuted to make 𝑆 upper triangular.

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Analysis of work stealing strategies in large scale multi-threaded computing 11

and 𝔭4 = 5. If 𝑖1 + 𝑖2 + · · · + 𝑖 𝑗 = 𝑘 , then if we ignore the zeros of 𝑃𝑘 , its rows contain all possible tuples (𝑖1, . . . , 𝑖 𝑗). Note,
that the number of queues in a given configuration that can have their jobs stolen is simply given by the number of

integers greater than 1 in the corresponding row of 𝑃𝑘 . Similarly, the number of busy servers in a configuration is given

by the number of non-zero entries in the corresponding row of 𝑃𝑘 .

For 𝑘 = 1, . . . ,𝑚 set 𝐸𝑘 as the zero matrix of size 𝔭𝑘 × 𝑛𝑘𝑐 . If 𝑖1 + · · · + 𝑖 𝑗 = 𝑘 and if (𝑖1, . . . , 𝑖 𝑗) can be found in the 𝑔-th

row of 𝑃𝑘 , then we would like the (𝑔, ℎ)-th entry of 𝐸𝑘 to be equal to 𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟), where ℎ = 1 + ∑𝑗

𝑠=1
(𝑓𝑠 − 1)𝑛𝑠−1

𝑐 . To

calculate the entries of the 𝑔-th row of 𝐸𝑘 we only need to know the lower rows of 𝐸𝑘 (due to steals) and the matrix

𝐸𝑘−1
(due to completions). As 𝐸1 = [1/𝑠𝑐

1
, . . . , 1/𝑠𝑐𝑛𝑐], we can calculate the entries of 𝐸𝑘 inductively, where, for every 𝑘 ,

the rows of 𝐸𝑘 are calculated from the bottom up.

𝐸
𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟) can be computed similarly, although we now have to account for the parent in the first server. W.l.o.g.

assume that 𝑖2 ≥ 𝑖3 ≥ · · · ≥ 𝑖 𝑗 , 𝑖1 ≥ 0 and 1+𝑖1+𝑖2+· · ·+𝑖 𝑗 = 𝑘 . Let 𝑃𝑘 be the matrix containing all the tuples (𝑖1, . . . , 𝑖 𝑗).
Let �̄�𝑘 denote the number of rows of 𝑃𝑘 . We denote the zero matrix of dimension 𝑘 × ℓ as 0𝑘,ℓ , i.e. 0𝑘,ℓ = 0𝑘 ⊗ 0

′
ℓ
. Then

𝑃𝑘 can be constructed as follows:

𝑃𝑘 =

𝑘 0
1,𝑘−1

(𝑘 − 1)1𝔭1
𝑃1 0𝔭1,𝑘−2

(𝑘 − 2)1𝔭2
𝑃2 0𝔭2,𝑘−3

.

.

.
.
.
.

.

.

.

2 · 1𝔭𝑘−2
𝑃𝑘−2

0𝔭𝑘−2,1

1𝔭𝑘−1
𝑃𝑘−1

.

Note that the first column of 𝑃𝑘 represents the number of jobs in the first queue (including the parent job).

For 𝑘 = 1, . . . ,𝑚 + 1 set 𝐸𝑘 as the zero matrix of size �̄�𝑘 ×𝑛𝑝𝑛
𝑘−1

𝑐 . If 1 + 𝑖1 + · · · + 𝑖 𝑗 = 𝑘 and if (𝑖1, . . . , 𝑖 𝑗) corresponds to
𝑔-th row of 𝑃𝑘 , then we would like the (𝑔, ℎ)-th entry of 𝐸𝑘 to be equal to 𝐸

𝑓1,...,𝑓𝑗
𝑖1,...,𝑖 𝑗

(𝑟), where ℎ = 1 +∑𝑗

𝑠=2
(𝑓𝑠 − 1)𝑛𝑠−2

𝑐 +
(𝑓1 − 1)𝑛 𝑗−1

𝑐 . To calculate the entries of the 𝑔-th row of 𝐸𝑘 we only need to know the lower rows of 𝐸𝑘 (due to steals)

and the matrices 𝐸𝑘−1
and 𝐸𝑘−1

(due to child and parent completions respectively). As 𝐸1 = [1/𝑠𝑝
1
, . . . , 1/𝑠𝑝𝑛𝑝], we can

calculate the entries of 𝐸𝑘 inductively, where, for every 𝑘 , the rows of 𝐸𝑘 are calculated from the bottom up.

5 NUMERICAL EXPERIMENTS

In [11], we defined the class of monotone deterministic (MD) strategies and we tested in different settings the strategies

of stealing a single child job, half of the waiting children and all waiting children against the optimal MD strategy for

those settings in case of exponential parent/child job sizes. We concluded that the stealing policy where the half of

child jobs gets stolen is in general a good stealing policy for higher values of 𝑟 and moderate system loads 𝜌 , while the

strategy of stealing all children performs best for low values of 𝑟 and higher values of 𝜌 . We concluded further that

stealing only one child performs the worst in most of the cases. In this section we examine whether these conclusions

remain valid for systems with hyperexponential parent and child job sizes with two phases (ℎ𝑒𝑥𝑝 (2)).
To this end we describe a ℎ𝑒𝑥𝑝 (2) distribution using the parameters 𝐸𝑋, 𝑆𝐶𝑉 , 𝑓 where 𝐸𝑋 is the mean of the distribution,

where 𝑆𝐶𝑉 is the squared coefficient of variation and where 𝑓 is the fraction of the workload contributed by phase 1

jobs (𝑓 is sometimes called the shape parameter). Using these parameters we can generate a ℎ𝑒𝑥𝑝 (2) distribution with

parameters ([𝛽1, 1 − 𝛽1], [`1, `2]), where

`1 =
𝑆𝐶𝑉 + (4𝑓 − 1) +

√︁
(𝑆𝐶𝑉 − 1) (𝑆𝐶𝑉 − 1 + 8𝑓 (1 − 𝑓))

2𝐸𝑋 · 𝑓 (𝑆𝐶𝑉 + 1) ,

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Grzegorz Kielanski and Benny Van Houdt

`2 =
𝑆𝐶𝑉 + (4(1 − 𝑓) − 1) −

√︁
(𝑆𝐶𝑉 − 1) (𝑆𝐶𝑉 − 1 + 8𝑓 (1 − 𝑓))

2𝐸𝑋 · (1 − 𝑓) (𝑆𝐶𝑉 + 1)
and 𝛽1 = 𝐸𝑋 · `1 𝑓 . In the remainder of the paper we use the same values of 𝑆𝐶𝑉 and 𝑓 for parent and child jobs. We

assume that parent and child jobs have service requirements with mean 2 and mean 1 respectively.

Recall that we defined the matrix Ψ as the matrix where [Ψ]𝑖, 𝑗 = 𝜓𝑖, 𝑗 and Φ similarly. Note that a strategy is fully

characterized by the matrices Ψ and Φ. The strategies of stealing a single child job, half of child jobs and all children are

defined as follows:

(1) Steal one: The strategy of always stealing one child job, that is 𝜙𝑖,1 = 𝜓𝑖,1 = 1 for every 𝑖 .

(2) Steal half: The strategy of always stealing half of the pending child jobs. If 𝑛, the number of pending child jobs,

is uneven, there is a fifty percent chance that ⌊𝑛/2⌋ child jobs get stolen and ⌈𝑛/2⌉ jobs otherwise.
(3) Steal all: The strategy of stealing all of the pending child jobs, that is 𝜙𝑖,𝑖 = 𝜓𝑖,𝑖 = 1 for every 𝑖 .

Note that these strategies do not rely on any knowledge on the (mean) job sizes or system load. In [11] a strategy was

called monotone deterministic (MD) if, for every 𝑖 ,𝜓𝑖, 𝑗 = 1 implies𝜓𝑖+1, 𝑗 ′ = 1 for some 𝑗 ′ ≥ 𝑗 and the same holds for

Φ. The optimal MD strategy is determined using brute force and its response time is denoted as 𝑇𝑀𝐷 (𝑟). The mean

response time of other strategies is always normalized by 𝑇𝑀𝐷 (𝑟) in the subsequent experiments.

We now present a selection of performed numerical experiments (due to the lack of space). The main conclusions in the

omitted experiments are in agreement with the results presented here. Let p = [𝑝0, 𝑝1, . . . , 𝑝𝑚].

Example 5.1. In Figure 1 we illustrate the effect of increasing the load 𝜌 on the on performance of the three strategies

for different values of 𝑆𝐶𝑉 . We do this for 𝜌 ∈ [0.05, 0.95], 𝑆𝐶𝑉 ∈ {2, 5, 20}, 𝑓 = 1/3, p = [5, 4, 3, 2, 1]/15 and 𝑟 = 2.

These results (and other results omitted here) confirm that stealing all is best when the load is sufficiently high, while

stealing half of the child jobs is a good strategy for systems with a moderate load.

0.2 0.4 0.6 0.8

1

1.02

1.04

1.06

1.08

1.1

1.12

0.2 0.4 0.6 0.8

1

1.02

1.04

1.06

1.08

1.1

0.2 0.4 0.6 0.8

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Fig. 1. Example 5.1 with 𝑆𝐶𝑉 = 2 (left), 𝑆𝐶𝑉 = 5 (mid) and 𝑆𝐶𝑉 = 20 (right).

Example 5.2. In Figure 2 we consider the system with 𝜌 = 0.85, 𝑆𝐶𝑉 ∈ [1, 20], 𝑓 = 1/2, p = 1
′
6
/6 and 𝑟 ∈ {1, 5, 10}.

We examine the effect of increasing the value of the 𝑆𝐶𝑉 on the performance of the three stealing strategies against the

performance of the system with no stealing. Clearly, as the 𝑆𝐶𝑉 increases the ratio 𝐸 [𝑇 (𝑟)]/𝐸 [𝑇 (0)] decreases for each
of the three strategies. In fact, for every stealing strategy we have that as the 𝑆𝐶𝑉 → ∞, the ratio 𝐸 [𝑇 (𝑟)]/𝐸 [𝑇 (0)] → 0.

This implies that as the 𝑆𝐶𝑉 increases it is more and more worthwhile to steal.

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Analysis of work stealing strategies in large scale multi-threaded computing 13

0 5 10 15 20

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 5 10 15 20

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fig. 2. Example 5.2 with 𝑟 = 1 (left), 𝑟 = 5 (mid) and 𝑟 = 10 (right).

Example 5.3. Example 5.2 shows that the mean response time of the strategy of not stealing grows quicker than

those of the strategies where stealing occurs. In this example we examine this growth in more detail. In Figure 3, we

therefore plot 𝐸 [𝑇 (𝑟)] in function of 𝑆𝐶𝑉 for the three strategies and for the system where no stealing occurs. We do

this for 𝜌 = 0.85, 𝑆𝐶𝑉 ∈ [1, 40], 𝑓 = 1/2, p = 1
′
6
/6 and 𝑟 = 5. Clearly, the growth of 𝐸 [𝑇 (0)] (no stealing) is linear in

function of 𝑆𝐶𝑉 . Further as 𝑆𝐶𝑉 → ∞, 𝐸 [𝑇 (𝑟)] seems to converge for any stealing strategy, which is equivalent to

saying that from the moment that 𝑆𝐶𝑉 is large enough, there is not much difference in the performance of a stealing

strategy when the 𝑆𝐶𝑉 is increased further.

0 10 20 30 40

0

50

100

150

200

0 10 20 30 40

4.4

4.6

4.8

5

5.2

5.4

5.6

Fig. 3. Example 5.3 with the system where no stealing occurs (left) and without that system (right).

6 MODEL VALIDATION

Based on numerical experiments in the previous section, we see that stealing all or half of the children are good stealing

policies, stealing all works best for low values of 𝑟 , while stealing half of the children works well for higher values.

Therefore we validate the model for these two policies by means of simulation. We run all simulations for 𝑇 = 10
5
with

a warm up period of 33% of 𝑇 , always starting from an empty system.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Grzegorz Kielanski and Benny Van Houdt

In Figure 4, we compare the simulated waiting and service time distributions and those of the QBD model. We do

this for 𝜌 = 0.85, 𝑆𝐶𝑉 = 2, 𝑓 = 1/2, p = 1
′
5
/5 and 𝑟 ∈ {1, 5}. The simulated waiting and service times were calculated

based on 5 runs, with the number of queues 𝑁 = 2000. We see that there is a good match between the simulated waiting

and service time distributions and those of the QBD model. Also, that the match is less good for 𝑟 = 5 than for 𝑟 = 1.

Note that having 2000 or more CPU-cores is not uncommon in an HPC cluster.

Fig. 4. Waiting and response times from the QBD (blue) and simulations (red) for the strategies of stealing all children (left) and half
of the children (right).

In Table 2 we compare the relative error of the simulated mean response time, based on 20 runs, to the one obtained

using formula from Section 4. In We do this for the policy of stealing half of the available children. Similar results were

obtained when all children are stolen. We simulate the systems for 𝑓 = 1/2, 𝑆𝐶𝑉 ∈ {2, 20}, p = 1
′
5
/5, 𝜌 ∈ {0.75, 0.85},

𝑟 = 1 and 𝑁 ∈ {250, 500, 1000, 2000, 4000}.

𝜌 = 0.75 𝜌 = 0.85

𝑁 sim. ± conf. rel.err.% sim. ± conf. rel.err.%

𝑆𝐶𝑉 = 2

250 6.4925 ± 6.67e-03 0.4706 9.5338 ± 1.72e-02 0.7855

500 6.4788 ± 3.88e-03 0.2586 9.4893 ± 1.48e-02 0.3156

1000 6.4683 ± 3.94e-03 0.0963 9.4691 ± 7.66e-03 0.1021

2000 6.4638 ± 2.13e-03 0.0260 9.4647 ± 7.38e-03 0.0547

4000 6.4635 ± 9.64e-04 0.0214 9.4597 ± 4.51e-03 0.0024

QBD 6.4621 9.4595

𝑆𝐶𝑉 = 20

250 8.1792 ± 2.88e-02 2.0152 17.1200 ± 1.18e-01 2.3903

500 8.0953 ± 1.77e-02 0.9686 16.8921 ± 7.14e-02 1.0272

1000 8.0473 ± 8.81e-03 0.3701 16.8081 ± 6.00e-02 0.5248

2000 8.0347 ± 8.64e-03 0.2127 16.7477 ± 3.80e-02 0.1637

4000 8.0226 ± 7.66e-03 0.0619 16.7388 ± 3.72e-02 0.1104

QBD 8.0176 16.7204

Table 2. Relative error of simulation results for 𝐸 [𝑇 (𝑟)] for the policy of stealing half of the children, based on 20 runs.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Analysis of work stealing strategies in large scale multi-threaded computing 15

The relative error in all cases is below 2.5% and tends to increase with the value of the 𝑆𝐶𝑉 . We note that based on

simulations omitted here the relative error tends to increase with the steal rate 𝑟 , which is in agreement with Figure 4.

More importantly the relative error seems roughly to halve when doubling 𝑁 (which is in agreement with the results in

[8]). This suggests that the approximation error tends to zero as the number of servers tends to infinity.

7 MEAN FIELD MODEL

In this section we present a mean field model for the work stealing system considered in this paper and show that it has

a unique fixed point that coincides with the steady state vector of the QBD Markov chain. In this manner we provide

additional support for the claim that the approximation error of the QBD model tends to zero as the number of servers

becomes large. Note that this result is not sufficient to formally prove this. One of the main challenges in coming up

with such a formal proof is to establish global attractor of the fixed point, which is often done using monotonicity

arguments. This however is not feasible for the system considered in this paper, as the system is clearly not monotone in

some cases (e.g. a system where out of 5 child jobs always 5 get stolen, whereas out of 4 children only one is transferred

upon a successful steal attempt).

We start by writing down the set of ODEs that capture the evolution of the mean field model (i.e., the so-called

drift equations). We denote by 𝑓ℓ, 𝑗,𝑘,𝑖 (𝑡) the fraction of queues at time 𝑡 with ℓ parent jobs in waiting in the queue,

𝑗 ∈ {1, . . . ,𝑚} child jobs in the queue, 𝑘 ∈ {0, 1} describing whether a parent job is in service (𝑘 = 1) or not (𝑘 = 0)
and 𝑖 being the phase of the job currently in service (if 𝑘 = 1, then 𝑖 ∈ {1, . . . , 𝑛𝑝 } and if 𝑘 = 0, then 𝑖 ∈ {1, . . . , 𝑛𝑐 }).
When there is no job in service we set 𝑖 = 0. Note that ℓ does not count parent jobs in service, whereas 𝑗 counts child

jobs waiting and in service. In particular for ℓ = 0 and 𝑗 + 𝑘 ≥ 1 the server is busy and there may be child jobs waiting,

which can be transferred. We denote 𝑓0,0,0,0 (𝑡) as 𝑓∗ (𝑡), the fraction of idle queues. For a statement 𝐴 we set 1[𝐴] to be

1 if 𝐴 is true and 0 if 𝐴 is false.

Let

®𝑓ℓ (𝑡) = (®𝑓ℓ,1,0 (𝑡), . . . , ®𝑓ℓ,𝑚,0 (𝑡), ®𝑓ℓ,0,1 (𝑡), . . . , ®𝑓ℓ,𝑚,1 (𝑡))

for every ℓ ≥ 0, where
®𝑓ℓ, 𝑗,0 (𝑡) = (®𝑓ℓ, 𝑗,0,1 (𝑡), . . . , ®𝑓ℓ, 𝑗,0,𝑛𝑐 (𝑡)) and ®𝑓ℓ, 𝑗,1 (𝑡) = (®𝑓ℓ, 𝑗,1,1 (𝑡), . . . , ®𝑓ℓ, 𝑗,1,𝑛𝑝 (𝑡)). Then, for ℓ > 0

we have

𝑑

𝑑𝑡
®𝑓ℓ (𝑡) = _ ®𝑓ℓ−1 (𝑡) + ®𝑓ℓ (𝑡)�̃�0 (𝑡) + ®𝑓ℓ+1 (𝑡)`𝛼 + 𝑟 𝑓∗ (𝑡) ®𝑓ℓ+1 (𝑡)𝑉0, (9)

for ℓ = 0 and 𝑗 + 𝑘 ≥ 1 we have

𝑑

𝑑𝑡
®𝑓0 (𝑡) = _𝑓∗ (𝑡)𝛼 + ®𝑓0 (𝑡)�̃�0 (𝑡) + ®𝑓1 (𝑡)`𝛼 + 𝑟 𝑓∗ (𝑡) ®𝑓1 (𝑡)𝑉0 + 𝑟 𝑓∗ (𝑡)

∑︁
ℓ ′≥0

®𝑓ℓ ′ (𝑡)𝑇 + 𝑟 𝑓∗ (𝑡)
∑︁
ℓ ′≥1

®𝑓ℓ ′ (𝑡)𝑣0𝛼, (10)

and for ℓ, 𝑗, 𝑘 = 0

𝑑

𝑑𝑡
𝑓∗ (𝑡) = −_𝑓∗ (𝑡) + ®𝑓0 (𝑡)` − 𝑟 𝑓∗ (𝑡)

(
1 − 𝑓∗ (𝑡) − ®𝑓0 (𝑡)𝑣0

)
. (11)

The first term of (9) and (10) is due to arrivals. The matrices �̃�0 (𝑡) and �̃�0 (𝑡) are the same matrices as 𝐴0 (𝑟) and 𝐵0 (𝑟)
respectively, except with every instance of 𝑞 changed to 𝑓∗ (𝑡). The second term of (9) and (10) therefore denotes the

drift due to transitions for which the level remains unchanged, due to arrivals to and due to parent steals from queues

of length ℓ . The third and the fourth term are due, respectively, to service completions and parent steals in queues

of length ℓ + 1. We denote 𝑣0 =

[
1
′
𝑛𝑐

0
′
(𝑚−1)𝑛𝑐 1

′
𝑛𝑝

0
′
𝑚𝑛𝑝

] ′
, where the entries are non-zero when 𝑗 + 𝑘 = 1 (i.e.

𝑉0 = diag(𝑣0)). We define the (𝑚 − 1) × (𝑚 − 1) matrix Ψ as [Ψ]𝑖, 𝑗 = 𝜓𝑖, 𝑗 and similarly𝑚 ×𝑚 matrix Φ. Recall that we

denote the zero matrix of dimension 𝑘 × ℓ as 0𝑘,ℓ . The matrix 𝑇 = 𝑇𝜓 +𝑇𝜙 records the distribution of the number of

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Grzegorz Kielanski and Benny Van Houdt

child jobs transferred when a probe is successful:

𝑇𝜓 =

0𝑛𝑐 ,(𝑚−1)𝑛𝑐 0𝑛𝑐 ,𝑛𝑐+(𝑚+1)𝑛𝑝
Ψ ⊗ (1𝑛𝑐𝛼𝑐) 0(𝑚−1)𝑛𝑐 ,𝑛𝑐+(𝑚+1)𝑛𝑝

0(𝑚+1)𝑛𝑝 ,(𝑚−1)𝑛𝑐 0(𝑚+1)𝑛𝑝 ,𝑛𝑐+(𝑚+1)𝑛𝑝

 ,𝑇𝜙 =

[
0𝑚𝑛𝑐+𝑛𝑝 ,𝑚𝑛𝑐 0𝑚𝑛𝑐+𝑛𝑝 ,(𝑚+1)𝑛𝑝
Φ ⊗ (1𝑛𝑝𝛼𝑐) 0𝑚𝑛𝑝 ,(𝑚+1)𝑛𝑝

]
.

The final two terms of (10) are thus due to transfers to empty queues of child jobs and of parents respectively. Similarly,

for
𝑑
𝑑𝑡

𝑓∗ (𝑡) the first term is due to job arrivals, the next is due to service completions and the last is due to job transfers.

Note that if 𝜙𝑖,1 = 1 for every 𝑖 ∈ {1, . . . ,𝑚} and if𝜓 𝑗,1 = 1 for every 𝑗 ∈ {1, . . . ,𝑚 − 1}, then 𝑇 = (1 − 𝑣0)^1.

We show that the stationary distribution of the QBD corresponds to the unique fixed point Z of the set of ODEs in

Equations (9)-(11). The following lemma says that, in equilibrium, the rate at which the level in non-empty queues

increases, that is _(1 − Z∗), is exactly the rate at which the level decreases in such queues (which can only happen due

to a service completion or a steal in queues with no pending child jobs).

Lemma 7.1. For any fixed point Z = (Z∗, ®Z0, ®Z1, . . .) with Z∗ +
∑
ℓ≥0

®Zℓ1 = 1 of the set of ODEs in Equations (9)-(11) we

have

_ = _Z∗ +
∑︁
ℓ≥1

®Zℓ` + 𝑟Z∗
∑︁
ℓ≥1

®Zℓ𝑣0 .

Proof. As
𝑑
𝑑𝑡

®𝑓ℓ (𝑡) = 0 in a fixed point we get using

∑
ℓ≥0

(ℓ + 1) 𝑑
𝑑𝑡

®𝑓ℓ (𝑡) = 0 and

∑
ℓ≥0

®Zℓ1 = 1 − Z∗ that∑︁
ℓ≥0

®Zℓ` = _ + 𝑟Z∗

(
1 − Z∗ −

∑︁
ℓ≥0

®Zℓ𝑣0

)
. (12)

The claim now follows by using (12) and (11) in a fixed point. □

Define recursively the row vector

b1,𝑚 = _𝑝𝑚𝛼𝑝

and

b
1,𝑘 = _𝑝𝑘𝛼

𝑝 + 𝑟Z∗
𝑚∑︁

𝑑=𝑘+1

𝜙𝑑,𝑑−𝑘b1,𝑑 (𝑟Z∗𝐼 − 𝑆𝑝)−1,

for 𝑘 = 0, . . . ,𝑚 − 1, and

b
0,𝑘 ′ = b

1,𝑘 ′ (𝑟Z∗𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + 𝑟Z∗
𝑚∑︁

𝑑=𝑘 ′
𝜙𝑑,𝑘 ′b

1,𝑑 (𝑟Z∗𝐼 − 𝑆𝑝)−1
1𝑛𝑝𝛼

𝑐

+ 1[𝑘′ < 𝑚]b
0,𝑘 ′+1

(𝑟Z∗𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐 + 𝑟Z∗
𝑚∑︁

𝑑=𝑘 ′+1

b
0,𝑑 (𝑟Z∗𝐼 − 𝑆𝑐)−1 (𝜓𝑑−1,𝑑−𝑘 ′ +𝜓𝑑−1,𝑘 ′1𝑛𝑐𝛼

𝑐),

for 𝑘′ = 1, . . . ,𝑚. b𝑖, 𝑗,𝑘 is the rate at which servers enter into phase (𝑖, 𝑗, 𝑘) due to arrivals, completions and steals.

The intuition behind the next two lemmas is that if the system is in equilibrium, the rate at which queues enter

phase (𝑖, 𝑗, 𝑘) should equal to the rate at which queues leave phase (𝑖, 𝑗, 𝑘).

Lemma 7.2. For any fixed point Z = (Z∗, ®Z0, ®Z1, . . .) with Z∗ +
∑
ℓ≥0

®Zℓ1 = 1 of the set of ODEs in Equations (9)-(11) we

have for 1 ≤ 𝑘 ≤ 𝑚: ∑︁
ℓ≥0

®Zℓ
©«
0𝑚𝑛𝑐+𝑘𝑛𝑝 ,𝑛𝑝

𝐼𝑛𝑝

0(𝑚−𝑘)𝑛𝑝 ,𝑛𝑝

ª®®®¬
(
𝑟Z∗𝐼 − 𝑆𝑝

)
= b

1,𝑘 . (13)

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Analysis of work stealing strategies in large scale multi-threaded computing 17

Proof. We prove the lemma using complete backward induction on 𝑘 . By demanding that∑
ℓ≥0

®𝑓ℓ (𝑡)
[
0
′
𝑚𝑛𝑐+𝑘𝑛𝑝 ,𝑛𝑝 , 𝐼𝑛𝑝 , 0

′
(𝑚−𝑘)𝑛𝑝 ,𝑛𝑝

] ′
= 0 for any 𝑘 ∈ {1, . . . ,𝑚}, we find due to Lemma 7.1 that

0 = _𝑝𝑘𝛼
𝑝 −

∑︁
ℓ≥0

®Zℓ
©«
0𝑚𝑛𝑐+𝑘𝑛𝑝 ,𝑛𝑝

𝐼𝑛𝑝

0(𝑚−𝑘)𝑛𝑝 ,𝑛𝑝

ª®®®¬
(
𝑟Z∗𝐼 − 𝑆𝑝

)
+ 𝑟Z∗

∑︁
ℓ≥0

®Zℓ
[
0
′
𝑚𝑛𝑐+(𝑘+1)𝑛𝑝 ,𝑛𝑝 , 𝜙𝑘+1,1𝐼𝑛𝑝 , . . . , 𝜙𝑚,𝑚−𝑘 𝐼𝑛𝑝

] ′
.

This is equivalent to

∑︁
ℓ≥0

®Zℓ
©«
0𝑚𝑛𝑐+𝑘𝑛𝑝 ,𝑛𝑝

𝐼𝑛𝑝

0(𝑚−𝑘)𝑛𝑝 ,𝑛𝑝

ª®®®¬
(
𝑟Z∗𝐼 − 𝑆𝑝

)
= _𝑝𝑘𝛼

𝑝 + 𝑟Z∗
∑︁
ℓ≥0

®Zℓ
[
0
′
𝑚𝑛𝑐+(𝑘+1)𝑛𝑝 ,𝑛𝑝 , 𝜙𝑘+1,1𝐼𝑛𝑝 , . . . , 𝜙𝑚,𝑚−𝑘 𝐼𝑛𝑝

] ′
. (14)

(14) is equivalent to (13) for 𝑘 =𝑚. Suppose now that 𝑘 < 𝑚 and that (13) holds for all 𝑘′ ∈ {𝑘 + 1, . . . ,𝑚}. Due to (14),

it suffices to show that

𝑟Z∗
∑︁
ℓ≥0

®Zℓ
[
0
′
𝑚𝑛𝑐+(𝑘+1)𝑛𝑝 ,𝑛𝑝 , 𝜙𝑘+1,1𝐼𝑛𝑝 , . . . , 𝜙𝑚,𝑚−𝑘 𝐼𝑛𝑝

] ′
= 𝑟Z∗

𝑚∑︁
𝑑=𝑘+1

𝜙𝑑,𝑑−𝑘b1,𝑑 (𝑟Z∗𝐼 − 𝑆𝑝)−1 .

This is equivalent to∑︁
ℓ≥0

®Zℓ
[
0
′
𝑚𝑛𝑐+(𝑘+1)𝑛𝑝 ,𝑛𝑝 , 𝜙𝑘+1,1𝐼𝑛𝑝 , . . . , 𝜙𝑚,𝑚−𝑘 𝐼𝑛𝑝

] ′
(𝑟Z∗𝐼 − 𝑆𝑝) =

𝑚∑︁
𝑑=𝑘+1

𝜙𝑑,𝑑−𝑘b1,𝑑 ,

which holds due to induction hypothesis. □

Lemma 7.3. For any fixed point Z = (Z∗, ®Z0, ®Z1, . . .) with Z∗ +
∑
ℓ≥0

®Zℓ1 = 1 of the set of ODEs in Equations (9)-(11) we

have for 2 ≤ 𝑘 ≤ 𝑚: ∑︁
ℓ≥0

®Zℓ
©«

0(𝑘−1)𝑛𝑐 ,𝑛𝑐
𝐼𝑛𝑐

0(𝑚−𝑘−2)𝑛𝑐+(𝑚+1)𝑛𝑝 ,𝑛𝑐

ª®®®¬
(
𝑟Z∗𝐼 − 𝑆𝑐

)
= b

0,𝑘 . (15)

Proof. The proof is analogous to that of Lemma 7.2, except we also rely on (13). □

Proposition 7.4. For any fixed point Z = (Z∗, ®Z0, ®Z1, . . .) with Z∗ +
∑
ℓ≥0

®Zℓ1 = 1 of the set of ODEs in Equations (9)-(11)

we have

Z∗ = 𝑞, (16)

𝑟Z∗
∑︁
ℓ≥0

®Zℓ𝑇 = Z∗
𝑚∑︁
𝑗=1

_𝑐,𝑗 (𝑟)^ 𝑗 , (17)

where _𝑐,𝑗 (𝑟) was defined in (6).

Proof. Denote by (1:𝑘) the column vector [1, . . . , 𝑘]′ for 𝑘 ≥ 1. To prove (16) it suffices to show∑︁
ℓ≥0

®Zℓ

(
0𝑚𝑛𝑐

1(𝑚+1)𝑛𝑝

)
= _𝛼𝑝 (−𝑆𝑝)−1

1𝑛𝑝 , (18)

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Grzegorz Kielanski and Benny Van Houdt

∑︁
ℓ≥0

®Zℓ

(
1𝑚𝑛𝑐

0(𝑚+1)𝑛𝑝

)
= _

(
𝑚∑︁
𝑖=1

𝑖𝑝𝑖

)
𝛼𝑐 (−𝑆𝑐)−1

1𝑛𝑐 . (19)

By demanding

∑
ℓ≥0

𝑑
𝑑𝑡

®𝑓ℓ (𝑡) = 0 and by using Lemma 7.1, we find

0 = _𝛼 +
∑︁
ℓ≥0

®Zℓ𝑆 + 𝑟Z∗
∑︁
ℓ≥0

®Zℓ𝑉0 − 𝑟Z∗
∑︁
ℓ≥0

®Zℓ + 𝑟Z∗
∑︁
ℓ≥0

®Zℓ𝑇, (20)

Where 𝑆 is the samematrix as 𝑆 (𝑟) except with all instances of𝑞 changed to Z∗. Bymultiplying (20) with [0′𝑚𝑛𝑐 ,𝑛𝑝
, (1𝑚+1⊗

𝐼𝑛𝑝)′]′, we get

0 = _𝛼𝑝 +
∑︁
ℓ≥0

®Zℓ

(
0𝑚𝑛𝑐 ,𝑛𝑝

1𝑚+1 ⊗ 𝑆𝑝

)
, (21)

which yields (18). By demanding

∑
ℓ≥0

𝑑
𝑑𝑡

®𝑓ℓ (𝑡) [((1:𝑚) ⊗ 1𝑛𝑐)′ 0 ((1:𝑚) ⊗ 1𝑛𝑝)′]′ = 0 and by using Lemma 7.1, one can

show that ∑︁
ℓ≥0

®Zℓ

(
1𝑚 ⊗ 𝑠𝑐

0(𝑚+1)𝑛𝑝

)
= _

𝑚∑︁
𝑖=1

𝑖𝑝𝑖 . (22)

By multiplying (20) with [(1𝑚 ⊗ 𝐼𝑛𝑐)′, 0′(𝑚+1)𝑛𝑝 ,𝑛𝑐]
′
and by using (12) on the last sum we get

_𝛼𝑐 =
∑︁
ℓ≥0

®Zℓ

(
1𝑚 ⊗ 𝑠𝑐

1𝑚+1 ⊗ 𝑠𝑝

)
𝛼𝑐 +

∑︁
ℓ≥0

®Zℓ

(
1𝑚 ⊗ 𝑆𝑐

0(𝑚+1)𝑛𝑝 ,𝑛𝑐

)
.

Due to (21) and (22) this is equivalent to

0 = _

(
𝑚∑︁
𝑖=1

𝑖𝑝𝑖

)
𝛼𝑐 +

∑︁
ℓ≥0

®Zℓ

(
1𝑚 ⊗ 𝑆𝑐

0(𝑚+1)𝑛𝑝 ,𝑛𝑐

)
,

which gives (19). To prove the second claim it suffices to show, due to the definition of 𝑇 , that for 𝑖 = 1, . . . ,𝑚 we have:

𝑟Z∗
∑︁
ℓ≥0

®Zℓ𝑇
©«

0(𝑖−1)𝑛𝑐
1𝑛𝑐

0(𝑚−𝑖)𝑛𝑐+(𝑚+1)𝑛𝑝

ª®®®¬ = Z∗_𝑐,𝑖 (𝑟).

This is equivalent to showing the following two equalities:

𝑟Z∗
∑︁
ℓ≥0

®Zℓ𝑇𝜓
©«

0(𝑖−1)𝑛𝑐
1𝑛𝑐

0(𝑚−𝑖)𝑛𝑐+(𝑚+1)𝑛𝑝

ª®®®¬ = _𝑟𝑞
∑︁
𝑗>𝑖

𝜓 𝑗−1,𝑖𝑝0, 𝑗 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1
1𝑛𝑐

+ 𝑟𝑞2

𝑚∑︁
𝑗=𝑖+1

_𝑐,𝑗 (𝑟)
𝑗∑︁

𝑘=𝑖+1

𝜓𝑘−1,𝑖𝑝
𝑗

𝑘
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1

1𝑛𝑐 (23)

for 𝑖 = 1, . . . ,𝑚 − 1, and

𝑟Z∗
∑︁
ℓ≥0

®Zℓ𝑇𝜙
©«

0(𝑖−1)𝑛𝑐
1𝑛𝑐

0(𝑚−𝑖)𝑛𝑐+(𝑚+1)𝑛𝑝

ª®®®¬ = _𝑟𝑞
∑︁
𝑗≥𝑖

𝜙 𝑗,𝑖𝑝1, 𝑗 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1
1𝑛𝑝 , (24)

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Analysis of work stealing strategies in large scale multi-threaded computing 19

for 𝑖 = 1, . . . ,𝑚. Due to (13), we have

𝑟Z∗
∑︁
ℓ≥0

®Zℓ𝑇𝜙
©«

0(𝑖−1)𝑛𝑐
1𝑛𝑐

0(𝑚−𝑖)𝑛𝑐+(𝑚+1)𝑛𝑝

ª®®®¬ = 𝑟Z∗
∑︁
𝑑≥𝑖

𝜙𝑑,𝑖b1,𝑑 (𝑟𝑞𝐼 − 𝑆𝑝)−1
1𝑛𝑝 .

As

b
1,𝑑 = _𝑝

1,𝑑 (𝑟), (25)

where all instances of 𝑞 in the formula of 𝑝
1,𝑑 (𝑟) have been changed to Z∗, equation (24) follows from (16). Equation

(23) requires more work to prove. Due to (15), it suffices to show that

𝑟Z∗
𝑚−1∑︁
𝑘=𝑖

𝜓𝑘,𝑖b0,𝑘+1
(𝑟Z∗𝐼 − 𝑆𝑐)−1

1𝑛𝑐 = _𝑟𝑞
∑︁
𝑗>𝑖

𝜓 𝑗−1,𝑖𝑝0, 𝑗 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1
1𝑛𝑐

+ 𝑟𝑞2

𝑚∑︁
𝑗=𝑖+1

_𝑐,𝑗 (𝑟)
𝑗∑︁

𝑘=𝑖+1

𝜓𝑘−1,𝑖𝑝
𝑗

𝑘
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1

1𝑛𝑐 .

Due to (16), it suffices to show that

𝑚∑︁
𝑘=𝑖+1

𝜓𝑘−1,𝑖b0,𝑘 = _

𝑚∑︁
𝑘=𝑖+1

𝑝
0,𝑘 (𝑟)𝜓𝑘−1,𝑖 + 𝑞

𝑚∑︁
𝑘=𝑖+1

𝑚∑︁
𝑗=𝑘

_𝑐,𝑗 (𝑟)𝑝 𝑗𝑘 (𝑟)𝜓𝑘−1,𝑖 . (26)

We show that for 𝑘 = 2, . . . ,𝑚, we have

b
0,𝑘 = _𝑝

0,𝑘 (𝑟) + 𝑞
𝑚∑︁
𝑗=𝑘

_𝑐,𝑗 (𝑟)𝑝 𝑗𝑘 (𝑟) (27)

and (26) then follows. We prove (27) by complete backward induction on 𝑘 . By definition and (16), we have for 𝑘 =𝑚

b0,𝑚 = b1,𝑚 (𝑟Z∗𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + 𝑟Z∗𝜙𝑚,𝑚b1,𝑚 (𝑟Z∗𝐼 − 𝑆𝑝)−1
1𝑛𝑝𝛼

𝑐 = _𝑝0,𝑚 (𝑟) + 𝑞_𝑐,𝑚 (𝑟)𝑝𝑚𝑚 (𝑟) .

Suppose now that 𝑘 < 𝑚 and that (27) holds for all 𝑘′ ∈ {𝑘 + 1, . . . ,𝑚}. We have by definition

b
0,𝑘 = b

1,𝑘 (𝑟Z∗𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + 𝑟Z∗
𝑚∑︁
𝑑=𝑘

𝜙𝑑,𝑘b1,𝑑 (𝑟Z∗𝐼 − 𝑆𝑝)−1
1𝑛𝑝𝛼

𝑐

+ b
0,𝑘+1

(𝑟Z∗𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐 + 𝑟Z∗
𝑚∑︁

𝑑=𝑘+1

b
0,𝑑 (𝑟Z∗𝐼 − 𝑆𝑐)−1 (𝜓𝑑−1,𝑑−𝑘 +𝜓𝑑−1,𝑘1𝑛𝑐𝛼

𝑐) .

By induction hypothesis, (16) and (25) this is equal to

_𝑝
1,𝑘 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + _𝑟𝑞

𝑚∑︁
𝑑=𝑘

𝜙𝑑,𝑘𝑝1,𝑑 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1
1𝑛𝑝𝛼

𝑐

+ ©«_𝑝0,𝑘+1
(𝑟) + 𝑞

𝑚∑︁
𝑗=𝑘+1

_𝑐,𝑗 (𝑟)𝑝 𝑗𝑘+1
(𝑟)ª®¬ (𝑟𝑞𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐

+ 𝑟𝑞
𝑚∑︁

𝑑=𝑘+1

(
_𝑝

0,𝑑 (𝑟) + 𝑞
𝑚∑︁
𝑖=𝑑

_𝑐,𝑖 (𝑟)𝑝𝑖𝑑 (𝑟)
)
(𝑟𝑞𝐼 − 𝑆𝑐)−1 (𝜓𝑑−1,𝑑−𝑘 +𝜓𝑑−1,𝑘1𝑛𝑐𝛼

𝑐).

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Grzegorz Kielanski and Benny Van Houdt

By first using the formula for 𝑝
0,𝑘 (𝑟) and then for _𝑐,𝑘 (𝑟) (6) this is further equal to

_𝑝
0,𝑘 (𝑟) + _𝑟𝑞

𝑚∑︁
𝑑=𝑘

𝜙𝑑,𝑘𝑝1,𝑑 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1
1𝑛𝑝𝛼

𝑐

+ 𝑞
𝑚∑︁

𝑗=𝑘+1

_𝑐,𝑗 (𝑟)𝑝 𝑗𝑘+1
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐 + _𝑟𝑞

𝑚∑︁
𝑑=𝑘+1

𝜓𝑑−1,𝑘𝑝0,𝑑 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1
1𝑛𝑐𝛼

𝑐

+ 𝑟𝑞2

𝑚∑︁
𝑖=𝑘+1

_𝑐,𝑖 (𝑟)
𝑖∑︁

𝑑=𝑘+1

𝑝𝑖
𝑑
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1 (𝜓𝑑−1,𝑑−𝑘 +𝜓𝑑−1,𝑘1𝑛𝑐𝛼

𝑐)

= _𝑝
0,𝑘 (𝑟) + 𝑞_𝑐,𝑘 (𝑟)𝛼𝑐 + 𝑞

𝑚∑︁
𝑗=𝑘+1

_𝑐,𝑗 (𝑟)𝑝 𝑗𝑘+1
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐

+ 𝑟𝑞2

𝑚∑︁
𝑖=𝑘+1

_𝑐,𝑖 (𝑟)
𝑖∑︁

𝑑=𝑘+1

𝜓𝑑−1,𝑑−𝑘𝑝
𝑖
𝑑
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1 .

By rearranging the terms and by using the formula for 𝑝
𝑗

𝑘
(𝑟) this equals

_𝑝
0,𝑘 (𝑟) + 𝑞_𝑐,𝑘 (𝑟)𝑝𝑘𝑘 (𝑟) + 𝑞

𝑚∑︁
𝑗=𝑘+1

_𝑐,𝑗 (𝑟)
(
𝑝
𝑗

𝑘+1
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐 + 𝑟𝑞

𝑗∑︁
𝑑=𝑘+1

𝜓𝑑−1,𝑑−𝑘𝑝
𝑗

𝑑
(𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1

)
= _𝑝

0,𝑘 (𝑟) + 𝑞
𝑚∑︁
𝑗=𝑘

_𝑐,𝑗 (𝑟)𝑝 𝑗𝑘 (𝑟),

which shows (27), thus finishing the proof. □

Theorem 7.5. The stationary distribution 𝜋 (𝑟) of the QBD Markov chain characterized by 𝑄 (𝑟) is the unique fixed
point Z of the set of ODEs in Equations (9)-(11).

Proof. Using Proposition 3.1 we show that the fixed point equations
𝑑
𝑑𝑡

®𝑓ℓ (𝑡) = 0 are equivalent to the balance

equations of the QBDMarkov chain characterized by𝑄 (𝑟). The uniqueness of the fixed point follows from the uniqueness

of the stationary distribution of the Markov chain.

For ℓ ≥ 1,
𝑑
𝑑𝑡

®𝑓ℓ (𝑡) = 0 can be written as

0 = ®Zℓ−1 (_𝐼) + ®Zℓ�̃�0 + ®Zℓ+1 (`𝛼 + 𝑟Z∗𝑉0),

where �̃�0 is the same matrix as𝐴0 (𝑟) except with every instance of 𝑞 changed to Z∗. This is exactly the balance equations

of 𝑄 (𝑟) for ℓ ≥ 1 as Z∗ = 𝑞 due to Proposition 7.4. This implies that
®Zℓ = ®Z0𝑅(𝑟)ℓ , for all ℓ ≥ 1 for any fixed point.

For ℓ = 0,
𝑑
𝑑𝑡

®𝑓ℓ (𝑡) = 0 implies

0 = ®Z0�̃�0 + ®Z1 (`𝛼 + 𝑟Z∗𝑉0) + _Z∗𝛼 + 𝑟Z∗
∑︁
ℓ ′≥0

®Zℓ ′𝑇 + 𝑟Z∗
∑︁
ℓ ′≥1

®Zℓ ′𝑣0𝛼,

where �̃�0 is the same matrix as 𝐵0 (𝑟) except with every instance of 𝑞 changed to Z∗. Due to Proposition 7.4 we can

rewrite this as

0 = ®Z0𝐵0 (𝑟) + ®Z1𝐴−1 (𝑟) + 𝑞 ©«
𝑚∑︁
𝑗=1

_𝑐,𝑗 (𝑟)^ 𝑗 + _𝛼 + 𝑟
∑︁
ℓ≥1

®Zℓ𝑣0𝛼
ª®¬ .

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Analysis of work stealing strategies in large scale multi-threaded computing 21

This implies that

®Z0 = −𝑞 ©«
𝑚∑︁
𝑗=1

_𝑐,𝑗 (𝑟)^ 𝑗 + _𝛼 + 𝑟
∑︁
ℓ≥1

®Zℓ𝑣0𝛼
ª®¬ (𝐵0 (𝑟) + _𝐼𝐺 (𝑟))−1,

as _𝐼𝐺 (𝑟) = 𝑅(𝑟)𝐴−1 (𝑟). As
∑
ℓ≥0

®Zℓ1 = 1 − 𝑞 =
∑
ℓ≥0

𝜋ℓ (𝑟)1, we find that

𝑟
∑︁
ℓ ′≥1

®Zℓ ′𝑣0 = _𝑝 (𝑟) (28)

defined in (8). This indicates that
𝑑
𝑑𝑡

®𝑓ℓ (𝑡) = 0 corresponds to the balance equation for ℓ = 0. As𝑇1 = 1 − 𝑣0, we have for

𝑑
𝑑𝑡

𝑓∗ (𝑡) = 0 that

0 = −_Z∗ + ®Z0` − 𝑟Z∗ (1 − Z∗ − ®Z0𝑣0)

= −Z∗

(
𝑟

∑︁
ℓ ′≥0

®Zℓ ′𝑇1 + _ + 𝑟
∑︁
ℓ ′≥1

®Zℓ ′𝑣0

)
+ ®Z0`,

which is exactly the first balance equation due to Proposition 7.4 and (28). □

8 CONCLUSIONS AND FUTUREWORK

We introduced a model for randomized work stealing in multithreaded large-scale systems, where parent jobs spawn

child jobs and where any number of existing child jobs can be stolen from a queue by a single probe. We defined a

Quasi-Birth-Death (QBD) Markov chain to approximate the system behaviour and showed, using simulation, that the

approximation error tends to zero as the number of servers tends to infinity. To further support this observation we

introduced a mean field model and showed that the stationary distribution of the QBD is the unique fixed point of the

mean field model.

Using numerical experiments we examined the effect of changing the load 𝜌 , the steal rate 𝑟 and the variability of the

job sizes. We studied the performance of some basic steal strategies and showed that stealing half of the child jobs is in

general a good policy for higher steal rates 𝑟 and/or lower loads 𝜌 , while the strategy of stealing all children performs

best for low steal rates 𝑟 and/or higher loads. We further showed that stealing becomes more and more worthwhile

when the job size variability increases.

Possible generalizations include stealing multiple parent jobs per probe and systems where offspring of a job can spawn

further offspring (multigenerational multithreading).

REFERENCES
[1] Dario A. Bini, Beatrice Meini, Sergio Steffé, and Benny Van Houdt. 2006. Structured Markov chains solver: software tools. In Proceeding from the

2006 workshop on Tools for solving structured Markov chains. 1–14.
[2] M. Bladt, , and B.F. Nielsen. 2017. Matrix-exponential distributions in applied probability. Vol. 81. Springer.
[3] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. 1996. Cilk: An efficient

multithreaded runtime system. Journal of parallel and distributed computing 37, 1 (1996), 55–69.

[4] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded computations by work stealing. Journal of the ACM (JACM) 46, 5
(1999), 720–748.

[5] Maury Bramson, Yi Lu, and Balaji Prabhakar. 2010. Randomized load balancing with general service time distributions. In ACM SIGMETRICS 2010.
275–286. https://doi.org/10.1145/1811039.1811071

[6] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. 1986. A comparison of receiver-initiated and sender-initiated adaptive load sharing.

Performance Evaluation 6, 1 (1986), 53–68.

Manuscript submitted to ACM

https://doi.org/10.1145/1811039.1811071

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Grzegorz Kielanski and Benny Van Houdt

[7] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementation of the Cilk-5 Multithreaded Language. In In Proceedings of the
SIGPLAN ’98 Conference on Program Language Design and Implementation. 212–223.

[8] Nicolas Gast. 2017. Expected values estimated via mean-field approximation are 1/N-accurate. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 1, 1 (2017), 17.

[9] Nicolas Gast and Bruno Gaujal. 2010. A mean field model of work stealing in large-scale systems. ACM SIGMETRICS Performance Evaluation Review
38, 1 (2010), 13–24.

[10] Thierry Gautier, Xavier Besseron, and Laurent Pigeon. 2007. Kaapi: A thread scheduling runtime system for data flow computations on cluster of

multi-processors. In Proceedings of the 2007 international workshop on Parallel symbolic computation. 15–23.
[11] Grzegorz Kielanski and Benny Van Houdt. 2021. Performance Analysis of Work Stealing Strategies in Large Scale Multi-threaded Computing. In

Quantitative Evaluation of Systems. Springer International Publishing, Cham, 329–348.

[12] J. Kriege and P. Buchholz. 2014. PH and MAP Fitting with Aggregated Traffic Traces. Springer International Publishing, Cham, 1–15. https:

//doi.org/10.1007/978-3-319-05359-2_1

[13] Guy Latouche and V. Ramaswami. 1999. Introduction to matrix analytic methods in stochastic modeling. Vol. 5. SIAM.

[14] Doug Lea. 2000. A Java Fork/Join Framework. In Proceedings of the ACM 2000 Conference on Java Grande (San Francisco, California, USA) (JAVA ’00).
Association for Computing Machinery, New York, NY, USA, 36–43. https://doi.org/10.1145/337449.337465

[15] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The Design of a Task Parallel Library. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications (Orlando, Florida, USA) (OOPSLA ’09). Association for Computing

Machinery, New York, NY, USA, 227–242. https://doi.org/10.1145/1640089.1640106

[16] Wouter Minnebo, Tim Hellemans, and Benny Van Houdt. 2017. On a class of push and pull strategies with single migrations and limited probe rate.

Performance Evaluation 113 (2017), 42–67.

[17] Wouter Minnebo and Benny Van Houdt. 2014. A fair comparison of pull and push strategies in large distributed networks. IEEE/ACM Transactions
on Networking (TON) 22, 3 (2014), 996–1006.

[18] Ravi Mirchandaney, Don Towsley, and John A. Stankovic. 1990. Adaptive load sharing in heterogeneous distributed systems. Journal of parallel and
distributed computing 9, 4 (1990), 331–346.

[19] Marcel F. Neuts. 1981. Matrix-geometric solutions in stochastic models: an algorithmic approach. John Hopkins University Press.

[20] A. Panchenko and A. Thümmler. 2007. Efficient Phase-type Fitting with Aggregated Traffic Traces. Perform. Eval. 64, 7-8 (Aug. 2007), 629–645.
https://doi.org/10.1016/j.peva.2006.09.002

[21] Arch Robison, Michael Voss, and Alexey Kukanov. 2008. Optimization via reflection on work stealing in TBB. In 2008 IEEE International Symposium
on Parallel and Distributed Processing. IEEE, 1–8.

[22] Nikki Sonenberg, Grzegorz Kielanski, and Benny Van Houdt. 2021. Performance Analysis of Work Stealing in Large-Scale Multithreaded Computing.

ACM Trans. Model. Perform. Eval. Comput. Syst. 6, 2, Article 6 (Sept. 2021), 28 pages. https://doi.org/10.1145/3470887

[23] Ignace Van Spilbeeck and Benny Van Houdt. 2015. Performance of rate-based pull and push strategies in heterogeneous networks. Performance
Evaluation 91 (2015), 2–15.

[24] Mark S. Squillante and Randolph D. Nelson. 1991. Analysis of Task Migration in Shared-memory Multiprocessor Scheduling. SIGMETRICS Perform.
Eval. Rev. 19, 1 (1991), 143–155. http://doi.acm.org/10.1145/107972.107987

[25] Benny Van Houdt. 2019. Randomized Work Stealing versus Sharing in Large-scale Systems with Non-exponential Job Sizes. IEEE/ACM Transactions
on Networking 27 (2019), 2137–2149. Issue 5.

[26] Niklaus Wirth. 1996. Tasks versus Threads: An Alternative Multiprocessing Paradigm. Software - Concepts and Tools 17 (01 1996), 6–12.

A PROOF OF PROPOSITION 3.1

The positive recurrence of the QBD process only depends on the matrices 𝐴−1 (𝑟), 𝐴0 (𝑟) and 𝐴1 [19]. These three

matrices are the same three matrices as those of the QBD characterizing the M/MAP/1 queue where the MAP service

process is characterized by (𝑆0 (𝑟), 𝑆1 (𝑟)) with 𝑆0 (𝑟) = 𝑆 (𝑟) − 𝑟𝑞𝐼 and 𝑆1 (𝑟) = `𝛼 + 𝑟𝑞𝑉0. As such the QBD process is

positive recurrent if and only if the arrival rate _ is less than the service completion intensity of the MAP (𝑆0 (𝑟), 𝑆1 (𝑟)).
This intensity equals \ (𝑟)𝑆1 (𝑟)1/\ (𝑟)1, where the vector \ (𝑟) is such that \ (𝑟) (𝑆0 (𝑟) + 𝑆1 (𝑟)) = 0.

We note that 𝑆0 (𝑟) + 𝑆1 (𝑟) = 𝐴−1 (𝑟) +𝐴0 (𝑟) +𝐴1 = 𝐴(𝑟) and define

\
(𝑟)
(0,1) = 𝑝0,1 (𝑟) (−𝑆𝑐)−1, \

(𝑟)
(0,𝑖′) = 𝑝0,𝑖′ (𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1,

\
(𝑟)
(1,0) = 𝑝1,0 (𝑟) (−𝑆𝑝)−1, \

(𝑟)
(1,𝑖) = 𝑝1,𝑖 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1,

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-319-05359-2_1
https://doi.org/10.1007/978-3-319-05359-2_1
https://doi.org/10.1145/337449.337465
https://doi.org/10.1145/1640089.1640106
https://doi.org/10.1016/j.peva.2006.09.002
https://doi.org/10.1145/3470887
http://doi.acm.org/10.1145/107972.107987

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Analysis of work stealing strategies in large scale multi-threaded computing 23

for 𝑖′ = 2, . . . ,𝑚 and for 𝑖 = 1, . . . ,𝑚. Define 𝑣 (𝑟) = \ (𝑟)𝐴(𝑟). Then

𝑣
(𝑟)
(0,𝑖′) = −𝑝0,𝑖′ (𝑟) + 𝑝1,𝑖′ (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + 𝑝0,𝑖′+1 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐 + 𝑟𝑞

∑︁
𝑗>𝑖′

𝜓 𝑗−1, 𝑗−𝑖′𝑝0, 𝑗 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑐)−1 = 0,

for 𝑖′ = 1, . . . ,𝑚. By using (5), we further get

𝑣
(𝑟)
(1,𝑖) = −𝑝1,𝑖 (𝑟) + 𝑝𝑖 (𝑝0,1 (𝑟) (−𝑆𝑐)−1𝑠𝑐 + 𝑝1,0 (𝑟) (−𝑆𝑝)−1𝑠𝑝)𝛼𝑝 + 𝑟𝑞

∑︁
𝑗>𝑖

𝜙 𝑗, 𝑗−𝑖𝑝1, 𝑗 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1

= −𝑝1,𝑖 (𝑟) + 𝑝𝑖𝛼
𝑝 + 𝑟𝑞

∑︁
𝑗>𝑖

𝜙 𝑗, 𝑗−𝑖𝑝1, 𝑗 (𝑟) (𝑟𝑞𝐼 − 𝑆𝑝)−1 = 0,

for 𝑖 = 0, . . . ,𝑚. Hence \ (𝑟)𝐴(𝑟) = \ (𝑟) (𝑆0 (𝑟) + 𝑆1 (𝑟)) = 0. As

\ (𝑟)𝑆1 (𝑟)1
\ (𝑟)1

=
1

\ (𝑟)1

(
𝑝0,1 (𝑟) (−𝑆𝑐)−1𝑠𝑐 + 𝑝1,0 (𝑟) (−𝑆𝑝)−1𝑠𝑝 + 𝑟𝑞𝑝0,1 (𝑟) (−𝑆𝑐)−1

1𝑛𝑐 + 𝑟𝑞𝑝1,0 (𝑟) (−𝑆𝑝)−1
1𝑛𝑝

)
≥ 1

\ (𝑟)1
(𝑝0,1 (𝑟) (−𝑆𝑐)−1𝑠𝑐 + 𝑝1,0 (𝑟) (−𝑆𝑝)−1𝑠𝑝) = 1

\ (𝑟)1
,

it suffices that _ < 1/\ (𝑟)1 for the chain to be positive recurrent. For 𝑟 = 0 we have 𝑝1,𝑖 (𝑟) = 𝑝𝑖𝛼
𝑝
and 𝑝0,𝑖′ (𝑟) =∑

𝑗≥𝑖′ 𝑝 𝑗𝛼
𝑐
, which implies that \ (0)1 = 𝜌/_. Therefore _ < 1/\ (0)1 is equivalent to demanding that 𝜌 < 1. As \ (𝑟)1 is

the mean time between two service completions of the MAP process where the state is reset according to the vector 𝛼 ,

we have that \ (𝑟)1 decreases in 𝑟 . This completes the proof as 𝜌 < 1 implies that _ < 1/\ (0)1 ≤ 1/\ (𝑟)1.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 System description and strategies
	3 Quasi-Birth-Death Markov chain
	4 Response time distribution
	5 Numerical experiments
	6 Model validation
	7 Mean field model
	8 Conclusions and future work
	References
	A Proof of Proposition 3.1

